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Abstract
Type II fuzzy sets consider the uncertainties involved in the membership function of classical fuzzy set theory. The

membership function of a Type II fuzzy set is obtained by blurring the boundaries of the original fuzzy set membership

function. The interval-based modified Type II fuzzy set method is presented in this paper to measure the fuzziness present

in medical images. Using Hamacher T-conorm as the aggregation operator, the membership functions of the upper and

lower intervals have been combined to obtain the contrast-enhanced image. For experimental analysis, quantitative and

qualitative metrics have been evaluated for different kinds of medical data sets. To test the efficiency of the proposed

technique, the computed results are compared with state-of-the-art techniques. The qualitative and quantitative results

clearly demonstrate that the performance of the proposed techniques is much better than the existing techniques for almost

all the image data sets. The results evaluated for average values with standard deviation for all the datasets bear witness to

the performance of the proposed technique. The mean opinion score and the processing time also support the efficacy of the

proposed technique, which is much better than most state-of-the-art techniques except at some of the cases.
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1 Introduction

The modification and transformation of images by digital

computers is known as digital image processing. Over the

past few decades, its use has grown enormously in many

diverse areas, like medical imaging, remote sensing, and

geological information. The images must be sampled and

encoded into a matrix for further digital processing. Image

processing includes image enhancement, image restoration,

image analysis, compression, etc. Image enhancement is

the process of improving the visual appearance and texture

information of an image to make it suitable for human

analysis. It has remarkable applications in the field of

medical image processing, as the images acquired through

different processes such as X-ray, ultrasound, and

computer tomography, are not clear due to interference and

have low intensity and contrast. This makes it difficult for

the physicians to identify the exact disease and provide the

correct treatment. Enhancement plays a leading role in

those images that are affected by different kinds of noises

in the acquisition process (Islam and Mondal 2019).

Despite the ongoing advancements in X-ray and MRI

acquisition techniques, there remain some uncertainties

about how human anatomy is depicted through these

acquired images. These uncertainties cannot be tolerated in

the area of medical image analysis. Therefore, it is crucial

to consider the quality, details, and clarity of the images.

Researchers have proposed many image enhancement

strategies for different kinds of improvements in these

images. Digital images, in contrast to traditional still pic-

tures, feature intricate architecture and a multitude of

modalities (Salem et al. 2019). Further, analysing and

processing them require special manipulations to prevent

data loss and retrieve vitiated details.

There are various enhancement techniques available in

the literature, some of which include HE, fuzzy-based

methods, morphological transformations, etc. The HE of an
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image is a non-linear stretch that redistributes the pixel

values so as to expand the overall dynamic range of the

image, resulting in improved contrast (Gonzalez and

Woods 2002; Veluchamy and Subramani 2019). Some

other techniques based on the histogram are proposed to

overcome the shortcomings induced by HE, such as DHE

(Rao 2020), CLAHE (Joseph and Periyasamy 2018),

BBHE (Murahira et al. 2010), RHE, etc. The primary

objective of an enhancement is to reveal fine features of an

image, either by enhancing texture information or by

enhancing contrast. As the medical images consist of

uncertainties in various forms, such as the presence of

noise, blurriness, and low contrast, we can effectively

handle these situations using fuzzy approaches. Some

authors have suggested using fuzzy-based techniques

(Tizhoosh 2000; Veluchamy and Subramani 2020; Bloch

2015; Tizhoosh et al. 1997) like adaptive fuzzy-based

DHE, fuzzy-based HE, and many more.

Fuzzy image processing consists generally of three

steps: fuzzification (image coding), operations in the

membership plane, and finally, defuzzification (decoding

of results). Fuzzification implies that we assign the image

(its grey levels) one or more membership values based on

its properties, such as brightness and edginess. The litera-

ture has shown that Type I (Zarandi et al. 2011) fuzzy logic

systems have difficulties in modelling and minimising the

effect of uncertainties. One reason that limits the ability of

Type I fuzzy sets to handle uncertainty is that the mem-

bership function for a particular input is a crisp value. Type

II fuzzy sets are useful when there is uncertainty about a

location, shape, or another parameter, computed in terms of

membership function. To show a better representation of

uncertainty, the third dimension is introduced in Type II

fuzzy sets, representing more degrees of freedom. Type II

fuzzy set is obtained by blurring Type-1 fuzzy set, and the

points lying in the blurred region consist of membership

function values of Type-1 fuzzy sets. This paper presents

an approach based on a Type II fuzzy set for enhancing the

contrast of an image. The details of the abbreviations that

are used in the paper are depicted in Table 1.

2 Related work

For the contrast enhancement of an image, numerous

methods (Gonzalez and Woods 2002; Veluchamy and

Subramani 2019; Rao 2020; Joseph and Periyasamy 2018;

Murahira et al. 2010; Li and Xie 2016; Xiao et al. 2016;

Wadhwa and Bhardwaj 2021) have been discussed in the

literature. HE (Gonzalez and Woods 2002; Soundra-

pandiyan et al. 2022; Khan et al. 2014) is considered the

oldest method and a benchmark algorithm for enhancing

image contrast. It is based on the presumption that a

uniformly distributed grayscale histogram will have the

best visual contrast. This method is widely used for com-

parison with various other techniques as it is simple and

effective, but it has certain drawbacks as it induces over-

enhancement in an image. Based on the same proposition,

BBHE (Tang and Isa 2017) is introduced to preserve the

brightness of the output images. In BBHE, images are sub-

divided using the mean intensity value, and HE is applied

individually to each region. Although it preserves bright-

ness, it causes over-enhancement in some areas. To over-

come the problems with BBHE, some other techniques

came into existence, such as RHE (Chen and Ramli 2003),

BPDHE (Ibrahim and Kong 2007), and CLAHE. In

CLAHE, an image is sub-divided into non-overlapping

blocks, and the histogram of each region is computed

individually using an arbitrary clip limit. The above tech-

niques may result in over-brightness and contrast

improvement as they flatten the histogram of an image,

which leads to the loss of brightness-sensitive features of

an image. To overcome these shortcomings, Gandhamal

et al. (2017) et al. developed a gray-level S-curve trans-

formation technique based on the pixel-to-pixel transfor-

mation. The S-curve works by increasing the difference

between the maximum and minimum intensities of an

image, globally and locally, by increasing the gradient

magnitude of the image. The increased gap between the

intensity values provides more clarity in identifying edges

in different regions of an image, which gives better contrast

enhancement.

The techniques discussed above do not consider the

vagueness present in the intensity of an image. Therefore,

to work out the limitations of these techniques, researchers

proposed fuzzy-based methods. Initially, fuzzy theory was

introduced by Zadeh (1965) in 1965 in his paper that

considers the imprecision of the grey levels of the image.

One of the important applications of fuzzy theory has been

observed in image processing, as medical images consider

uncertainties in the form of vague contrast or poorly illu-

minated images, which make it difficult to segment the

affected parts from the normal regions of an image.

Imprecision in an image occurs due to certain reasons, such

as vague bounds between structures and objects, filtering

processes, or during the acquisition process (limited reso-

lution). Fuzzy sets could be used to exploit such impreci-

sions. A fuzzy approach provides a suitable framework for

the development of new algorithms, as discussed by Tiz-

hoosh (1998). Many researchers merged the concept of

fuzzy sets with other conventional techniques such as HE

to develop improved methods for better contrast enhance-

ment. Raju and Nair (2014) introduced fuzzy logic and a

histogram-based method to upgrade the contrast of RGB

images by stretching the intensity component of the image

that was based mainly on two parameters, i.e., the average
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intensity ðMÞ for clipping the histogram into two classes

and then fuzzifying the pixel values related to each class by

applying the contrast intensification ðKÞ parameter.

Subramani and Veluchamy (2018) developed the fuzzy-

based AHE technique to avoid the noisy artefacts and over-

enhancement of certain regions caused by image histogram

equalization. The authors have used the method of

brightness-preserving adaptive fuzzy HE (AFHE) without

clipping an image’s histogram to preserve brightness and

improve image naturalness. The fuzzy methods discussed

above was based on Type I fuzzy set whose membership

function is considered as a crisp value. These membership

functions could be fuzzified further to achieve the extended

version of the Type I fuzzy set introduced by Zadeh. Type

II fuzzy membership function can be obtained by fuzzify-

ing the membership grade for each element as a fuzzy set

in the interval ½0; 1�. In the literature, work has been done

using Type II fuzzy sets for medical image enhancement

because they provide an additional degree of freedom in

fuzzy logic systems and are very useful in medical images

because they contain uncertainty in the form of blurred

edges between objects and background or poor

illumination of the images. Chaira (2014) proposed an

interval-based Type II fuzzy theory for the contrast

improvement of an image. Type II fuzzy sets consider

uncertainty in the membership function and can be

obtained using Type I membership functions. The method

was applied to medical datasets, resulting in improved

image contrast, and it was later used for image segmenta-

tion of abnormal regions. Bora and Thakur (2018) applied a

Type II fuzzy set with an improved membership function to

reduce the level of fuzziness and enhance the contrast of

images acquired from medical morphologies.

Regardless of the many factors that lead to the deteri-

oration of medical images, including insufficient contrast,

low brightness, noise, and blurred edges, the present work

focuses on the elements that are primarily accountable for

the inadequate performance of computer-aided medical

diagnosis systems. Some of the existing techniques suffer

from over-enhancing brightness and contrast, which leads

to the loss of sensitive features in the medical images. The

techniques mentioned earlier have proven to be effective in

enhancing medical images to a certain extent. However, it

is important to note that none of these techniques have

Table 1 List of abbreviations
Abbreviation Description

AHE Adaptive Histogram Equalization

AFHE Adaptive Fuzzy Histogram Equalization

AMBE Absolute Mean Brightness Error

BBHE Brightness Preserving Bi-histogram Equalization

BPDHE Brightness Preserving Dynamic Histogram Equalization

CII Contrast Improvement Index

CLAHE Contrast Limited Adaptive Histogram Equalization

DHE Dynamic Histogram Equalization

EC Edge Content

EME Enhancement Measure

FLS Fuzzy Logic System

FSIM Feature Similarity Index

HE Histogram Equalization

LI Linear Index of Fuzziness

MAE Mean Absolute Error

MOS Mean Opinion Score

M1 Proposed Method

M2 Chaira (2014)

M3 Gandhamal et al. (2017)

M4 HE

M5 CLAHE

PSNR Peak-signal-to-noise ratio

REC Relative Enhancement in Contrast

RHE Recursive Histogram Equalization

SSIM Structural Similarity Index

TEN Tenengrad measure
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undergone evaluation on images acquired through different

medical imaging modalities. It is worth mentioning that

some of these techniques may result in an undesired

increase in brightness and an overly enhanced contrast.

This can occur due to the stretching of the histogram in an

image, as seen in the case of AFHE. Additionally, there is

no specific criterion available for choosing the optimal

value for parameter (contrast intensification) K. In addi-

tion, it is important to highlight that Chaira’s method is

more effective for specific datasets rather than generaliz-

able to all other medical datasets.

We have used the suggested technique in conjunction

with a precisely calibrated value of the parameter a lying in
½0; 1� to overcome these limitations. This enables the reg-

ulation of the degree of contrast enhancement in an image,

which has been validated and verified across a diverse

range of medical datasets. The aim of this paper is to

introduce a methodology for enhancing contrast, employ-

ing a new membership function using Type II fuzzy sets.

Through the modification of the Type I fuzzy membership

grade via the application of parameter a, we aim to achieve

a better degree of contrast enhancement in medical images.

A concise description of some existing techniques is pro-

vided in Table 2, along with their corresponding formulas

and performance metrics.

2.1 Motivation and contribution

A number of techniques have been suggested in the liter-

ature to deal with the problem of conveying important

information clearly in images, especially in medical

imaging. Medical images are essential for assessing the

patient’s health and determining the most effective course

of therapy. Due to poor illumination, these medical images

become more difficult to evaluate and analyse, resulting in

low-contrast images. The advancement of image process-

ing methods, including image analysis, identification, and

enhancement has sped up the development of medical

imaging. The improved images aid in the accurate detec-

tion of disorders that occur in the health of a patient.

The motivation to carry out the present study is to

design, develop, and implement a Type II fuzzy image

processing system to overcome various factors contributing

to the degradation of medical images, such as low contrast,

vague boundaries, insufficient brightness, etc. Medical

images that include a great deal of ambiguity and uncer-

tainty become a challenge to handle using Type-I fuzzy

sets. These fuzzy set’s crisp membership functions prevent

them from directly modelling such uncertainty, whereas

Type-II fuzzy sets membership functions are themselves

fuzzy and useful to represent this uncertainty. The fol-

lowing are the main contributions of the study:

Interval-based Type II fuzzy set membership function

along with the Hamacher T-conorm operator have been

used for the contrast enhancement of medical images.

Experiments have been done to figure out what the best

value of the parameter alpha is for finding an image with

good contrast.

The average values with the standard deviation of all the

performance metrics have been computed for each

dataset.

The average processing time for each dataset supports

the efficacy of the proposed technique.

For the subjective evaluation, the MOS has been

evaluated for six sampled images with the help of

medical experts.

Table 2 Existing techniques for image contrast enhancement

Reference Methodology Formulae Performance Metrics

Gandhamal et al. (2017) S-curve transformation s ¼ aþ b�a

ð1þe
r�c
d Þ

EC, EME, AMBE,

FSIM

Raju and Nair (2014) Fuzzy logic and histogram Xe ¼ X þ lD1ðXÞK; for C1

Xe ¼ ðXlD2ðXÞÞ þ ðE � lD2ðXÞKÞÞ; for
C2

CII, TEN

Subramani and Veluchamy

(2018)

Adaptive fuzzy histogram

equalization
lmn ¼ e�

L�fmnð Þ2
2

� �

gmn ¼ L� S
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2loglmn

p
ð Þ

Entropy, FSIM, CII

Chaira (2014) Type II fuzzy set l gij
� �

¼ g�gmin

gmax�gmin

llower gij
� �

¼ l gij
� �� �1

a

llower gij
� �

¼ l gij
� �� �a

lA ¼ lupperþllowerþlupperllower k�2ð Þ
1�ð1�kÞllowerlupper

LI, MAE, Entropy

Bora and Thakur (2018) Type II fuzzy set lenh ¼
llowkþlhigh 1�kð Þ
1�ð1�kÞllowlhigh

Entropy, PSNR

6756 N. Chandra, A. Bhardwaj

123



This paper is organised as follows: Sect. 2 provides a

brief discussion about Type I and Type II fuzzy sets along

with the types of aggregation operator. Section 3 discusses

the proposed techniques and its implementation. Section 4

contributes to the results and discussions for the perfor-

mance metrics and consecutive Sect. 5 outlines the con-

clusion and future study.

3 Fuzzy definitions and related terms

A fuzzy set is characterised by a membership function that

assigns to each element a degree of belongingness given by

the membership function and is denoted by the set of

ordered pairs.

F ¼ x; l xð Þjx�Uf g; l : U ! 0; 1½ �: ð1Þ

The large value of membership degree in the interval

½0; 1� indicates more belongingness. Type I FLS has a crisp

membership grade, whereas Type II FLS, defined as

Eq. (2), has a fuzzy membership grade. A Type II fuzzy set

is obtained by blurring a Type I fuzzy set, and the points

lying in the blurred region consist of membership values of

Type I fuzzy sets.

~A ¼ x; lð Þ; l ~A x; lð Þ
� �

j8x�X and l� 0; 1½ �
� �

: ð2Þ

The blurred region is known as the Footprint of

Uncertainty (FOU), which is bounded by the upper and

lower membership functions of a Type II fuzzy set, which

is an interval-based fuzzy set. So, Eq. (2) can be modified

as

~A ¼ x; lð Þ; lÛ x;lð Þ; lL̂ x; lð Þ
� �

j8x�X and l� 0; 1½ �
� �

; ð3Þ

where, lbU x; lð Þ and lbL x; lð Þ are the upper and lower

membership values of interval-based Type II fuzzy sets and

are computed using membership values obtained from

Type I fuzzy sets.

3.1 Fuzzy operators

A fuzzy set is an extension of ordinary sets, as it defines a

grade of membership with respect to each element rather

than assigning a crisp value. The mathematical operators

available in ordinary set theory, such as union, intersection,

and complement, can be dilated in fuzzy set theory. In

fuzzy theory, the generalised union and intersection oper-

ators are known as triangular conorms and triangular

norms, respectively. These are the binary operators defined

on the unit interval 0; 1½ � that combine two fuzzy sets to

produce another fuzzy set i.e., a function from T : 0; 1½ � �
0; 1½ � ! ½0; 1� satisfying certain conditions (Butnariu and

Klement 2002; Boixader and Recasens 2022). T-norms and

T-conorms are duals of each other, as one can be obtained

from the other. In the literature, many T-norms and T-

conorms are available, and some of them are introduced by

the researchers Hamacher (Tang et al. 2017), Dombi,

Einstein, Weber, etc. This section briefly discusses some of

the T-norms and T-conorms introduced in the literature.a.

Dombi T-norm ðD x; yð ÞÞ and T-conorm ðD0 x; yð ÞÞ are

given by the expressions below, and k[ 0 and x; yð Þ�½0; 1�.

D x; yð Þ ¼ 1

1þ 1
x � 1
� �kþ 1

y � 1
	 
k� �1

k

; ð4Þ

D0 x; yð Þ ¼ 1

1þ 1
x � 1
� ��kþ 1

y � 1
	 
�k

� ��1
k

: ð5Þ

b. Sugeno-Weber defined the T-norm and T-conorm as in

Eqs. (6) and (7), respectively.

SW x; yð Þ ¼ max 0; 1� kð Þ xyþ kðxþ y� 1Þð Þ ; ð6Þ

SW 0 x; yð Þ ¼ 1� S:W 1� x; 1� yð Þ ð7Þ

c. Hamacher suggested the following T-norm and T-con-

orm as

H x; yð Þ ¼ xy

kþ 1� kð Þ xþ y� xyð Þ ð8Þ

H0 x; yð Þ ¼ xþ y� xy� 1� kð Þxy
1� 1� kð Þxy : ð9Þ

T-norm ðH x; yð ÞÞ and T-conorm ðH0 x; yð ÞÞ are also

called Hamacher product and Hamacher sum and can be

reduced to algebraic T-norm and T-conorm when k ¼ 1. In

this paper, the proposed method uses Hamacher’s T-norm

and T-conorm to find the enhanced Type II fuzzy mem-

bership function.

4 Proposed methodology

This section describes the details of the proposed tech-

nique. Here, the concept of a new membership function

using a Type II fuzzy set is presented. The operator used to

form the enhanced membership function is Hamacher

T-conorm, as given in Eq. (9). The steps for the imple-

mentation of the proposed algorithm to obtain the enhanced

image from an input image are also depicted in detail.

5 Generation of type II fuzzy membership
function

An image ðIÞ of size m� n can be fuzzified using the Type

I (Classical) fuzzy set using the membership function given

as
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l Iuvð Þ ¼ Iuv � Imin

1� Iminð Þ þ Imax

; u ¼ 1. . .m; v ¼ 1. . .n; ð10Þ

where Iuv is the intensity of grey level of an image ranging

from ð0� 255Þ and Imax, Imin are the maximum and the

minimum intensity value of the image ðIÞ, respectively.
Each Iuv is associated with a membership value l Iuvð Þ
which represents the fuzziness of a pixel at a location

ðu; vÞ. In a fuzzy set, the membership function defines the

inclusiveness of the elements in that specific set with some

grade value.

As a parameter of fuzziness, the membership function

itself cannot be considered a crisp value, as observed by

Zadeh (1965), and can be further fuzzified into a Type II

fuzzy set. Using an interval-based Type II fuzzy set, the

upper (lu) and lower (ll) membership function have been

evaluated Eqs. (11) and (12)

lu Iuvð Þ ¼ l Iuvð Þ 1�a2ð Þ; ð11Þ

ll Iuvð Þ ¼ l Iuvð Þ
1

a2

� �
; ð12Þ

where a is an arbitrary constant and 0\a\1.

The region obtained by fuzzifying the Type I member-

ship function using interval-based Type II fuzzy is the

FOU. In this region, each membership value in the Type I

fuzzy set has an interval and can be viewed as a three-

dimensional plane.

Equation (13) yields the enhanced image corresponding

to the input image using the Type II fuzzy membership

function and the aggregation operator Hamacher T co-

norm as

Ie ¼ len Iuvð Þ 1� Imin þ Imaxð Þ þ Imin; ð13Þ

where len represents the enhanced membership function

and is computed using Eq. (14) as

len Iuvð Þ ¼ lu Iuvð Þ þ ll Iuvð Þ þ k� 2ð Þlu Iuvð Þll Iuvð Þ
1� 1� kð Þlu Iuvð Þll Iuvð Þ : ð14Þ

5.1 Algorithm steps

1. Consider a greyscale image ðIÞ of size 512� 512.

2. Find the minimum and maximum values of the

greyscale image obtained in step1.

3. Construct the Type I fuzzy membership function for

each pixel values using Eq. (10) and the computed

values.

4. Further, create upper lu Iuvð Þð Þ and lower membership

ll Iuvð Þð Þ function for each pixel using Eqs. (11) and

(12) for Type I membership function and parameter a.
5. Compute the average value ðkÞ of the input image ðIÞ

and obtain the Type II fuzzy enhanced membership

function for each pixel using Hamacher T-conorm

given in Eq. (9).

6. Finally, apply Eq. (13) to procure the Type II fuzzy

enhanced image Ieð Þ corresponding to the input image.

6 Pseudo-code of the proposed algorithm
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7 Results and discussion

The dataset consists of medical images taken from different

sources (Gandhamal et al. 2017; Minaee et al. 2020; https://

www.kaggle.com/datasets/navoneel/brain-mri-images-for-

brain-tumor-detection?resource=download) and has been

employed to measure the performance and effectiveness of

the newly developed approach. For experimental work, the

medical image dataset includes 150 images, comprising

ultrasound, X-ray, and MRI brain scan of size512� 512.

The proposed contrast enhancement technique is applied

and tested on various medical images called as test images

consisting of brain MRI scans, chest X-ray and ultrasound

to examine its performance. The present technique is

implemented on 50 MRI scans, 50 X-ray images and 50

ultrasound images of size 512� 512. The proposed tech-

nique is compared to some benchmark techniques such as

HE and CLAHE, as well as some cutting-edge techniques

such as Gandhamal et al. (2017) and Chaira (2014). For

brevity, the results are shown for 15 (test) images taken

from each of the datasets from different medical

modalities.

In this experiment, the values of the performance met-

rics such as AMBE, PSNR, REC, SSIM, PL measure, and

entropy for the range of values of a from 0:1 to 0:7 are

shown in Tables 3, 4, 5, 6, 7 and 8. Here, it has been

observed that with the increment in the value of the

parameter a, the results are not satisfactory except in the

case of the PL measure for X-ray images. Tables 3, 4, 5, 6,

7 and 8 also depict that the value of the parameter a� 0:2

does not provide satisfactory results. Due to these experi-

mental results, we confine the values of the parameter a to

the interval ½0:1; 0:18� with a step size of 0:02 and study the
variation in the values of the performance metrics for

quantitative analysis. It has been observed that the

numerical values obtained for a�½0:1; 0:18� are better for

all the quantitative metrics AMBE, PSNR, REC, SSIM, PL

measure, and entropy as shown in Tables 9, 10, 11, 12, 13

and 14. So, we use this range of a and compare the results

of the benchmark and state-of-the-art techniques in terms

of these performance metrics. The best results are shown

with boldface letters in Tables 3 to 18.

7.1 Quantitative analysis

The evaluation of the performance of the proposed Type II

fuzzy set technique is measured in terms of six statistical

metrics such as AMBE, PSNR, REC, SSIM, entropy, and

PL measure to quantify the amount of fuzziness present in

an image. These measures are used to assess the quality of

the enhanced image and have been computed using the

input (original) image and the output (enhanced) image.

AMBE It is defined as the mean brightness difference

between the original image and the enhanced image. This

metric measures the degree of luminance distortion caused

by the enhancement. Lower AMBE values indicate better

preservation of the brightness in an image.

AMBE ¼ lO � lEj j; ð15Þ

where lO, lE are the expected value of the original ðOÞ and
the enhanced image ðEÞ.

The AMBE values of test images for the proposed

method are represented in Tables 3 and 9 corresponding to

different ranges of parameter a. From Table 3, it is noted

that the AMBE value increases with an increase in the

Table 3 Experimental results of

AMBE for a�½0:1; 0:7�
corresponding to test images

Image AMBE

a ¼ 0:1 a ¼ 0:2 a ¼ 0:3 a ¼ 0:4 a ¼ 0:5 a ¼ 0:6 a ¼ 0:7

X_I1 0.7441 8.2354 33.7304 55.6834 74.2450 86.4485 92.2910

X_I2 0.6882 6.9577 22.6670 41.7500 64.2590 80.2060 87.6280

X_I3 0.9803 7.0830 22.7590 46.4300 66.7250 81.7400 92.6750

X_I4 0.7354 8.5491 28.0320 51.9250 70.7750 85.9510 96.2020

X_I5 1.3395 8.0412 23.4650 44.5220 64.2160 78.9130 88.4400

U_I1 0.1839 0.8424 2.1551 4.2421 8.1131 14.4610 24.5240

U_I2 0.2450 1.1075 2.8486 5.8912 11.1760 19.5820 32.9510

U_I3 0.2253 1.0108 2.5029 5.0518 9.7646 17.3070 28.9490

U_I4 0.2089 0.8447 2.1749 4.2833 8.0990 14.4370 24.5310

U_I5 0.2232 0.9041 2.3492 4.6538 8.8440 15.7340 26.7850

M_I1 0.4434 2.6963 6.7108 14.3270 29.2880 50.7730 73.4380

M_I2 0.4437 1.6869 4.0641 8.8707 18.0250 34.2160 56.0980

M_I3 0.2054 1.5560 6.4760 15.3370 25.0400 33.7300 40.7100

M_I4 0.5689 2.2944 5.9743 17.1510 42.3890 65.4510 84.0070

M_I5 0.4485 2.2049 10.2240 22.1020 34.0650 43.0140 50.8640
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value of a resulting in over brightness of the output image,

whereas in Table 9, the AMBE values are better as the

value of the parameter decreases and the best value is

reached for a ¼ 0:1: The comparative results of AMBE

with other techniques are depicted in Fig. 1. As illustrated

in this figure, the values obtained by the intended technique

are better for the enhanced image than the other tech-

niques; the low value of AMBE indicates that the output

image retains the naturalness of the original image.

PSNR It measures the reduction in the noise level of an

image and is used to examine the quality difference

between the input and the output image. The higher value

of PSNR indicates less distortion in the quality of the input

image.

PSNR ¼ 10log10
2552

P
u

P
v O u; vð Þ � E u; vð Þj j2

" #

ð16Þ

where O and E are the input and the output images,

respectively, and u ¼ 1; :::; 255; v ¼ 1; :::; 255.

The PSNR values obtained for a�½0:1; 0:7� is shown in

Table 4 and it is observed that for a� 0:5, the values

decrease as the noise in the image increases. The value of

PSNR for the enhanced image corresponding to the given

dataset for required values of a is given in Table 10, which

Table 4 Experimental results of

PSNR for a�½0:1; 0:7�
corresponding to test images

Image PSNR

a ¼ 0:1 a ¼ 0:2 a ¼ 0:3 a ¼ 0:4 a ¼ 0:5 a ¼ 0:6 a ¼ 0:7

X_I1 49.32 27.26 16.39 12.60 10.19 8.68 7.96

X_I2 49.73 28.35 19.50 14.95 11.44 9.37 8.45

X_I3 45.22 27.91 19.09 13.45 10.50 8.79 7.67

X_I4 49.41 26.34 17.77 12.89 10.38 8.69 7.57

X_I5 41.75 27.23 18.79 13.73 10.70 8.89 7.80

U_I1 55.48 45.43 37.78 31.43 25.85 21.11 17.02

U_I2 54.22 43.22 34.90 28.06 22.77 18.34 14.42

U_I3 54.60 44.46 36.62 30.15 24.47 19.74 15.76

U_I4 54.93 44.92 36.93 30.77 25.26 20.45 16.29

U_I5 54.64 44.64 36.48 30.29 24.74 19.91 15.73

M_I1 51.38 36.16 28.31 22.02 16.23 11.81 9.16

M_I2 51.66 40.96 33.20 25.74 19.69 14.56 10.65

M_I3 55.00 41.51 28.60 21.86 18.04 15.65 14.09

M_I4 50.48 38.41 30.05 20.75 13.16 9.68 8.01

M_I5 50.60 36.59 23.06 17.35 13.89 12.04 10.84

Table 5 Experimental results of

REC for a�½0:1; 0:7�
corresponding to test images

Image REC

a ¼ 0:1 a ¼ 0:2 a ¼ 0:3 a ¼ 0:4 a ¼ 0:5 a ¼ 0:6 a ¼ 0:7

X_I1 1.2601 1.1691 1.1496 1.1422 1.1366 1.1331 1.1318

X_I2 1.5576 1.3474 1.4057 1.4995 1.5703 1.6167 1.6449

X_I3 1.1089 1.0682 1.0441 1.0355 1.0340 1.0353 1.0369

X_I4 1.2075 1.1322 1.1088 1.1113 1.1177 1.1229 1.1269

X_I5 1.3269 1.2137 1.1817 1.1845 1.1960 1.2074 1.2165

U_I1 0.9958 0.9880 0.9714 0.9404 0.8988 0.8547 0.8141

U_I2 0.9973 0.9906 0.9735 0.9424 0.9069 0.8712 0.8380

U_I3 0.9962 0.9891 0.9721 0.9417 0.9005 0.8573 0.8194

U_I4 0.9962 0.9883 0.9702 0.9412 0.9011 0.8560 0.8127

U_I5 0.9963 0.9886 0.9701 0.9408 0.9000 0.8542 0.8109

M_I1 0.9986 0.9899 0.9749 0.9539 0.9262 0.9012 0.8931

M_I2 0.9968 0.9900 0.9746 0.9393 0.8945 0.8491 0.8127

M_I3 0.9998 0.9926 0.9624 0.9292 0.9103 0.9014 0.8980

M_I4 0.9979 0.9915 0.9788 0.9397 0.8845 0.8561 0.8511

M_I5 0.9988 0.9933 0.9659 0.9414 0.9252 0.9174 0.9151
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is significantly good as compared with other techniques

such as HE, CLAHE, Gandhamal et al. (2017), and Chaira

(2014). The comparison of PSNR with these techniques is

demonstrated in Fig. 2. The increased value of PSNR

illustrates better clarity in the enhanced image by reducing

the noise content.

REC It is used to quantify the improvement in the

contrast of an image by adjusting the relative brightness

and darkness of objects in the image to provide better

visibility. It is computed using Eq. (17), which is the ratio

of contrast between the input image and the output image.

REC ¼ CO

CE
; ð17Þ

where

CO ¼ 20 log 10
1

mn

Xm

u¼1

Xn

v¼1

O u; vð Þ2� 1

mn

Xm

u¼1

Xn

v¼1

O u; vð Þ
 !2

0

@

1

A

2

4

3

5;

ð18Þ

and CE is the contrast of the enhanced image computed

using Eq. (18).

The values recorded in Table 5 signifies that the REC

values for ultrasound and MRI images tends to decrease for

Table 6 Experimental results of

SSIM for a�½0:1; 0:7�
corresponding to test images

SSIM

Image a ¼ 0:1 a ¼ 0:2 a ¼ 0:3 a ¼ 0:4 a ¼ 0:5 a ¼ 0:6 a ¼ 0:7

X_I1 0.9998 0.9853 0.9445 0.8645 0.7765 0.7231 0.6844

X_I2 0.9998 0.9867 0.9471 0.8569 0.7509 0.6970 0.6544

X_I3 0.9995 0.9935 0.9579 0.8935 0.8056 0.7234 0.6700

X_I4 0.9999 0.9947 0.9618 0.9085 0.8318 0.7658 0.7301

X_I5 0.9987 0.9896 0.9614 0.8994 0.8241 0.7632 0.7295

U_I1 0.9998 0.9963 0.9737 0.9388 0.8325 0.6874 0.5366

U_I2 0.9998 0.9956 0.9730 0.9305 0.8174 0.6683 0.5117

U_I3 0.9998 0.9958 0.9780 0.9411 0.8451 0.7146 0.5750

U_I4 0.9998 0.9969 0.9797 0.9492 0.8650 0.7464 0.6204

U_I5 0.9998 0.9967 0.9790 0.9460 0.8566 0.7378 0.6099

M_I1 0.9998 0.9899 0.9595 0.8785 0.7269 0.5475 0.3956

M_I2 0.9999 0.9950 0.9789 0.9308 0.8195 0.6598 0.5272

M_I3 0.9997 0.9975 0.9788 0.9312 0.8540 0.7582 0.6695

M_I4 0.9999 0.9981 0.9738 0.8905 0.7001 0.5606 0.4191

M_I5 0.9998 0.9940 0.9680 0.9013 0.7919 0.6692 0.5563

Table 7 Experimental results of

PL measure for a�½0:1; 0:7�
corresponding to test images

PL measure

Image a ¼ 0:1 a ¼ 0:2 a ¼ 0:3 a ¼ 0:4 a ¼ 0:5 a ¼ 0:6 a ¼ 0:7

X_I1 83.50 50.16 44.99 52.67 67.82 118.48 244.92

X_I2 81.55 49.83 42.64 41.97 48.92 85.81 191.97

X_I3 82.85 54.56 46.18 48.28 56.22 67.60 88.14

X_I4 85.37 49.69 44.38 49.80 56.17 68.88 114.73

X_I5 81.45 57.57 50.00 52.06 60.42 77.52 122.90

U_I1 432.59 338.28 261.06 196.48 140.95 95.75 62.39

U_I2 419.24 320.11 242.46 179.45 128.32 86.08 54.46

U_I3 357.57 278.78 214.33 161.11 115.49 79.84 53.69

U_I4 489.16 381.82 291.00 218.39 155.52 104.77 67.91

U_I5 462.93 360.71 272.94 203.72 144.14 96.59 62.10

M_I1 172.77 119.33 91.14 68.02 47.05 39.18 31.29

M_I2 217.24 165.86 126.70 91.74 62.23 40.65 33.25

M_I3 123.81 94.14 72.36 70.08 74.88 88.17 108.24

M_I4 120.46 89.32 67.44 46.18 39.65 41.99 40.53

M_I5 165.79 121.95 91.47 93.63 110.35 123.87 117.30
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a� 0:6 due to loss of detailed features in an image. As

observed from the numerical values of REC given in

Table 11, it is clear that the proposed technique has good

contrast as the obtained values are closer to 1. The pro-

posed technique has been compared with other techniques

using this metric, which is represented in Fig. 3. It has been

observed that REC values for the proposed technique are

better in comparison with HE, CLAHE, Chaira (2014), and

Gandhamal et al. (2017).

SSIM It is used to measure the similarity between the

original and the output image. It measures the change in

structural information based on luminance, structure, and

contrast.

SSIM ¼ 2lOlE þ k1ð Þ 2rOE þ k2ð Þ
lO2 þ lE2 þ k1ð ÞðrO2 þ rE2 þ k2Þ

; ð19Þ

where lO and lE are the average values of the pixels of

original and enhanced image, respectively, and rOE rep-

resents the correlation coefficient of O and E; k1 and k2 are

Table 8 Experimental results of

entropy for a�½0:1; 0:7�
corresponding to test images

Original entropy Enhanced entropy

Image a ¼ 0:1 a ¼ 0:2 a ¼ 0:3 a ¼ 0:4 a ¼ 0:5 a ¼ 0:6 a ¼ 0:7

X_I1 7.3148 7.2920 6.7150 5.4510 4.3008 3.3420 2.4770 1.6260

X_I2 7.2844 7.2695 7.2405 6.6643 5.9168 5.1619 4.3765 3.4711

X_I3 7.8089 7.7993 7.4308 6.9002 6.2465 5.3907 4.4756 3.5359

X_I4 7.5748 7.5604 7.5380 6.8706 5.9532 4.9784 4.0043 3.0493

X_I5 7.8252 7.6827 7.0204 6.3460 5.5799 4.7106 3.8771 3.0135

U_I1 4.4360 4.4357 4.4349 4.4334 4.4332 4.4286 4.4183 4.3947

U_I2 4.7730 4.7727 4.7715 4.7696 4.7662 4.7540 4.7307 4.6949

U_I3 4.7502 4.7497 4.7490 4.7487 4.7454 4.7377 4.7225 4.6888

U_I4 4.0885 4.0883 4.0878 4.0858 4.0840 4.0795 4.0711 4.0529

U_I5 4.2667 4.2665 4.2664 4.2654 4.2629 4.2584 4.2496 4.2313

M_I1 5.9132 5.9113 5.8788 5.8091 5.7346 5.6459 5.5271 5.3233

M_I2 5.4249 5.4248 5.4228 5.4240 5.4223 5.4099 5.3756 5.3132

M_I3 5.9695 5.9553 5.9687 5.9262 5.7270 5.3826 4.9612 4.4612

M_I4 5.5856 5.5838 5.5766 5.5712 5.5543 5.5186 5.3605 4.8658

M_I5 5.5685 5.5446 5.5079 5.4425 5.1871 4.8376 4.3891 3.9361

Table 9 Experimental results of AMBE for a�½0:1; 0:18� corre-

sponding to test images

Image a ¼ 0:1 a ¼ 0:12 a ¼ 0:14 a ¼ 0:16 a ¼ 0:18

X_I1 0.7441 0.9872 1.4182 2.3055 4.4198

X_I2 0.6882 0.9502 1.6757 2.7858 4.8009

X_I3 0.9803 1.5711 2.7117 3.8355 5.3623

X_I4 0.7353 0.9838 1.7174 3.162 5.6573

X_I5 1.3395 2.0775 3.2759 4.4623 6.0879

U_I1 0.3613 0.5189 0.7748 1.0624 1.3625

U_I2 0.2449 0.3257 0.5117 0.6539 0.8679

U_I3 0.451 0.6222 0.9971 1.2344 1.6298

U_I4 0.3886 0.5606 0.8287 1.0719 1.4142

U_I5 0.2755 0.3636 0.5957 0.7683 1.0246

M_I1 0.4434 0.5592 1.168 1.3878 2.1424

M_I2 0.4437 0.471 0.8236 0.9689 1.3905

M_I3 0.2054 0.5282 1.1219 1.192 1.7448

M_I4 0.5689 0.5967 0.8245 1.0214 1.4866

M_I5 0.4485 0.524 1.4773 1.5975 2.0897

Table 10 Experimental results of PSNR for a�½0:1; 0:18� corre-

sponding to test images

Image a ¼ 0:1 a ¼ 0:12 a ¼ 0:14 a ¼ 0:16 a ¼ 0:18

X_I1 49.32 48.03 44.34 39.80 32.89

X_I2 49.73 48.01 41.97 36.24 31.47

X_I3 45.22 39.76 35.50 32.58 30.03

X_I4 49.41 48.10 42.37 35.32 29.76

X_I5 41.75 37.62 34.27 31.68 29.33

U_I1 52.55 50.98 47.87 45.86 43.68

U_I2 54.22 52.96 49.29 47.67 45.21

U_I3 51.58 50.16 46.38 44.96 42.40

U_I4 54.93 53.56 50.84 48.71 46.47

U_I5 54.64 53.30 50.40 48.37 46.05

M_I1 51.38 48.94 43.47 41.32 38.33

M_I2 51.66 51.38 46.37 45.47 42.44

M_I3 55.00 50.89 49.88 49.20 44.46

M_I4 50.48 50.07 44.61 44.06 40.79

M_I5 50.60 48.82 44.91 42.81 39.78
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the constants to stabilize the equation. The SSIM value lies

in the range of 0 to 1, and values closer to 1 represent less

distortion between the objects in an image, thus preserving

the original features in an enhanced image.

It is observed from Table 6 that the value of SSIM

decreases as the value of a increases from 0:1 to 0:7,

resulting in loss of features in the image due to over

brightness. For a�½0:1; 0:18�, the values of SSIM

corresponding to 15 images consisting of X-ray, ultra-

sound, and MRI are observed to be approximately equal to

1, as shown in Table 12. This depicts that the proposed

technique performs better in the chosen interval for the

parameter a. Also, the proposed technique outperforms

other techniques, as seen in Fig. 4, resulting in better

preservation of image features in the enhanced image.

PL measure It is defined as the ratio of PSNR to the

linear fuzziness index, as shown below.

PL ¼ PSNR

c
; ð20Þ

where c is the linear index of fuzziness used to measure the

amount of fuzziness present in an enhanced image and is

computed as

c ¼ 2

mn

Xm

u¼1

Xn

v¼1

min len Iuvð Þ; 1� len Iuvð Þf g; ð21Þ

where luv is the membership function of the output image

and is calculated using Eq. (14). The higher value of the PL

measure signifies better clarity in the enhanced image. The

computed results corresponding to test images are pre-

sented in Table 7. It has been observed that for a� 0:5, the

value of PL decreases, whereas for a[ 0:5, the value of PL

increases but the visual quality of the enhanced image has

been compromised. Figure 5 shows the comparison of the

suggested technique with Chaira (2014), Gandhamal et al.

(2017), HE, and CLAHE using this metric. The values

obtained for the proposed technique are better as compared

Table 11 Experimental results of REC for a�½0:1; 0:18� correspond-
ing to test images.

Image a ¼ 0:1 a ¼ 0:12 a ¼ 0:14 a ¼ 0:16 a ¼ 0:18

X_I1 1.0090 0.9990 1.0010 0.9970 0.9900

X_I2 1.0020 1.0030 0.9990 0.9920 0.9830

X_I3 0.9990 0.9960 0.9930 0.9890 0.9860

X_I4 1.0000 0.9990 0.9990 0.9930 0.9840

X_I5 0.9970 0.9940 0.9920 0.9890 0.9860

U_I1 0.9972 0.9975 0.9965 0.9958 0.9945

U_I2 0.9970 0.9970 0.9950 0.9940 0.9920

U_I3 0.9974 0.9978 0.9961 0.9960 0.9938

U_I4 0.9960 0.9950 0.9930 0.9920 0.9890

U_I5 0.9960 0.9960 0.9930 0.9920 0.9900

M_I1 0.9980 0.9970 0.9960 0.9940 0.9920

M_I2 0.9960 0.9960 0.9940 0.9930 0.9910

M_I3 0.9990 0.9980 0.9970 0.9970 0.9950

M_I4 0.9970 0.9970 0.9950 0.9950 0.9930

M_I5 0.9980 0.9980 0.9970 0.9960 0.9950

Table 12 Experimental results of SSIM for a�½0:1; 0:18� corre-

sponding to test images

Image a ¼ 0:1 a ¼ 0:12 a ¼ 0:14 a ¼ 0:16 a ¼ 0:18

X_I1 0.9997 0.9999 0.9995 0.9979 0.9921

X_I2 0.9997 0.9993 0.9972 0.9941 0.9907

X_I3 0.9994 0.9991 0.9981 0.9971 0.9955

X_I4 0.9998 0.9999 0.99912 0.9981 0.9964

X_I5 0.9987 0.9979 0.9965 0.9952 0.9928

U_I1 0.9996 0.9991 0.9984 0.997 0.9955

U_I2 0.9997 0.9995 0.999 0.9982 0.9972

U_I3 0.9995 0.999 0.998 0.9969 0.9954

U_I4 0.9997 0.9996 0.9993 0.9988 0.9981

U_I5 0.9997 0.9995 0.9993 0.9986 0.9979

M_I1 0.9997 0.9992 0.998 0.9971 0.9914

M_I2 0.9998 0.9998 0.9993 0.9986 0.9969

M_I3 0.9996 0.9997 0.9996 0.9994 0.9984

M_I4 0.9999 0.9998 0.9996 0.9994 0.9989

M_I5 0.9998 0.9998 0.9995 0.999 0.9981

Table 13 Experimental results of PL measure for a�½0:1; 0:18� cor-
responding to test images

Image a ¼ 0:1 a ¼ 0:12 a ¼ 0:14 a ¼ 0:16 a ¼ 0:18

X_I1 83.50 81.41 75.32 68.16 57.73

X_I2 81.55 78.77 69.17 60.53 53.73

X_I3 82.85 73.37 66.17 61.52 57.61

X_I4 85.37 83.21 73.65 62.40 54.13

X_I5 81.45 74.10 68.32 64.13 60.51

U_I1 210.13 202.73 189.17 179.91 169.95

U_I2 419.24 406.89 375.84 360.42 338.47

U_I3 211.99 204.83 187.95 180.58 168.63

U_I4 489.16 473.75 446.08 423.40 399.71

U_I5 462.93 448.41 420.58 399.78 376.60

M_I1 172.77 164.00 145.17 137.52 127.06

M_I2 217.24 214.88 192.66 187.47 173.50

M_I3 123.81 114.52 112.21 110.75 100.30

M_I4 120.46 119.01 105.56 103.71 95.46

M_I5 165.79 160.06 147.41 140.76 131.34
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with other techniques, except for the values computed for

X-ray images using Chaira.

Entropy This metric determines the average information

content present in an image and was introduced by

Table 14 Experimental results

of entropy for a�½0:1; 0:18�
corresponding to test images

Image Original Entropy Enhanced Entropy

a ¼ 0:1 a ¼ 0:12 a ¼ 0:14 a ¼ 0:16 a ¼ 0:18

X_I1 7.3141 7.2843 7.3103 7.2995 7.3095 7.2985

X_I2 7.2844 7.2695 7.2685 7.2746 7.2698 7.2551

X_I3 7.8089 7.7993 7.7875 7.7157 7.6377 7.5367

X_I4 7.5748 7.5604 7.5721 7.5589 7.5716 7.558

X_I5 7.8252 7.6827 7.5519 7.4221 7.2965 7.152

U_I1 6.1609 6.1603 6.1608 6.1566 6.1599 6.1566

U_I2 4.773 4.7727 4.7728 4.772 4.7723 4.7718

U_I3 6.3582 6.3578 6.358 6.3571 6.3575 6.3568

U_I4 6.0695 4.0883 4.0884 4.0877 4.0881 4.0875

U_I5 5.2858 4.2665 4.2666 4.2662 4.2664 4.2661

M_I1 5.9132 5.9113 5.9111 5.9079 5.9028 5.8913

M_I2 5.4249 5.4248 5.4248 5.4235 5.4247 5.4232

M_I3 5.5856 5.9553 5.9546 5.9614 5.9693 5.9511

M_I4 5.5685 5.5838 5.5837 5.5817 5.5812 5.5797

M_I5 5.4272 5.5446 5.5455 5.5339 5.5204 5.5182
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Shannon. A higher value of entropy signifies more infor-

mation contained in an image and is given as

Entropy ¼ �
X

k

p kð Þlog2 p kð Þð Þ; ð22Þ

where p kð Þ is the probability of occurrence of intensity

levels from 0 to 255 and is defined as p kð Þ ¼ nðkÞ=N, k 2
0; 255½ � and N is the total number of pixels. This evaluation

parameter signifies the improvement in details of the

enhanced images when compared with the original images.

The entropy of the image is gradually decreasing due to the

decrease in the value of a, as given in Table 8, which

signifies that the image is liable to forfeit its naturalness.

So, a suitable range of a 2 0:1; 0:18½ � is considered, and

from Table 14, it has been observed that entropy values are
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Fig. 5 Comparison of proposed method in terms of PL measure with state-of-the-art methods
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better for this range. In contrast to the HE, Chaira (2014),

and Gandhamal et al. (2017) the proposed enhancement

technique retains and intensifies the information content in

an image, as shown in Fig. 6. The best value for entropy

has been observed in CLAHE but the visual quality of the

image has been compromised due to over enhancement.

The intended enhancement technique is compared with

other cutting-edge techniques to evaluate its performance

using performance metrics. The experimental results for

the evaluation of the proposed scheme have been carried

out using MATLAB (2016) software. From three different

datasets of 50 medical images each, the average values

with standard deviation of all the performance metrics for

the proposed and the state-of-the-art techniques are

depicted in Tables 15, 16 and 17. From this table, it is

concluded that the results obtained using the proposed

technique are better than the state-of-the-art methods for

almost all the metrics, except for some cases where the

results are satisfactory (such as REC value obtained for M2

and M3). This signifies that the suggested approach offers a

higher level of contrast enhancement and feature retention

than HE, Gandhamal et al. (2017), Chaira (2014) and

CLAHE. The suggested technique has obtained lower

average AMBE values and higher SSIM values than the

aforementioned techniques. This implies that the proposed

enhancement technique outperforms the techniques avail-

able in the literature in terms of quantitative analysis. The

proposed technique can be used to improve the contrast of

medical images, which will help doctors give patients the

right treatment based on a correct diagnosis.

7.2 Qualitative assessment

The proposed technique is applied to 150 medical images,

comprising 50 images from each of the medical modalities

such as MRI scans, X-ray, and ultrasound images. For

brevity, the results are presented for 15 medical images to

examine the visual quality and appearance of the enhanced

images using the proposed technique. The effectiveness of

the proposed approach in terms of qualitative analysis has

been determined on the basis of visual appearance of the

enhanced images. The proposed technique is compared

with Chaira (2014), Gandhamal et al. (2017), HE, and

CLAHE and is represented in Figs. 11, 12 and 13. The

results of medical images acquired using the suggested

approach are better in terms of visual appearance, preserve

the original image features, and reduce the brightness level

due to over-contrast enhancement as observed in tech-

niques such as HE and CLAHE.
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Fig. 6 Comparison of proposed method in terms of Entropy with state-of-the-art methods

Table 15 The mean and standard deviation of the performance metrics obtained for ultrasound images using various techniques

0 M1 M2 M3 M4 M5

AMBE 0.57 – 0.24 88.31 ± 29.62 12.13 ± 4.59 122.28 ± 18.63 28.52 ± 7.37

Original Entropy 5.09 ± 0.94 5 ± 0.9 5 ± 0.9 4.97 ± 0.91 5.01 ± 0.91

Enhanced Entropy 5.08 ± 0.94 4.54 ± 0.76 1.96 ± 0.78 4.25 ± 0.77 5.7 – 1.05

PSNR 50.35 – 2.64 7.98 ± 2.25 21.54 ± 2.09 6.01 ± 1.14 16.04 ± 1.66

SSIM 0.99 – 0 0.32 ± 0.08 0.54 ± 0.09 0.13 ± 0.07 0.41 ± 0.05

PL Measure 336.38 – 159.87 26.74 ± 12.84 151.56 ± 78.35 38.66 ± 9.99 113.11 ± 59.5

REC 0.97 ± 0.12 0.8 ± 0.09 1.11 – 0.15 0.81 ± 0.05 0.83 ± 0.04
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Figures 7, 8 and 9 present the results of the enhanced

images for different values of a�½0:1; 0:7� corresponding to

the values given in Tables 3, 4, 5, 6, 7 and 8, using pro-

posed technique. These figures represent that with the

increment in the value of a, there is over brightness

induced resulting in the loss of image features thus pro-

viding reduce information content in an image. Therefore,

to overcome these issues, the value of the parameter has

been confined to the interval ½0:1; 0:18� to preserve the

naturalness of the enhanced image.

Figure 10 depicts the original test images corresponding

to each dataset used for experimental purposes. For sake of

brevity, only four test images are considered from each

medical modality.

Figures 11, 12 and 13 represent the visual comparison of

the enhanced images among the proposed and state-of-the-

Table 16 The mean and standard deviation of the performance metrics obtained for MRI images using various techniques

0 M1 M2 M3 M4 M5

AMBE 1.11 – 0.27 119.9 ± 34.78 20.04 ± 8.37 81.5 ± 22.84 20 ± 8.27

Original Entropy 5.68 ± 0.77 5.66 ± 0.76 5.66 ± 0.76 5.67 ± 0.77 5.67 ± 0.76

Enhanced Entropy 5.66 ± 0.76 4.64 ± 0.71 4.08 ± 0.71 4.6 ± 0.72 6.51 – 0.88

PSNR 45.52 – 1.72 6 ± 2.04 17.69 ± 1.18 9.56 ± 2.33 18.51 ± 2.21

SSIM 0.99 – 0 0.32 ± 0.14 0.54 ± 0.15 0.39 ± 0.12 0.64 ± 0.11

PL Measure 134.14 – 40.69 27.98 ± 28.3 53.12 ± 16.98 27.26 ± 5.12 54.89 ± 17.27

REC 0.99 ± 0.001 1.05 – 0.21 1 ± 0.04 0.94 ± 0.08 0.93 ± 0.03

Table 17 The mean and

standard deviation of the

performance metrics obtained

for X-ray images using various

techniques

0 M1 M2 M3 M4 M5

AMBE 2.34 – 0.52 98.09 ± 14.35 6.78 ± 5.95 9.8 ± 10.32 6.09 ± 5.35

Original Entropy 7.61 ± 0.37 7.61 ± 0.37 7.61 ± 0.37 7.61 ± 0.37 7.59 ± 0.52

Enhanced Entropy 7.44 ± 0.44 4.83 ± 0.6 6.39 ± 0.24 5.94 ± 0.11 7.73 – 0.43

PSNR 39.35 – 3.43 7.51 ± 1.33 16.01 ± 0.5 27.1 ± 10.62 18.02 ± 1.92

SSIM 0.99 – 0 0.25 ± 0.07 0.68 ± 0.09 0.89 ± 0.08 0.76 ± 0.05

PL Measure 73.84 ± 7.01 76.74 – 50.34 30.33 ± 5.38 52.29 ± 23.88 33.95 ± 6.53

REC 0.99 ± 0.003 1.31 – 0.26 0.9 ± 0.03 0.95 ± 0.05 0.99 ± 0.05

Fig. 7 a Original X-ray image (X_I1), enhanced images (b–h) for a ¼ 0:1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7
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art techniques for test images considered from various

medical modalities. Figure 11 presents the qualitative

experimental results for X-ray images. It is clearly evident

here in Fig. 11a–d that the proposed technique provides

better quality to the enhanced image and retains original

image features as compared with HE shown in Fig. 11m–p.

As we go from Fig. 11m–p, the problem of over

enhancement exists near the chest region, which results in

the loss of image features. Enhancement results obtained

using Chaira (2014), Gandhamal et al. (2017), and CLAHE

are presented in Fig. 11e–h, i–l, and q–t, respectively.

Chaira (2014) produces a washed-out effect on the images,

making them unclear (the spinal cord is not visible prop-

erly), and Gandhamal et al. (2017) induces darkness in the

image, due to which some areas are poorly visible,

resulting in the loss of image-sensitive features. Although

CLAHE performs better than HE, some features are com-

promised due to over-enhancement in certain areas of the

Fig. 8 a Original MRI image (M_I1), enhanced images (b–h) for a ¼ 0:1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7

Fig. 9 a Original ultrasound image (U_I1), enhanced images (b–h) for a ¼ 0:1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7
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image when compared with the proposed technique. The

proposed technique offers better visual appearance and

clarity. Figure 13 shows the evaluated results that are

obtained for ultrasound test images using proposed as well

as state-of-the-art techniques. Here, it is again visible, as in

the cases of Figs. 11 and 12, that the proposed technique

retains the features of the original image, while Chaira

(2014) produces blurred and distorted images as in

Fig. 13e–h. The results obtained using Gandhamal et al.

(2017) have darker regions, resulting in a loss of origi-

nality, as depicted in Fig. 13i–l. The results obtained using

HE (Fig. 13m–p) and CLAHE (Fig. 13q–t) are also the

same as earlier and are found to be not very satisfactory in

comparison to the proposed technique (Fig. 13a–d).

CLAHE induces over-enhancement in certain images. It is

also clear that the results of the proposed method reduce

blurriness while keeping the original image’s details and

brightness.

The MOS, which is the result of the six members’ rat-

ings on a five-point scale and includes senior technicians

and medical experts, has supported the qualitative

evaluation of the enhanced images. The results of MOS for

the proposed technique and other state-of-the-art tech-

niques have been presented in Fig. 14. This figure clearly

depicts that the proposed technique performs better in

almost all cases.

Table 18 represents the average processing time (sec-

onds) recorded for the proposed technique and state-of-the-

art techniques for each data set. The values obtained

indicate that the proposed technique performs better as

compared to Gandhamal (Gandhamal et al. 2017), HE, and

CLAHE, while it underperforms Chaira (Chaira 2014).

8 Conclusions and future scope

The enhancement of an image is considered an integral part

of the field of medical imaging. Medical images are

acquired from various sources and consist of noise, low

visibility, and reduced brightness, resulting in poor detec-

tion of significant information that may lead to improper

treatment of the disease. The proposed technique enhances

Fig. 10 Original images, X-ray (a–d), ultrasound (e–h), MRI (i–l)
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the contrast of an image using a Type II fuzzy membership

function that considers the uncertainty present in medical

images. Fuzzing Type I membership functions yields Type

II fuzzy membership functions. The proposed technique’s

performance and efficiency are compared to the existing

techniques Chaira (2014), Gandhamal et al. (2017), HE,

Fig. 11 Enhanced X-ray images obtained using state-of-the-art techniques
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and CLAHE in terms of six statistical parameters: AMBE,

PSNR, REC, SSIM, PL measure, and Entropy. The results

evaluated for average values with standard deviation for all

the datasets bear witness to the performance of the

Fig. 12 Enhanced MRI images obtained using state-of-the-art techniques
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proposed technique as given in Tables 15, 16 and 17. The

proposed technique performs better as compared with other

methods, as observed from the subjective and quantitative

assessments. The proposed approach preserves the image

features, provides better clarity, and reduces noise and

blurriness, as supported by the numerical values of the

Fig. 13 Enhanced ultrasound images obtained using state-of-the-art techniques
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performance metrics. The results obtained in terms of MOS

and processing time are also evident of the efficient per-

formance of the proposed technique. Figure 14 shows very

clearly that the subjective evaluation using MOS is better

in almost all cases. It is clear from Table 18 that the values

obtained indicate that the proposed technique performs

better as compared to Gandhamal et al. (2017), HE, and

CLAHE, while it underperforms Chaira (2014). The

developed method is useful for medical professionals and

experts in the determination of correct treatment and

diagnosis of the disease, as the method provides better

visual appearance and improved contrast. The proposed

method has a limitation, which is the occurrence of over-

enhancing when the value of a is higher. To address this,

we have restricted the alpha values to a range of ½0:1; 0:18�:
In future work, the proposed technique can be merged with

other enhancement techniques to improve the contrast of

these medical images. The proposed enhancement algo-

rithm can be used as a pre-processing tool for segmentation

of medical images.
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