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Abstract
Given the need for ship emission reduction and the energy constraints of unmanned surface vehicles, it is imperative to

develop an efficient ship path planning method that incorporates energy-saving considerations. In this paper, considering

the challenges posed by the complexity of the marine environment, an adaptive ant colony system is proposed for ship

energy-saving path planning. Firstly, a ship energy consumption estimation model is presented by analyzing the influence

of wind, wave, and current on energy consumption. Secondly, two process evaluation indexes are designed for the quality

and diversity of the paths in the optimization process. Based on these indexes, three improvements are presented to enhance

the performance of the ant colony system. These improvements include (a) an adaptive state transition rule adjusted

dynamically based on the information entropy, (b) the number of ants contributing to the global updating rule and the

corresponding update value are controlled dynamically based on the quality of the path, and (c) an improved recombination

mechanism. Besides, an improved turning point optimization method and B-spline curve are introduced for path post-

processing. Finally, the effectiveness of the proposed method is verified by simulation experiments.

Keywords Path planning � Ant colony system � Energy saving � Marine surface vehicle

1 Introduction

Over the past decade, ship autonomy technology has made

significant advancements due to extensive research on

intelligent algorithms such as deep learning and bionic

algorithms (Chen et al. 2021; Xiao et al. 2021; Tang et al.

2021; Öztürk et al. 2022; Xing et al. 2022). In the pursuit of

achieving full autonomy for ships, path planning algo-

rithms play a crucial role. The path planning algorithm

aims to optimize the economy and safety of the ship while

performing tasks (Niu et al. 2020). One aspect that has

garnered significant attention from scholars is the economy

of the path, with a focus on reducing carbon emissions and

operating costs (Barreiro et al. 2022; Du et al. 2022a). In

particular, for Unmanned Surface Vehicles (USVs) with

limited energy, the energy required for the path determines

the feasibility of the task. To guide the ship to the desti-

nation safely with lower energy consumption in the intri-

cate marine environment, an advanced path planning

algorithm considering energy consumption is urgently

needed.

Path planning algorithms can be categorized into two

types based on the availability of environmental informa-

tion: global path planning algorithms and local path plan-

ning algorithms (Zhao et al. 2023). The global path

planning algorithm primarily focuses on ensuring the

optimality of the path using known information. On the

other hand, the local path planning algorithm is specifically

designed to handle unknown risks that may arise during

navigation. As the global path planning significantly

influences the energy consumption required for ship mis-

sion execution, this article will primarily concentrate on

researching global path planning algorithms.

For the ship path planning problem, many algorithms

and their variants have been used, such as Dijkstra’s
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algorithm (Zyczkowski and Szlapczynski 2023), A* algo-

rithm (Song et al. 2019), genetic algorithm (GA; Wang

et al. 2020), ant colony optimization (ACO; Dong et al.

2021), particle swarm optimization (PSO; Du et al. 2022b),

and pigeon-inspired optimization (PIO; Duan and Qiao

2014). Dijkstra’s algorithm and A* algorithm are com-

monly used graph-based methods for calculating the

shortest path between two points. These algorithms are

highly efficient for small-scale path planning tasks. How-

ever, they may require significant computational time when

dealing with complex environments (Gu et al. 2023).

Compared to graph-based methods, intelligent algorithms

like GA, ACO, and PSO demonstrate better adaptability in

handling complex path planning tasks. Among them, the

ACO is widely utilized for solving path planning problems

by virtue of its self-organization, parallelism, and positive

feedback (Liu et al. 2017; Hou et al. 2022; Yu et al. 2022).

The ACO algorithm is generally effective, but a typical

negative feature is its tendency to fall into a local optimum

(Stodola et al. 2022). To this end, researchers have

improved and extended the fundamentals of the algorithm

with various techniques.

In ACO, ants choose nodes randomly through a roulette

selection process based on node information. While this

approach enhances the global search ability, it may also

impact the convergence speed of the algorithm. Thus, a

pseudo-random-proportional rule is designed (Dorigo and

Gambardella 1997), and compared to the traditional state

transition rule it prefers nodes with low cost and a high

amount of pheromones, thereby accelerating the conver-

gence of the algorithm. Based on this, the researchers made

improvements to the control parameter by adjusting it

according to various factors such as the quality of the

solution (Luo et al. 2020), the number of iterations (Wu

et al. 2023), and the diversity of the solution (Zhang et al.

2021a). To address the drawbacks caused by the uniform

distribution of initial pheromones, some methods of

unevenly distributing pheromones are usually adopted to

improve the performance of ACO. These methods include

providing extra pheromones to the semicircular region

where the target point is located (Tang and Xin 2022),

adding additional pheromones to the elliptical region

between the target point and the starting point (He and Fan

2021), and adaptively allocating pheromones according to

the distance of the node from the starting point and the

target point (Luo et al. 2020; Zhang et al. 2021b; Wu et al.

2023). To enhance the guidance of previous ants to sub-

sequent ants, Miao et al. (2021) performed additional

rewards and penalties for the optimal and worst paths after

one iteration, respectively. Liu et al. (2017) devised a new

pheromone diffusion strategy to improve the search per-

formance of the algorithm, where the pheromone diffuses

along the direction of the potential field force. In addition

to optimizing the fundamentals of ACO, some studies have

embarked on further optimization of the solutions, such as

comparing and recombining different solutions to obtain a

better solution (Gao et al. 2020; Hou et al. 2022) or dis-

carding some redundant nodes (Yang et al. 2019). Based on

the above analysis, the primary challenges to enhancing the

performance of ACO in global path planning can be

summarized as follows: (1) striking a balance between

global exploration and convergence speed, and (2)

enhancing solution utilization and post-processing.

The energy consumption of ships during navigation is

intricately linked to the marine environment. Therefore, it

is necessary to obtain the relationship model between ship

energy consumption and the marine environment. In the

study conducted by Xia et al. (2019), a calculation method

for ship energy consumption is proposed using the ship

dynamics model. On the other hand, Lee et al. (2011, 2015)

calculated the energy consumption of ships by considering

the work done to overcome environmental resistance.

Besides, calculations using either the fitted formula (Zhou

2020) or main engine power and sailing resistance (Du

et al. 2022a; Han et al. 2022) are also commonly used.

The above-mentioned research has achieved some

achievements, however, it should be noted that there is

limited research on ship energy-saving path planning.

Developing an algorithm that can effectively plan a global

path for energy-saving while considering ship motion

characteristics remains a challenging task. For example, in

the process of ship energy-saving path planning, the ship

energy consumption model is required to take into account

both accuracy and efficiency. Additionally, most of the

existing algorithms still have some weaknesses in complex

marine environments, such as easy to fall into local opti-

mum and excessive turning points. To this end, this paper

proposes an adaptive ant colony system (AACS) for

energy-saving path planning of ships. Firstly, inspired by

previous research, a ship energy consumption estimation

model considering the influence of wind, wave, and current

on ship energy consumption is designed. This work aims to

save energy by leveraging the marine environment.

Therefore, the proposed ship energy consumption estima-

tion model primarily calculates the energy expended by the

ship to counteract external disturbances. Secondly, our

proposed algorithm improves on the fundamentals of ACS

based on the diversity of the planning process and the

quality of the solution. Given the diversity of the planning

process, the proportion of algorithms exploitation and

exploration is adaptively adjusted. And the number of ants

involved in the global updating and recombination of

solutions is based on the quality of the solution in the

iteration. Also, to further reduce the energy consumption

and redundant nodes, an improved turning point
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optimization method and B-spline curve are designed. The

contributions of this work are summarized as follows:

(1) A ship energy consumption estimation model for

evaluating and guiding energy-saving path planning

is established. The model can effectively reflect the

influence of wind, wave, and current on energy

consumption during ship navigation.

(2) By introducing the process evaluation method and

the improved recombination mechanism into ACS,

an adaptive ant colony system is proposed to address

the problem of ship energy-saving path planning.

AACS effectively balances global search and con-

vergence speed, while also leveraging valuable

components of suboptimal solutions to enhance the

performance of the algorithm.

(3) A post-processing smoothing approach including an

improved turning point optimization method and a

B-spline smoothing method is proposed to reduce the

energy consumption of the path and improve the

smoothness.

The rest parts of this study are structured as follows: In

Sect. 2, the environmental modeling and the energy con-

sumption estimation model are described. In Sect. 3, the

improving methods and process of AACS are explained. In

Sect. 4, the comparative experimental results are discussed.

Conclusions are given in Sect. 5.

2 Related model of ship path planning
problem

2.1 Grid environment model

Environment modelling is a technique for simulating real

application scenarios. It is a prerequisite for path planning

and provides environmental information for algorithm

implementation (Liu et al. 2023). In this article, mainly

considering the position changes of the ship, it is assumed

that the marine environment is a two-dimensional space. In

terms of modeling two-dimensional space, the grid method

is a common method (Chen et al. 2021). The grid method

decomposes the space S into white grids and black grids,

which represent navigable areas Sf and non-navigable areas

So, respectively (Zhao et al. 2023). The white grid can store

various kinds of environmental information to further

simulate the actual environment. To ensure the safety of

ship navigation, the proposed model considers errors in

map data and ship positioning information. It expands the

non-navigable area outwards, and the expanded part is

treated as gray grids, representing the non-navigable risk

area Sr. The composition of the space is shown in Eq. (1).

Figure 1 represents the process of gridding a virtual

environment into a grid map after expanding the obstacles.

Besides, the grid coding method used in the model pri-

marily involves serial index and coordinates. In the cost

calculation process, it is often necessary to convert the

serial index into coordinates. The conversion method is

shown in Eq. (2).

S¼Sf þ So þ Sr ð1Þ

x ¼ b mod index;Nxð Þ � 0:5ð Þ;mod index;Nxð Þ 6¼ 0

b Nx � 0:5ð Þ;mod index;Nxð Þ ¼ 0

�

y ¼ b Ny þ 0:5� ceil index=Nxð Þ
� �

8<
:

ð2Þ

where b is the size of the grid; Nx and Ny are the number of

grids in row and column direction respectively.

2.2 Energy consumption estimation model

For planning of ship’s energy-saving route, it is necessary

to obtain the estimation model of the energy consumption

required by the ship moving between grids. To this end,

this study presents a ship energy consumption estimation

model, inspired by the approach proposed by Lee et al.

(2011). This method assumes that the resistance of the ship

and the thrust of the propulsion system are balanced,

thereby simplifying the calculation of energy consumption

to the calculation of work required to overcome resistance.

The coefficients in the energy consumption estimation

model are given in Table 1.

The main sources of resistance to a ship while sailing

are wind, wave, and current. In practical application

problems, the wave forces acting on ships are divided into

the first-order wave forces and the higher-order wave for-

ces (Zhang et al. 2022). Among these, second-order wave

forces are the main factor influencing the position of the

ship. This paper assumes that the second-order wave force

is a constant value and applies the calculation method

proposed by Daidola to determine the wave drift force

acting on the ship in regular waves. The calculation method

can be expressed as:

Fwave x

Fwave y

� �
¼ qseagLn

2

2

Cxw cos dð Þ
Cyw sin dð Þ

� �
ð3Þ

where wave drift force coefficients Cxw and Cyw can be

calculated using the regression formula derived by Daidola

(Sun 2021):

Cxw ¼ 0:05� 0:2
k
L

� �
þ 0:75

k
L

� �2

�0:51
k
L

� �3

Cyw ¼ 0:46þ 6:83
k
L

� �
� 15:65

k
L

� �2

þ8:44
k
L

� �3

8>>><
>>>:

ð4Þ
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(a) Expanded virtual map (b) Grid map after gridding

Fig. 1 Environmental gridding

Table 1 Coefficients in the

energy consumption estimation

model

Coefficients Definition or meaning (Unit)

qsea Density of sea water (kg/m3)

qair Density of air (kg/m3)

L LOA of the ship (m)

Lij Distance between grid i and j (m)

g Gravitational acceleration (m/s2)

n Average wave amplitude (m)

k Wave length (m)

Cxw Wave drift force coefficient in x direction

Cyw Wave drift force coefficient in y direction

d Wave encounter angle (deg)

u Forward speed of the ship

urw Forward speed of the ship relative to the wind (m/s)

vrw Sway speed of the ship relative to the wind (m/s)

urc Forward speed of the ship relative to the current (m/s)

vrc Sway speed of the ship relative to the current (m/s)

Aax Maximum longitudinal projections of aerodynamic area (m2)

Aay Maximum transverse projections of aerodynamic area (m2)

Swet Wetted surface area (m2)

D Draft (m)

CD Drag coefficient

CT Total resistance coefficient

Cwind
x

Wind pressure coefficient in the x-direction

Cwind
y

Wind pressure coefficient in the y-direction

Feach
x

Force exerted by each environmental factor in the x-direction of the ship (N)

Feach
y

Force exerted by each environmental factor in the y-direction of the ship (N)

veachy
Speed of each environmental factor in the y-direction relative to the ship (m/s)
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For the wind, the approximate equation shown in Eq. (5)

is used to calculate the disturbance force it exerts on the

ship.

Fwind x

Fwind y

� �
¼ qair

2

Cwind
x urw urwj jAax

Cwind
y vrw vrwj jAay

� �
ð5Þ

Based on the slender body assumption, the resistance

caused by the current when the ship is sailing can be

expressed as follows (Zhang et al. 2022; Lee et al. 2011).

Fcurrent x

Fcurrent y

� �
¼ qsea

2

SwetCTurc urcj j
DCDLvrc vrcj j

� �
ð6Þ

When the next node j to be moved by the ship is

determined, the energy consumed Etotal of the ship from i

to j can be calculated according to the following.

Eeach
x i; jð Þ

Eeach
y i; jð Þ

" #
¼ Lij

2

Feach
x ið Þ þ Feach

x jð Þ

Feach
y ið Þveachy ið Þ þ Feach

y jð Þveachy jð Þ
	 
 1

u

2
4

3
5

ð7Þ

Etotal i; jð Þ ¼
X

Eeach
x i; jð Þ þ

X
Eeach
y i; jð Þ ð8Þ

In the process of edge cost calculation, there will

inevitably be negative energy consumption values. For

state transition rule, negative values should be avoided. In

the y-direction, the ship always needs to do work to offset

the impact of the environment, so it is reasonable to take

the absolute value of Eeach
y . And in the x-direction, since the

modification of the edge cost is easy to impair the physical

meaning, the negative energy consumption value is often

set to 0.

3 Design of the adaptive ant colony system

3.1 Process evaluation method

Ant colony system (ACS) is a swarm intelligence heuristic

algorithm used to search for optimal solutions. As a well-

known variant of ACO, ACS has good search ability, but it

still has the disadvantage of being prone to falling into

local optimum (Zhang et al. 2021b). To address this, two

process evaluation indexes are designed and introduced

into ACS.

(1) Process diversity index

The diversity of candidate solutions reflects the

current global search ability of the algorithm, but few

studies have analyzed and utilized it. In this paper,

information entropy is introduced as a process

diversity index to quantify the diversity in the

optimization process. Without loss of generality, it

is assumed that r different paths are obtained by e

ants, where the number of ants searching for path i is

a. And the probability of path i being searched and

the information entropy of this iteration can be

calculated according to Eqs. (9) and (10).

Pi tð Þ ¼
a

e
ð9Þ

H tð Þ ¼ �
Xr

i¼1

Pi tð Þ lnPi tð Þ= ln eð Þ ð10Þ

where Pi tð Þ represents the probability that path i is

searched in the t-th iteration;H tð Þ is the information

entropy in the t-th iteration.

(2) Path quality index

Under the influence of the local updating rule,

ACS will obtain more different solutions in a single

iteration compared to ACO. In order to assess

different solutions effectively, it is crucial to estab-

lish an evaluation index. Therefore, a path quality

index is proposed in this work, mapping different

solutions to [0, 2]. When the energy consumption of

path i is lower than the current optimal solution, path

i is mapped to an interval greater than 1, and the

degree of exceeding 1 is negatively correlated with

the energy consumption; otherwise, path i is mapped

to an interval smaller than 1. The path quality index

is designed as follows.

1 ið Þ ¼ 1þ 2

p
arctan

Emin � E ið Þ
Eaver � Emin þ 1

� �
ð11Þ

where 1 ið Þ is the mapping value of path i;E ið Þ is

energy consumption of path i;Emin is the energy

consumption of the current optimal path, and Eaver is

the average energy consumption of all the complete

paths in this iteration.

3.2 Adaptive ant colony system

3.2.1 Improved heuristic information function

To achieve the planning of energy-saving paths, it is nec-

essary to combine the heuristic information function with

the energy consumption estimation model mentioned in

Sect. 2.2. However, the heuristic information function

based only on the energy consumption value tends to lead

the algorithm into a deadlock state. Therefore, in this

article, a novel heuristic information function is designed

by combining energy consumption, distance information of

the goal point and distance information of the next point.

The function is calculated as follows:

xij ¼
k1
E jð Þ þ

1

k2djz þ k3dij
ð12Þ
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where djz and dij are the Euclidean distances from the

candidate node j to the goal point z and the current point i,

respectively; And k1, k2 and k3 are the corresponding

coefficients respectively.

3.2.2 Adaptive state transition rule

Heuristic algorithms are very sensitive to parameters and,

therefore, these algorithms generally lack adaptability to

different application scenarios (Stodola et al. 2022). As an

essential step of ACS, the state transition rule plays a

significant role in the optimization process. However, the

control parameter of the state transition rule in ACS is

usually set manually as fixed values and cannot be

dynamically adjusted according to the present state. For

enhancing the algorithm’s ability to perform global sear-

ches, an adaptive state transition rule based on the process

diversity index is proposed, which can be calculated

according to Eqs. (13) and (14).

e tð Þ ¼ q0 þ H tð Þ � uð Þ ; H tð Þ[u
q0 ; H tð Þ�u

�
ð13Þ

s ¼

argmax
j2allowedk

sij tð Þ
� �a

xij tð Þ
� �b

; if q� e tð Þ

sij tð Þ
� �a

xij tð Þ
� �b

P
s2allowedk

sis tð Þ½ �a xis tð Þ½ �b
; if q[ e tð Þ

0 ; else

8>>>>>><
>>>>>>:

ð14Þ

where sij is the pheromone value of the edge ij;e tð Þ is a

dynamic control parameter in the t-th iteration; q is a

random number between [0,1]; q0 is the initial value of the

control parameter; a and b are the coefficients that adjust

the influence of pheromone and heuristic information on

the node selection, respectively;u is a constant and its

value with q0 will be determined by statistical experiments

in Sect. 4.1.

3.2.3 Adaptive global updating rule

For ACS, once all ants have complete their search, pher-

omone is updated on the edges of the most energy-saving

path according to

s t þ 1ð Þ ¼ 1� qð Þ � s tð Þ þ q � Dsmin ð15Þ

Dsmin ¼ Q

Emin

ð16Þ

where q is a pheromone decay parameter;Dsmin is the

pheromone increment on the best path; Q is the update

intensity of pheromones; Emin is the energy consumption of

the best path.

The traditional global updating rule, as shown in

Eq. (15), can effectively converge the ant colony to the

vicinity of the sub-optimal solution. However, it is also

easy to fall into local optimum. To overcome the above

shortcoming, an adaptive global updating rule based on the

path quality index is proposed.

Specifically, the repetitive parts in the effective solution

will be removed after each iteration, and the remaining

parts will be evaluated and mapped to [0,2] according to

Eq. (11). In order to ensure good global search ability in

the early stage and continuously strengthen the conver-

gence capabilities with iterations, this paper proposes a

dynamic threshold m to regulate the number of pheromone

update objects. When the mapping value of the solution is

greater than the threshold value, the corresponding pher-

omone will be rewarded, otherwise no operation will be

performed. The adaptive global updating rule is defined as:

s t þ 1ð Þ ¼ 1� qð Þ � s tð Þ þ q �
Pf
k¼1

Dsk tð Þ þ Dsmin

� �
; if f [ 0

1� qð Þ � s tð Þ þ q � Dsmin ; otherwise

8><
>:

ð17Þ

Dsk tð Þ ¼ Q � f � gk þ 1ð Þ � 1 kð Þ2

f � k � Ek
ð18Þ

m ¼ m0 � m0 � 1ð Þ � 2t

T

� �2

ð19Þ

where f is the number of effective solutions after filtering;

gk is the ranking of the effective solution in this iteration

and m0 is the initial value of the dynamic threshold.

3.2.4 Improved recombination mechanism

The difference between ACS and ACO is that ACS does

not require all ants to concentrate on a certain solution, but

rather allows ants to search in the neighborhood of a certain

solution. Based on this principle, a large number of dif-

ferent solutions will be obtained after each search.

Although the vast majority of these solutions are not

optimal, they probably contain a fraction of the optimal

solution (Gao et al. 2020; Hou et al. 2022). And this part is

not well utilized by ACS. In order to fully utilize the

suboptimal solution, an improved recombination mecha-

nism is proposed in this paper.

Figure 2 is a simple example to illustrate this mecha-

nism. Figure 2a displays the effective paths obtained by the

ant colony after completing a search. Among these paths,

there are paths that contain parts of the global optimal path,

as well as numerous paths with low quality. It is evident

that recombination with inferior paths generally offers only

limited improvement. To enhance search efficiency, the

dynamic threshold is introduced to filter the recombined

objects. Only paths that are larger than the current

threshold are selected for recombination with the current
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optimal path. Figure 2b shows the effective path after fil-

tering. The red path is the current optimal path. Normally,

the current optimal path is the optimal path that the algo-

rithm searches for in the iterative process. By recombining

the current optimal solution with the filtered effective path,

the quality of the current optimal path is improved, as

shown in Fig. 2c.

3.3 Post-processing smoothing approach

3.3.1 Improved turning point optimization method

After discretizing the environment by the grid method, the

ant’s search is constrained to eight directions. Given this

characteristic, the paths obtained through planning usually

have many unnecessary turns. These turns not only

increase the energy cost of the ship in practice but even

make the ship impossible to track. Therefore, an improved

turning point optimization method is proposed to reduce

the number of unnecessary turns in the path.

The proposed method differs from the traditional

method in that it strikes a balance between path smoothness

and energy consumption. The specific implementation

process is as follows: For the original path, the set of all

nodes as

N ¼ N1;N2; . . .;Nn�1;Nnf g ð20Þ

Starting from N1, find the nodes in the set N that can be

directly connected and do not collide with the obstacle.

Without loss of generality, let the set of these nodes as

N� ¼ N2;N3; . . .;Ni�1;Nif g ð21Þ

If it requires less energy to go directly from N1 to Ni than

the original path, the intermediate points are removed, and

Ni is used as the starting point to continue optimizing until

the end point is reached. Otherwise, the nodes are judged

sequentially from far to near until a suitable node is found.

Besides, if none of these nodes satisfy the condition or if

N* is empty, the process is repeated using the next point N2

as the starting point.

As shown in Fig. 3, Path 1 represents the result obtained

using the proposed method, while Path 2 represents the

result obtained using a common method (Ma et al. 2023).

Although Path 2 is smoother and shorter compared to Path

1, it requires 3.44% and 4.05% more energy than the

original path and Path 1, respectively. In contrast, Path 1

sacrifices some of its smoothness to save more energy.

3.3.2 Smoothing method using B-spline curve

To further improve the smoothness of the path to meet the

navigation requirements of the ship, B-spline curve is

introduced in this paper. Since the navigation space of the

ship is discretized, the planned path consists of n nodes,

and these n nodes can be used as control points Pi of a B-

spline curve. The formula of the B-spline curve is shown in

Eq. (22).

(a) Original search results (b) Filtered search results (c) The result after recombination

Fig. 2 Example of the improved recombination mechanism

Fig. 3 Example of the improved turning point optimization method
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P uð Þ ¼
Xnþ1

i¼1

PiNi;k uð Þ ð22Þ

where u is the knot vector, and Ni;k uð Þ is the B-spline based
function defined by the following DeBoor-Cox recursion

formulas (Yang et al. 2019)

Ni;1 uð Þ ¼ 1 ; xi � u\xiþ1

0 ; otherwise

�
ð23Þ

Ni;k uð Þ ¼ u� xið ÞNi;k�1 uð Þ
xiþk�1 � xi

þ xiþk � uð ÞNiþ1;k�1 uð Þ
xiþk � xiþ1

ð24Þ

where xi is the knot values.

3.4 Process of adaptive ant colony system

After introducing the above improving strategies specifi-

cally, a complete adaptive ant colony system is formed

within the following steps:

Step 1: Load the marine environment model for path

planning and initialize the parameters.

Step 2: Calculate the control parameter for this iter-

ation according to Eq. (13). Then, each ant

selects the next node according to Eq. (14).

After completing a move, the pheromone is

locally updated. Repeat this process until the

ant reaches the target point or falls into a

deadlock state.

Step 3: Once all ants have completed their search, all

the duplicated parts of the set for effective

paths will be removed and the remaining parts

will be evaluated according to Eq. (11). And

the dynamic threshold at time t is calculated

using Eq. (19). The remaining part is filtered

based on the dynamic threshold.

Step 4: The filtered effective paths are optimized

based on an improved recombination mecha-

nism and the current optimal path is updated.

Step 5: Update pheromones according to Eqs. (17)

and (18). And the diversity of paths in this

iteration is evaluated using Eqs. (9) and (10).

Step 6: Steps 2–5 will be repeated continuously until

the stopping conditions are satisfied.

Step 7: The optimal path is post-processed based on

the improved turning point optimization

method and the smoothing method using

B-spline curves.

Step 8: The optimal path is outputted.

The flowchart of the energy-saving path planning

method is shown in Fig. 4.

4 Experimental results and discussions

To verify the effectiveness of AACS in solving the prob-

lem of energy-saving path planning for ships, a series of

experiments are conducted in different environments.

Considering that ant colony algorithm is a probabilistic

optimization algorithm, to ensure the reliability of the

experimental results, each group of experiments is repeated

60 times. The simulation configuration used in this work is

the following: Windows 10 64-bit; processor,

Intel(R) Core(TM) i7-12700KF clocked at 3.6 GHz;

memory, 32 GB; simulation software, Matlab R2018b.

4.1 Parameter determination

The selection of parameters is a critical and indispensable

step for ant colony algorithm, which directly affects the

performance of the algorithm. However, since there is no

accepted and effective method for parameter selection,

most studies use statistical experiments to determine the

parameters of the algorithm. Therefore, in order to deter-

mine the suitable parameters for AACS, comprehensive

statistical experiments are performed in this section. For

brevity, only the determination processes for q0, u and m0
are introduced in the environment of Fig. 5. Among them,

q0 is taken in the range of [0.1,0.9] with an interval of 0.1,

u is taken in the range of [0.6,1] with an interval of 0.05,

and m0 is taken in the range of [0,1] with an interval of 0.05.
Other critical parameters in the test are set as shown in

Table 2, and they are determined in a similar process.

To adaptively adjust the proportion of exploration and

exploitation, parameters q0 and u are used in Eq. (13) to

change the control parameter. Different values of q0 and u
are set up for combined testing, and the experimental

results are shown in Fig. 6. According to Eq. (10), the

maximum value of H(t) is 1. Therefore, when u ¼ 1, the

control parameter e tð Þ ¼ q0; that is, the traditional state

transition rule, which can be used as an experimental

comparison benchmark. From the experimental results, it

can be found that the value of q0 has a large impact on both

the energy consumption and the planning efficiency. In

detail, as q0 increases, the energy consumption usually

decreases and then increases. And the magnitude of the

decrease becomes larger rapidly with the increase of u. In
terms of planning efficiency, the efficiency tends to

improve as q0 increases, but there are small fluctuations in

the process. Meanwhile, the overall efficiency tends to

decrease as u increases. Moreover, compared with the

traditional state transition rule, it can be found that both

energy consumption and planning efficiency are improved

after introducing the improvement. In general, the
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recommended value ranges based on the present work are

q0 2 0:4; 0:6½ � and u 2 0:65; 0:75½ �.
The optimal number of ants for contribute to the global

updating rule has been a widely researched topic. In ant

system all the ants contribute, while in the ACS only the

best one does. Obviously, there are intermediate possibil-

ities. Therefore, the parameter m0 is used in Eq. (19) to

dynamically control the number of these ants. The exper-

imental results of m0 are shown in Fig. 7. On the whole, the

performance of the algorithm improves as m0 decreases.

When m0 � 0:6, the performance of the algorithm varies

less with m0. However, when m0 [ 0:6, the performance of

the algorithm degrades rapidly with the increase of m0.
Based on the above, it can be found that the number of ants

contributing to the global updating rule within a reasonable

range should be set more in the early stage and slowly

reduced with iterations. Therefore, the recommended value

ranges is m0 2 0:05; 0:25½ �.

Fig. 4 Flowchart of AACS

Fig. 5 Simulation environment in statistical experiment
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4.2 Experimental simulation in static
environment

To verify the adaptability and effectiveness of AACS in

static environments, three different maps are created for

simulation, and the size of a unit grid is 1 9 1 km. Since

the influence of the marine environment is not taken into

account, the path length is the most important factor in

determining the energy consumption of the ship. In this

section, the path length is used as the energy consumption

index to evaluate the results obtained by all algorithms. In

addition, two novel improved ACO which are IACA (Luo

et al. 2020) and IAACO (Miao et al. 2021), A* algorithm,

ACS, PSO, and an improved pigeon-inspired optimization

(IPIO; Xia et al. 2022) are used for comparison. The

parameters of each algorithm are set as follows:

Table 2 Parameters setting of

AACS in statistical experiment
Parameter m T Q a b q qlocal k1 k2 k3 k

Value 50 100 50 1.1 6 0.2 0.2 125 1 0 0.00001

(a) Energy consumption varying with 0q and ϕ (b) Number of iterations varying with 0q and ϕ

Fig. 6 Results of statistical experiments on q0 and u

(a) Energy consumption varying with 0ν (b) Number of iterations varying with 0ν

Fig. 7 Results of statistical experiments on m0
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• AACS: m = 50, T = 100, Q = 50, a = 1.1, b = 6,

q = 0.2, qlocal = 0.2, k1 = 0, k2 = 1, k3 = 1, k = 1,

q0 = 0.5, u = 0.75, m0 = 0.25.

• IAACO: m = 50, T = 100, Q = 2.5, a = 1, b = 7,

Environment 1: d0 = 0.15, j = 0.2; Environment 2:

d0 = 0.5, j = 0.15; Environment 3: d0 = 0.5, j = 0.2.

• IACA: m = 50, T = 100, Q = 100, a = 1.1, b = 7,

q = 0.2, k = 0.2, Environment 1: q0 = 0.3, N0 = 5;

Environment 2: q0 = 0.3, N0 = 8; Environment 3:

q0 = 0.7, N0 = 8;

• ACS: m = 50, T = 100, Q = 50, a = 1.1, b = 6,

q = 0.2, qlocal = 0.2, q0 = 0.7.

• PSO: m = 100, T = 100, c1 = 2, c2 = 2, w = 0.9.

• IPIO: m = 100, Nc1 = 75, Nc2 = 100, R = 0.2, F = 0.5,

c = 0.5, CR = 0.3.

The simulation results are presented in Table 3, which

primarily compares the optimal results and average results

obtained by each algorithm. Additionally, the convergence

performance of each variant of ACO is also compared to

validate the effectiveness of the improvement. Figure 8

displays the optimal paths obtained by each algorithm in

three different environments. The box-whisker plot of the

path length for each algorithm is shown in Fig. 9.

According to Table 3 and Fig. 9, the results achieved by

AACS are superior to other methods in terms of both

optimal and average results. This indicates that AACS

exhibits better planning performance in static environ-

ments. And as shown in Fig. 8, it is clear that the path

produced by the proposed AACS has less number of turns

and shorter length. Different from other comparison algo-

rithms, the A* algorithm’s path construction process is not

random as it consistently chooses the node with the lowest

cost in the Open list. In addition to the A* algorithm,

AACS and IPIO demonstrate better stability than other

methods in various environments. In terms of convergence

speed, ACS requires the least number of iterations in

Environment 1, while AACS has a faster convergence rate

than other ACO variants in the remaining environment.

However, ACS always falls into the local optimum in

Environment 1. Although the local updating rule in ACS

can effectively improve the ability to jump out of the local

optimum, the objects of the global updating rule in ACS

are too limited. In contrast, the other three ACO variants

have more update objects in addition to the optimal solu-

tion in their global updating rule, which results in better

global search capabilities. But IACA and IAACO update

the pheromones of all complete paths, which can lead to

Table 3 Comparison of

simulation results in static

environment

Environment Algorithm Optimal path length

(km)

Average of path length

(km)

Average number of

iterations

# 1 A* 33.899 33.899 –

PSO 32.728 32.906 –

IPIO 32.728 32.826 –

ACS 33.556 33.759 14.950

IAACO 32.728 33.777 29.017

IACA 32.728 33.263 29.910

AACS 30.814 30.965 21.728

# 2 A* 58.184 58.184 –

PSO 57.012 58.175 –

IPIO 57.012 57.709 –

ACS 57.012 58.171 66.883

IAACO 57.012 57.684 53.283

IACA 57.012 57.523 39.810

AACS 54.122 54.179 9.525

# 3 A* 106.326 106.326 –

PSO 106.326 108.297 –

IPIO 106.326 107.021 –

ACS 122.225 140.462 57.100

IAACO 107.497 115.117 78.133

IACA 114.669 130.601 92.450

AACS 100.386 104.863 32.433

The best result for each section is highlighted in bold
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(a) Optimal paths generated by ACS, IACA, IPIO and AACS in 

Environment 1

(b) Optimal paths generated by IAACO, PSO, A* and AACS in 

Environment 1

(c) Optimal paths generated by ACS, IACA, IPIO and AACS in 

Environment 2

(d) Optimal paths generated by IAACO, PSO, A* and AACS in 

Environment 2

(e) Optimal paths generated by ACS, IACA, IPIO and AACS in 

Environment 3

(f) Optimal paths generated by IAACO, PSO, A* and AACS in 

Environment 3

Fig. 8 Comparison of path planning results in static environment

6648 L. Dong, X. Gan

123



slow convergence in complex scenarios such as Environ-

ment 3.

4.3 Experimental simulation in virtual marine
environment

In this section, the performance of AACS is further vali-

dated in three scenarios that consider environmental

influences. The three scenarios are shown in Fig. 10.

Moreover, ACS, A* algorithm, PSO and IPIO are used for

comparison. The specific configuration of different sce-

narios is shown in Table 4. And the speed of the ship is set

to 8 m/s. The parameters that need to be varied in the

simulation experiment are shown in Table 5.

Figure 11 displays the best path generated by each

method. As shown in Fig. 11, the energy-saving path

considering the environmental impact is more inclined to

follow or reverse the direction of the environmental load to

save energy. Furthermore, the implementation of the post-

processing smoothing approach by AACS results in a path

with fewer turning points and smoother transitions at those

points. This reduces the difficulty of the ship tracking path.

Based on Fig. 12 and Table 6, it can be observed that the

optimal path planned by AACS consumes the least energy,

whereas the optimal path planned by ACS consumes the

most energy. Moreover, except for the A* algorithm,

AACS exhibits the best stability in different environments.

Compared with other comparison algorithms, ACS has the

worst average result in Environment 4, while PSO has the

worst stability in the remaining environment. This com-

parison result not only proves the superiority of AACS

compared with other algorithms, but also verifies the

(a) Box-whisker plot of path length for Environment 1 (b) Box-whisker plot of path length for Environment 2

(c) Box-whisker plot of path length for Environment 3

Fig. 9 Comparison of the solution quality in static environment
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effectiveness of the proposed improvement strategy. In

addition, AACS requires fewer iterations to obtain the

optimal solution in these environments compared to ACS.

The main reason is that the sub-optimal solutions are

effectively utilized by the adaptive global updating rule as

well as the improved recombination mechanism.

(a) Environment 4 (b) Environment 5

(c) Environment 6

Fig. 10 Virtual marine environments for the simulations

Table 4 The configurations of virtual marine environment

Environment Current

speed (m/s)

Current

direction (deg)

Wind speed

(m/s)

Wind

direction

(deg)

Wave

direction

(deg)

Wave

length (m)

Amplitude of

waves (m)

Wave speed

(m/s)

# 4 0.08 2D geostrophic

current

5 30 40 70 0.5 8

# 5 0.08 2D geostrophic

current

5 170 160 70 0.5 8

# 6 0.08 2D geostrophic

current

5 270 270 70 0.5 8

Table 5 Parameters setting in virtual marine environment

Environment k1 k2 k3 k

# 4 200 1 0 0.000004

# 5 1000 1 0 0.000005

# 6 100 1 0 0.000003
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(c) Optimal paths generated by ACS, AACS and A* in Environment 5 (d) Optimal paths generated by AACS, PSO and IPIO in Environment 

5 

(e) Optimal paths generated by ACS, AACS and A* in Environment 6 (f) Optimal paths generated by AACS, PSO and IPIO in Environment 

6 

(a) Optimal paths generated by ACS, AACS and A* in Environment 4 (b) Optimal paths generated by AACS, PSO and IPIO in Environment 

4 

Fig. 11 Comparison of path planning results in virtual marine environment
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4.4 Experimental simulation in actul
environment

In this section, a public database of Danish ferry is used to

further verify the feasibility of the proposed method. The

database contains data related to the case ship between

February 16th and April 12th, 2010, spanning almost two

months (Petersen et al. 2012). These data are publicly

available at http://cogsys.dtu.dk/propulsionmodelling/. To

verify the performance of our method in the actual envi-

ronment, 11 different paths in March are selected for

comparison. The sea area in which the case ship operates is

discretized into 60 9 60 grids with each grid having a

length of 1.053 km. For the safety of navigation, the

unnavigable area in the sea area is extended by 200 m. In

addition, it is assumed that the ship sailed at a constant

speed and the ship speed was obtained by averaging the

data. As the main focus of this work is on saving energy by

taking advantage of environmental factors during the

voyage, only the part of the path that is in the open sea is

retained and evaluated based on the energy consumption

estimation model.

To differentiate between AACS with post-processing

smoothing approach introduced and AACS without post-

processing smoothing approach, we will refer to the former

as AACS*. Figure 13a and b display the comparison

between the planned path by AACS* and the actual path

taken. As the redundant nodes in the path are removed

using the post-processing smoothing approach, the path

planned by AACS* is closer to the real path and can better

meet the motion characteristics of the ship. The results

depicted in Fig. 13c indicate that the optimal paths planned

(c) Box-whisker plot of energy consumption for Environment 6

(a) Box-whisker plot of energy consumption for Environment 4 (b) Box-whisker plot of energy consumption for Environment 5

Fig. 12 Comparison of the solution quality in virtual marine environment
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by AACS in most scenarios without implementing the post-

processing smoothing approach consume more energy than

the actual paths. The main reason for this phenomenon is

the low resolution of the grid map. Although increasing the

resolution of the grid map is an effective way to solve this

problem, it results in a lot of additional time costs. In

contrast, the post-processing smoothing approach is more

appropriate. As can be seen in Fig. 13, the optimal path

after using the post-processing smoothing approach

requires approximately 3.21% less energy than the actual

path of the case ship.

5 Conclusion

To adapt to the energy consumption requirements of ship

technology development on the path, this paper conducts

an insightful study on the problem of ship energy-saving

path planning. By designing a ship energy consumption

estimation model and introducing it into the heuristic

information function of the algorithm, the proposed method

can better exploit environmental factors to save energy.

Also, this improved method not only evaluates the opti-

mization process but also applies the evaluation results to

the various optimization stages of the algorithm. In the

stage of path construction, an adaptive state transition rule

is designed according to the diversity of solutions, which

effectively improves the search performance of the algo-

rithm. During the pheromone update stage, the number of

ants contributing to global updating is dynamically adjus-

ted. Furthermore, an improved recombination mechanism

is proposed to improve the planning efficiency of the

algorithm. In order to further smooth the path and improve

its quality, an improved turning point optimization method

and the smoothing method using B-spline curves are

introduced. Finally, simulation experiments have been

conducted in different scenarios. The simulation results not

only demonstrate the superiority of the proposed method

over comparison algorithms but also verify its feasibility in

practical applications. However, it needs to be acknowl-

edged that this study still has some limitations that should

be addressed in future work.

(1) This paper primarily focuses on energy consumption

in the presence of stable environmental disturbances.

However, during long-term navigation missions,

changes in the environment over time cannot be

ignored. Thus, future research should also consider

the problem of energy consumption optimization in

time-varying environments.

(2) By introducing path post-processing smoothing

technology, the smoothness and continuity of the

path are guaranteed. In order to further consider the

dynamic characteristics of ships, ship dynamics

models should be introduced in future studies.

(3) The lack of experiments in the study limits its

persuasiveness when addressing practical application

problems. In future research, we aim to establish an

experimental platform and conduct experimental

verification.

Table 6 Comparison of simulation results in virtual marine environment

Environment Algorithm Optimal path energy consumption (kJ) Average of path energy consumption (kJ) Average number of iterations

# 4 A* 16,077,208.159 16,077,208.159 –

PSO 16,077,208.159 16,092,952.185 –

IPIO 16,077,208.159 16,087,195.109 –

ACS 16,092,826.930 16,101,573.110 62.417

AACS 15,813,263.762 15,813,263.762 16.783

# 5 A* 13,565,727.638 13,565,727.638 –

PSO 13,565,727.638 13,582,472.826 –

IPIO 13,565,727.638 13,568,311.478 –

ACS 13,566,382.920 13,567,112.460 66.650

AACS 11,743,353.700 11,744,926.180 12.017

# 6 A* 23,220,567.245 23,220,567.245 –

PSO 23,220,567.245 23,554,860.320 –

IPIO 23,220,567.245 23,370,167.395 –

ACS 23,238,631.370 23,480,726.880 62.483

AACS 20,377,078.956 20,395,486.194 18.883

The best result for each section is highlighted in bold
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