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Abstract
GraphConvolutionalNetwork (GCN) has been extensively studied in the task of short text classification (STC), utilizing global
graphs that incorporate texts at different levels of granularity to learn text embeddings. However, the GCN-based methods
only focus on the alignment between ground-truth labels and predicted labels, overlooking the geometric structure implicitly
encoded by the graph. To address this limitation, we propose a novel GCN-based method that is entitled Topic-aware Cosine
GCN (ToCo-GCN) for the STC. The ToCo-GCN defines and captures underlying geometric structures of short texts from
different categories in the cosine space. Specifically, the ToCo-GCN regards the within-class and between-class geometric
structures as constraint, aiming to learn both representative and discriminative short text representations.Moreover, tomitigate
the inherent sparsity problem of short texts, the ToCo-GCN augment the text graph with latent topics. Experimental results on
8 STC datasets demonstrate that the ToCo-GCN is superior to state-of-the-art baselines in terms of Accuracy and Macro-F1
score.

Keywords Graph convolutional network · Short text classification · Discriminative learning · Topic models

1 Introduction

With the rapid development of e-commerce and social media
platforms, users are generating a large volume of short texts
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on a daily basis, including product reviews and online forum
posts, among others.This significant increase in short texts
on the web has led to a growing interest in the STC task
from both industry and academia. The goal of the STC is to
automatically classify incoming short texts into different cat-
egories, thereby preventing users from being overwhelmed
by the massive amount of raw web data. Furthermore, STC
can be readily applied to a wide range of natural language
processing (NLP) tasks, such as sentiment analysis, dialogue
systems, and offensive language detection.

In the earlier stage, Latent Semantic Analysis (LSA)
(Dumais 2004) and its extensions, such as Independent
Component Analysis (ICA) (Comon 1994) and Language
Independent Semantic (LIS) kernel (Kim et al. 2014), play
an important role in the STC. These approaches have the
capability to extract potential semantic structures while
classifying short texts by combining matrix decomposition
techniques with machine learning-based classification algo-
rithms, including Naïve Bayes, K-nearest neighbors, and
support vector machine (Song et al. 2014). However, it
is worth noting that these approaches are computationally
expensive and heavily reliant on feature engineering.

Subsequently, STCmethods based on the deep neural net-
work (DNN) have garnered considerable attention due to
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the advancements in deep learning in recent years. These
methods primarily employ Convolutional Neural Network
(CNN), Recurrent Neural Networks (RNN), and other neu-
ral network structures (Mirończuk and Protasiewicz 2018)
as the backbone. The CNN is effective in extracting local
features, such as N-gram features, while the RNN captures
long-distance features from texts. However, despite their
individual strengths in prioritizing locality and sequentiality,
both CNN and RNN overlook the valuable global word co-
occurrence information that encompasses non-consecutive
and long-distance semantics.

More recently, the GCN has emerged as a promising
approach for addressing the STC task (Linmei et al. 2019;
Zhang et al. 2020; Liu et al. 2020). For example, Yao et al.
(2019) treat the text classification task as node classifica-
tion, where they construct a text graph consisting of word
and text nodes. They then employ a GCN to learn the node
embeddings via message passing and predict the labels of
text nodes. Wu et al. (2012) construct a word-level graph for
each document, connecting nodes within a fixed-size win-
dow. This approach enables better capture of local features
and significantly reducesmemory consumption. Linmei et al.
(2019) propose a Heterogeneous Graph Attention Network
that incorporates a double-layer attentionmechanism for text
classification. By utilizing a heterogeneous information net-
work, this method can integrate various types of additional
information and the relationships between them.

However, it is worth noting that the aforementionedGCN-
based approaches primarily focus on texts of normal length,
and few studies have investigated their effectiveness on short
texts. Moreover, applying the GCN to short texts poses a sig-
nificant challenges. Firstly, short texts are semantically sparse
and lack sufficient context (Song et al. 2014).This sparsity
issue results in the absence of connections between word
pairs that are highly correlated in our common sense. Sec-
ondly, most GCN-based methods rely solely on SoftMax or
Cross-Entropy objective functions to learn an optimal repre-
sentation of a given text that ismost similar to its ground-truth
label. These methods ignore the intra-class and inter-class
geometrical structures in the global semantic space, result-
ing in unclear classification boundaries among samples from
different categories.

To address the aforementioned challenges, we propose a
novel GCN-based STC method named Topic-aware Cosine
Graph Convolutional Network (ToCo-GCN), which effec-
tively mitigates the sparsity problem and fully utilizes the
global geometric structures of short texts. Specifically, given
an STC corpus, the ToCo-GCN first captures its latent topic
distributions of words and short texts. Meanwhile, a text
graph that takes the words and short texts as nodes is con-
structed. Then, the ToCo-GCN regards the latent topics as
virtual nodes and construct a topic-aware text graph. Based
on the topic prior, this graph directly connects word pairs

within each topic cluster, alleviating the sparsity of the text
graph. During the graph learning stage, to learn discrimina-
tive text embeddings, the ToCo-GCN captures the intra-class
and inter-class geometric structures over the graph in a cosine
space. Specifically, inspired by the literature (Wang et al.
2018), the ToCo-GCN utilizes the cosine value of the angle
between text embeddings and label embeddings to measure
both the inter-class and intra-class geometric structures.Min-
imizing such geometric constraint enforces angular between
short texts from the same category to be smaller while angu-
lar between short texts from different categories to be larger
in the cosine space. It makes short texts of the same category
more compact in space while pushing short texts from differ-
ent categories farther away. By doing this, the discriminative
boundaries between different categories of short texts are
now clearer, which effectively enhances task performance.
The contributions of our work are summarized as follows:

• We propose the ToCo-GCN, which fully exploits geo-
metric structures of data by simultaneously considering
intra-class and inter-class geometric structures in the
STC. Additionally, we make use of topic information
to alleviate the sparsity problem for better adapting the
model to short texts.

• We experimentally evaluate the ToCo-GCN with other
state-of-the-art models on 8 STC datasets. The ToCo-
GCN shows significant improvements in terms of Accu-
racy and Macro-F1 score compared to the baselines.

The remainder of the paper is organized as follows: In sec-
tion 2, related work on the STC is introduced. In Sect. 3, we
introduce the ToCo-GCN in detail. The experimental results
and analyses are given in Sect. 4. Finally, we conclude this
paper in Sect. 5.

2 Related work

In this paper, we revise the existing researches on the STC
task from two perspectives: traditional STC methods and
deep learning-based STC methods.

2.1 Traditional STCmethods

Earlier studies on short text classification mainly made use
of statistical machine-learning techniques. For instance, a
bag-of-words (BoW) model built with rare vocabulary infor-
mation is proposed in the literature (Heap et al. 2017). Samant
et al. (2019) classify short texts based on the Vector Space
Model with a new weighting mechanism for each word.
Moreover, other featuremodels, such as TFIDF and n-grams,
are also employed for short text classification (Yang et al.
2021; Cavnar et al. 1994). However, both the BoW and the
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VSM do not well solve the high-dimensionality and sparsity
problems inherent in short texts. Feature selection methods
involving the Chi-square test (CHI), GINI index (GINI),
and dictionary learning are proposed to address the high-
dimensionality problem (Liu et al. 2022). For solving the
sparsity problem, Li et al. (2017) enrich short text features
by using concepts from an external corpus Probase [17]. Als-
madi et al. [18] make use of a keyword expansion method
to extend the feature space of short texts. Though these
approaches improve the problems and perform better than
previous work, their performances still have a gap with deep
learning-based methods.

2.2 Deep learning-based STCmethods

With the breakthrough of deep learning in the past few
years, more and more text classification approaches employ
deep neural networks to automatically learn semantic fea-
tures and classify texts. For example, Kim (2014) proposes
a CNN-based model with multi-channel to classify texts.
Zhang et al. (2015) propose character-level CNN that mod-
els different levels of features, improving the accuracy of
text classification. Directly applying these frameworks will
perform poorly because the above-mentioned problems of
short texts are ignored by them. Then, Hu et al. (2018) lever-
age a combination of the CNN and Support Vector Machine
to enhance the performance of short texts. Moreover, Alam
et al. (2020) represent short texts with words and entities
and exploit a CNN-based model to classify short texts. To
obtain better short text features, Yin et al. (2019) make
use of the attention mechanism on the character level and
incorporate it into a CNN-based model. In addition to these
CNN-basedmethods, RecurrentNeural Network and its vari-
ants are also widely explored in short text classification (Lee
and Dernoncourt 2016; Liu and Guo 2019). However, both
the CNN-based and RNN-based methods fail to make use
of global word co-occurrence information in a corpus that
carries non-consecutive and long-distance semantics.

More recently, GraphNeural Networks (Zhou et al. 2020),
which concentrate on coping with arbitrary non-Euclidean
spatial data, have been well exploited in text classification.
In addition to the aforementioned textGCN and the TL-GNN
(Huang et al. 2019), Zhang et al. (2020) propose the TextING
that encodes each document as a single graph and inductively
learns node embeddings with a double-layer GNN. More-
over, Liu et al. [?] propose a tensor graph that is merged by
semantic, syntactic, and sequential graphs of a corpus. Dif-
ferent from these methods, Ding et al. (2020) propose the
HyperGAT that involves word-word edges. However, these
methodswill not performwell for short texts because of lack-
ing context information. Thus, GCN-based models for short
texts are proposed. For example, Linmei et al. (2019) pro-
pose the HGAT that simultaneously models topics, entities,

and documents. The entities are associated with knowledge
graphs. Ye et al. (2020) propose the STGCN, which devel-
ops a corpus-level graph based on not only traditional text
relations but also topic relations, alleviating the sparseness
of short texts. However, these GCN-based approaches for
the STC task fail to consider both intra-class and inter-class
geometric structures of samples in a corpus. This impedes
models from learning text representations that are represen-
tative as well as discriminative.

3 Methodology

3.1 Problem definition

We now formulate the task of STC, whose training dataset
contains N labeled samplesD = {(xi , yi )}Ni=1. The notations
x andy ∈ {0, 1}C denote the rawshort text and category label,
respectively. The goal of our work is to train a GCN-based
classifier over D, enabling to distinguish the category of a
given short text.

3.2 The basic GCN

In this subsection, we introduce the basic GCN that oper-
ates directly on graph-structured data. Specifically, given a
graph G = {V, E}. The notion V = {v1, v2, . . . , vT} denote
the set of nodes, while the E denotes the set of edges. T
is the total number of nodes in the graph G. We use U =
[u1, u2, . . . , uT] ∈ R

T×d to denote the node features, where
d is the dimension of node features. The corresponding adja-
cent matrix is denoted as A ∈ {0, 1}T×T, where 1/0 denotes
the component corresponds to an edge or not. Besides, each
node of the two graphs is with self-loop. The degree matrix
D is a diagonal matrix andDi i = ∑

j Ai j . Then, for a single-
layerGCN, the node features can be updated by the following
equation:

L(1) = ρ
(
ÃUW0

)
(1)

where L(1) ∈ R
T×k is the learned node feature matrix. k is

the expected dimension of node features. Ã = D− 1
2AD− 1

2

is the normalized symmetric adjacency matrix of the A.W0

is trainable parameters of the GCN. ρ is the activation func-
tion, such as ReLU. By doing this, the single-layer GCN
can induce node features from the neighbors via first-order
message-passing mechanism, learning structure-aware node
features.

Therefore, a multi-layer GCN can bring information from
higher-order neighborhoods. The learning procedure of node
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Fig. 1 The architecture of the ToCo-GCN. This method first generates
topic distribution for the incoming STC corpus D via the GPU-DMM
and then constructs a topic-aware text graph Gs . Then, a N -layer GCN

is employed to learn the node embeddings. Eventually, such predictive
results of samples are leveraged to calculate the total loss

features can be further formulated as:

L( j+1) = ρ
(
ÃL( j)W j

)
(2)

where j denotes the number of layers.W j is trainable param-
eters of the j-th layer.

3.3 The proposed ToCo-GCN

In this subsection, we introduce the structures and training
objective of the proposedToCo-GCN.Theoverall framework
is shown in the Fig. 1.

3.3.1 Constructing a topic-aware text graph

Given the corpus D, the ToCo-GCN first constructs a text

graphGs = {Vs, Es}. The set of nodesVs =
{
vs1, v

s
2, . . . , v

s
Ts

}

consists of two parts: words and texts, where the Ts denotes
the total number of nodes in the graph Gs . The set of edges
Es also contains two kinds of relations: word-to-word and
word-to-text. The former is defined by the Point-wiseMutual
Information (PMI) values, while the latter is defined by the
TFIDF values (Yao et al. 2019). The PMI value of a given
word pair < vsi , v

s
j > is calculated as:

PMI(vsi , v
s
j ) = log

p(vsi , v
s
j )

p(vsi )p(v
s
j )

(3)

p(vsi , v
s
j ) = #Count(vsi , v

s
j )

Nw

(4)

p(vsi ) = #Count(vsi )

Nw

(5)

where Nw denotes the total number of word nodes. #Count
(vsi , v

s
j ) is the co-occurrence frequency of the word pair in a

corpus. However, for short texts, some synonyms or highly
related word pairs do not co-occur in the window due to the
sparsity problem. Hence, the p(vsi , v

s
j ) will equal zero. The

PMI value of these word pairs will be an Infinitesimal. The
quality of node representations might be degraded due to the
message-passing between the node pairs is unavailable in the
first layer of the GCN.

To improve the sparsity of short texts, we enrich the text
graphwith topic information that provides latent connections
between words and documents. We leverage the topic model
GPU-DMM (Li et al. 2016) that derives topic distributions
of short texts and distributions of words under each topic.
The latent topics are as nodes in text graph. Moreover, topic-
document edges andword-topic edges are constructed. Then,
the adjacent matrixAs the graph G can be defined as follows:

As
i j

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

PMI(i, j) i, j are words, PMI(i, j) > 0
TFIDFi j i is a text, j is a word

R(tw)
i j i is topic, j is word

R(t x)
i j i is topic, j is text

1 self-loop
0 otherwise

(6)

whereR(tw)
i j denotes the extraword-topic relation. It equals to

1 when the j-th word is associated with the i-th topic. R(t x)
i j
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is the topic-text relation. It is initialized by the maximum
probability of the topic distribution of the i-th document.
Similar to word and text nodes, latent topic nodes are also
initialized with one-hot vectors. Hence, the node embedding
matrix X ∈ R

Ts×k can be initialized by an identity matrix I.

3.3.2 Updating node embeddings over the graph

After obtaining the adjacent matrix As and the node embed-
dings X, we employ a two-layer GCN to learn node embed-
dings over the topic-aware text graph Gs . The learning
process can be formulated as follows:

Z(0) = ReLU
(
ÃsXW0

)
(7)

Z(1) = SoftMax
(
ÃsZ(0)W1

)
(8)

whereW0 andW1 are the parameters of the first layer and the
second layer, respectively. Z(1) ∈ R

Ts×C denotes the node
embeddings derived from the last GCN layer. Such a two-
layer structure allows node to pass messages from second-
order neighborhood over the graph. The ReLU and SoftMax
are the activation functions.

3.3.3 Optimizing with cosine-based training objective

For optimizing the ToCo-GCN, we design a cosine-based
objective function Ltotal that fully considers global geomet-
ric structures of short texts in the semantic space. The Ltotal

is formulated as:

L = Lce + λ ∗ Lcos (9)

where the first termLce is implemented by the cross-entropy
that enforces to learn features close to the ground-truth labels.
The second termLcos is a cosine-margin loss that models the
intra-class and inter-class geometric structures of short texts
in a cosine space. λ is a trade-off parameter that balances the
two terms.

Given the predictive results of texts Zd = {zi }Ni=1 ⊂ Z(1),
the cross-entropy term Lce is calculated as follows:

Lce = − 1

N

N∑

i=1

C∑

j=1

yi j log
(
zi j

)
(10)

where C is the number of classes. yi j equals 1 when the j-th
label is true of the i-th text, otherwise it equals 0.Minimizing
theLce allows the ToCo-GCN to learn representative features
of short texts.

The second regularization term Lcos is leveraged to con-
struct both intra-class and inter-class geometric structures in
cosine space. It is calculated asfollows:

Lcos = − 1

N

N∑

i=1

log
es

(
cos

(
θyi zi

)−m
)

es
(
cos

(
θyi ,zi

)−m
)

+ ∑
j �=yi e

s cos
(
θ j,zi

)

(11)

where m ≥ 0 is a cosine margin that can better improve the
ability of discriminative. θyi ,zi denotes the angle between the
i-th text and its corresponding label yi in the angular space,
while θ j,zi represents the angle of the i-th text to the other
labels. The ToCo-GCN simultaneously minimize the intra-
class compactness and maximize the inter-class separation
in cosine space. When minimizing the Lcos, the angle θyi ,zi
between the text di and the weight vector of its ground-truth
label yi will be minimized, and the angle θ j,i between zi and
the weight vector of the j-th category, where j represents
any label other than yi , will be maximized. The cos

(
θ j,zi

)
is

calculated by:

cos
(
θ j,zi

) = qTj∥
∥
∥qTj

∥
∥
∥

zi
‖zi‖ (12)

where the q j denotes the weight vector of the j-th category.
Moreover, we use the L2 normalization term to remove radial
variations.

4 Experiments

In this section, we first introduce several publicly available
short text datasets and experimental details. Then, we intro-
duce some sate-of-the-art baselines for comparison. Finally,
the experimental results and analysis are provided.

4.1 Experimental settings

4.1.1 Datasets

We evaluate the performance of our method on the following
8 benchmarks:

(1) R8: This dataset represents a subset of the Reuters 21578
dataset.

(2) CR: This dataset is a customer product review dataset.
(3) MR: This dataset is a movie review dataset.
(4) SST-binary (SST-Bi): This dataset is the Stanford Senti-

ment Treebank dataset.
(5) StackOverflow (STOW): This dataset includes selected

questions and the corresponding labels posted on stack-
overflow.com from July 31, 2012, to August 14, 2012.

(6) Biomedical (BIO):Biomedical is a subset of the chal-
lenge data published on the BioASQ’s website, where
19974 paper titles from 20 groups are randomly selected.
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Table 1 The statistics of the
STC datasets

Datasets #docs #tokens #entities #train #test #classes

R8 7,674 7,688 15,362 5,485 2,189 8

MR 10,662 18,764 29,426 7,108 3,554 2

CR 3,773 7,683 11,456 2,515 1,258 2

SST-Bi 10,754 6,972 17,726 8,544 2,210 5

TagMyNews 32,549 38,629 71,178 26,040 6,509 7

BIO 19,974 28,753 48,727 17,976 1,998 20

Electronics 188,626 291,804 480,430 150,900 37,726 796

STOW 20,000 32,639 52,639 16,000 4,000 20

(7) TagMyNews: This dataset consists of titles of English
news from really simple syndication feeds.

(8) Electronics (Tayal et al. 2019, 2020): This dataset is
collected from Amazon e-commerce platform.

The detailed statistics of each dataset are shown in the
Table 1.

4.1.2 Training details

We follow the pre-processing of the textGCN to clean and
tokenize texts. We remove non-English characters, the stop
words, and low-frequency words appearing less than 5 times
for seven datasets other than MR. For the MR dataset, since
the texts are too short, all words have remained after the
cleaning and tokenizing operations. Table 1 demonstrates
the statistics of the datasets, including the number of docu-
ments, the number of average tokens and entities, the number
of classes, and the proportion of texts containing entities in
parentheses. For the ToCo-GCN, the embedding dimension
of the first GCN layer is set to 200, while the window size is
20. We set the learning rate as 0.001, and the dropout rate is
set as 0.5. The value of the epoch is set to amaximumof 1,000
with an early stopping mechanism. Moreover, we make use
of Adam as the optimizer following the literature (Alam et al.
2020). For baselines that leverage pre-trained word embed-
dings as input, we make use of 300-dimensional GloVe word
embeddings 1 (Pennington et al. 2014). We evaluate the clas-
sification performance using test accuracy (denote as Acc in
short) and macro-averaged F1 score (denote as F1 in short).

4.1.3 Baselines

To evaluate the effectiveness of the proposed ToCo-GCN,
we select the following 10 well-performed STC methods as
baselines:

1 http://nlp.stanford.edu/data/glove.6B.zip

(1) TFIDF+LR:Thismethod uses the TFIDF as the feature
of short texts and takes the Logistics Regression as the
classifier.

(2) textCNN: This method is based on the Convolutional
Neural Network (Kim 2014). We develop two variants
of the textCNN: CNNrand and CNNnsta, respectively.
The former randomly initializes word embeddings,
while the latter uses the pre-trained word embeddings.

(3) LSTM:We develop two LSTM variants: LSTMrand and
LSTMnsta, respectively.

(4) PV-DBOW:Thismethod uses a paragraph vectormodel
(Le andMikolov 2014) as the text features and takes the
Logistic Regression as the classifier.

(5) FastText (Joulin et al. 2016): This method treats the
average of word/n-grams embeddings as document
embeddings and feeds such document embeddings into
a linear classifier.

(6) SWEM (Shen et al. 2018): The method applies pooling
strategies over pre-trained word embeddings.

(7) LEAM (Wang et al. 2018): This method considers the
label information, which jointly learns word and label
embeddings. The label information is implemented via
the textual label description.

(8) textGCN: This method forms an STC corpus into a text
graph with both document and word nodes and jointly
learns node representations via message passing over
the graph.

(9) TL-GNN: This method treats each document as a single
graph and employs GCN to learn its representation.

(10) TG-Transformer (Zhang andZhang2020): Thismethod
a novel Transformer-based heterogeneous graph neural
network, which is a large-sized corpus and ignores the
heterogeneity of the text graph.

4.2 Results and analysis

We evaluate the proposed ToCo-GCN over 8 datasets for the
STC task. The results are respectively shown in Figs. 2 and 3.
From the results, we can draw the following observations:
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Table 2 The experimental
results of all comparing methods
in terms of Accuracy (Acc) and
Macro-F1 (F1). The best results
are represented in bold. The
second-best results are
underlined

Datasets R8 CR MR SST-Bi

metric Acc F1 Acc F1 Acc F1 Acc F1

TFIDF+LR 93.7 91.2 62.0 60.7 74.5 74.2 58.9 58.7

CNNrand 94.0 92.0 71.1 68.4 75.0 74.6 62.0 61.5

CNNnsta 95.7 93.6 76.2 74.2 77.8 77.7 66.7 66.4

LSTMrand 93.7 91.4 63.8 60.9 75.1 74.7 67.3 67.0

LSTMnsta 96.1 93.3 63.7 60.7 77.3 76.5 70.2 69.9

PV-DBOW 85.9 84.6 65.3 63.8 61.1 60.9 66.0 65.6

FastText 83.0 82.5 75.0 72.6 67.6 66.8 69.8 69.8

SWEM 95.3 91.7 72.9 70.4 76.7 75.9 65.9 65.7

LEAM 93.3 93.0 74.3 72.5 77.0 77.0 65.0 64.2

textGCN 97.1 96.3 73.8 72.0 76.7 76.2 70.8 70.4

TL-GNN 97.8 96.8 74.0 73.4 74.3 73.9 71.0 70.9

TG-Transformer 97.4 96.2 73.5 72.7 75.1 74.6 69.1 69.0

ToCo-GCN 97.9 97.7 76.4 76.0 78.2 77.9 73.8 73.7

Ablation Study

w/o Topic 97.2 ↓ 96.3 ↓ 75.0 ↓ 74.8 ↓ 76.9 ↓ 76.8 ↓ 72.9 ↓ 72.7 ↓
w/o Lcos 96.1 ↓ 95.4 ↓ 74.5 ↓ 74.0 ↓ 78.8 ↑ 78.4 ↑ 72.0 ↓ 71.7 ↓
5-fold Cross Validation (Average Results)

textGCN 96.3 95.0 75.1 74.9 77.5 76.4 68.8 68.7

ToCo-GCN 98.1 97.4 78.2 78.0 80.4 80.5 72.4 72.2

Table 3 The experimental
results of all comparing methods
in terms of Accuracy (Acc) and
Macro-F1 (F1). The best results
are represented in bold. The
second-best results are
underlined

Datasets TagMyNews BIO Electronics STOW

metric Acc F1 Acc F1 Acc F1 Acc F1

TFIDF+LR 45.7 41.4 64.5 61.1 60.8 59.0 83.5 84.2

CNNrand 42.6 37.0 62.6 60.7 56.3 52.9 85.6 86.2

CNNnsta 46.9 40.5 65.9 63.3 59.7 57.5 88.3 88.8

LSTMrand 42.1 38.3 63.7 59.9 59.7 56.4 85.2 84.9

LSTMnsta 57.5 52.0 67.6 64.8 62.1 59.9 87.1 87.0

PV-DBOW 48.8 43.1 63.4 60.9 59.5 56.6 87.4 88.0

FastText 67.5 62.0 66.7 65.0 62.7 60.8 86.1 86.3

SWEM 64.8 59.6 65.5 64.0 63.5 59.4 85.5 85.0

LEAM 68.4 62.9 65.9 63.4 62.3 60.7 84.7 84.4

textGCN 78.0 73.9 67.2 65.3 66.6 64.6 87.9 88.4

TL-GNN 77.9 73.7 68.8 66.5 66.5 64.7 88.6 89.4

TG-Transformer 78.2 73.9 69.0 68.2 67.2 66.0 88.9 89.4

ToCo-GCN 79.5 75.3 69.7 68.5 67.2 65.8 90.4 90.3

Ablation Study

w/o Topic 79.2 ↓ 74.7 ↓ 67.9 ↓ 66.0 ↓ 66.4 ↓ 64.9 ↓ 89.2 ↓ 89.2 ↓
w/o Lcos 78.7 ↓ 74.2 ↓ 69.2 ↓ 68.3 ↓ 66.7 ↓ 65.4 ↓ 88.4 ↓ 88.7 ↓
5-fold Cross Validation (Average Results)

textGCN 77.1 72.0 64.3 64.7 65.5 63.9 86.2 86.4

ToCo-GCN 78.4 73.7 66.5 66.0 66.3 64.5 88.7 89.4
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(1) Overall, the proposed ToCo-GCN outperforms all the
baselines by a largemargin in terms of Acc and F1 score.
For example, the ToCo-GCN achieves increases of 2.8%
in Acc and 2.8% in F1 score on the SST-Bi dataset. This
indicates that introducing the topic information of short
texts and the cosine margin-based loss function can ben-
efit the STC task.

(2) However, the ToCo-GCN shows a slight decrease of
0.2% in F1 score on the Electronics dataset. One possi-
ble reason is that the scale of this dataset is too large, and
the TG-Transformer has many more parameters than the
ToCo-GCN. Therefore, the TG-Transformer has a better
ability to learn high-quality short text representations.

(3) We observe that the graph neural network (GNN)-
inducedmethods (textGCN, TL-GNN, TG-Transformer,
and the ToCo-GCN) achieve better performances than
the non-GNN-induced methods in terms of Acc and F1
score on most benchmarks. This indicates that treating
the corpus as a whole graph and globally learning word

as well as text representations over the graph is efficient
for the STC task.

(4) We observe that STC methods with pre-trained word
embeddings, such as LSTMnsta and CNNnsta, continu-
ously outperforms those with randomly initialized word
embeddings.This indicates that pre-trainedword embed-
dings provide rich semantic information that can benefit
the STC task.

(5) Moreover, we observe that the PV-DBOW method,
which ignores the word order, performs poorly on most
datasets. This indicates that word orders are important
to capture latent semantics of short texts.

4.3 Ablation study

We further evaluate the effectiveness of the two main com-
ponents of the ToCo-GCN: the topic information and the
cosine margin-based loss function Lcos . The ablative results
are respectively shown in Figs. 2 and 3. From the results, we
observe that when either the topic information is removed

Fig. 2 The performance of the ToCo-GCN in terms of Acc under different values of the trade-off parameter λ
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Fig. 3 The performance of the ToCo-GCN in terms of Acc under different values of the margin m

from the text graph or the Lcos is removed, the ToCo-
GCN’s performance in terms of accuracy andF1 significantly
decreases over most datasets. This indicates that introducing
the topic information can efficiently shorten the semantic
interaction distances betweenwords orwords and documents
over the graph, improving the quality of text representa-
tions. However, we also observe that the ToCo-GCN shows
increases of 0.6% and 0.5% in terms of accuracy and F1 on
the MR dataset after removing the Lcos . One possible rea-
son for this is that the angle between some text pairs that do
not belong to the same category is incorrectly minimized,
while the angle between some pairs that belong to the same
category is maximized.

4.4 Parameter sensitivity

We further explore the efficiency of several important param-
eters of the ToCo-GCN: the trade-off parameter λ, the cosine
margin m, the number of latent topics, and the dimension of
embeddings, respectively.

4.4.1 Effect of the trade-off parameter �

We evaluate the effectiveness of the parameter λ, which con-
trols the importance of Lcos . The value of λ is in the range of[
10−6, 10−2

]
. Figure 2 demonstrates the variation of accu-

racy with the increase of λ. Based on the results, we draw the
following observations:

(1) On the R8 and MR datasets, the performance of the
ToCo-GCN generally shows a trend of initially increas-
ing and then decreasing. When λ = 10−4, the ToCo-
GCN achieves the optimal result on the R8 dataset, while
for the MR dataset, the optimal value is λ = 5 × 10−3.
The reason for this may be that samples with differ-
ent categories in the R8 dataset always leverage specific
words or phrases to describe the news. Therefore, these
samples can be well classified by the ToCo-GCN when
the discriminative constraint Lcos is set to a small value.
However, the MR dataset focuses on sentiment classifi-
cation, and some samples may simultaneously contain
both positive and negative sentiment expressions, which
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Fig. 4 The performance of the ToCo-GCN in terms of Acc under different numbers of topics

are difficult to distinguish even for human beings. There-
fore, a larger value of Lcos is needed to enforce the
ToCo-GCN to learn discriminative sentiment-specific
features for the MR dataset.

(2) In contrast to the above performances, the performance
of the ToCo-GCN on the CR and SST-Bi datasets grad-
ually improves as the value of λ increases, and the
ToCo-GCN performs best when λ = 10−2 on both
datasets. This indicates that only using the cross-entropy
loss Lce to minimize the difference between individual
sample predictions and ground-truth labels is insufficient
on the CR and SST-Bi datasets. Therefore, the ToCo-
GCN further utilizes the global information of samples
in the cosine space to learn discriminative text features,
effectively improving the task performance of STC.

4.4.2 Effect of the cosine margin

We evaluate the effectiveness of the parameterm, which con-
trols the anger between sample-pairs in the cosine space. The
value of m is in the range of [0.1, 0.9]. Figure 3 shows the

variation of accuracy with the increase of m. Based on the
results, we draw the following observations:

(1) On theR8 andCRdatasets, the performance of theToCo-
GCN first gradually increases to a peak and then rapidly
decreases within the [0.8, 0.9] range. This upward trend
indicates that the ToCo-GCN can learn discrimina-
tive text features while sufficiently preserving specific
semantic information for each text. However, the rapid
decline may be due to the excessively large margin m
incorrectly enforcing some samples from different cate-
gories to be closer.

(2) Compared to theperformances on the above twodatasets,
the performances of the ToCo-GCN on theMR and SST-
Bi datasets are more sensitive to changes in the value of
m. The possible reason for this is that the distinction
between samples from different categories is relatively
low, resulting in less clear category decision bound-
aries in the cosine semantic space. Therefore, even small
changes in the value of m can have a noticeable impact
on the task performances.
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Fig. 5 The performance of the ToCo-GCN in terms of Acc under different dimensions

4.4.3 Effect of the latent topics

We further analyze the impact of the number of latent topics
on the performance of the ToCo-GCN across four datasets.
The results are shown in Fig. 4. Overall, the performance
of the ToCo-GCN varies across the four datasets, and the
optimal performance on the CR, MR, and SST-Bi datasets
corresponds to 10, 15, and 25 topic nodes, respectively.
This suggests that appropriately introducing topic nodes can
reduce the distance between semantically related but distant
word pairs or word-document pairs over the text graph, effec-
tively improving the efficiency of capturing global semantic
information. However, we observe that the ToCo-GCN per-
forms best when the number of topic nodes is set to 30
on the R8 dataset. This may be because the R8 dataset has
more categories than the other three datasets, and therefore,
more fine-grained topic information allows theToCo-GCN to
better capture discriminative information between different
categories.

4.4.4 Effect of the embedding dimensions

Weevaluate the impact of different embedding dimensions in
the 1st GCN layer on the performance of the ToCo-GCN. The
results are reported in Fig. 5. From the results, we observe
that the ToCo-GCN achieves optimal results on the CR,
MR, and SST-Bi datasets when the dimension is set to 250.
Additionally, on these three datasets, the performance ini-
tially increases and then slowly decreases as the dimension
increases. This indicates that as the dimension increases, the
ToCo-GCN can capture more discriminative and rich seman-
tics. However, excessively large dimensions may introduce
unnecessary noise and hurt the performance of the STC task.

4.5 Visualization of classification results

Figure 6 demonstrates the t-SNE (Van derMaaten andHinton
2008) visualization of the first layer text embeddings learned
from the R8 dataset. With the increase of m, samples of the
acq class and samples of the earn class can maintain good
intra-class aggregation as well as inter-class separation. The
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Fig. 6 The t-SNE visualization of text embeddings obtained by the ToCo-GCN on the R8 dataset

reason is that the number of samples of the two categories is
larger compared to the other classes, hence our model is able
to learn discriminative features even with smaller margins.
However, for categories with only a few samples, we can
observe that the boundary between category A and other cat-
egories gradually increases as the margin increases from 0.1
to 0.35. Additionally, there is an overlap between the inter-
est class and themoney-fx class, and this issue only slightly
improves as m increases from 0.1 to 0.5. We believe there
are two reasons for this: firstly, the two classes are similar
in terms of topics or content, and secondly, the limited num-
ber of samples hinders the model from learning distinctive
features of the two classes.

4.6 Time consumption of model training and testing

We further compared the proposed ToCo-GCN with the
textGCN in terms of time consumption during training and
testing stages, as shown in Table 4. From the results, we
can observe that there is almost no significant difference in
the time consumption per training epoch between the ToCo-
GCN and textGCN. This indicates that introducing topic
information and the discriminative constraint Lcos into the
ToCo-GCN may not impose a heavy computational burden.
However, on the MR dataset, the overall training time of the
ToCo-GCN(4.3s) is significantly longer than that of textGCN
(3.1s). This may be due to optimizing with the Lcos slows
down the convergence speed of the ToCo-GCN. Therefore,
under the early stoppingmechanism, theToCo-GCN requires
more training epochs to achieve fitting.
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Table 4 Comparison of average
time consumption (in seconds)
on 10 runs. The running
environment is on the NVIDIA
A100 80G GPU

Methods ToCo-GCN textGCN

Mode Training Testing Training Testing

Datasets All Epoch – All Epoch –

R8 6.8483 0.0410 0.0142 6.4375 0.0392 0.0144

CR 1.7368 0.0089 0.0034 1.6283 0.0087 0.0031

MR 4.3074 0.1320 0.0483 3.1052 0.1307 0.0473

SST-Bi 1.8196 0.0132 0.0063 1.7382 0.0125 0.0055

TagMyNews 34.5042 1.7536 0.5842 28.7183 1.6805 0.5609

BIO 24.5903 1.3082 0.2875 23.5570 1.2414 0.2903

Electronics 278.3964 15.7500 6.4088 259.6590 14.7367 6.0248

STOW 30.8663 1.1503 0.3389 28.9036 1.0740 0.3224

5 Conclusion and future work

Although the GCN-based methods in text classification con-
struct graphs at the text level, which contains both local
co-occurrence relations and global co-occurrence relations,
and makes use of multi-layer GCN to exploit the two rela-
tions in the raw corpus to learn text embeddings based on
pre-trained embeddings, they do not fully employ geomet-
ric structures of labeled data. In this paper, we propose a
novel method for short text classification, called Topic-aware
Cosine Graph Convolutional Neural Network (ToCo-GCN).
The ToCo-GCN cannot only learn representative text embed-
dings but also can make use of underlying intra-class and
inter-class geometric structures to enhance the power of dis-
criminative. Experiments on four benchmark data sets show
that the proposed model is superior to the GCN and several
competing existing short text classification methods. In the
future, we will investigate how to further extend the graph
neural networks to other NLP downstream tasks, as well as
how to leverage external knowledge to enhance the ability of
graph learning to capture task-relevant features from a global
perspective.
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