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Abstract
This study proposes a new optimization approach, which is called as artificial ecosystem optimization algorithm with

fitness-distance balance guiding mechanism by using opposite based learning methods (FDBAEO_OBLs) for the speed

regulation of direct current (DC) motor. The performance of the proposed FDBAEO_OBL algorithm is tested in two

different experimental studies. In the first experimental study, the proposed approach is tested in the CEC2020 benchmark

test functions and the FDBAEO algorithm, which included the best OBL approach, is determined using non-parametric

Wilcoxon and Friedman statistical analysis methods. Second, the parameters of proportional integral derivative (PID), tilt

integral derivative (TID), proportional integral derivative with filter (PIDF), tilt integral derivative with filter (TIDF),

fractional-order proportional integral derivative (FOPID), fractional-order proportional integral derivative with filter

(FOPIDF), proportional integral derivative with fractional-order filter (PIDFF) and fractional-order proportional integral

derivative with fractional-order filter (FOPIDFF) controller structures to be used in DC motor closed loop speed control are

determined with FDBAEO_OBL, and the performances of the controllers are investigated. Integral absolute error (IAE),

integral time absolute error (ITAE), integral time squared error (ITSE) and integral squared error (ISE) performance

indices are used as the objective function of the operation process in which the control parameters are determined.

According to the comparative step response results of the controller structures, the four best controller structures for DC

motor speed regulation are determined. The performances of these controllers are examined under different simulation

conditions and according to the results obtained, it is seen that the best controller structure is FOPIDFF. The

FDBAEO_OBL algorithm, which is used in both benchmark test functions and DC motor speed regulation, shows an

effective, durable and superior performance in finding the optimal solution values during the optimization.

Keywords Artificial ecosystem optimization � Benchmark test functions � DC motor speed regulation � Fitness-distance
balance guiding mechanism � Opposite-based learning methods

1 Introduction

DC motor is a type of motor that is frequently used in many

applications due to its ease of use, low cost, and durability.

It is preferred in robot arms in industrial applications,

household electrical appliances, and electric vehicles in

daily life. Depending on the requirements at the point of

use of the DC motor, which converts electrical energy into

motion energy, closed-loop speed control is widely used in

motor control. It is expected that the motor speed settles to

the determined reference value as quickly as possible, with

minimum overshoot, and without error. To meet these

conditions, the controller used must be well designed.

PID controller is widely used in closed-loop speed

control used in motor speed regulation. It generates the

required control signal to reduce the applied error signal to
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zero. The gain coefficient (Kp), integral coefficient (Ki) and

derivative coefficient (Kd) in the PID controller, which

consists of gain, integral and derivative operations, deter-

mine the performance of the controller. The Kp coefficient

ensures that the output settles to the reference quickly.

However, if it is not selected at the appropriate value, it

causes an overshoot from the reference value. In addition,

the Kp coefficient helps to reduce the steady-state error.

The integrator in the controller ensures that the steady state

error is reduced to zero by continuously adding the error.

The negative effect of the integrator is that it can cause

oscillation in the control signal when the sign of error

signal changes. The derivative expression, which is the

other part of the controller, calculates the slope of the error

and provides to reduce settling time and the percentage of

overshoot.

PID controller, which is used as a controller in many

system controls such as voltage regulation (Hemeida et al.

2023), temperature control (Xu and Liu 2022), inverter

control in grid-connected photovoltaic systems (Malarvili

and Mageshwari 2022), DC–DC boost converter (Li et al.

2023), zeta converter (Arun and Manigandan 2021), is also

widely used in motor applications (Baidya et al. 2023;

Viaene et al. 2022; Jeon et al. 2018; Liu et al. 2021;Choi et al.

2015; Zhang and Gao 2022). A well-designed controller is

required for the motor to achieve the desired reference value

(speed, torque, and position) (Hasanhendoei et al. 2023;

Amyal et al. 2023) and to maintain the speed value despite

the disturbances. At this point, the controller coefficients

gain importance. Various traditional methods such as Zieg-

ler–Nichols (Ziegler and Nichols 1942), Cohen–Coon

(Cohen and Coon 1953), Gain and Phase Method (Åstrom

and Hägglund 1984) are used to determine the controller

coefficients. Beetle antennae search algorithm (Mourtas

et al. 2023), gazelle simplex optimizer (Ekinci et al. 2023a),

hybrid Lévy flight distribution and Nelder–Mead algorithm

(Izci 2021), slime mould algorithm (Izci and Ekinci 2021),

particle swarm optimization (PSO) (Feng et al. 2021), ant

colony optimization (Liang et al. 2019) and gray wolf opti-

mization (Sahoo and Panda 2018) are also different opti-

mization methods used lately. ITAE, ITSE, ISE and IAE are

used as objective functions in determining the coefficients in

optimization methods (Veinovic et al. 2022; Zeng et al.

2020; Bouakkaz et al. 2020; Isen 2022). PID controller has

been widely used as a controller in many applications until

recent years. Different controllers, though, have been

developed and are being utilized to attain performance above

that of this controller, nowadays. The most commonly used

one is FOPID controller (Xia et al. 2023; Izci et al. 2022a).

FOPIDF controller is obtained by adding N constant first

order filter to the FOPID controller. Here the filter is used to

eliminate noise and harmonics (Tripathy et al. 2021). In

addition, TID controller (Ahmed et al. 2022) used in high

frequency control is a fractional order controller type. TIDF

controller, which has a similar structure to PIDF, has a

fractional integrator and tilt coefficient instead of propor-

tional coefficient. It provides simpler adjustment, a higher

rate of interference prevention, and less sensitivity to chan-

ges in system parameters (Sahu et al. 2016). Unlike the PID

controller, the PIDF controller has a derivative filter coeffi-

cient. This filter is used to reduce the derivative kick (Singh

et al. 2021; Sahu et al. 2014). With the combination of PID

with filter N and PD with filter N controllers, a dual-stage

controller structure is created (Singh et al. 2023).

In recent years, advances in technology and rapid

developments in computer architectures have increased the

applicability of digital controller structures. Parameters of

digital controllers determined according to user experience

and classical calculation methods may not perform ade-

quately in systems. The parameters of the controller

structures are chosen using the optimization techniques

recently presented in the literature to overcome these

drawbacks resulting from user experience and conventional

calculation methods. Zhao et al. (2020) recently introduced

the artificial ecosystem optimization (AEO) method to the

literature as a new population-based optimization algo-

rithm that is motivated by the life process features of living

species in the ecosystem. Since 2020, this method has been

employed in more than 280 academic works, drawing the

interest of several scientists from other disciplines. In these

studies, it has been shown that the performance of the AEO

algorithm is better than other optimization algorithms.

Stated differently, its good exploration/exploitation capa-

bilities in finding the global solution, its remarkable ability

to converge to the optimum solution and its success in

solving large-scale optimization problems make the AEO

algorithm more valuable, important and preferable than

other algorithms. Sonmez et al. (2022) developed the

optimal solution and convergence capability of the AEO

algorithm by using the selection method based on the fit-

ness-distance balance (FDB) guiding mechanism. The

authors named the algorithm they developed with the

proposed FDB method as the FDB artificial ecosystem

optimization (FDBAEO) algorithm.

In different studies in the literature, opposition-based

learning (OBL) strategies have been used in the initial

population to improve the performance of optimization

algorithms and in local search operators that will enable the

algorithms to avoid local solution traps. The FDB guidance

mechanism plays an important role in identifying solution

candidates that do not improve the search process in opti-

mization algorithms and removing them from the solution

space. Moreover, it reduces the risk of premature conver-

gence, a phenomenon that can occur depending on the

design steps of the algorithm. The FDB mechanism helps

algorithms in avoiding local solution traps, encouraging an
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increase in the diversity of solutions within the solution

space. Considering the advantages of both design operators

presented in the literature to improve the performance of

optimization algorithms, the FDBAEO algorithm, which

includes AEO and OBL strategies containing these two

design operators, has been presented to the literature for the

first time. In this study, the use of OBL strategies in the

initial population enabled the proposed algorithm to

increase the solution diversity in the solution space and its

ability to search for the optimal solution. Moreover, the

FDB method is used to update the value of the solution

candidate’s position in the next iteration, thus reducing the

risk of premature convergence of the algorithm. In other

words, it enables the algorithm to get rid of local solution

traps and contributed to its rapid convergence to the global

solution point. In particular, the performances of both basic

AEO and FDBAEO algorithms have been improved by

using the advantages and superior features of these two

design operators together. FDBAEO algorithm developed

using OBL strategies is used to determine the parameters of

different controller structures used in closed-loop speed

control of the DC motor. In DC motor speed control, the

two main criteria are the controller design and optimization

algorithms used for adjusting the controller parameters to

their optimum values. When the recent studies are exam-

ined, optimization algorithms are seen as one of the most

effective system parameters in determining the parameters

of the controller structures used in different fields of sci-

ence and increasing the performance of the controllers.

Eight different controller topologies with presented con-

troller performance in various systems are used in this

study to regulate the speed of a DC motor. While these

controllers can improve system performance according to

system operating conditions, controller parameters deter-

mined based on user experience or mathematical approa-

ches may sometimes be insufficient to improve system

performance. Considering this situation, the parameters of

eight different controller structures used to improve the

quality of the work and the performance of the controllers

are adjusted using the proposed FDBAEO_OBL algorithm.

The specific main contributions of the study can be

summarized as follows:

FDBAEO_OBL is introduced as a new, improved and

powerful optimization algorithm. The performance of the

proposed algorithm and its success in finding the optimal

solution have been demonstrated by simulation studies on

CEC 2020 benchmark test functions. In order for the

FDBAEO algorithm developed using OBL methods to

converge or find the optimal solution value in the bench-

mark test functions, the efficiency of the exploration and

balanced search features used in the algorithm design has

been demonstrated by testing in different dimensional

search spaces and populations.

• The utilization of opposite-based learning (OBL)

strategies in generating contrasting solutions within

the initial population of the FDBAEO algorithm has

enhanced its capability to converge toward optimal

solutions. The incorporation of OBL strategies has

improved the algorithm’s ability to converge while also

improving the balance between exploration and

exploitation characteristics. The introduction of the

FDBAEO_OBL algorithm was presented to the litera-

ture for the first time in this study.

• The results derived from non-parametric Wilcoxon and

Friedman tests prove that the FDBAEO_OBL algorithm

is an effective and robust algorithm in solving opti-

mization problems in various disciplines.

• In this study the operational effectiveness of eight

different controller structures—PID, FOPID, TID,

TIDF, PIDF, FOPIDF, PIDFF, and FOPIDFF—whose

parameters were optimized using the FDBAEO_OBL

method, is thoroughly examined. Moreover, this study

focuses on the speed regulation of a DC motor using

optimized controller structures, and the results are

thoroughly analyzed and discussed. This research

concept is presented for the first time in this study for

DC motor speed regulation.

• The comparative findings of the system’s transient and

dynamic responses across several simulation studies

demonstrate the FOPIDFF controller’s superior structure,

durability, and effectiveness above other controller struc-

tures createdwith theproposed FDBAEO_OBLalgorithm.

This study is presented in seven sections with subsec-

tions after the introduction. These sections are prepared as

follows.

• The electrical and mechanical description of the DC

motor structure is given in the second section.

• In the third section, the controller structures used to

improve system performance are introduced.

• Section 4 and subsections describe the improved

FDBAEO algorithm using four different OBL methods

in detail.

• Information on the statistical evaluation of the results

obtained from the standards, benchmark test functions

and algorithms taken into account in the implementa-

tion of experimental studies is given in detail in Sect. 5.

• To highlight the effectiveness, efficiency, and robust-

ness of the proposed FDBAEO OBL algorithm in

obtaining the ideal solution, a thorough examination of

the outcomes of two separate experimental experiments

is presented in Sect. 6.

• The results are finally explained in Sect. 7 along with

suggestions for additional research.

Optimization of the different controller parameters via OBL…
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2 Definition of DC motor structure

The equivalent circuit model of the externally-excited type

DC motor that is considered in this paper is seen in Fig. 1.

It has an armature circuit and an exciting circuit as shown

in the figure (Izci et al. 2021).

Equation (1) is obtained when the electrical equations of

the armature circuit of the motor is written. In this equa-

tion, Ra and La is armature resistance and inductance, ia is

armature current, eb is back-emf voltage, and ea is armature

voltage.

eaðtÞ ¼ RaiðtÞ þ La
diðtÞ
dt

þ ebðtÞ ð1Þ

The back-emf voltage is calculated depending on (2)

which is obtained with Kb electromotor force constant and

x angular speed. Also, eb changes with derivative of h
theta depending on the time as seen in Eq. (2).

eb ¼ Kbx ¼ Kb
dh
dt

ð2Þ

The torque T that is given in (3) is the sum of inertia and

friction torques. It is calculated with J inertia torque of

motor, x angular speed and B motor friction constant. The

torques is also calculated depending on K motor torque

constant and ia armature current.

T ¼ J
dx
dt

þ Bx ¼ Kia ð3Þ

If the angle is used to calculated the torque, (4) can be

used as seen below.

T ¼ J
d2h
dt2

þ Bx ð4Þ

The open-loop transfer function of the motor that is

derived from (1) to (3) is given in (5).

xðsÞ
EaðsÞ

¼ K

JLas2 þ ðRaJ þ BLaÞsþ ðKKb þ RaBÞ
ð5Þ

The block diagram of the transfer function is seen

Fig. 2. The input of the model is the applied voltage to

motor terminals whereas the output is speed of shaft. In this

block diagram, TL defines load torque, and it is assumed

zero in the transfer function.

The values of motor parameters that are seen in (5) are

given in Table 1. They are used in the simulation studies in

the paper.

3 The controller structures used
for improving the system performance

The closed-loop speed control of the system is seen in

Fig. 3. The voltage required to reduce the error between the

speed reference and the measured speed to zero is calcu-

lated by the controller. The calculated voltage Ea is applied

to the motor model shown in Fig. 2 and the DC motor runs.

Thus, the speed control of the motor is provided.

In this system, motor speed control is provided by the

controller. Therefore, the performance of the controller is

very important. Many structures are used as controllers in

the literature. The block diagrams of the controllers

examined in this study and used in the system are shown in

Fig. 4.

The PID controller seen in Fig. 4a is the most frequently

used controller from past to present (Ekinci et al. 2023b;

Izci et al. 2023). The controller which mathematical

expression is given in (6) consists of proportional, integral

and derivative terms. Each has coefficient called Kp, Ki,

and Kd that impacts the controller performance. These

parameters determine the settling time, percentage of

overshoot, and the steady-state error of the system at

transition moments. As seen in Fig. 4a, the block diagram

of the conventional PID controller is given in Fig. 4a. The

error signal is given to the proportional, integral and

derivative controller and the results are summed to obtain

the PID output.

TFPIDðsÞ ¼ Kp þ
Ki

s
þ Kds ð6Þ

When the PID controller in Fig. 4a is added as a con-

troller to the system structure seen in Fig. 3, the transfer

function of the entire system is seen in (7). This 3rd order

transfer function is used in system simulation and con-

troller optimization.

Fig. 1 DC motor model Fig. 2 DC motor block diagram
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TFSYSðsÞ ¼
KKds

2 þ KKpsþ KKi

s3JLþ ðJRþ BLþ KKdÞs2 þ ðBRþ K2 þ KKpÞsþ KKi

ð7Þ

Tilt integral derivative controller has three components

as PID controller. The difference between the two con-

trollers is that TID controller proportional term (Kt) is

multiplied by a transfer function as seen in (8). The

parameter of n is a real number different from zero (Topno

and Chanana 2016; Rai and Das 2022).

TFTIDðsÞ ¼
Kt

s1=n
þ Ki

s
þ Kds ð8Þ

The block diagram is seen in Fig. 4b. The input of the

controller is an error signal and the output is the control

signal. The transfer function depending on the motor and

TID controller parameters is given in (9).

A1 ¼ðJRþ BLþ KKdÞ
A2 ¼ðBRþ KKdÞ

TFSYSðsÞ ¼
KKds

2þð1=nÞ þ KKtsþ KKis
1=n

sð3þð1=nÞÞJLþ A1sð2þð1=nÞÞ þ A2s
ð1þð1=nÞÞ þ KKtsþ KKis1=n

ð9Þ

PI controller is preferred in many applications because

of its simple structure and applicability. In order for the

system to respond quickly in transient situations, the PID

controller obtained by adding a derivative component to

the PI controller is used. The derivative component, how-

ever, may produce unfavorable outcomes in practical

applications if there is noise and a rapid change in the

signal that the controller receives. The PIDF controller

shown in (10) is produced for this situation by adding a

filter to the derivative component. In the controller, which

has a similar structure to the PID controller, N refers to the

filter coefficient of derivative (Guha et al. 2017).

TFPIDFðsÞ ¼ Kp þ
Ki

s
þ Kds

N

sþ N
ð10Þ

The transfer function of the DC motor speed control

system using the PIDF controller, which block diagram is

seen in Fig. 4c, is given in (11).

B1 ¼ðJRþ BLþ JLNÞ
B2 ¼ðBRþ K2 þ JRNþ BLNþ KKp þ KKdNÞ
B3 ¼ðBRNþ K2N þ KKpN þ KKiÞ

TFSYSðsÞ ¼
ðKKp þ KKdNÞs2 þ ðKKpN þ KKiÞsþ KKiN

s4JLþ B1s3 þ B2s2 þ B3sþ KKiN

ð11Þ

Tilt integral derivative with filter controller, which

transfer function is seen in (12), is like the combination of

PID and FOPID. It has the advantages of both controllers.

The controller in the block diagram shown in Fig. 4d dif-

fers from the other two controllers in that it immediately

suppresses the disturbances (Chiranjeevi et al. 2021).

TFTIDFðsÞ ¼
Kt

s1=n
þ Ki

s
þ Kds

N

sþ N
ð12Þ

The transfer function of the system using the DC motor

model and the controller model applied for speed control is

seen in (13).

FOPID controller is an extended version of PID con-

troller (Izci and Ekinci 2023). In the PID controller, the

Fig. 3 Block diagram of DC motor control system

Table 1 Motor parameters (Sabir 2014)

Parameter Value Description

Ra 1 X Armature resistance

La 0.5 H Armature inductance

J 0.01 kg�m2 Rotor inertia

B 3 9 10–5 N�m�s/rad Viscous friction coefficient

K 23 9 10–3 kg�m/A Torque constant

Kb 23 9 10–3 V�s Electromotor force constant

C1 ¼ ðJRþ BLþ JLNÞ
C2 ¼ ðBRþ KKb þ JRNþ BLNþ KKdNÞ

C3 ¼ ðBRN þ KKbN þ KKiÞ

TFSYS ¼ KKdNs
2þð1=nÞ þ KKts

2 þ KKis
1þð1=nÞ þ KKtNs þ KKiNs

1=n

s4þð1=nÞJLþ C1s3þð1=nÞ þ C2s2þð1=nÞ þ KKts2 þ C3s1þð1=nÞ þ KKtNs

ð13Þ

Optimization of the different controller parameters via OBL…
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integrator and derivative components are of the 1st order.

Controller performance is adjusted by coefficients only. In

the FOPID controller, whose transfer function is given in

(14) and the block diagram is given in Fig. 4e, k and l
parameters also affect the controller performance.

Depending on the 0 and 1 condition of these coefficients,

the controller becomes P, PI, PD and PID controller (Divya

et al. 2022; Tang et al. 2012).

TFFOPIDðsÞ ¼ Kp þ
Ki

sk
þ Kd

skþl

sk
ð14Þ

The transfer function of the system obtained by using

FOPID controller and DC motor model is given in (15). As

can be seen, besides circuit parameters and controller

coefficients, k and l parameters are included in the system

transfer function and affect the performance.

D1 ¼ ðJRþ BLÞ
D2 ¼ ðBRþ K2 þ KpKÞ

TFSYS ¼ KKds
lþk þ KpKs

k þ KiK

s2þkJLþ D1s1þl þ D2sk þ KdKskþl þ KiK

ð15Þ

Fig. 4 Block diagrams of the controllers a PID, b TID, c PIDF, d TIDF, e FOPID, f FOPIDF, g PIDFF, h FOPIDFF
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The FOPIDF controller is obtained by filtering the

derivative component in the FOPID controller as seen in

Fig. 4f. This feature improves the performance of the

FOPID controller and filters out high-frequency noise in

the control signal. The derivative filter not only reduces

noise but also ensures that the transfer function is appli-

cable (Dey et al. 2022). N, l and k parameters determine

the filter performance in the FOPIDF controller, which

transfer function is given in (16) and transfer function of

the whole system to which it is applied in (17).

TFFOPIDFðsÞ ¼ Kp þ
Ki

sk
þ Kds

l N

sþ N
ð16Þ

E1 ¼ ðJRþ BLþ JLNÞ
E2 ¼ ðBRþ K2 þ KpK þ JRNþ BLNÞ
E3 ¼ ðBRN þ K2N þ KKpNÞ
TFSYSðsÞ

¼ KKps
1þk þ KpKNs

k þ KiKsþ KKiN þ KKdNs
kþl

s3þkJLþ s2þkE1 þ E2skþ1 þ E3sk þ KKdNskþl þ sKKi þ KKiN

ð17Þ

The block diagram and transfer function of the PIDFF

controller, which is obtained by adding a fractional order

filter to the derivative component in the PID controller, is

shown in Fig. 4g and (18). As you can see, unlike the PID

controller, there is a filter with fractional order (kf) and gain
(N). Apart from the coefficients in the classical PID con-

troller, these parameters also need to be optimized (Sahin

2019).

TFPIDFFðsÞ ¼ Kp þ
Ki

s
þ Kds

N

skf þ N
ð18Þ

As seen in (19), a complex transfer function appears

when the controller is used together with the system.

F1 ¼ ðBRþK2 þKKpÞ
F2 ¼ ðJRNþBLNþKKdNÞ
F3 ¼ ðNBRþK2N þKKpNÞ
F4 ¼ ðJRþBLÞ
TFSYSðsÞ

¼ KKps
1þkf þNKds

2KtKKis
kf þKpKNsþKKiN

s3þkf JLþ s2þkf F4 þ s1þkf F1 þ s3JLNþ s2F2 þ sF3 þKKiskf þKKiN

ð19Þ

The fractional-order PID with fractional filter controller

is the final controller and has the most complicated struc-

ture among all the controllers employed. Figure 4h shows

its block diagram. There is a fractional-order integral and

derivative component, just like in the FOPID controller,

and a fractional-order filter in the derivative component,

like in the PIDFF controller. As seen in (20), the number of

parameters that need to be optimized is more than FOPID

and PIDFF controllers, and it is 7 in total. The transfer

function of the system using FOPIDFF is also given in (21)

and it has a very complex structure.

TFFOPIDFFðsÞ ¼ Kp þ
Ki

sk
þ Kds

l N

skf þ N
ð20Þ

The optimizable parameters of the controllers and

number of them are given in Table 2. FOPIDFF controller

has maximum optimizable control parameters of 7,

whereas PID has three parameters among the controllers

studied in the paper.

G1 ¼ ðjRþ BLÞ
G2 ¼ ðBRþ K2 þ KKpÞ
G3 ¼ ðJRNþ BLNÞ
G4 ¼ ðBRN þ K2N þ KKpNÞ
G5 ¼ JLN

G6 ¼ KKdN

G7 ¼ KKiN

G8 ¼ KKi

TFSYSðsÞ

¼ KKps
kþkf þ KKpNs

k þ KKiN þ KKdNs
kþl

s2þkþkf JLþ G1skþkfþ1 þ G2skþkf þ G5s2þk þ G3skþ1 þ G6skþl þ G4s2k þ G8skf þ G7

ð21Þ

Optimization of the different controller parameters via OBL…
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4 Improved artificial ecosystem
optimization algorithm with fitness-
distance balance guiding mechanism
by using opposite based learning
methods

4.1 Artificial ecosystem optimization algorithm

The AEO algorithm was presented to the literature in 2020

by Zhao et al. (2020) as a new population-based meta-

heuristic optimization algorithm inspired by the behavior

of living organisms in the ecosystem, production, con-

sumption, and decomposition characteristics. AEO has

been used in nearly 200 scientific studies since 2020 to

solve real-world engineering problems and different fields

of science. While the production phase in the AEO algo-

rithm aims at the discovery and usage trends of the opti-

mization process, the consumption phase aims to develop

the discovery feature of the algorithm in the optimization

process. Decomposing is defined as a process used to

improve the use process of the algorithm. AEO follows

some rules stated below to search for the most appropriate

solution in the solution process of an optimization problem.

(1) The ecosystem including the producer, consumer,

decomposer organisms should be defined as the

population.

(2) It should contain only one producer and one

decomposer in the population.

(3) Consumers selected as carnivores, herbivores, or

omnivores should each have the same probability of

generating other solution candidates in the

population.

The ecosystem of the AEO algorithm is shown in Fig. 5.

In the ecosystem constituting the population, the producer

with the highest energy level X1, which constitutes the

population in the ecosystem is determined as the solution

candidate and the decomposer with the lowest energy level

Xn (best individual) is determined as the solution candidate.

The producer with the highest energy level is determined as

X1 the solution candidate and the decomposer with the

lowest energy level is determined as Xn (best individual)

the solution candidate in the ecosystem that constitutes

population Consumers representing equally distributed

carnivorous, herbivorous, and omnivorous organisms for

other solution candidates in the population are shown in

detail in Fig. 5. The producer, consumer and decomposer

processes of the algorithm are explained as follows (Zhao

et al. 2020; Sonmez et al. 2022; Yousi et al. 2020; Rizk-

Allah et al. 2021).

4.1.1 Production phase

In the optimization process of the AEO algorithm, bal-

ancing the discovery and usage trends of the algorithm to

find the best value is expressed as the purpose of the pro-

duction phase. The producer (the worst solution candidate)

in the population is updated as in (22) using an individual

(Xrand) that is constituted with usage of the best individual

(Xn) and limit values of the variables in the population. The

solution candidate, which is updated during the search

process, directs the other solution candidates in the popu-

lation to search in different regions of the solution space of

the problem (Zhao et al. 2020; Sonmez et al. 2022; Topno

and Chanana 2016; Rai and Das 2022; Guha et al. 2017;

Chiranjeevi et al. 2021; Divya et al. 2022; Tang et al. 2012;

Dey et al. 2022; Sahin 2019; Yousi et al. 2020; Rizk-Allah

et al. 2021). The equations of r ve Xrand parameters used in

(22) are given in (23) and (24).

X1ðt þ 1Þ ¼ ð1� rÞXnðtÞ þ rXrandðtÞ ð22Þ

Fig. 5 The ecosystem of AEO algorithm

Table 2 Optimizable parameters of the controllers

Controller Optimizable Parameters Number

PID Kp, Ki, Kd 3

TID Kt, Ki, Kd, n 4

PIDF Kp, Ki, Kd, N 4

TIDF Kt, Ki, Kd, n, N 5

FOPID Kp, Ki, Kd, k, l 5

FOPIDF Kp, Ki, Kd, k, l, N 6

PIDFF Kp, Ki, Kd, kf, N 5

FOPIDFF Kp, Ki, Kd, k, kf, l, N 7
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r ¼ ð1� t

Tmax

Þr1 ð23Þ

Xrand ¼ rðU � LÞ þ L ð24Þ

Here n is defined as the population size. r is expressed

as a linear weight coefficient used to move the individual to

the best individual. t and Tmax represent the current itera-

tion and maximum iteration numbers, respectively. r1 is a

random number between [0,1]. r is a random number

vector generated depending on the number of variables

between [0,1]. U and L are specified as the upper and lower

limits of the variables in the optimization problem.

4.1.2 Consumption phase

After the production process is completed in the ecosystem,

the consumption operator is used in the algorithm for the

consumers in the system. In the consumption operator,

each consumer is fed by eating consumers with lower

energy levels, producers, or both to obtain food energy and

complete the energy flow in the ecosystem. This feeding

process is simulated as the discovery process of the AEO

algorithm. This process can be explained as (25) with a

consumption factor with similar properties to Lévy Flight

as a random walk without any parameters (Zhao et al.

2020; Sonmez et al. 2022; Topno and Chanana 2016; Rai

and Das 2022; Guha et al. 2017; Chiranjeevi et al. 2021;

Divya et al. 2022; Tang et al. 2012; Dey et al. 2022; Sahin

2019; Yousi et al. 2020; Rizk-Allah et al. 2021).

C ¼ 1

2

v1
v2j j v1 �Nð0; 1Þ; v2 �Nð0; 1Þ ð25Þ

Different types of consumers show different consump-

tion behaviors in the consumption process. If the randomly

selected individual from the population is herbivore, it

feeds only on producer X1 like consumers X2 and X5, as can

be seen in Fig. 5. This process is expressed mathematically

as in (26).

Xiðt þ 1Þ ¼ XiðtÞ þ C XiðtÞ � X1ðtÞð Þ ; i 2 ½2; :::; n�
ð26Þ

If the solution candidate selected from the population is

carnivorous, it is fed with a consumer with a higher energy

level than its own energy level, as seen in Fig. 5 (as in X4

and X6 consumers). The consumption behavior of the

solution candidate carnivore can be defined by (27).

Xiðt þ 1Þ ¼ XiðtÞ þ C XiðtÞ � XjðtÞ
� �

; i 2 ½3; :::; n� ; j
¼ randið½2; i� 1�Þ

ð27Þ

If the ith solution candidate selected from the population

is omnivorous, it is fed by both the producer X1 and another

consumer with a higher energy level than its own. The

consumption behavior of the omnivorous consumer is

mathematically formulated as in (28).

Xiðt þ 1Þ ¼ XiðtÞ þ C r2XiðtÞ � X1ðtÞð Þ þ ð1� r2Þ
i 2 ½3; :::; n� ; j ¼ randið½2; i� 1�Þ

(

ð28Þ

Here, r2 is defined as a random number between 0 and 1.

4.1.3 Decomposition phase

Decomposition can be expressed as the most important

process in terms of the functioning of the ecosystem, where

when an individual dies, its remains are decomposed by

decomposers such as bacteria or fungi. This process is

simulated mathematically with the parameters D (dissoci-

ation factor) and, e and h (weighting coefficients) in the

algorithm, as in (29). In the parsing process, the position of

the ith solution candidate is updated via the position of the

Xn parser. It also ensures that the next position of each

solution candidate in the search space is located around the

parser Xn (best individual), and this process is formulated

as follows (Zhao et al. 2020; Sonmez et al. 2022; Topno

and Chanana 2016; Rai and Das 2022; Guha et al. 2017;

Chiranjeevi et al. 2021; Divya et al. 2022; Tang et al. 2012;

Dey et al. 2022; Sahin 2019; Yousi et al. 2020; Rizk-Allah

et al. 2021).

Xiðt þ 1ÞÞ ¼ XnðtÞ þ D � e � XnðtÞ � h � XiðtÞð Þ; 8 i 2 n

D ¼ 3u ; Nð0; 1Þ ; e ¼ r3 � randið½12�Þ � 1 ; h ¼ 2 � r3 � 1

ð29Þ

4.2 AEO algorithm involving fitness-distance
balance guiding mechanism

The FDBAEO algorithm, which includes a fitness-distance

balance guiding mechanism, was presented to the literature

by Sonmez et al (2022) in 2022. The performance of the

algorithm has been increased by using the FDBAEO

algorithm in the parsing process, which is one of the most

important stages of the ecosystem. The FDB method aims

to select the solution candidate from the population that

can contribute the most to the search process after the best

individual Xn used in the parsing process of the AEO. Thus,

it was stated by the authors that the basic AEO algorithm

provided a better balance between discovery and

exploitation processes (Sonmez et al. 2022). The FDB

method, which can be adapted to all optimization algo-

rithms and creates solution diversity in the search space of

algorithms, was first introduced to the literature in 2020 by

Kahraman et al. (2020). This method has been adapted to

optimization algorithms and has been used in the solution
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of different science fields and engineering problems in

nearly 70 scientific studies since 2020. FDB has two

important features that consider the fitness values of the

solution candidates and the distances from the best solution

candidate (Pbest) in the population. The implementation

steps in which the FDB guidance mechanism is introduced

can be expressed as follows. (Aras et al. 2021; Guvenc

et al. 2021; Duman et al. 2021, 2022; Kahraman et al.

2022; Bakir et al. 2022; Cengiz et al. 2021; Suicmez et al.

2021).

(i) i. In meta-heuristic optimization algorithms, n-unit

solution candidates are created in the search space

within the specified limit values of the control vari-

ables according to the determined population number

(n). The vector (P) of the created solution candidates

and their fitness values vector (F) can be expressed

by the (30) below.

P ¼
p1

..

.

p2

2

64

3

75 ¼
x11 � � � x1m
..
. . .

. ..
.

xn1 . . . xnm

2

64

3

75

n�m

; F ¼
f1

..

.

fn

2

64

3

75

n�1

ð30Þ

(ii) In a solution space with the number of solution

candidates (n) and the number of variables (m) in

the population, the Euclid distance of the ith solu-

tion candidate pi to the best solution candidate of

the population (pbest) is formulated in (31).

n
i¼18Pi;Dpi

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pi½1� � pbest½1�
� �2þ pi½2� � pbest½2�

� �2þ. . .þ pi½m� � pbest½m�
� �2

q

ð31Þ

(iii) DP is defined by (32) as a row vector containing

numerical values representing the distance of

solution candidates in the population from pbest.

Dp �

d1
�
�
�
dn

2

66664

3

77775

n�1

ð32Þ

(iv) While calculating the FDB score values of the

solution candidates in the population, the fitness

values vector (F) and the distance vector (Dp) are

used. It is desired that these two parameters do not

dominate each other in the calculation of the FDB

value. Therefore, FDB values (Sp) of possible

solution candidates are calculated as in (33) by

normalizing F and Dp between [0,1].

n
i¼18Pi ; Sp½i� ¼ w � normF½i� þ ð1� wÞ � normDp½i� ð33Þ

The weight coefficient w which is set to 0.5, is used to

determine the effects of normalized fitness and distance

values on the FDB score.

(i) The n-dimensional vector of FDB scores (Sp) in

which the solution candidates are represented in the

search space is shown in (34)

Sp �

s1
�
�
�
sn

2

66664

3

77775

n�1

ð34Þ

After the Sp vector showing the FDB scores of the

possible solution candidates in the search space is created,

the selection of individuals from the population can be

done using the greedy or probabilistic selection method.

The solution candidate with the highest FDB score value is

used in the selection process.

The pseudocode of the steps of applying the FDB

selection method in the algorithm is shown in Algorithm 1.

4.3 FDBAEO algorithm including opposite based
learning methods

This section discusses the improvement of the FDBAEO

algorithm using opposition-based learning (OBL) methods.

Such approach strategies take into account the position that

is opposed to the current solution candidate’s position. By

using the values of the fitness function of the solution

candidates, it is determined whether the inverse is better

than the current solution candidate and the best ones are

selected for use in the next generations (Tizhoosh 2005;

Elaziz et al. 2017; Elaziz and Mirjalili 2019; Ewees et al.

2018; Ekinci et al. 2022). OBL methods focus on

increasing the rate of convergence to the optimal solution

by improving the exploration capability of the FDBAEO

algorithm. The OBL strategies used for the proposed

algorithm in this study are described mathematically

below.

i. In the method presented by Tizhoosh (2005) to the

literature, x [ [L,U] is defined as the inverse of the real

number x, as seen in (35).

x ¼ Lþ U � x ð35Þ

The definition of x in the multidimensional search space

can be formulated with generalization as seen in (36)

(Tizhoosh 2005).

xj ¼ Lj þ Uj � xj ; x 2 Rnn ; j ¼ 1; 2; :::; nn ð36Þ

Here, j represents the number of variables in the solution

candidate. The size of the solution candidate in the search

space is defined as nn.
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ii. Rahnamayan et al. (2007) presented the Quasi-OBL

(QBL) method to the literature to improve the performance

of the differential evolution algorithm with the help of the

following mathematical equation. The quasi-opposite

solution (xq) of solution candidate x is generated as a

random solution candidate uniformly distributed between

the midpoint (mid) and the opposite solution (x) as shown

in (37).

xq ¼ mid þ ðmid � xÞ � rand ð37Þ
Algorithm 1 The pseudo code of the AEO algorithm involving fitness-distance balance guiding mechanism

iii. Ergezer et al (2009) proposed the Quasi-Reflection

OBL (QROBL) method to improve the convergence rate of

the biogeography-based optimization algorithm. In this

method, the quasi-reflected solution (xqr,) of the x solution

candidate is mathematically defined as a uniformly dis-

tributed random solution as in (38).

mid ¼ ðU þ LÞ=2
xqr ¼ U þ ðmid � xÞ � rand

ð38Þ

iv. Kaucic (2013) provided the convergence of the particle

swarm optimization algorithm to the global solution by

using super-opposite based learning method in 2013. The

performance of the algorithm proposed by the author has

been verified by testing 100 global optimization problems.

Equation (39) represents the uniformly distributed super-

opposite solution (xso) of the solution candidate x.

xso ¼
xþ ðU � xÞ � rand if x[mid

Lþ ðx� LÞ � rand otherwise

�
ð39Þ

The pseudocode of OBL methods showing the applica-

tion steps in the FDBAEO algorithm is shown in Algorithm

2.
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Algorithm 2 The pseudo code of the FDBAEO algorithm including OBL strategies

5 Experimental settings of the study

An experimental study is conducted to verify the success of

the OBL-based FDBAEO algorithm, which is developed

for the speed control of the DC motor from electrical

machines, in convergence and finding the optimal solution.

The FDBAEO algorithm based on OBL methods is defined

as follows.

• FDBAEO_OBL1: FDBAEO algorithm based on the

classical OBL method

• FDBAEO_OBL2: FDBAEO algorithm based on Quasi-

OBL method

• FDBAEO_OBL3: FDBAEO algorithm based on Quasi-

Reflection OBL method

• FDBAEO_OBL4: FDBAEO algorithm based on Super

OBL method

Comparison of the performances of FDBAEO algo-

rithms based on the above mentioned OBL methods,

classical AEO and FDBAEO algorithms is performed

under the conditions described below.

(a) CEC2020 benchmark test is used to test the global

solution search performance of FDBAEO algorithms

based on AEO, FDBAEO and OBL methods.

(b) 10000*D maximum function evaluations (maxFEs)

are used as termination criteria in the search space.

Thus, a fair comparison environment is created for

the algorithms to search for the global solution

during the optimization.

(c) To evaluate the convergence performance of the

algorithms to the general solution in different search

spaces, experimental studies are carried out in the
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Benchmark test system for the dimensions of 5/10/

15/20/30/50/100.

(d) 30 independent trials are conducted for each test

problem in the CEC2020 benchmark test system.

Statistical analysis studies are carried out to make the

results obtained from these experimental studies

more meaningful. In these studies, non-parametric

Wilcoxon pairwise and Friedman statistical test

methods are used.

The performances of FDBAEO algorithms, classical

AEO and FDBAEO algorithms based on the proposed OBL

methods are described as follows in two different experi-

mental studies.

(i) First subsection: the successful performances of the

proposed method and other algorithms are investi-

gated in the CEC2020 (Yue et al. 2019) benchmark

test functions.

(ii) The parameters of the controllers used in the speed

control of the DC motor are optimized by using the

most successful algorithm among the FDBAEO

algorithms based on OBL methods. Thus, it is

aimed to design the most suitable controller for the

speed control problem of the DC motor.

6 Simulation studies

6.1 Identifying the best FDBAEO algorithm
based on OBL methods in CEC 2020
Benchmark Test Functions

CEC 2020 benchmark test functions are used to test the

success and ability of the FDBAEO algorithm designed

according to four different OBL strategies in finding the

global solution point in these test functions. In order to

make a fair comparison between the proposed approach,

AEO and FDBAEO algorithms, the adjustment parameters

of the algorithms determined according to the user expe-

rience are accepted as presented in the literature in the

basic AEO algorithm and simulation studies are carried

out.

6.1.1 Statistical analysis

In the statistical analysis subsection, the Friedman method

is used to statistically analyze the results obtained from the

experimental studies of the FDBAEO_OBL, AEO and

FDBAEO algorithms. By means of this non-parametric

method, the algorithm that successfully finds the global

solution point is determined. The problem size in each of

the benchmark test functions in CEC 2020 has been

determined as 5/10/15/20/30/50 and 100. In addition, two

different case studies are determined as population num-

bers of 100 and 200. The Friedman results and the success

ranking of the algorithms according to the statistical

analysis of the results obtained from the simulation studies

on these problem sizes and population numbers are pre-

sented in detail in Tables 3 and 4, respectively.

The Friedman values from 14 different trials are pre-

sented in Table 3. According to these values, different

population numbers and mean values of Friedman results

for each algorithm are demonstrated in Table 4. The last

row in Table 4 shows the Friedman overall mean values

and the ranking of the algorithms based on these values.

Under the simulation conditions determined for the CEC

2020 benchmark test functions, it is clearly seen that the

best performing algorithm compared to its competitors in

finding the global solution is FDBAEO_OBL3 (FDBAEO

algorithm based on Quasi-Reflection OBL method). Also,

the algorithm with the worst performance is the FDBAEO

algorithm. In addition, according to the results in Table 4,

it is seen that each of the FDBAEO algorithms designed

according to the OBL strategies is better than the AEO and

FDBAEO algorithms.

The results obtained from the CEC2020 benchmark test

functions are used in the Wilcoxon pairwise test to com-

pare the classical AEO algorithm with other algorithms and

the Wilcoxon results of the algorithms against the AEO

algorithm are given in Table 5.

At the end of the optimization process, in order for the

Wilcoxon binary test results to be statistically meaningful,

the victory of the algorithm against the AEO algorithm is

defined with the ‘‘ ? ’’ symbol, the draw with the ‘‘ = ’’

symbol, and the defeat with the ‘‘–’’ symbol. The

FDBAEO_OBL3 algorithm, which ranked first among the

algorithms according to the Friedman test results, is eval-

uated for the situation where the population number is 100

in the CEC 2020 benchmark test functions. According to

the evaluation results, FDBAEO_OBL3 performed 4/8/7/1/

1 times better than the classical AEO algorithm in 5/10/15/

20/50 problem sizes. The proposed approach and the AEO

algorithm in these problem sizes have obtained similar

results 2/2/2/9/9 times. In the 30- and 100-dimensional

search space, the proposed approach and the AEO algo-

rithm converged to a similar result 10/10 times. For the

5/10/15/20/30/50/100-dimensional search space, when the

population number is 200, the FDBAEO_OBL3 algorithm

victories the AEO algorithm 1/4/4/6/5/4/4 times. More-

over, the proposed approach is drawn 3/5/3/1/3/5/2 times

and defeated 6/1/3/3/2/1/4 times with the AEO algorithm.

In other words, the FDBAEO_OBL3 algorithm has been

compared with the AEO algorithm 140 times in the sim-

ulation studies conducted with different populations and

sizes, and according to the results of the comparison, 49
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wins, 66 draws and 25 losses have been achieved. To better

understand and evaluate these results, the percentage

comparison of wins, draws and defeats in test functions

against the AEO algorithm of the proposed approach is

given in Table 6. According to the results in Table 6,

where wins, draws and defeats are evaluated as percent-

ages, it is clearly seen that the FDBAEO_OBL3 algorithm

is superior to the AEO algorithm in 9 of 14 different

simulation studies.

6.1.2 Convergence analysis

This subsection presents the convergence curves and box-

plot figures of the OBL variants of the AEO, FDBAEO and

FDBAEO algorithms. Convergence and boxplot analysis

aims to better understand and interpret optimization algo-

rithms for search and convergence to the global solution

point in different problem types. Convergence curves and

boxplot graphs in cases where the population numbers of

test problems selected from the CEC 2020 benchmark test

functions are 100 and 200 are shown in Figs. 6 and 7,

respectively. Figures 6 and Fig. 7a, d and g show the

variation of the error value obtained depending on the

convergence of the algorithms to the optimal solution value

according to the maximum fitness function evaluation cri-

terion. The graphs showing the change in convergence

values of the best fitness values obtained depending on the

iteration are shown in Figs. 6 and 7b, e and h. The per-

formance of all optimization algorithms is tested by per-

forming 30 independent trials for each simulation case.

Boxplot plots are given in Figs. 6 and 7c, f and i for better

interpretation of the results from these independent runs.

Boxplot plots show the limits of the best fitness values that

the optimization algorithms found in independent trials. In

other words, it gives information about the frequency of

convergence of the algorithm to the optimal solution after

Table 3 Freidman test results of

the optimization algorithms
Algorithms CEC 2020

Pop_size = 100

D = 5 D = 10 D = 15 D = 20 D = 30 D = 50 D = 100

AEO 3.39500 4.99667 4.54000 3.29667 3.34000 3.34000 3.37000

FDBAEO 3.60167 3.14667 3.16667 4.74667 4.45333 4.23000 3.84667

FDBAEO_OBL1 3.62833 3.10667 3.29000 3.22667 3.46667 3.43333 3.41000

FDBAEO_OBL2 3.56833 3.20000 3.36333 3.30333 3.24333 3.50667 3.53000

FDBAEO_OBL3 3.22500 3.16333 3.31667 3.10667 3.13667 3.18667 3.46667

FDBAEO_OBL4 3.58167 3.38667 3.32333 3.32000 3.36000 3.30333 3.37667

Algorithms CEC 2020

Pop_size = 200

D = 5 D = 10 D = 15 D = 20 D = 30 D = 50 D = 100

AEO 2.31000 3.83000 3.45000 4.16333 4.10667 4.02333 3.45333

FDBAEO 3.77333 3.56667 3.59000 3.28667 3.41000 3.40000 3.49333

FDBAEO_OBL1 3.54333 3.57333 3.54667 3.42000 3.35333 3.39667 3.49333

FDBAEO_OBL2 3.82333 3.32333 3.53333 3.33333 3.51667 3.45333 3.66333

FDBAEO_OBL3 3.60667 3.37000 3.39667 3.36000 3.29000 3.33333 3.44667

FDBAEO_OBL4 3.94333 3.33667 3.48333 3.43667 3.32333 3.39333 3.45000

Table 4 Friedman test ranking of the optimization algorithms

Algorithms
Parameters FDBAEO_OBL3 FDBAEO_OBL1 FDBAEO_OBL4 FDBAEO_OBL2 AEO FDBAEO

Pop_size=100
Mean 

values
3.2288 3.3660 3.3788 3.3879 3.7540 3.8845

Pop_size=200
Mean 

values
3.4005 3.4752 3.4810 3.5210 3.6195 3.5029

Ranking of mean values 3.3146–(1) 3.4206–(2) 3.4299–(3) 3.4544–(4) 3.6868–(5) 3.6937–(6)

The color was used to show the best results
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30 trials. It is clear from the boxplot graphs that depending

on the problem type, the proposed FDBAEO_OBL3 algo-

rithm always converges to the optimal solution value of the

problem or closer value to optimal solution. Moreover,

these graphs confirm the results of both Friedman and

Wilcoxon non-parametric statistical analysis.

6.2 Application of the FDBAEO_OBL3 algorithm
in controller design of DC motor

The speed control of the DC motor is realized in

MATLAB/Simulink environment with the developed

FDBAEO_OBL3 algorithm. Figure 8 displays the flow

diagram or block diagram illustrating the optimization

procedure whereby the controller parameters utilized for

DC motor speed control are optimized via the use of the

proposed algorithm. The speed error between the reference

speed and the measured actual speed in the control struc-

ture is computed and provided to the controller whose

parameters are optimized, as can be seen in the block

diagram in Fig. 8. The speed control of the motor is

achieved by applying the signal that makes the error pro-

duced by the controller to zero to the DC motor. PID,

FOPID, TID, TIDF, PIDF, FOPIDF, PIDFF, and FOPIDFF

controllers are used to provide speed regulation of the DC

motor. The optimization algorithm’s objective functions

are created based on the performance indices. The opti-

mized controller parameters are represented in the

Table 5 Wilcoxon pairwise

comparison results for the

optimization algorithms

vs. AEO

? / = /-

CEC 2020

Pop_size = 100

D = 5 D = 10 D = 15 D = 20 D = 30 D = 50 D = 100

FDBAEO 4/2/4 8/2/0 7/2/1 1/2/7 0/5/5 1/5/4 3/2/5

FDBAEO_OBL1 4/2/4 9/1/0 7/2/1 0/10/0 0/10/0 0/10/0 0/10/0

FDBAEO_OBL2 4/2/4 9/1/0 7/2/1 0/10/0 0/10/0 0/9/1 0/10/0

FDBAEO_OBL3 4/2/4 8/2/0 7/2/1 1/9/0 0/10/0 1/9/0 0/10/0

FDBAEO_OBL4 4/2/4 9/1/0 7/2/1 1/9/0 0/10/0 1/9/0 1/9/0

vs. AEO

? / = /–

Pop_size = 200

D = 5 D = 10 D = 15 D = 20 D = 30 D = 50 D = 100

FDBAEO 1/3/6 2/7/1 4/3/3 6/1/3 4/4/2 4/5/1 4/2/4

FDBAEO_OBL1 1/3/6 3/6/1 4/2/4 6/1/3 4/4/2 4/5/1 3/3/4

FDBAEO_OBL2 1/3/6 4/5/1 4/2/4 6/1/3 4/4/2 4/5/1 4/2/4

FDBAEO_OBL3 1/3/6 4/5/1 4/3/3 6/1/3 5/3/2 4/5/1 4/2/4

FDBAEO_OBL4 1/3/6 4/5/1 5/1/4 6/2/2 4/4/2 4/5/1 4/2/4

Table 6 Comparison of FDBAEO_OBL3 algorithm against AEO algorithm as a percentage of victory, draw and defeat

FEBAEO_OBL3 vs. AEO
CEC 2020

Pop_size=100

D=5 D=10 D=15 D=20 D=30 D=50 D=100

Victory (%) 40 80 70 10 - 10 -

Draw (%) 20 20 20 90 100 90 100

Defeat (%) 40 - 10 - - - -

FEBAEO_OBL3 vs. AEO
Pop_size=200

D=5 D=10 D=15 D=20 D=30 D=50 D=100

Victory (%) 10 40 40 60 50 40 40
Draw (%) 30 50 30 10 30 50 20

Defeat (%) 60 10 30 30 20 10 40

The color was used to show the best results
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optimization process by the solution candidate with the

lowest objective function value. The DC motor speed

regulation circuit tests these parameters and the outcomes

are examined.

6.2.1 Using performance indices as objective functions
during optimization

The performance indices that are commonly used in the

literature are IAE (Ghith and Tolba 2023), ISE (Izci et al.

2022a), ITAE (Majhi et al. 2021) and ITSE (Barakat et al.

2022). The equations of the indices that are used as the

objective functions are presented in Eqs.(40)–(43). They

are used in the study to evaluate the performance of the

controllers that are optimized.

IAE ¼
Z T

0

eðtÞj jdt ð40Þ

ISE ¼
ZT

0

e2ðtÞdt ð41Þ

ITAE ¼
ZT

0

t eðtÞj jdt ð42Þ

ITSE ¼
ZT

0

te2ðtÞdt ð43Þ

6.2.2 Evaluation of simulation results obtained according
to performance indices

In Table 7, rise time, settling time, overshoot, peak value,

peak time and steady-state error values of the controllers

optimized with the FDBAEO_OBL3 method based on

IAE, ITAE, ITSE and ISE performance indices are shown.

D=10, Pop_size=100

(a) (b) (c)

D=20, Pop_size=100

(d) (e) (f)

Fig. 6 Convergence and boxplot shapes of algorithms for Pop_size = 100
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As a result of these data, the best performance indices of

each controller in different performance parameters are

determined and highlighted. In the PID controller, all the

best results are obtained with the ITSE index, while in the

FOPID controller, the best rise time is obtained with the

IAE index and the other best results are obtained with the

ITSE index. As seen in the table, these determinations are

made for all controller and performance indices.

Table 8 is created by ranking 1–4 from the best to the

worst in the performance results seen in Table 7. The best

result is represented by 1, while 4 is used for the worst

result. Then, the scores of the parameters are averaged and

the average values are obtained. Based on these values, the

average value ranking is made. Thus, the performance

index with the best score is determined for each controller.

According to this method, as seen in Table 8, ITAE for

PID controller, ITSE for FOPID, ISE for TID, IAE for

TIDF, ITAE for PIDF, IAE for FOPID, ITAE for PIDFF

and IAE for FOPIDFF are the best performance indices.

They are highlighted in the table.

Table 9 is obtained depending on Table 8. The best

performance index for each controller is determined based

on ‘‘Ranking of mean values’’ in Table 8, and the best

transient response values are given in Table 9 for each

controller. In addition, the best controller for each transient

response parameter is determined by scoring the con-

trollers. The best controller for transient response is

selected by averaging the scores of the controllers. As seen

in Table 9, the first and best performance controller is

FOPIDFF. The best four controllers that are FOPIDFF,

FOPID, FOPIDF and PID between eight controllers are

determined depending on the Table 9 and they are used for

the performance analysis in the rest of the work. The step

performance of the controllers is seen Fig. 9. As seen in

Fig. 9a, all controllers settle to the reference value with

successful steady-state response. The maximum overshoot

occurs in FOPIDF controller while the minimum overshoot

occurs in FOPID controller. The minimum settling time

and rise time belongs to FOPIDFF and FOPIDF, respec-

tively. The results can be seen in Table 9 and Fig. 9b.

Fig. 7 Convergence and boxplot shapes of algorithms for Pop_size = 100
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FOPID and FOPIDFF controllers have almost the same

response, but FOPIDFF has little higher performance.

In this study, eight distinct controller structures with

different design parameters were used to ensure speed

regulation of the DC motor and to contribute the motor

operate more steadily under changing operating conditions.

Stated differently, appropriate determination of the

parameters in a controller structure ensures that the systems

can operate stable and reliably. In light of this circum-

stance, Table 10 provides a detailed display of the

parameters that were acquired by applying the proposed

FDBAEO-OBL technique to identify the most suit-

able controller settings. Additionally, Table 10 displays the

optimal parameter values of the top four controller archi-

tectures, based on the outcomes of several objective

functions. Four controller structures that differ from each

other in terms of computational complexity demonstrated

more effective performance than TID, TIDF, PIDF and

PIDFF controllers in providing speed regulation of the DC

motor. Determining the parameters of a controller structure

using optimization algorithms affects the calculation time

of the optimization algorithm during the optimization

process. The quantity of parameters in the controller

structures that need to be optimized is the cause of this. The

computational complexity of controller structures with

fewer parameters is lower than that of controller structures

with more parameters when controller structures with

optimized parameters are assessed in terms of application.

Nonetheless, the sampling frequency needs to be deter-

mined in accordance with the controller structure with the

highest computational complexity if it is intended to test

the performance of controllers in systems equitably.

To examine the dynamic response of the controllers

depending on the speed reference change of the motor, five

different speed refences are applied to the controllers in

different time intervals that are given in Table 11. The

start-up speed reference is set to 1, and it increases to 1.2

and 1.5 in the next two intervals. In the last two intervals,

the speed reference decreases to 0.6 and 0.8.

Fig. 8 Flowchart of the optimization process of the proposed FDB-AEO-OBL algorithm
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Figure 10 shows the dynamic response of the controllers

for five different speed references. All the controllers have

good steady-state response by settling the reference value.

The dynamic response of the controllers in Region 1–

Region 5 is shown in detail in Fig. 10b–f. As can be seen

from the figures, the FOPID and FOPIDFF controller

shows good performance in terms of settling time, over-

shoot and steady state response. The controllers have

similar responses as in Fig. 9. A Bode diagram of the

controllers can be seen in Fig. 11.

Four different scenarios are created to examine how the

system responded at different motor parameters. In the

scenarios created, the motor armature resistance is 0.75 and

1.25, and the torque constant is 0.0184 and 0.0276. The

scenarios created using these values are given in Table 12.

When Scenario I in Table 12 is applied, the change in

the response of the system can be seen in Fig. 12. When

compared with the response obtained from the basic motor

parameters used in the study, it is seen that there is a

decrease in the overshoot value of the FOPIDF controller.

The time to reach steady state of the PID controller has

increased, however, the controller is successful in the

steady state response. The numerical expressions of the

response performances of the controllers are shown in

Table 13.

In the second scenario, the moment constant is increased

by keeping the armature resistance constant. In this case,

the step responses of the controllers and the transient

response at the beginning are seen in Fig. 13. The

numerical values of the response performances of the

controllers in these changes are given in Table 14. As can

be seen from the response curves, the overshoot of the PID

controller decreases while the overshoot of the FOPIDF

controller increases. When examined in terms of steady-

state response, the PID controller enabled the system to

settle in a shorter time. Other transient response perfor-

mance values are given in Table 13. When examined in

terms of steady state, all controllers ensured that the system

is set to the reference value despite the parameter change.

The third scenario is created by increasing the motor

armature resistance and using the torque constant at the

value used in Scenario I. The performance data of the

controllers of Scenario III, whose step response is seen in

Fig. 14, are given in Table 15. While the PID controller

overshoot performance is the same as in Scenario II, the

FOPIDF overshoot value is the least compared to Scenario

I and Scenario II. FOPIDFF controller response reached the

reference value in the shortest time. In the steady state

response, all controllers reached the reference value. Per-

formance values are given in detail in Table 15.

In Scenario IV, which is the last scenario, the moment

constant is increased while the armature resistance is kept

constant. When the response changes and performance

values seen in Fig. 15 and Table 16 are examined, the PID

controller result improved in terms of overshoot and the

FOPIDF controller response worsened. While FOPIDFF

gives the best result in terms of settling time, the time is

shortened compared to Scenario III. In the steady state

response, all the controllers ensured that the system is set to

the reference value.

Table 7 Performance criteria of the controllers FDBAEO_OBL3

Performance Indices Performance Indices
Controller

Transient 

responses IAE ITAE ITSE ISE
Controller

Transient 

responses IAE ITAE ITSE ISE

Rise time (s) 0.064 0.0606 0.0663 0.0704 Rise time (s) 0.0526 0.0513 0.0551 0.0573

Settling time (s) 0.462 0.318 0.492 0.675 Settling time (s) 0.498 0.361 0.674 1.16

Overshoot (%) 23 18.7 26.6 35.7 Overshoot (%) 46.9 40.3 54.5 65.2

Peak value (V) 1.23 1.19 1.27 1.36 Peak value (V) 1.47 1.4 1.54 1.65

Peak time (s) 0.161 0.153 0.166 0.177 Peak time (s) 0.143 0.137 0.15 0.162

PID

SS_Error (V) 0 0 0 0

PIDF

SS_Error (V) 0 0 0 0

Rise time (s) 0.00536 0.0402 0.0241 0.0155 Rise time (s) 0.0147 0.0335 0.0153 0.00626

Settling time (s) 0.0794 0.189 0.0503 0.143 Settling time (s) 0.0848 0.165 0.083 -

Overshoot (%) - 12.5 - 0.268 Overshoot (%) 21.6 24.5 19.4 32.9

Peak value (V) 0.995 1.13 0.993 1.00268 Peak value (V) 1.22 1.25 1.19 1.33

Peak time (s) 0.225 0.0939 0.078 0.547 Peak time (s) 0.0358 0.0854 0.0367 0.0166

FOPID

SS_Error (V) 0.005 0 0 0

FOPIDF

SS_Error (V) 0 0.01 0 0.02

Rise time (s) 0.07666 07674 0.07675 0.07617 Rise time (s) 0.0518 0.0502 0.054 0.0567

Settling time (s) 0.566 0.566 0.566 0.566 Settling time (s) 0.95 0.441 1.52 3.14

Overshoot (%) 12 12 12 12 Overshoot (%) 63.3 44.8 69.8 77.9

Peak value (V) 1.12 1.12 1.12 1.12 Peak value (V) 1.63 1.45 1.7 1.78

Peak time (s) 0.258 0.259 0.259 0.258 Peak time (s) 0.146 0.134 0.156 0.16

TID

SS_Error (V) 0 0 0 0

PIDFF

SS_Error (V) 0 0 0 0

Rise time (s) 0.0742 0.0766 0.0769 0.076 Rise time (s) 0.0224 0.0369 0.0243 0.00434

Settling time (s) 1.93 2.22 3.09 3.74 Settling time (s) 0.0416 0.167 0.043 0.146

Overshoot (%) 72.9 75.5 79.8 83.7 Overshoot (%) 0.661 4.62 0.734 2.85

Peak value (V) 1.73 1.75 1.8 1.84 Peak value (V) 1.00661 1.05 1.00734 1.03

Peak time (s) 0.206 0.215 0.218 0.218 Peak time (s) 0.07 0.0898 0.0713 0.00876

TIDF

SS_Error (V) 0 0 0 0

FOPIDFF

SS_Error (V) 0.003 0.01 0.00734 0

The color was used to show the best results
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6.2.3 Computational complexity of the proposed algorithm

Computational complexity in optimization algorithms tells

researchers how long it takes for an algorithm to solve a

given problem; this time varies depending on the pro-

gram’s design parameters. In the literature, computational

complexity is expressed in a variety of ways. To help

readers better comprehend computational complexity, the

methodology used in related articles (Ekinci et al. 2022;

Izci et al. 2023) is applied to the discussion of computa-

tional complexity in this study. The computational com-

plexity of the baseline AEO and intended FDBAEO-OBL

algorithms is calculated considering three main criteria.

These can be expressed as initializing the solution space,

Table 8 Performance scoring of the controllers

Controller Transient responses
Performance Indices

Controller Transient responses
Performance Indices

IAE ITAE ITSE ISE IAE ITAE ITSE ISE

PID
Rise time (s) 2 1 3 4

PIDF
Rise time (s) 2 1 3 4

Settling time (s) 2 1 3 4 Settling time (s) 2 1 3 4

Overshoot (%) 2 1 3 4 Overshoot (%) 2 1 3 4

Peak time (s) 2 1 3 4 Peak time (s) 2 1 3 4
Mean values 2 1 3 4 Mean values 2 1 3 4

Ranking of mean 

values
2 1 3 4

Ranking of mean 

values
2 1 3 4

FOPID

Rise time (s) 1 4 3 2

FOPIDF

Rise time (s) 2 4 3 1
Settling time (s) 2 4 1 3 Settling time (s) 2 3 1 4

Overshoot (%) 1 3 1 2 Overshoot (%) 2 3 1 4

Peak time (s) 3 2 1 4 Peak time (s) 2 4 3 1
Mean values 1.75 3.25 1.5 2.75 Mean values 2 3.5 2 2.5

Ranking of mean 

values
2 4 1 3

Ranking of mean

values
1 3 1 2

TID

Rise time (s) 2 3 4 1

PIDFF

Rise time (s) 2 1 3 4

Settling time (s) 1 1 1 1 Settling time (s) 2 1 3 4

Overshoot (%) 1 1 1 1 Overshoot (%) 2 1 3 4
Peak time (s) 1 2 2 1 Peak time (s) 2 1 3 4

Mean values 1.25 1.75 2 1 Mean values 2 1 3 4

Ranking of mean 
values

2 3 4 1
Ranking of mean 
values

2 1 3 4

TIDF

Rise time (s) 1 3 4 2

FOPIDFF

Rise time (s) 2 4 3 1

Settling time (s) 1 2 3 4 Settling time (s) 1 4 2 3
Overshoot (%) 1 2 3 4 Overshoot (%) 1 4 2 3

Peak time (s) 1 2 3 3 Peak time (s) 2 4 3 1

Mean values 1 2.25 3.25 3.25 Mean values 1.5 4 2.5 2
Ranking of mean 

values
1 2 3 3

Ranking of mean 

values
1 4 3 2

The color was used to show the best results

Table 9 The best controllers depending on the performance scoring in Table 8

Transient responses
Controllers

PID FOPID TID TIDF PIDF FOPIDF PIDFF FOPIDFF

Rise time (s) 0.0606 0.0241 0.07617 0.0742 0.0513 0.0147 0.0502 0.0224

Settling time (s) 0.318 0.0503 0.566 1.93 0.361 0.0848 0.441 0.0416

Overshoot (%) 18.7 0 12 72.9 40.3 21.6 44.8 0.661

Peak value (V) 1.19 0.993 1.12 1.73 1.4 1.22 1.45 1.00661

Peak time (s) 0.153 0.078 0.258 0.206 0.137 0.0358 0.134 0.07

SS_Error (V) 0 0 0 0 0 0 0 0.003

Ranking of transient responses of the controllers

Transient responses PID FOPID TID TIDF PIDF FOPIDF PIDFF FOPIDFF

Rise time (s) 6 3 8 7 5 1 4 2
Settling time (s) 4 2 7 8 5 3 6 1
Overshoot (%) 4 1 3 8 6 5 7 2
Peak time (s) 6 3 8 7 5 1 4 2
Mean values 5 2.25 6.5 7.5 5.25 2.5 5.25 1.75
Ranking of mean values 4 2 6 7 5 3 5 1

The color was used to show the best results
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calculating the fitness function of each solution candidate

in the solution space depending on the design steps, and

updating the positions of the solution candidates. The

computational complexity of the AEO algorithm can be

computed using these three criteria.

CC(AEO) = CC(N) ? CC(N 9 tmax)-

? CC(N 9 d 9 tmax), where, N, tmax, and d can be

expressed as the size of the solution space, the maximum

number of iterations, and the dimension of the problem,

respectively. However, the computational complexity of

the proposed FDBAEO_OBL algorithm can be given as

CC(FDBAEO_OBL) = CC(AEO) ? CC(N 9 t1)-

? CC(2 9 N 9 tmax). CC(N 9 t1) shows the effect of

OBL strategies used in the initial population on the com-

putational complexity. CC(2 9 N 9 tmax) represents the

additional computational load brought about by the FDB

guiding mechanism. The proposed FDBAEO_OBL algo-

rithm appears to have an additional computational over-

head, both because it is used in the initial population of

OBL strategies and because the FDB guidance mechanism

is used in updating solution candidates. Although this may

seem to be a disadvantage of the algorithm in terms of

calculation time, improving the ability to find the optimal

solution, quickly converge to the optimal solution, and

avoid local solution traps are expressed as the biggest

advantages of the algorithm.

7 Conclusion

This study aims to improve the performance of the

FDBAEO algorithm by using classical OBL, Quasi-OBL,

Quasi-Reflection OBL and Super OBL methods. These

four different OBL methods are used to increase the

solution diversity to find the global point of the solution

space created in the initial population of the optimization

algorithm and their performance is tested in different

simulation studies. In the first simulation study, variations

of the FDBAEO algorithm based on OBL methods are

investigated in different dimensional search spaces and

population numbers in terms of their ability to converge to

the optimal solution, exploration, exploitation, and avoid-

ance of problem-based local solution traps, using the

CEC2020 benchmark test functions. According to the

experimental results obtained from different simulation

scenarios, non-parametric Wilcoxon and Friedman tests are

applied to statistically evaluate the optimal solution search

performance of the algorithm. According to statistical

Table 10 Optimized parameter values of the four best controllers

Parameter PID FOPID FOPIDF FOPIDFF

Kp 49.9854 30.7432 26.4429 25.1659

Ki 0.3459 9.3411 9.1942 9.8338

Kd 3.9757 16.0164 18.4174 16.2685

k – 1.0011 0.4823 0.1537

l – 1.0203 1.0206 1.0203

N – – 121.7686 146.8065

kf – – 1 0.2517

Table 11 Five different speed

reference values in different

time intervals

Time Speed reference

0 B t\ 1 1

1 B t\ 2 1.2

2 B t\ 3 1.5

3 B t\ 4 0.6

4 B t 0.8

Fig. 9 Step response of the controllers a Step response, b Transient response at start
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results, FDBAEO algorithm based on Quasi-Reflection

OBL (FDBAEO_OBL3) method is more successful than

FDBAEO algorithms with other OBL versions, basic AEO

and FDBAEO algorithms.

The proposed FDBAEO_OBL3 method is used in the

second simulation study to set the controller parameters

used for speed regulation of DC motors which is electrical

machine used in many electrical engineering applications.

The parameters of eight different controller structures are

determined by the proposed optimization algorithm and

their performances are tested in different simulation sce-

narios. Depending on the rise time, settling time, overshoot

and peak time values, the performances of the controllers

are evaluated with statistical scoring values according to

the results obtained from different objective functions.

Based on these statistical scoring results, the four best

controller structures for DC motor speed regulation are

determined. To evaluate the performance of these

Table 12 Five different speed

reference values in different

time intervals

Motor parameter Scenario I Scenario II Scenario III Scenario IV

Ra [X] 0.75 0.75 1.25 1.25

K [kg�m/A] 0.0184 0.0276 0.0184 0.0276

Table 13 The performances of the controller in Scenario I

Transient responses Controllers

PID FOPID FOPIDF FOPIDFF

Rise time (s) 0.0695 0.0308 0.0178 0.0279

Settling time (s) 0.489 0.142 0.0903 0.0535

Overshoot (%) 22.3 0.0236 14.9 0.107

Peak value (V) 1.223 1.000236 1.149 1.00107

Peak time (s) 0.177 0.142 0.0413 0.0954

bFig. 10 Dynamic response of the controllers a normal version,

b zoom of region 1, c zoom of region 2, d zoom of region 3,

e zoom of region 4, f zoom of region 5

Fig. 11 Bode plots of the controllers

Fig. 12 Step response of the controller for Scenario I a Step response, b Transient response at start
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controllers in detail, simulation studies are carried out

under different scenarios. According to the comparative

results obtained from the simulation studies, it is clearly

seen that the FOPIDFF controller, whose parameters are

adjusted using the proposed FDBAEO_OBL3 method,

exhibits a more successful and superior performance than

Table 14 The performances of the controller in Scenario II

Transient responses Controllers

PID FOPID FOPIDF FOPIDFF

Rise time (s) 0.0519 0.0188 0.0126 0.0159

Settling time (s) 0.292 0.0372 0.0975 0.0314

Overshoot (%) 18.6 0 29.2 0

Peak value (V) 1.18 1 1.29 1

Peak time (s) 0.135 0.07 0.0323 0.06

Table 15 The performances of the controller in Scenario III

Transient responses Controllers

PID FOPID FOPIDF FOPIDFF

Rise time (s) 0.0728 0.0325 0.0181 0.0294

Settling time (s) 0.356 0.0775 0.0989 0.0689

Overshoot (%) 18.7 – 13.3 –

Peak value (V) 1.187 0.989 1.13 0.991

Peak time (s) 0.183 0.14 0.0411 0.15

Fig. 13 Step response of the controller for Scenario II a Step response, b Transient response at start

Fig. 14 Step response of the controller for Scenario III a Step response, b Transient response at start
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other controller structures. All the simulation studies show

that the controller coefficients that provides the desired

high performance in DC motor speed control can be

determined with the optimization method.

The FDBAEO_OBL3 method can be used in solving

optimization problems in different fields of science and

especially in solving power systems planning and operation

problems such as optimal power flow, economic dispatch,

combined heat and power economic dispatch, energy

management of micro-grid and transmission expansion

planning.
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