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Abstract
Wind energy is a valuable renewable resource that plays a significant role in electricity generation process. Predicting wind

speed (W.S.) is critical for effectively managing wind energy and producing power. This study proposes an improved

multi-layer perceptron (MLP) model for W.S. prediction that incorporates a novel optimization algorithm namely water

strider algorithm (WSA). The WSA optimizes the MLP parameters to increase the model’s accuracy. The MLP-WSA

model’s predictive capabilities were compared with various algorithms, such as MLP-sine cosine (SCA), MLP-salp swarm

(MLP-SSA), Multi-Layer Perceptron-particle swarm optimization (MLP-PSO), and MLP models. Furthermore, we pro-

posed an inclusive multiple model (IMM) that utilizes the outputs of the MLP-WSA to predict W.S. The study utilized

fuzzy reasoning to modify MLP models to remove redundant weights and reduce computation time. Finally, to predict

W.S, we considered five stations in Malaysia. By utilizing the WSA and Gamma tests, we identified that the IMM model

provided the most optimal input for our model. To test the I.P. station, the RMSE of the IMM model was lower than other

models. Additionally, the NSE of the IMM model was found to be higher at the B.L. station, indicating superior per-

formance. Furthermore, the IMM model’s mean absolute error was notably lower than other models in C.H. station.

Overall, the results demonstrate that the combination of the WSA and Gamma tests allowed us to achieve more accurate

and efficient predictions with less computation time using fuzzy reasoning.
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1 Introduction

Energy shortage is a real challenge for different countries.

The development and future of each country rely on the

control of energy. For fossil fuels, when the consumption

increases, the energy reserves decreases and the environ-

mental pollution increases (Zhang et al. 2020). Today,

renewable and clean energies such as wind and solar

energies are excellent alternatives to fossil fuels for energy

production (Samadianfard et al. 2020). The renewable

energy has different advantages. It decreases some types of

air pollution. Also, renewable energies create economic

development and jobs in manufacturing (Liu et al. 2020).

A unique method of desalination using solar energy has

been proposed, and its potential effectiveness has been

assessed through a proven model of humidification–dehu-

midification (Abedi et al. 2023a). It has been demonstrated

that if a turbine is used to generate electricity for the

desalination system, the plant can supply freshwater to

approximately 800 homes. Numerous machine learning

regression approaches were utilized to build a surrogate

model based on data from the dehumidifier component

(Abedi et al. 2023b).

Wind energy, a principle renewable energy, is cost-ef-

fective and creates jobs. Also, wind energy is used for

developing industries and economies. Wind energy can be

used for producing power generation without environ-

mental pollution (Kumar 2020). Wind power generation is

an important technology for producing power and devel-

oping different countries’ industries and economies (Xu

et al. 2021). Wind power generation is used to converts

wind energy to electric energy. Wind power generation canExtended author information available on the last page of the article
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enhance supplies and facilitate the reclamation of degraded

land. To better manage wind power generation, the

research works have focused on predicting wind power and

wind speed. The W.S. prediction is complex because of the

chaotic fluctuations of W.S. There are different methods

for predicting W.S., such as physical models, soft com-

puting models (SCMs), and spatial correlation models (Liu

et al. 2012). The geographic and geomorphic data are

required to establish physical models and different data

from the different measurement stations to establish the

spatial correlation models. Modelers may encounter chal-

lenges in accessing various types of data, including cli-

mate, geographic, and geomorphic data. To address this

issue, some researchers have turned to using soft comput-

ing models (SCMs) to predict various variables. SCMs

offer several advantages, such as their high accuracy,

ability to handle complex systems, flexibility in coupling

with different models and algorithms, and ease of imple-

mentation (Ehteram et al. 2021). Notably, researchers have

also explored the potential of using SCMs for wind speed

prediction. For example, one study demonstrated the

effectiveness of combining a hybrid MLP model with self-

organizing feature maps to enhance the model’s accuracy

(Gnana Sheela and Deepa 2013). Research has shown that

a coupled model utilizing the multi-layer perceptron (MLP)

technique outperforms the standalone MLP model for wind

speed (W.S.) prediction. Similarly, the use of coupled PSO

with the support vector machine (SVM) produced greater

accuracy than the standalone SVM model for predicting

W.S (Kong et al. 2015). Additionally, an artificial neural

network (ANN) has demonstrated the ability to accurately

predict W.S. with a mean absolute percentage error of

6.48% using altitude, solar radiation air pressure, and air

temperature (Ramasamy et al. 2015).

In Kumar and Malik (2016), researchers explored the

effectiveness of both the MLP and Generalized Regression

Neural Network (GRNN) for predicting wind speed (W.S.).

The findings showed that the GRNN outperformed the

MLP. Meanwhile, Zhang et al. (2016) conducted a study to

evaluate the potential of Gaussian Process Regression

(GPR) for W.S. prediction. The results demonstrated that

the GPR is more accurate than ANN and SVM techniques.

In Ahmed et al. (2016), the researchers combined the

adaptive neuro-fuzzy interface system (ANFIS) with the

krill optimization algorithm to predict wind speed (W.S.).

They utilized the krill algorithm to optimize the parameters

of the ANFIS model. They demonstrated that the combined

ANFIS-krill approach enhanced the accuracy of the stan-

dalone ANFIS model. In another study, Liu et al. (2018)

applied a Convolutional Long Short-Term Memory

(CLSTM) to predict W.S. They showed that the CLSTM

had better performance compared to the Convolutional

neural network.

Researchers in Yu et al. (2018) examined the capacity of

a hybrid SCM for predicting wind speed (W.S.). The

method involved decomposing the original wind speed

history using wavelet transform and using a Recurrent

Neural Network (RNN) to extract the more profound fea-

tures of the data, which were then fed into the SVM model.

The results showed that the hybrid model had significant

accuracy in W.S. prediction. Similarly, Samadianfard et al.

(2020) applied MLP with genetic and whale optimization

algorithms to boost the performance of predicting W.S.

The optimized MLP models were tested across different

climatic regions of Iran, where it was observed that the

MLP-Whale Optimization Algorithm (WOA) hybrid model

outperformed the standalone MLP model.

Research in Navas et al. (2020) focused on comparing

the predictive accuracy of different models including MLP,

Radial Basis Function Neural Network (RBFNN), and

Categorical Regression for predicting wind speed (W.S.).

The study revealed that the MLP had a better accuracy than

other models. On the other hand, Sun et al. (2020) looked

for the performance of a coupled Multi-Kernel Least

Square SVM (MLKSSVM) and Gravitational Search

Algorithm (GSA) for W.S. prediction. The GSA was uti-

lized for MLKSSVM’s parameters optimization. The

results demonstrated that the optimized MLKSSVM model

increased the accuracy of W.S prediction.

While various SVMs have been demonstrated to have a

high capacity for predicting wind speed (W.S.), challenges

still exist. One major challenge is that the SVMs’ structure

contains parameters that need to be accurately identified to

ensure model accuracy. To address this issue, robust

training algorithms are necessary to obtain precise param-

eter values. Another issue is that most previous studies

have focused on comparing the models’ performance

without exploring how different models could be integrated

to achieve improved accuracy. Finally, it is crucial for the

ideal model to predict the target variable within a short

computational time.

This study aims to tackle the previously mentioned

issues through various efforts, including:

(1) the use of a water strider (WSA) optimization

algorithm to train Multiple Linear Regression

(MLR) models capable of predicting daily weather

station (W.S.) values in five different locations

throughout Malaysia. In their introduction of the

WSA algorithm, Kaveh and Dadras (2020) explained

that it was inspired by the behavior of water striders,

a type of insect known for its remarkable ability to

walk on the surface of water. According to their

findings, this algorithm is highly accurate in solving

complex problems and also possesses an ideal

balance between exploration and exploitation while
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rapidly converging toward optimal solutions. Due to

these benefits, the current study employs the WSA.

(2) If modelers have access to a variety of climate data,

predicting W.S. can be relatively straightforward.

However, in some cases, particularly in developing

countries, data on climate patterns may be limited to

just time series data on W.S. In this scenario,

modelers must rely on lagged wind speed data to

predict wind speed at the current time. This presents

a unique challenge as the goal is to establish a highly

effective model for predicting wind speed using only

limited input data. To tackle this issue, the present

study employs an MLP-WSA algorithm that utilizes

lagged W.S. data to accurately predict daily wind

speed values.

(3) A new hybrid model has been introduced and

referred to as the Gamma Test, which serves as a

novel approach to select the optimal input combina-

tion when utilizing lagged W.S. data. The WSA

algorithm is combined with the Gamma test to find

the most proper set of inputs for the MLP model,

thereby improving the overall accuracy of

predictions.

(4) To comprehensively evaluate the predictive capabil-

ities of the MLP-WSA used, it is compared with

several other variants of MLP such as MLP-Sine

Cosine Algorithm (MLP-SCA), MLP-Salp Swarm

Algorithm (MLP-SSA), MLP-PSO, and traditional

MLP. An integrated multi-model approach is

employed to leverage the strengths of each individual

model and enhance the accuracy of predictions.

(5) To increase the efficiency of the MLP variants

developed in this study, an approach is adopted to

identify and remove redundant weights that do not

significantly impact predictions. This helps to reduce

computation time and improve overall model per-

formance. A fuzzy reasoning concept is applied to

successfully identify and eliminate the unnecessary

weights from the MLP models.

This study proposes four key innovations:

(1) Developing a new hybrid MLP and MLP-WSA

model for predicting daily wind speed (W.S.).

(2) To select the optimal input variables, a novel hybrid

Gamma test was created.

(3) Presenting a comprehensive multi-model approach

for enhancing the accuracy of predictions by inte-

grating various models.

(4) Using the fuzzy reasoning concept to reduce the

computational time of the Multi-Layer Perceptron

(MLP) models.

Section 2 discusses the material and methods. In Sect. 3,

a case study is presented along with its relevant details.

Section 4, we present the results of this study. Finally, in

Sect. 5, we draw a conclusion based on the findings.

2 Materials and methods

2.1 Multilayer perceptron (MLP)

MLP is a significant type of ANN. The basic unit of

computation in MLP are neurons, which connect to the

next layer via weight connections (Muslim et al. 2020b).

Incoming data are received by the first layer and processed

using activation functions in hidden layers, and finally, the

final layer produces the overall result, according to the

equation outlined below

Outk ¼ f out
XN

j¼1
wkj � f h

Xn

i¼1
wjiini þ Bj

" #
þ Bk

" #
; ð1Þ

where i: index of inputs, j: index of hidden nodes, k index

of outputs, wji: the weight connection linked the input to

the hidden layer, Bk: the bias of the output layer, Bj: the

bias of the hidden layer, ini: the inputs, N: hidden layer’s

nodes, and n: number of inputs. fh: activation function of

the hidden layer, and f out: activation function of final layer.

Given the success of sigmoid function (SIG) in prior

research studies (Banadkooki et al. 2020; Ehteram et al.

2020; Najah Ahmed et al. 2019), it was chosen as the

activation

f SIGð Þ ¼ 1

1þ e�SIG
: ð2Þ

The process of training the MLP models in this study

involves transforming the received signals (SIG) into the

activation function through backpropagation. Initially,

weights and biases are randomly assigned, and the SIG is

then fed into the first layer to generate output values.

Subsequently, the error function is calculated to assess the

difference between actual and predicted values. In the

backward pass, updates are made to weights and biases to

decrease the error function. While the backpropagation

algorithm is effective for this process, it may converge too

slowly or become stuck in local optima. Therefore, opti-

mization algorithms are used to improve the performance

of the MLP, as shown in Fig. 1.

The hyperparameters of the MLP are as follows:

Batch size is 16.

Hidden layers’ number is 1.

Hidden layer’s nodes are 32.

Activation function in hidden layers is Sigmoid.

Activation function in output layer is Linear.

Predicting daily wind speed using coupled multi-layer perceptron model…
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Optimizer is Stochastic Gradient Decent (SGD).

Loss function is Mean Squared Error (MSE).

2.2 Water strider optimization algorithm (WSOA)

As one of the kinds of insects, the water striders live on

water surface top. Water striders claim ownership of

specific areas known as territories, which they protect to

ensure access to their food and potential mates (Kaveh and

Dadras 2020). The social communication of the water

striders is performed through provided ripples. The water

striders can produce ripples with different amplitudes. The

generated ripples are used for different aims, such as sex

discrimination and prey locating. The female W.S.s are

eager to find the food, while the males are eager to create

the mating (Kaveh and Dadras 2020). When the females

receive the signals from the male WSs, the response of

female W.S.s will be based on the attraction and repulsive

signals. Males skate in the females’ areas, because the

females are eager to find the best location for finding food.

In the first stage, the following identifies the initial location

of W.S.:

Xo
i ¼ UBþ rand UB� LBð Þ; ð3Þ

where Xo
i : the initial location of W.S.s, UB: the upper

bound, and LB: the lower bound. In the next stage, the

territories are created by the W.S.s. In this level, the

objective function is computed for W.S. Then, the W.S.s

are sorted based on the obtained values for their objective

function. The W.S.s are divided into

number of WSs in each group
number of territories

groups. In the next level,

the mating behavior is modeled. If p refers to probability of

positive feedback of females to males for mating, (1 - p)

indicates probability of females ignoring the males for

mating. If the females are not eager to the mating, the

females get males away. The W.S.s update their location

after mating as follows:

Xtþ1
i ¼ Xt

i þ R:rand ifð Þ matingð Þ happensð Þ
Xtþ1
i ¼ Xt

i þ R: 1þ randð Þ

� �
; ð4Þ

where Xtþ1
i : the new location of W.S.s, R: radius ripple

wave, and rand: random values between 0 and 1

R ¼ Xt�1
F � Xt�1

i ; ð5Þ

where Xt�1
F : the female W.S., and location Xt�1

i : the male

W.S. location. When the W.S. update its position, the

objective function is calculated for the W.S. new location.

If the new location has not better objective function than

the previous location, the W.S. moves to the best location

for finding food as follows:

Xtþ1
i ¼ Xt

i þ 2:rand Xbest � Xt
i

� �
; ð6Þ

where Xbest: the best location for the W.S. If the W.S. in the

new location has not better objective function than the

W.S. in the previous location, the W.S. will die and a larva

is generated. The location of Larva is as follows:

Xtþ1
i ¼ LBt

j þ 2rand UBt
j � LBt

j

� �
; ð7Þ

where LBt
j: lower values of W.S.’s position inside jth ter-

ritory and UBt
j: upper values of the UBt

j. Figure 2 shows

the WSA flowchart.

2.3 Salp swarm algorithm (SSA)

This algorithm is utilized for various tasks such as feature

selection (Tubishat et al. 2021), engineering optimization

problems (Salgotra et al. 2021), training SVM (Li et al.

Fig. 1 The structure of the MLP

model

M. Ehteram et al.
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2020), and training ANFIS (Mohamadi et al. 2020). Group

life is observed for the salps. In each group, there are a

leader and followers. A leader guides follower. Each leader

updates its location as follows:

sa1j ¼
foodj þ r1 upj � loj

� �
r2 þ loj

� �
 r3� 0

foodj � r1 upj � loj
� �

r2 þ loj
� �

 r3\0

" #
; ð8Þ

where sa1j : the location of leader, r1, r2, and r3: random

numbers, foodj: the location of food source, upj: the upper

bound, and loj: the lower bound. A balance is provided

between the exploration and exploitation as follows:

r1 ¼ 2e�
4l
Lð Þ

2

; ð9Þ

where l: number of iterations and L: maximum number of

iterations. The follower in each iteration changes its loca-

tion as follows:

saij ¼
1

2
saij þ sai�1j

� �
; ð10Þ

where saij:the location of each follower in jth dimension.

Figure 3 shows the SSA flowchart for optimization

problems.

2.4 Sine cosine algorithm (SCA)

SCA algorithm was inspired by the sine and cosine func-

tions utilized for different optimization problems such as

biomedical signal reconstruction (Daoui et al. 2021),

engineering applications (Dhiman 2021), optimal multi-

robot path planning (Paikray et al. 2021), feature selection

(Neggaz et al. 2020), and image segmentation (Ewees et al.

2020). First, random solutions are created. Then, the final

position of solutions is found based on the current location

of solutions and destination point

sotþ1i ¼
soti þ r1 � sin r2ð Þ � r3de

t
i � soti

�� ��; r4� 0:50

soti þ r1 � cos r2ð Þ � r3de
t
i � soti

�� ��; r4� 0:50

" #
;

ð11Þ

where sotþ1i : the new location of ith solution at iteration

t ? 1, deti: the location of destination of point, r1, r2, r3,

and r4: random number. The r1 parameter is responsible for

transitioning from exploration to exploitation

r1 ¼ 2� 2� t

T

� �
; ð12Þ

where t: current iteration and T: total iterations. Figure 4

shows the SCA flowchart.

Start Determine random parameters 

and initial location of WSs

Territory 

establishment 

Territory 

establishment 
Do they mate? 

Yes

No

Location updating 
based on attraction 

Location updating 
based on struggling  

Could He find food 
here?

Yes

No

Feeding

Approaching 
the best 
female

Could he find food 

Yes

Termination 

cretetia is met?

Yes

End

No

No

Dying  

Succession 

Fig. 2 The WSA flowchart for

optimization problem
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2.5 Particle swarm optimization (PSO)

The PSO operates on the principle of sharing information

among particles, which makes it a straightforward

approach with numerous benefits, such as easy imple-

mentation, computational efficiency, and simplicity of

concept. Due to its effectiveness, PSO has been utilized in

various problem-solving contexts, including but not limited

to environmental economic dispatch (Xin-gang et al.

2020), ANN training (Darwish et al. 2020), sports image

detection (Lei et al. 2021), and particle filter noise reduc-

tion (Chen et al. 2020). Initially, we defined the starting

position of particles and random parameters of PSO. The

objective function is then computed for each particle, fol-

lowed by the updating of the location and velocity of

particles in accordance with the equations provided below

potþ1ij ¼ potij þ vtþ1ij ð13Þ

vetþ1ij ¼ wvetij þ h1r1 po
p tð Þ
ij � ptij

� �
þ h2r2 po

p tð Þ
ij � ptij

� �
:

ð14Þ

2.6 Inclusive multiple model

The hybrid models of the current study are considered as

competitive models. The previous research works utilized

Start Detrmine random parameters 

of the SSA and initialize 

random population

Compute the best salp among 

the other saps

Compute objective function for 

each member 
Update the position of leader 

Update controlling parameter
Change the location of 

followers

Change the location of 

followers

Is the convergence criterion 

met?

No

Yes

End

Fig. 3 The SSA flowchart for

optimization problem

Start 
Determine the 

random 
parameters of the 

SCA

Evaluate the quality of solutions 

based on objective function 

Update the position of 
solutions using equations 

14 and 15

Is the stop criterion is 
satisfied

Yes 

Finish 

No 

Fig. 4 The SCA flowchart for

optimization problem
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different models for predicting W.S. and determined the

worst and best model. If the modelers generate synergy

among multiple different models, the final outputs will be

based on different models’ advantages. Also, the modelers

can ensure to extract all of the required information for

predicting W.S. based on contributing all models. In this

study, first, W.S. is predicted based on different hybrid and

Standalone MLP. Then, each MLP model’s outputs as the

lower order modeling results are used as the input to an

ANN as inclusive multiple model (IMM). The application

of IMM model for predicting groundwater level and CO2

emission was successful for previous studies (Shabani et al.

2021; Khatibi et al. 2017). Figure 5a shows IMM structure.

2.7 Fuzzy reasoning

The weak weights in the standalone and hybrid MLP

structure are considered the redundant weights. To identify

these weights, three rules are used. The rules are observed

in Fig. 5b. In the starting simulation process, the values of

weights are small. Thus, the learning cycle rule is proposed

to avoid removing these weights. If this rule is satisfied, the

second rule is RMSE. If the RMSE does not decrease, the

weights are considered redundant weights. The third rule,

which involves the weight rules, is employed, because the

first and second rules are less effective in dealing with

complex data and high levels of noise. As a result,

increasing the number of weak weights can lead to

redundancy, which necessitates their removal. For the first,

second, and third rules, a monotonically increasing,

decreasing, and decreasing sigmoid functions are used,

respectively to serve as membership functions. Minimum

values for each of these membership functions are selected,

and this minimum value is multiplied by the weight being

removed.

3 Case study

In this study, five stations, namely, Alor Setar (AS), Bayan

Lepas (B.L.), Cameron Highlands (C.H.), Ipoh (I.P.), and

Kota Bharu (K.B.), were chosen for predicting WS. Fig-

ure 5c shows the location of stations. The Peninsular

Malaysia has a typical tropical climate whereby it is warm

and humid throughout the year with relatively lower wind

speed in its upper part (Hwang et al. 2019). The five

(a)

(b)

MLP-WSA

MLP-SSA

MLP-SCA

MLP-PSO

MLP

IF the number of learning is large AND MSE is small
AND the weight value is small THEN erase the 

weight

(c)

Fig. 5 a The structure of the IMM, b Fuzzy reasoning conception, c The location of case study
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meteorological stations located at the upper part of

Peninsular Malaysia were chosen as the sites of interest for

this investigation. The selected stations were Cameron

Highlands (CH) (4� 280 N, 101� 220 E), Alor Setar (AS) (6�
120 N, 100� 240 E), Kota Bharu (KB) (6� 100 N, 102� 180 E),
Bayan Lepas (BL) (5� 180 N, 100� 160 E), and Ipoh (IP) (4�
340 N, 101� 060 E). These stations represent the wind speed

condition in the low land of the upper part of Peninsular

Malaysia, since they are located nearby or inside the air-

ports of the respective areas except for Cameron highlands

station. Figure 6 shows the W.S. time series. The AS sta-

tion has a tropical monsoon climate based on the Koppen

climate. The average low and high temperatures of the AS

are 32 �C and 23 �C, respectively. The climate of B.L. is

tropical, and the average temperature of the B.L. is 26 �C.
The annual rainfall of B.L. is 2552 mm. A tropical rain-

forest climate is observed in the C.H. The mean annual

temperature of the C.H. station is 18 �C. A tropical rain-

forest climate is observed for the I.P. The average tem-

perature of the I.P. is 28 �C. The wettest and driest months

of the I.P. are October and January. The tropical monsoon

climate is observed in the K.B. station. The station expe-

riences heavier rainfall from August through January.

3.1 Input sensitivity with Gamma test

As observed in Table 1, 211-1 input combinations can be

combined for predicting W.S. based on the lagged input

values. Thus, it is necessary to choose the best input

combination based on the lagged W.S.s. The Gamma test is

one of the powerful preprocessing methods for choosing

the best input combination. They utilized Gamma test in

different domains such as predicting evaporation (Allawi

et al. 2019), predicting groundwater level (Sharafati et al.

2020), estimating evapotranspiration (El-Shafie et al.

2013), estimating solar radiation (Jumin et al. 2021), and

predicting streamflow (AlDahoul et al. 2023). In the

Gamma test, the relationship between the inputs and out-

puts is as follows:

y ¼ f xð Þ þ r; ð15Þ

where x: input, y: output, f(x): smooth function, and r: the

error term. The C in the Gamma test describes the variance

of observations. The Gamma test acts based on the ith

input’s closet neighbor (N[i, k], 1 B k B p, p: the maxi-

mum number of neighbors). To compute the C, the value of
nM kð Þ should be computed by

nM kð Þ ¼ 1

M

XM

i¼1
xN i;k½ � � Xi

�� ��2; ð16Þ

where M: number of observations. In the next level, the

value of the

cM kð Þ ¼ 1

M

XM

i¼1
yN i;k½ � � yi
�� ��; ð17Þ

where yN i;k½ �: the output value corresponding to the kth

neighborhood of xi. Finally, the C is calculated as follows:

c ¼ Anþ C: ð18Þ

Another index in the Gamma test is Vratio

Vratio ¼
C

r yð Þ ; ð19Þ

where r yð Þ:the output variance. The lowest values of the

Vratio and C show the best input combination. However, it

is difficult to compute C for 211-1 input combinations. To

satisfy the process of selection of the best input combina-

tion, the WSA is coupled with the Gamma test. First, the

name of input variables is inserted as the initial population

of WSA. Then, the random combinations of the inputs are

generated based on the initial population of WSA. In fact,

each WSA shows a random combination of inputs. Then,

the C is computed for each member as the objective

function. The operators of the WSA based on Sect. 2.1 are

used to update the value of agents. The optimization pro-

cess is continued until the C is converged to the least value.

3.2 Hybrid MLP and optimization algorithms

In this research, the optimization algorithms are used to set

the MLP parameters as follows:

1. First, the data are split into 30% for testing and 70% for

training levels. This fraction is utilized, because it

makes the least value of RMSE error. In this study,

RMSE error is considered as the objective function.

The data were collected from January 2000 to

September 2009.

2. The initial values of weights and biases are initialized.

3. The MLP runs for the training data.

4. If the stop criterion is satisfied, the MLP is used for the

testing stage; otherwise, it is hybridized with the

optimization algorithm.

5. The initial population of algorithms is initialized based

on the random value of weights and biases.

6. The RMSE for each agent of optimization algorithms is

calculated as the objective function.

7. The operators of the algorithms are utilized to change

the values of weights and biases.

8. Move to step 3, after checking the convergence

criterion and found it met; otherwise, move to step 6.

In this work, the indexes used to evaluate the models are

as follows:

1. Nash Sutcliffe efficiency (Yafouz et al. 2021)
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Fig. 6 The WS time series for
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NSE ¼ 1�
PN

i¼1 WSob �WSesð Þ
PN

i¼1 WSob �WS~
� � : ð20Þ

2. Root-mean-square error (RMSE) (Osman et al. 2021)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

XN

n¼1
WSob �WSesð Þ2

vuut : ð21Þ

3. Mean absolute error (MAE) (Abba et al. 2020)

MAE ¼ 1

N

XN

i¼1
WSes �WSobj j: ð22Þ

4. Scatter index (S.I.) (Muslim et al. 2020a)

SI ¼ RMSE

WSob
ð23Þ

(SI\ 0.10: excellent performance, 0.10\ SI\ 0.20: good

performance, 0.20\ SI\ 0.30: fair performance,

SI[ 0.30: poor performance).

5. Uncertainty with 95% confidence level (U95) (Jumin

et al. 2020)

U95 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SD2 þ RMSE2
� �q

; ð24Þ

where SD: the standard deviation of the difference, WSes:

estimate values, WSob: observed values, WSob: average

observed values, and N: number of samples. The highest

values of NSE are ideal, and the lowest values of MAE,

RMSE, and U95 are ideal.

4 Results and discussion

4.1 Optimization algorithms’ parameters

Obtaining precise values of random parameters is critical

for achieving optimal performance. This requires

computing the variance of the objective function in relation

to variations in the random parameters. An analysis was

conducted on the variance of the objective function across

different domains of random parameters in the AS station,

and the results are presented in Table 2. Based on these

results, it was concluded that the best population size for

the WSA is 40, and as a result, best population size of

RMSE became the lowest. Furthermore, the ideal value for

the maximum number of iterations in WSA was found to

be 200, producing the least RMSE value. Similarly, for the

SSA, SCA, and PSO algorithms, the best population size

was found to be 40, 40, and 60, respectively. The optimal

random parameters for other stations were also established,

as shown in Table 3.

4.2 The best input tuning for predictive models

According to Table 4, the first to third-best input combi-

nations for each station are shown. From WS (t - 1), … to

WS (t - 6)) combination was set to be the optimal input

combination for predicting water level at the AS and CH

stations. Similarly, from WS (t - 1), … to WS (t - 5))

combination was found to be the best input combination for

the BL, LB, and IP stations.

The coupling of the Gamma test with an optimization

algorithm provides a convenient way to automatically

determine the best input combination for predicting various

target variables, without the need for manual computation

of different input combinations. Therefore, this hybridized

Gamma test proves to be a highly effective tool for

selecting optimal inputs in models.

4.3 Accuracy comparison for various models

As shown in Fig. 7a–d, when examining the testing results

of the models in the AS station, the MLP-WSA model

outperformed the MLP-SSA, MLP-SCA, MLP-PSO, and

Table 1 The input and output

data to the MLP models
Wind speed WSt-1, WSt-2, WSt-3, WSt-4, WSt-5, WSt-6, WSt-7,WSt-8, WSt-9,WSt-10, WSt-11

WSt-1: the 1 day lagged WS

WSt-2: the 2-day lagged WS

WSt-3: the 3-day lagged WS

WSt-4: the 4-day lagged WS

WSt-5: the 5-day lagged WS

WSt-6: the 6-day lagged WS

WSt-7: the 7-day lagged WS

WSt-8: the 8-day lagged WS

WSt-9: the 9-day lagged WS

WSt-10: the 10-day lagged WS

WSt-11: the 11-day lagged WS

Output: WS (t): a 1-day ahead forecast of WS
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MLP models in terms of accuracy. The U95 of the MLP-

WSA, MLP-SSA, MLP-SCA, MLP-PSO, and MLP models

were 17%, 19%, 20%, 22%, and 24%, respectively. The

comparison between the accuracy of the models and the

IMM model demonstrated that the IMM improved the

accuracy and decreased the RMSE by 1.5%, 3.2%, 5.9%,

8.03%, and 23.7%, compared to MLP-WSA, MLP-SCA,

MLP-SSA, MLP-PSO, and MLP, respectively. Both the

IMM and MLP-WSA models showed the highest NSE

values, and the MLP model obtained the highest value of

the U95.

Figure 7a–d presents the outcomes of the evaluation

stage at the B.L. site, revealing that the MLP-WSA model

achieved an RMSE of 2.78 (m/s), whereas the MLP-SSA,

MLP-SCA, MLP-PSO, and MLP models yielded RMSE

values of 3.88 m/s, 4.12 m/s, 4.78 m/s, and 4.98 m/s,

respectively. Furthermore, it was determined that the MLP-

WSA model exhibited superior performance compared to

other models. Moreover, the implementation of the IMM

model demonstrated that it could enhance the accuracy of

all models by incorporating information from each model.

The NSE value of the IMM model was found to be 0.92,

whereas the NSE values for the MLP-WSA, MLP-SSA,

MLP-SCA, MLP-PSO, and MLP models were 0.90, 0.86,

0.82, 0.80, and 0.78, respectively.

Figure 7a–d reveals the outcomes of the models during

the testing phase at the C.H. station. Notably, the IMM

model outperformed the other models with a substantially

reduced MAE of 6%, 22%, 25%, 39%, and 41%, respec-

tively, compared to the MLP-WA, MLP-SCA, MLP-SSA,

MLP-PSO, and MLP models. Furthermore, the IMM model

achieved the highest NSE value, while the MLP model

Table 2 Determining random

parameters in the AS station
a: WSA

Population size Objective function Maximum number of iterations Objective function

20 4.25 100 5.89

40 3.78 200 3.79

60 3.90 300 4.59

80 4.44 400 5.25

b: SSA

Population

size

Objective

function

Maximum number

of iterations

Objective

function

r3 Objective

function

r2 Objective

function

20 4.89 100 4.95 0.20 4.95 0.30 4.36

40 3.98 200 3.98 0.40 4.21 0.50 4.12

60 4.02 300 4.21 0.60 3.98 0.70 3.98

80 4.56 400 4.45 0.80 4.02 0.90 4.11

c: SCA

Population

size

Objective

function

Maximum number

of iterations

Objective

function

r2 Objective

function

r4 Objective

function

20 5.78 100 5.79 p/3 5.82 0.3 5.78

40 5.12 200 5.02 2p/
3

5.02 0.5 5.22

60 5.02 300 5.24 p 5.46 0.7 5.04

80 5.21 400 5.36 4p/
3

4.65 0.90 5.46

d: PSO

Population

size

Objective

function

Maximum number

of iterations

Objective

function

h1 Objective

function

h2 Objective

function

20 6.23 100 6.91 1.4 6.92 1.4 6.91

40 5.89 200 5.89 1.6 6.23 1.6 6.42

60 5.95 300 6.12 2.0 6.12 2.0 6.12

80 6.12 400 6.23 2.2 6.24 2.2 6.32
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attained the lowest NSE. Conversely, the MLP model

recorded the lowest U95, indicating the lowest accuracy

compared to the other models.

Figure 7a–d presents the accuracy during the testing

phase at the I.P. station. It is evident that the IMM model

had the lowest RMSE of 1.22 m/s, which indicates its high

accuracy compared to other models. On the other hand, the

MLP-WSA, MLP-SSA, MLP-SCA, MLP-PSO, and MLP

models had relatively higher RMSE values of 1.45 m/s,

1.76 m/s, 1.89 m/s, 2.23 m/s, and 2.35 m/s, respectively.

Table 3 Determining random parameters in the different stations

Station WSA SSA SCA PSO

BL Population size: 40,

maximum number of

iterations: 200

Population size: 40, maximum

number of iterations: 200, r3 ¼
0:5 and r2 ¼ 0:4

Population size: 40, maximum

number of iterations: 200, r2 ¼
2 p
3
and r2 ¼ 0:7

Population size: 40,

maximum number of

iterations: 200,h1 ¼ 2:00

h2 ¼ 2:00

CH Population size: 40,

maximum number of

iterations:300

Population size: 40, maximum

number of iterations: 200, r3 ¼
0:5 and r2 ¼ 0:4

Population size: 60, maximum

number of iterations: 200, r2 ¼
2 p
3
and r2 ¼ 0:7

Population size: 40,

maximum number of

iterations: 300,2:00

h2 ¼ 2:00

IP Population size: 40,

maximum number of

iterations: 200

Population size: 40, maximum

number of iterations: 200, r3 ¼
0:5 and r2 ¼ 0:6

Population size: 40, maximum

number of iterations: 200, r2 ¼
2 p
3
and r2 ¼ 0:5

Population size: 60,

maximum number of

iterations: 300,2:00

h2 ¼ 2:00

KB Population size: 40,

maximum number of

iterations: 200

Population size: 40, maximum

number of iterations 3, r3 ¼ 0:5
and r2 ¼ 0:4

Population size: 40, maximum

number of iterations: 200, r2 ¼
2 p
3
and r2 ¼ 0:7

Population size: 40,

maximum number of

iterations: 300,2:00

h2 ¼ 2:00

Table 4 Selection of the best input combination based on improved Gamma test

Combination C Vratio

AS station

WS (t - 1), WS (t - 2), WS (t - 3), WS (t - 4), WS (t - 5), WS (t - 6) 2.12 9 10–3 5.76 9 10–3

WS (t - 1), WS (t - 2), WS (t - 3), WS (t - 4), WS (t - 5) 2.55 9 10–3 6.92 9 10–3

WS (t - 1), WS (t - 2), WS (t - 4), WS (t - 3) 3.24 9 10–3 8.78 9 10–3

BL station

WS (t - 1), WS (t - 2), WS (t - 3), WS (t - 4), WS (t - 5) 4.24 9 10–3 8.72 9 10–3

WS (t - 1), WS (t - 2), WS (t - 3), WS (t - 4) 6.32 9 10–3 12.96 9 10–3

WS (t - 1), WS (t - 2), WS (t - 3) 7.21 9 10–3 14.79 9 10–3

CH station

WS (t - 1), WS (t - 2), WS (t - 3), WS (t - 4), WS (t - 5), WS (t - 6) 3.12 9 10–3 5.14 9 10–3

WS (t - 1), WS (t - 2), WS (t - 3), WS (t - 4), WS (t - 5) 4.55 9 10–3 7.49 9 10–3

WS (t - 1), WS (t - 2), WS (t - 4), WS (t - 3) 6.89 9 10–3 11.29 9 10–3

IP station

WS (t - 1), WS (t - 2), WS (t - 3), WS (t - 4), WS (t - 5) 2.21 9 10–3 5.14 9 10–3

WS (t - 1), WS (t - 2), WS (t - 3), WS (t - 4) 1.42 9 10–3 3.30 9 10–3

WS (t - 1), WS (t - 2), WS (t - 3) 5.19 9 10–3 12.07 9 10–3

KB station

WS (t - 1), WS (t - 2), WS (t - 3), WS (t - 4), WS (t - 5) 1.12 9 10–3 3.22 9 10–3

WS (t - 1), WS (t - 2), WS (t - 3), WS (t - 4) 2.45 9 10–3 7.03 9 10–3

WS (t - 1), WS (t - 2), WS (t - 3) 3.46 9 10–3 9.94 9 10–3

The first-best input combination to the third-best input combination
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Fig. 7 Comparison between

various models in terms of

RMSE, MAE, NSE, and U95%

in five stations

Predicting daily wind speed using coupled multi-layer perceptron model…

123



The IMM and MLP-WSA models demonstrated superior

performance with the highest NSE and lowest U95 values

recorded, respectively.

Figure 7a–d presents the performance of the models

during the testing phase at the K.B. station. It was observed

that the RMSE of the IMM model was significantly lower

than the other models. The IMM model achieved a 17%,

22%, 44%, 54%, and 55% reduction in RMSE compared to

the MLP-WSA, MLP-SSA, MLP-SCA, MLP-PSO, and

MLP models, respectively. Additionally, the NSE value of

the MLP-WSA model was higher (0.90) compared to the

MLP-SSA, MLP-SCA, MLP-PSO, and MLP models,

which had NSE values of 0.88, 0.86, 0.85, and 0.82,

respectively. Therefore, the hybrid MLP models showed

superior performance than the standalone MLP models.

Figure 8 illustrates the scatterplots for the testing stages

at the A.S., B.L., C.H., I.P., and K.B. stations, respectively.

In Fig. 8a, the IMM model demonstrated the best perfor-

mance with a testing R2 value of 0.9891, while the MLP-

WSA model achieved superior accuracy among the other

hybrid and standalone MLP models, with an R2 value of

0.9816. In Fig. 8b, the IMM and MLP models exhibited the

best and worst accuracy with testing R2 values of 0.989 and

0.9451, respectively. In Fig. 8c, the IMM and MLP-WSA

models show the highest testing R2 values of 0.9894 and

0.9860, respectively, while MLP-SSA, MLP-SCA, MLP-

IMM (R2 (Traning:0.9902)) MLP-WSA (R2 (Traning:0.9892))

MLP-SSA (R2 (Traning:0.9812)) MLP-SCA (R2 (Traning:0.9798))

2 (Traning:0.9678))MLP-PSO (R MLP (R2 (Traning:0.9598))                   
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Fig. 8 Scatterplots for different

models in a AS station, b BL

station, c CH station, d IP

station, e KB station
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PSO, and MLP models recorded lower R2 values. Fig-

ure 8d depicts the testing R2 values of the IMM model

(0.9923). In Fig. 8e, the IMM and MLP-WSA models also

exhibited the best testing R2.

Figure 9 displays the Scatter Index (S.I.) values of the

models under evaluation. The S.I. value for testing levels

was determined to be 0.09, 0.11, 0.17, 0.21, 0.24, and 0.25

for the IMM, MLP-WSA, MLP-SSA, MLP-SCA, MLP-

PSO, and MLP models, respectively, in the AS station.

Based on these findings, the IMM, MLP-WSA, and MLP-

SSA models performed well, achieving excellent, good,

and good accuracy ratings, respectively. The MLP-SCA,

MLP-PSO, and MLP models achieved fair accuracy,

indicating room for improvement. In the B.L. station, the

accuracy ratings for the IMM, MLP-WSA, MLP-SSA,

MLP-SCA, MLP-PSO, and MLP models were excellent,

(b)

IMM (R2 (Traning:0.9922))
(b): MLP-WSA (R2 (Traning:0.9904))

MLP-SSA (R2 (traning:0.9812)) MLP-SCA (R2 (Traning:0.9742))

MLP-PSO (R2 (Traning:0.9622)) MLP (R2 (Traning:0.9545))
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Fig. 8 continued
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good, good, fair, fair, and fair, respectively. Furthermore,

in the C.H., I.P., and K.B. stations, the IMM model’s

performance was deemed excellent, while the MLP models

achieved fair accuracy.

Figure 10 presents the heat maps depicting the relative

error of various models. The variation of relative error for

the IMM model in all stations ranged from 0 to 5%,

whereas the range of relative errors in MLP model was

between 20 to 25%. The findings revealed that the relative

error of MLP-WSA ranged from 0 to 10, 0 to 10, 5 to 10, 0

to 10, and 0 to 10 for the AS, B.L., CH, I.P., and K.B.

stations, respectively.

The CPU time was calculated for various models. The

results indicate that for the AS station, the CPU time for the

IMM model was 230 s and 260 s without and with fuzzy

reasoning, respectively. Similarly, for the B.L. station, the

MLP-WSA model had a CPU time of 250 s and 282 s

without and with fuzzy reasoning, respectively. However,

the results across stations showed that by utilizing the

fuzzy reasoning, the CPU time became lower than time

calculated with fuzzy reasoning.
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4.4 Concluding discussion

By analyzing the results, it is worthy notable that the WSA

optimization algorithm helped enhance the accuracy of

MLP and resulted in the MLP-WSA outperforming other

MLP models, such as MLP-SSA, MLP-SCA, MLP-PSO,

and MLP. Hence, the developed MLP model can be

regarded as an effective means of predicting various cli-

mate and hydrological variables. Additionally, the IMM

model has demonstrated its ability to enhance the accuracy

of MLP models by aggregating data from multiple MLP

models.

The study’s outcomes support the findings of earlier

research studies. Liu et al. (2013) found that utilizing

optimization algorithms like particle swarm optimization

and genetic algorithms could enhance the MLP model’s

precision for forecasting W.S. Liu et al. (2015) combined

fast ensemble decomposition and optimization algorithms

with the MLP to predict W.S, resulting in hybrid MLP

models outperforming standalone MLP models. Moreover,

(d)
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Samadianfard et al. (2020) merged optimization algorithms

with the MLP model, indicating that the whale optimiza-

tion algorithm boosted the MLP models’ accuracy by uti-

lizing advanced operators.

Future research could investigate the use of the WSA in

combination with other soft computing models such as the

radial basis function neural network and SVM models to

forecast W.S. Furthermore, further research can examine

the impact of uncertainty on the models’ outputs caused by

the uncertainty of model parameters and inputs. While the

MLP-WSA showed superior performance in this study,

future research can utilize multi-criteria decision-making

methods to determine the most appropriate model based on

different analyses.

Future studies could explore the possibility of defining

multiple objective functions for tuning the MLP parame-

ters, which would allow the identification of the best input

combination and MLP parameters simultaneously. This

approach does not require additional preprocessing meth-

ods like the Gamma test to identify the optimal inputs. To

achieve this, two objective functions could be defined. The

first objective function would focus on identifying the

optimal MLP parameters, while the second objective

function would concentrate on finding the best input

combination. Therefore, it would be necessary to modify

the WSA into a multi-objective optimization algorithm

capable of solving such problems.

In situations where climate data are unavailable, alter-

native input combinations like latitude, longitude, and the

number of available data points can still provide useful

insights into predicting W.S. This approach can be partic-

ularly useful for scenarios where the availability of data is

limited. Although fuzzy reasoning can reduce computa-

tional time, it is worth noting that optimization algorithms
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can also be effective at reducing the computational time

required. These algorithms may be especially beneficial

when they converge more quickly.

5 Conclusion

Wind energy aims to mitigate the environmental pollution

resulted from the consumption of fossil fuels. Accurately

predicting wind speed is essential in managing energy and

generating power. This work utilized an optimization

algorithm called the WSA to train an MLP in five stations

in Malaysia. Additionally, the outputs of several MLP

models, including the MLP-WSA, MLP-SSA, MLP-SCA,

MLP-PSO, and MLP, were applied to the IMM. To find the

best input combination, a Gamma test was conducted. The

results showed that the MLP-WSA outperformed other

MLP models, with the lowest RMSE of 3.95 m/s. In terms

of accuracy, the IMM model had the highest NSE in the

B.L. station, whereas the MLP model had the lowest NSE

in the same station. During testing, the MAE of the IMM

model was recorded at 2.55 m/s, which was significantly

lower compared to the MAE of the MLP-WSA, MLP-SSA,

MLP-SCA, MLP-PSO, and MLP models, which were 2.55,
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2.98, 3.44, 3.98, and 4.12 m/s, respectively. Similarly, the

MAE of the IMM model was found to be significantly

lower than others in the C.H. station. Specifically, it was

6%, 22%, 25%, 39%, and 41% lower compared to the

MAE of the MLP-WA, MLP-SCA, MLP-SSA, MLP-PSO,

and MLP models, respectively. The IMM and MLP-WSA

also performed better in terms of NSE in the I.P. station,

and its accuracy was superior to that of other models in the

B.K. station. Furthermore, it was observed that incorpo-

rating fuzzy reasoning in the modeling process reduced the

CPU time required for analysis. Overall, combining whale

search algorithm with the MLP model and using hybrid

Gamma test based on fuzzy reasoning provided the most

accurate prediction of wind speed.

This paper focused on MLP particularly and combined it

with optimization algorithms. This limitation of targeting

only MLP can be addressed in future. This work opens a

door to explore other neural network architectures, such as

CNNs, LSTMs, and transformers to be trained with the

various optimization algorithms to improve the prediction

performance.

List of acronyms

Abbreviation Definition

SGD Stochastic gradient decent

MSE Mean squared error

W.S Wind speed

MLP Multilayer perceptron

WSA Water strider algorithm

MLP-SCA MLP-sine cosine

MLP-SSA MLP-salp swarm

MLP-PSO MLP-particle swarm optimization

IMM Inclusive multiple model

ANN Artificial neural network

SVM Support vector machine

SCMs Soft computing models

GPR Gaussian Process Regression

GRNN Generalized Regression Neural Network
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RNN Recurrent Neural Network

RBFNN Radial Basis Function Neural Network

WOA Whale Optimization Algorithm

MLKSSVM Multi-Kernel Least Square Support Vector Machine

GSA Gravitational Search Algorithm

A.S Alor Setar

B.L Bayan Lepas
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I.P Ipoh
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