
Soft Computing (2024) 28:8497–8511
https://doi.org/10.1007/s00500-023-09509-7

APPL ICAT ION OF SOFT COMPUTING

An artificial bee colony algorithm for the minimum edge-dilation
K -center problem

Manisha Israni1 · Shyam Sundar1

Accepted: 22 November 2023 / Published online: 11 July 2024
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract
This paper studies the minimum edge-dilation K -center (MEDKC) problem for edge-weighted, undirected and connected
graphs. This problem which is NP-hard holds significant relevance in designing efficient routing schemes for computer
networks. To the best of our knowledge, there exists only two variants of genetic algorithm that have been developed for
this problem. In this paper, we propose an artificial bee colony algorithm (ABC_MEDKC) for this problem. The proposed
ABC_MEDKC incorporates two adaptable neighborhood operators specifically tailored for this problem in which the first
neighborhood operator utilizes solution components of another solution, and the second neighborhood operator follows
swapping of center vertices with non-center vertices in a mixed strategies of greedy and random approach. On available
benchmark instances, computational results of ABC_MEDKC indicate that ABC_MEDKC overall outperforms the existing
two variants of genetic algorithm in both solution quality and computational time. ABC_MEDKC also outperforms an existing
polynomial-time approximation algorithm developed for this problem in terms of solution quality. ABC_MEDKC finds new
values for 17 instances out of 91 instances. In addition, the convergence behavior of ABC_MEDKC and the statistical analysis
are also studied.

Keywords Edge-dilation K -center problem · Network · Artificial bee colony algorithm · Neighborhood operators

1 Introduction

The MEDKC problem, proven to be aNP-hard (Könemann
et al. 2004), can be outlined as follows: In a given edge-
weighted, undirected and connected graphG = (V , E, w)—
with V denoting the vertex-set and E representing the
edge-set, and w as the edge-weight function—let Π ⊂ V
refer to a set of K center vertices and every other vertex
v ∈ V is allotted to only one vertex πv ∈ Π , where K > 0
is a parameter. The objective of the MEDKC problem is to
identify a setΠ of K center vertices and assign each remain-
ing vertex to a unique vertex inΠ in a manner that minimizes
the stretch of the solution (Π,πvv∈V). The stretch of a solu-
tion (Π, {πv}v∈V) = max

(u,v)∈V×V
{ dπ (u,v)
dw(u,v)

} is described as the

maximum stretch among all pairs of vertices in G.

B Shyam Sundar
ssundar.mca@nitrr.ac.in

Manisha Israni
misrani.phd2018.mca@nitrr.ac.in

1 Department of Computer Applications, National Institute of
Technology Raipur, Raipur 492010, India

The stretch for a pair of vertices (u, v ∈ V) is the ratio
of the center distance (dπ (u, v)) to the shortest distance
(dw(u, v)) in G, represented as dπ (u,v)

dw(u,v)
, where dπ (u, v) with

respect to Π is defined as

dπ (u, v) = dw(u, πu) + dw(πu, πy) + dw(πy, v). (1)

Here, dw(u, v) signifies the shortest path between u and v.
The optimal solution for a givenG is denoted as Opt(G)=

min(Π, {πv}v∈V) over all possible subsetsΠ and assignment
{πv}v∈V .

In the literature, the MEDKC problem exhibits connec-
tions to various problems (Garcia-Diaz et al. 2019). Some of
these related problems include:

• p-Center problem aims to seek a set of p vertices ∈ V ,
such that the maximum distance from any vertex to its
closest center is asminimum as possible (Davidović et al.
2011; Garcia-Diaz et al. 2019).

• The capacitated K -center problem allows each center to
attend only a certain number of vertices (Khuller and
Sussmann 2000)

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-023-09509-7&domain=pdf
http://orcid.org/0000-0001-9679-0892

8498 M. Israni, S. Sundar

• The fault tolerant K -center problem in which each
selected center must belong to a set of α ≤ K centers
close to it (Khuller et al. 2000).

• The p-next center problem that aims tominimize the total
sum of the distance from the farthest vertex to its nearest
center and the distance between this center to its nearest
alternative center (López-Sánchez et al. 2019).

• The mixed K -center problem in which q centers must be
in the set of vertices, and the remaining vertices can be
anywhere (q < K) (Xu et al. 2018).

Könemann et al. (2004) introduced theMEDKC problem,
inspired by a practical application in routing schemes within
computer networks. In such schemes, each source node has
the capability to route messages to a destination node. A host
(node) stores information about routing paths to every other
host in its routing table. To ensure shortest-path routing for
the entire network, each node requires O(n) entries in its
routing table to retain information about the shortest-path
routing to every other node.

Considering computer networks in modern times com-
prising of millions of nodes poses a challenge for each node
to store information on shortest-path routing for other nodes
because of memory limitations. Attempts have been made
to develop an efficient routing scheme, prioritizing consid-
erations for memory constraints. Researchers focus on two
main objectives: minimize the size of routing tables and/or
minimize the stretch of a routing scheme. Modern routing
protocols such as OSPF (Moy 1998) enable the division of
a network into areas, where each node retains information
about paths within the same area. Routing between nodes in
distinct areas is accomplished through a backbone network
of area border routers connecting these areas. This results in
a decrease in the routing table size for each node, with the
anticipation that the overall network stretch remains accept-
able.

The objective of the MEDKC problem is based on this
principle that K center nodes in computer networks are
exactly the area border routers, while each remaining node in
the network is assigned to a router. The task is to construct a
compact routing scheme that minimizes the maximal stretch
of the entire network.

2 Literature review

The literature has seen numerous papers addressing com-
pact routing schemes, with a primary emphasis on balancing
the trade-off between the size of routing tables and the
stretch. In the initial stages, (Peleg andUpfal 1989) pioneered
compact routing schemes tailored for undirectedgraphs. Sub-
sequently, a routing scheme (Awerbuch et al. 1990;Awerbuch
and Peleg 1990) was proposed for weighted graphs. Tho-

rup and Zwick (2001) introduced a labeled compact routing
scheme with a stretch of 4K -5 using a routing table of
size O(1k)-bit by each vertex. Chechik (2013) enhanced the
outcome of Thorup and Zwick (2001). Eilam et al. (2003)
employed the pivot interval routing (PIR) scheme, achiev-
ing a stretch factor of at most 5 and an average stretch
factor of at most 3. Each vertex utilized a routing table of
size O(

√
n log3/2 n) bits. Cowen (2001) demonstrated that

if O(n/2/3 log4/3 n) space is allowed at each vertex in a
given weighted undirected network (G), a solution can be
found where the routing path between any pair of vertices
((u, v ∈ V)) is at most three times as long as the short-
est u, v-path in G. Krioukov et al. (2007) established that
using sub-linear sized routing tables, a stretch of less than 3
is achievable. Enachescu et al. (2008) applied Internet-like
graphs and proposed a routing scheme with a stretch value of
less than 3 with high probability while retaining o(n) mem-
ory. Later, (Abraham et al. 2004) presented a routing scheme
for a given weighted undirected network achieving a stretch
of 3 using a O(

√
n) space at each vertex. Roditty and Tov

(2015) introduced a routing scheme that surpasses previous
results achieving a stretch of 5+ε usingO(1

ε
n1/3 logD)mem-

ory at each node, the label of each node ofO(logn) size, and
O(1

ε
logD)-bit headers.

Based on the literature discussed above, it is evident
that there is currently no existing solution approach for the
MEDKC problem applicable to practical scenarios. More-
over, the methods developed for creating a compact routing
scheme cannot be directly employed, given the distinct char-
acteristics of the two problems. Compact routing scheme
problems are concernedwith balancing the trade-off between
stretch and the size of routing tables. In contrast, theMEDKC
problem, where memory that is used to store distance infor-
mation is not an issue, aims to find a set of K central nodes
and to arrange the paths over them in amanner thatminimizes
the maximum stretch (Könemann et al. 2004).

Könemann et al. (2004) proved that the MEDKC problem
is a NP-hard problem. They also introduced a polynomial-
time approximation algorithm (referred to as Approx_Kon),
which is at most 4.Opt + 3, where Opt represents the opti-
mal stretch value. The study on the results for the MEDKC
problem (Könemann et al. 2004) is of theoretical impor-
tance, as their proposed approximation algorithm provides
only an upper bound for any solution. Given its status as
an NP-hard problem (Könemann et al. 2004), employing
metaheuristic techniques becomes a favorable approach to
obtain high-quality solutions within a reasonable computa-
tional timeframe. Readers are suggested to study a tutorial on
metaheuristic techniques (Osaba et al. 2021). To the best of
our knowledge, among metaheuristic techniques, only Matic
et al. (2017) proposed twovariants (GA1 andGA2) of genetic
algorithm which are evolutionary algorithms. In both vari-
ants of GA, authors used binary coding and used modified

123

An artificial bee colony algorithm... 8499

crossover and mutation operators, particularly for each GA
variant, to maintain feasibility of solutions throughout the
optimization process. Based on the literature survey, it is
clear that the MEDKC problem is an under-studied problem
in terms of metaheuristic techniques.

Swarm intelligence techniques have been attracting sig-
nificant attention from researchers due to their capability
to find high-quality solutions for numerous hard optimiza-
tion problems. This capability arises from the collective
behavior of decentralized and self-organized swarms. The
foraging behavior of honey bees (swarms) is one of them,
such as BeeHive (Wedde et al. 2004), bees algorithm (Pham
et al. 2006), bee colony optimization algorithm (Lučić and
Teodorović 2001), honeybee search algorithm (Olague and
Puente 2006), and artificial bee colony (ABC) algorithm
(Karaboga 2005). All of them came up with different con-
cepts for designing algorithms. Readers can find a survey on
the bees’ behavior inspiring algorithms in (Karaboga and
Akay 2009; Rajasekhar et al. 2017). Among them, ABC
algorithm, introduced by (Karaboga 2005), has received
world-wide researchers’ attention for solving complex opti-
mization problems across diverse domains (Karaboga et al.
2014; Singh 2009; Sundar et al. 2017; Singh and Sundar
2018a, b; Ghoshal and Sundar 2021, 2020a) since its incep-
tion. This motivated us to work on ABC algorithm for the
MEDKC problem. In this paper, the proposed ABC algo-
rithm uses two adaptable neighborhood operators tailored to
the MEDKC problem. On available benchmark instances,
computational results indicate that the proposed ABC algo-
rithm overall performs superior to the existing two variants of
genetic algorithm in both solution quality and computational
time. The proposed ABC algorithm also exhibits superiority
over an existing polynomial-time approximation algorithm
(Approx_Kon) in terms of solution quality.

The remainder of the paper is summarized as follows:
Sect. 3 provides a concise introduction to the artificial
bee colony algorithm; Sect. 4 discusses an ABC algorithm
tailored for the MEDKC problem; Sect. 5 discusses the
computational results of ABC algorithm in comparison to
the existing approaches; and Sect. 6 discusses concluding
remarks.

3 Artificial bee colony algorithm

Artificial Bee Colony (ABC) algorithm was developed by
Karaboga (2005), inspired by the intelligent foraging behav-
ior of honey bee swarms. Initially designed for optimizing
numerical problems, ABC algorithm has shown its capability
in tackling various optimization problems since its inception.
Relevant studies include (Karaboga et al. 2014; Singh 2009;
Sundar et al. 2017; Singh and Sundar 2018a, b; Ghoshal and
Sundar 2020a, 2021). In ABC algorithm, artificial bees, as

per their task, are classified into three groups—employed
bees, onlooker bees, and scout bees—work in cooperation
to find high-quality solutions within the search space. ABC
algorithm presumes that each artificial employed bee is asso-
ciated with a food source, representing a solution to the
optimization problem at hand. Consequently, the number
of employed bees in the colony equals the number of food
sources. The nectar amount of a food source is associated
with the solution quality (fitness) of its associated solution.
ABC algorithm starts with a set of generated initial solu-
tions (food sources), and the size of this set is referred to as
the employed bee population. Subsequently, ABC algorithm
iteratively (generation) progresses through three phases—
employed bee phase, scout bee phase, and onlooker bee
phase. ABC algorithm continues its iteration by moving
toward better solutions (in terms of fitness) through neighbor-
hood searchmechanismwhile abandoning inferior solutions.
The iteration process concludes when a termination criterion
is met. In ABC algorithm, employed bees and onlooker bees
exploit the search space by determining new neighboring
solutions, while the scout bee explores the search space. One
can find an in-depth understanding of the framework of ABC
algorithm in Karaboga et al. (2014); Singh (2009).

4 ABC algorithm for theMEDKC problem

This section describes our proposed ABC algorithm for the
MEDKC problem (referred to as ABC_MEDKC). In the
beginning of ABC_MEDKC, precompute the shortest paths
between all pairs of vertices of a given input graph (G).

The salient features of ABC_MEDKC are discussed in the
following subsections:

4.1 Solution representation

Each feasible solution is denoted as a set of K vertices acting
as centers. Vertices that are not included in the K center
vertices of the solution are classified as non-center vertices.

4.2 Initial solution generation

Algorithm 1: Pseudo-code of generation of an initial
solution Ei

Ei ← ∅;
U ← ∅;
U ← U ∪ {i} ∀i ∈ V ;
for i ← 1 to K do

Select a random vertex r as a center vertex from U ;
Ei ← Ei ∪ {r};
U ← U \ {r};

123

8500 M. Israni, S. Sundar

Each initial solution, denoted as Ei , within the employed
bee population, is randomly generated, where the size of the
employed bee population is Epop. The initial solution Ei ,
designed to contain K center vertices, begins as an empty
set. Initially, all vertices are assigned to a set calledU . In the
subsequent steps, the procedure, at each iteration, randomly
selects a vertex (denoted as r) from U and assigns it as the
center vertex for Ei . The set U is then updated by removing
the selected vertex r . This iterative process continues until
K vertices are assigned as center vertices to Ei . Vertices
not included in Ei remain in set U and are considered non-
center vertices. Algorithm 1 provides the pseudo-code for the
procedure outlining the generation of the initial solution Ei .

4.3 Fitness computation

Upon the completion of constructing a feasible solution
(denoted as S), the fitness, represented by the stretch of S,
is computed by determining the maximum stretch among all
pairs of vertices in G. This is defined as follows:

max
(u,v)∈V×V

{
dπ (u, v)

dw(u, v)

}
.

Readers are suggested to refer to the introduction section
(Sect. 1) for more details of the stretch of a feasible solution
in the context of the MEDKC problem.

4.4 Probability of selecting a solution

In ABC_MEDKC, each onlooker bee uses a binary tourna-
ment selectionmethod to select a solution from the employed
bee population. This selectionmechanism involves randomly
selecting two different solutions from the employed bee pop-
ulation. The preferred solution, based on the fitness defined
in Sect. 4.3, is chosen with a probability Pbt , while the less
favorable one is chosen with a probability of 1 − Pbt . This
method prioritizes better solutions over inferior ones, encour-
aging more onlooker bees to opt for higher quality solutions.
Additionally, this selection method is employed to choose a
distinct solution in the first neighborhood operator (refer to
Sect. 4.5.1) when determining a new neighboring solution.

4.5 Neighborhood operators

Neighborhood operators in ABC algorithm play a significant
role in finding high-quality solutions for NP-hard combi-
natorial optimization problems (Sundar et al. 2017; Singh
and Sundar 2018a; Pan et al. 2011; Singh 2009; Ghoshal
and Sundar 2020b). For the MEDKC problem, we apply
two neighborhood operators in a mutually exclusive way to
determine a new neighboring solution (say E ′

i) within the
vicinity of the current employed bee solution (say Ei) of

employed bee population. The first neighborhood operator
(Nbr_cv) is based on this fact that if a center vertex is present
in a solution with high fitness, the chance of that center ver-
tex being present in many other solutions of the employed
bee population is high, whereas the second neighborhood
(Nbr_swp) is based on the swapping of center vert(ex/ices)
with non-center vert(ex/ices) in a mixed strategies of greedy
and random approach. The details of each neighborhood are
outlined as follows.

4.5.1 First neighborhood operator (Nbr_cv)

The first neighborhood operator (Nbr_cv) first creates a copy
(say E ′

i) of the current employed bee solution (say Ei), and
then, it selects a solution (say E j), different from Ei , using
binary tournament selection method (see Sect. 4.4 in detail).
A check is performed whether Ei and E j are identical. If
both are different, then a certain number (say nocv_1) of
center vertices of E j are selected randomly, where nocv_1
= max(1, (int)(Para1 × cnt)). Here, cnt in E j is the number
of those center vertices which are different from the center
vertices in Ei . Para1 is a parameterwhose value is determined
empirically. All these selected center vertices from E j are
assigned to E ′

i , making solution E ′
i infeasible. To make E ′

i
feasible, the same number (nocv) of center vertices which are
originally part of Ei is removed from E ′

i . This way makes
E ′
i feasible, resulting in a new feasible neighboring solution

E ′
i .
It is important to emphasize that if both Ei and E j are

identical, the continuation of the first neighborhood opera-
tor (Nbr_cv) is halted, a scenario referred to as a collision
(Singh 2009). Such duplication of two solutions within the
employed bee population poses an obstacle to effectively
searching for high-quality solutions in the search space. To
handle this issue, the employed bee associated with Ei is
designated as a scout. The scout bee then explores and iden-
tifies a new solution (refer to Sect. 4.6). This approach aids
in eliminating a duplicated solution from the employed bee
population, promoting greater diversity within the popula-
tion. However, in the event of a collision during the onlooker
bee phase, the first neighborhood operator (Nbr_cv) is simi-
larly discontinued for the associated solution, and a very large
fitness value is assigned to that particular solution associated
by its onlooker bee.

4.5.2 Second neighborhood operator (Nbr_swp)

The second neighborhood operator (Nbr_swp) is based
on the swapping of center vert(ex/ices) with non-center
vert(ex/ices) in a mixed strategies of greedy and random
approach. Nbr_swp initiates with creating a copy (say E ′

i)
of the current employed solution Ei . Subsequently,Nbr_swp
randomly selects a certain number (say nocv_2) of cen-

123

An artificial bee colony algorithm... 8501

ter vertices from E j , where nocv_2 = max(1, (int)(Para2
×K)). Here, K is the number of center vertices. Para2 is
a parameter whose value is to be determined empirically.
Each selected random center vertex (say vc) of E ′

i is replaced
with a candidate non-center vertex (vnc) of E ′

i in either two
ways. With probability (Para3), Nbr_swp applies a greedy
approach in which a candidate non-center vertex is selected
from a subset of total number of non-center vertices of E ′

i
(say no_ncv = (int)(val × (V -K)), where val is set to 0.1
based on our preliminary experiments to balance a trade-off
between running time and solution quality) based on hav-
ing minimum fitness. Otherwise, Nbr_swp applies a random
approach wherein a candidate non-center vertex is selected
randomly from the total number of non-center vertices of E ′

i
with probability (1-Para3).

4.6 Scout bee phase

During the scout bee phase, if an employed bee solution
ceases to show improvement for a specific number of gen-
erations (referred to as limit), the employed bee promptly
abandons its non-improving solution, transitioning its status
to that of a scout bee. The scout bee then seeks a new solution
through a prescribed procedure (refer to Sect. 4.5.2). Once
the process for finding a new solution concludes, the scout
bee reverts to the state of an employed bee. The parameter
limit to be determined empirically holds substantial impor-
tance in the ABC algorithm. In addition, a collision (as
described in Sect. 4.5.1) can also prompt the transformation
of an employed bee into a scout. It is crucial to note that
the ABC algorithm does not impose an upper limit on the
number of scouts in a single generation. A generation may
witness multiple scouts if the conditions mentioned earlier
(limit and collision conditions) are met; otherwise, no scouts
are encountered.

Algorithm 2 outlines the pseudo-code of ABC_MEDKC
in which the procedure BT SM(E1, E2, . . . , EEpop) is a
binary tournament selection method that provides an index
of a solution in < E1, E2, . . . , EEpop >; Nbr_cv(X1, X2)

is the first neighborhood operator that provides a new neigh-
boring solution (say X ′); and Nbr_swp(X) is the second
neighborhood operator that provides a new neighboring solu-
tion (say X ′).

It is important to highlight that the most time-consuming
part of ABC_MEDKC is the computation of the fitness for
each generated solution. This process involves computing
shortest paths between all pairs of vertices in a given input
G = (V , E, w), incurring a time complexity of O(V 3).
Additionally, it encompasses (i) the computation of center
distance for each pair of vertices, with a complexity ofO((V -
K) × K), and (ii) the computation of stretch for each pair of
vertices, with a complexity of O((V -K)2) (refer to the first
two paragraphs of Sect. 1). To alleviate this computational

Algorithm 2: The pseudo-code of ABC_MEDKC

Generate initial solutions < E1, E2, . . . , EEpop >;
Best ← best solution in < E1, E2, . . . , EEpop >;
while Termination criterion is not reached do

for i ← 1 to Epop do
if u01 < Pnbr then

I ni ← BT SM(E1, E2, . . . , EEpop);
if EIni is identical to Ei then

goto Jump_1;

E ′
i ← Nbr_cv(Ei , EIni);

else
E ′
i ← Nbr_swp(Ei);

if F(E ′
i) < F(Ei) then

Ei ← E ′
i ;

if F(Best) > F(Ei) then
Best ← Ei ;

else if There is no improvement in Ei for a certain
number of generations (i.e., limit) then

Jump_1;
Scout bee phase;
if F(Best) > F(Ei) then

Best ← Ei ;

for i ← 1 to Onpop do
indi ← BT SM(E1, E2, . . . , EEpop);
if u01 < Pnbr then

I n j ← BT SM(E1, E2, . . . , EEpop);
if EIn j is identical to Eindi then

F(Oi) ← ∞;

else
Oi ← Nbr_cv(Eindi , EIn j);

else
Oi ← Nbr_swp(Eindi);

for i ← 1 to Onpop do
if F(Oi) < F(Eindi) then

Eindi ← Oi ;

if F(Best) > F(Eindi) then
Best ← Eindi ;

load, the approachprecomputes the shortest paths between all
pairs of vertices in a given input G = (V , E, w) once. Con-
sequently, the fitness function procedure for each generated
solution utilizes this precomputed information of shortest
paths between all pairs of vertices, reducing the running
time from O(V 3) to O((V -K)2). Another time-consuming
part of ABC_MEDKC involves a greedy approach applied
by Nbr_swp with probability (Para3). In this procedure, a
selected random center vertex is tried for swap with a subset
of total number of non-center vertices (no_ncv) one-by-one,
and the swap that results in the minimum fitness is chosen.
The running time for this greedy approach isO(no_ncv×(V -
K)2), where O((V -K)2) is the running time for computing
the fitness of a newly generated solution after a swap.

123

8502 M. Israni, S. Sundar

5 Computational results

C language is used to code ABC_MEDKC, and experiments
are conducted on a Linux system equipped with an Intel
Core i5-4570 CPU @ 3.2 GHz × 4 processor and 4 GB
of RAM using a single thread. Similar to Matic et al. (2017),
the performance of ABC_MEDKC is tested on the same set
of benchmark instances. ABC_MEDKC is allowed to exe-
cute 20 independent runs for each instance. The termination
criterion for ABC_MEDKC allows to execute for either at
least 150 generations or until the best-so-far obtained solu-
tion does not improve after (K × 30) generations.

In the subsequent subsections, we discuss on instances,
parameter settings, and computational results ofABC_MEDKC
incomparison to existing approaches, including apolynomial-
time approximation algorithm (Approx_Kon) (Könemann
et al. 2004) and two variants of genetic algorithms, namely
GA1 and GA2 (Matic et al. 2017).

5.1 Instances

Similar to GA1 and GA2 (Matic et al. 2017), we have also
used the same two set of instances available in the public
domain. The first set pertains to the BX instances, compris-
ing 7 graphs that are 4-regular and possess varying vertex
sizes from the set {25, 50, 75, 100, 200, 400, 1000} (Blesa
and Xhafa 2000). The second set corresponds to the BB
instances, including 7 graphs: 5 edge-weighted graphs of grid
with sizes ranging from < 15 × 15, 33 × 33, 45 × 5, 50 ×
50 and 100 × 10 >, and two large Steiner tree benchmark
instances, namely steinc5 and steind5, each having 500 ver-
tices and 1000 vertices, respectively (Blum and Blesa 2005).
Each instance is examined for different values of K with in
the set ∈ {2, 3, 4, 5, 10, 15, 20}. It is important to note that
for K=1, the MEDKC problem is notNP-hard (Matic et al.
2017).

5.2 Parameter settings

Given its stochastic nature, ABC_MEDKC encompasses a
set of parameters, and the configuration of each param-
eter is critical for its effectiveness. While tuning these
parameters can be challenging, it is feasible to approximate
the setting of each parameter value in such a way that it
helps ABC_MEDKC in finding solutions of high quality.
To set the value of each parameter used in ABC_MEDKC,
ABC_MEDKC was examined on ten instances, i.e., bb15×
15_1 (k = 20), bb15×15_1 (k = 4), g25-4-01 (k = 10), g50-4-
01 (k =3), g100-4-01 (k =15), g200-4-01 (k =15), bb45×5_1
(k = 20), bb15×15_1 (k = 15), g50-4-01 (k = 15), and g50-
4-01 (k = 10). Drawing from existing literature and our prior
experience with ABC algorithm, we considered a range of
potential values for each parameter (refer to Table 1). Ini-

tial experiments indicated that ABC_MEDKC exhibited the
best overall performance across the ten instances under con-
sideration when Epop = 10, Onpop = 30, limit = 25,
Pbt = 0.85, P_nbr = 0.7, Para1 = 0.1, Para2 = 0.1,
and Para3 = 0.5. One can observe the best potential value
(highlighted in bold) of each parameter and its solution qual-
ity obtained (highlighted in bold) in Table 1.

5.3 Comparison of results of ABC_MEDKC against
state-of-the-art approaches

This section presents a comparative analysis of the results
achieved by ABC_MEDKC against the results of an existing
polynomial-time approximation algorithm (Approx_Kon)
(Könemannet al. 2004) and state-of-the-art approaches (GA1
and GA2 (Matic et al. 2017)) on the BX and BB instances.

Tables 2 and 3 presents the results of Approx_Kon, GA1,
GA2 and ABC_MEDKC on the 49 BX instances and 42 BB
instances respectively. In these Tables 2 and 3, I nstance
column indicates the name of the instance; |V | column rep-
resents the number of vertices in G; the column Value
represents the value of solution returned by Approx_Kon;
the next two three columns, i.e., Best , Avg, AT T B, and
AT ET , respectively, represent the best-so-far value, average
value, average time to reach the best solution (in seconds),
and average total execution time (in seconds) over 20 runs
obtained by GA1 and GA2; the last five columns, i.e., Best ,
Avg, SD, AT T B, and AT ET , respectively, represent the
best-so-far value, average value, standard deviation, average
time to reach the best solution (in seconds), and average total
execution time over 20 runs obtained byABC_MEDKC. The
best Avg results are highlighted in bold in bothTables 2 and3.
The code for the polynomial-time approximation algorithm
(Approx_Kon) (Könemann et al. 2004) for the MEDKC
problem is available to us; we executed this code on consid-
ered instances using the same computer configuration used
for ABC_MEDKC and reported the results of Approx_Kon
in Tables 2 and 3.

Table 2 presents the results of 49 BX weighted instances.
In comparison with GA1, ABC_MEDKC, in terms of Best ,
is better on 10, same on 26 and worse on 13; ABC_MEDKC,
in terms of Avg, is better on 35, same on 9 and worse on 5.
comparing with GA2, ABC_MEDKC, in terms of Best , is
better on 27, same on 16 and worse on 6; ABC_MEDKC,
in terms of Avg, is better on 45, same on 2 and worse on 2.
The results in Table 2 indicate that ABC_MEDKC, in terms
of Avg, demonstrates higher robustness compared to GA1
and GA2. In comparison to Approx_Kon, ABC_MEDKC
outperforms in both Best and Avg on all 49 BX weighted
instances.

Table 3 reports the results of 42 BB weighted instances.
The results reveal that ABC_MEDKC dominates GA1 and
GA2, not only in terms of solution quality, but also in terms of

123

An artificial bee colony algorithm... 8503

Ta
bl
e
1

In
flu

en
ce

of
pa
ra
m
et
er

se
tti
ng

on
th
e
so
lu
tio

n
qu

al
ity

Pa
ra
m
et
er
V
al
ue

bb
15
x1
5_
1
(k
=
20
)b
b1
5x
15
_1

(k
=
4)
g2
5-
4-
01

(k
=
10
)g
50
-4
-0
1
(k
=
3)
g1
00
-4
-0
1
(k
=
15
)g
20
0-
4-
01

(k
=
15
)b
b4
5x
5_
1
(k
=
20
)b
b1
5x
15
_1

(k
=
15

)g
50
-4
-0
1
(k
=
15
)g
50
-4
-0
1
(k
=
10
)

B
es
t

A
vg

B
es
t

A
vg

B
es
t

A
vg

B
es
t

A
vg

B
es
t

A
vg

B
es
t

A
vg

B
es
t

A
vg

B
es
t

A
vg

B
es
t

A
vg

B
es
t

A
vg

E
po

p
5

18
.3
3

19
.1
1

13
40
0
13
9

2.
16

2.
32

11
.7
3

11
.7
9

7.
38

7.
7

10
.6
9

10
.9
9

17
.6
7

18
.2
5

24
.7
1

25
.5
9

4.
32

4.
35

5.
46

5.
48

10
18
.3
3

19
.7
1

13
4.
00

13
8

2.
16

2.
16

11
.7
3

11
.7
3

7.
38

7.
61

10
.6
2

11
.0
1

17
.6
7

18
.5
4

24
.7
1

25
.1
6

4.
32

4.
32

5.
46

5.
46

20
19

20
.1
4

13
4

13
5.
43

2.
16

2.
17

11
.7
3

11
.7
3

7.
38

7.
68

10
.9
2

11
.2
4

18
19
.0
1

24
.7
1

25
.6
8

4.
32

4.
32

5.
46

5.
47

30
19
.5

20
.4
1

13
4

13
4.
12

2.
16

2.
16

11
.7
3

11
.7
3

7.
38

7.
76

11
11
.2
7

18
.3
3

19
.4
4

24
.7
1

26
.1
1

4.
32

4.
32

5.
46

5.
46

O
n
po

p
10

19
.5

20
.8
2

13
4

14
0

2.
16

2.
19

11
.7
3

11
.7
7

7.
38

7.
88

10
.6
9

11
.5
3

19
20
.4
8

25
27
.1
4

4.
32

4.
4

5.
46

5.
57

20
18
.3
3

20
.1
2

13
4

14
1.
02

2.
16

2.
18

11
.7
3

11
.7
8

7.
38

7.
73

10
.7
9

11
.1
4

18
19
.5
2

24
.7
1

25
.7
3

4.
32

4.
35

5.
46

5.
5

30
18
.3
3

19
.7
1

13
4.
00

13
4.
88

2.
16

2.
16

11
.7
3

11
.7
3

7.
38

7.
61

10
.6
2

11
.0
1

17
.6
7

18
.5
4

24
.7
1

25
.1
6

4.
32

4.
32

5.
46

5.
46

li
m
it

10
18
.3
3

20
.5
1

13
4

13
5.
68

2.
16

2.
17

11
.7
3

11
.7
3

7.
38

7.
75

11
11
.1
5

17
.6
7

19
.9
3

24
.7
1

26
.3
6

4.
32

4.
33

5.
46

5.
48

20
19
.5

20
.8
2

13
4

14
0.
3

2.
16

2.
17

11
.7
3

11
.7
4

7.
38

7.
68

10
.6
2

11
.0
8

17
.6
7

18
.8
6

24
.7
1

25
.4
4

4.
32

4.
34

5.
46

5.
51

25
18
.3
3

19
.7
1

13
4.
00

13
8.
88

2.
16

2.
16

11
.7
3

11
.7
3

7.
38

7.
61

10
.6
2

11
.0
1

17
.6
7

18
.5
4

24
.7
1

25
.1
6

4.
32

4.
32

5.
46

5.
46

50
18
.3
3

19
.2
7

13
4

13
9.
6

2.
16

2.
21

11
.7
3

11
.7
3

7.
38

7.
62

10
.6
9

10
.9
6

17
.6
7

18
.5
2

24
.7
1

25
.4
1

4.
32

4.
34

5.
46

5.
47

P b
t

0.
8

18
.3
3

19
.2
7

13
4

13
9.
6

2.
16

2.
17

11
.7
3

11
.7
3

7.
38

7.
57

10
.6
9

11
.0
3

17
.6
7

18
.4
7

24
.7
1

25
.1
6

4.
32

4.
33

5.
46

5.
46

0.
85

18
.3
3

19
.7
1

13
4.
00

13
8.
88

2.
16

2.
16

11
.7
3

11
.7
3

7.
38

7.
61

10
.6
2

11
.0
1

17
.6
7

18
.5
4

24
.7
1

25
.1
6

4.
32

4.
32

5.
46

5.
46

0.
9

18
.3
3

19
.8
8

13
4

13
9.
6

2.
16

2.
18

11
.7
3

11
.8
3

7.
38

7.
63

10
.6
9

11
.0
3

18
18
.7
3

24
.7
1

25
.8
7

4.
32

4.
33

5.
46

5.
46

P
_n

br
0.
6

18
.3
3

19
.5
0

13
4

13
5.
40

2.
16

2.
18

11
.7
3

11
.7
3

7.
38

7.
56

10
.6
9

10
.9
5

17
.6
7

18
.6
2

24
.7
1

25
.2
3

4.
32

4.
33

5.
46

5.
46

0.
7

18
.3
3

19
.7
1

13
4.
00

13
8.
88

2.
16

2.
16

11
.7
3

11
.7
3

7.
38

7.
61

10
.6
2

11
.0
1

17
.6
7

18
.5
4

24
.7
1

25
.1
6

4.
32

4.
32

5.
46

5.
46

0.
8

18
.3
3

19
.8
8

13
4

14
1.
27

2.
16

2.
22

11
.7
3

11
.7
4

7.
38

7.
7

10
.6
2

11
.0
9

17
.6
7

18
.6
2

24
.7
1

25
.8
7

4.
32

4.
33

5.
46

5.
49

P
ar

a1
0.
05

18
.5
7

19
.6
8

13
4

13
8.
88

2.
16

2.
16

11
.7
3

11
.7
4

7.
38

7.
61

10
.6
2

11
.0
1

17
.6
7

18
.5
5

24
.7
1

25
.1
6

4.
32

4.
32

5.
46

5.
46

0.
1

18
.3
3

19
.7
1

13
4.
00

13
8.
88

2.
16

2.
16

11
.7
3

11
.7
3

7.
38

7.
61

10
.6
2

11
.0
1

17
.6
7

18
.5
4

24
.7
1

25
.1
6

4.
32

4.
32

5.
46

5.
46

0.
2

18
.3
3

19
.7
9

13
4

13
8.
88

2.
16

2.
2

11
.7
3

11
.7
3

7.
38

7.
75

10
.6
2

11
17
.6
7

19
.1
7

24
.7
1

25
.1
8

4.
32

4.
34

5.
46

5.
46

P
ar

a2
0.
05

18
.3
3

18
.8
4

13
4

13
8.
88

2.
16

2.
16

11
.7
3

11
.7
3

7.
38

7.
61

10
.6
2

11
.0
1

17
.6
7

17
.9
5

24
.7
1

25
.1
6

4.
32

4.
32

5.
46

5.
46

0.
1

18
.3
3

19
.7
1

13
4.
00

13
8.
88

2.
16

2.
16

11
.7
3

11
.7
3

7.
38

7.
61

10
.6
2

11
.0
1

17
.6
7

18
.5
4

24
.7
1

25
.1
6

4.
32

4.
32

5.
46

5.
46

0.
2

20
.0
0

20
.8
6

13
4

14
1.
27

2.
16

2.
18

11
.7
3

11
.7
3

7.
5

7.
93

11
.1
8

12
.3

18
.0
8

20
.1
1

24
.7
1

25
.8
7

4.
32

4.
37

5.
46

5.
51

P
ar

a3
0.
4

18
.3
3

19
.7
1

13
4

13
8.
88

2.
16

2.
16

11
.7
3

11
.7
3

7.
38

7.
61

10
.6
2

11
.0
1

17
.6
7

18
.5
4

24
.7
1

25
.1
6

4.
32

4.
32

5.
46

5.
46

0.
5

18
.3
3

19
.7
1

13
4.
00

13
8.
88

2.
16

2.
16

11
.7
3

11
.7
3

7.
38

7.
61

10
.6
2

11
.0
1

17
.6
7

18
.5
4

24
.7
1

25
.1
6

4.
32

4.
32

5.
46

5.
46

0.
6

18
.3
3

19
.7
1

13
4

13
8.
88

2.
16

2.
16

11
.7
3

11
.7
3

7.
38

7.
61

10
.6
2

11
.0
1

17
.6
7

18
.5
4

24
.7
1

25
.1
6

4.
32

4.
32

5.
46

5.
46

123

8504 M. Israni, S. Sundar

computational time. Comparing with GA1, ABC_MEDKC,
in terms of Best , is better on 8 and is same on 34;
ABC_MEDKC, in terms of Avg, is better on 33, same on
8 and worse on 1. Comparing with GA2, ABC_MEDKC,
in terms of Best , is better on 34 and is same on 8;
ABC_MEDKC, in terms of Avg, is better on 41 and is
same on 1. In comparison to Approx_Kon, ABC_MEDKC
outperforms in both Best and Avg on all 42 BB weighted
instances.

In terms of computational time (ATET), ABC_MEDKC is
much faster thanGA1 andGA2 on 49BXweighted instances
except one instance (g1000-1-01 (K = 20)) on GA1 reported
in Table 2; however, ABC_MEDKC ismuch better thanGA1
in terms of Avg on this instance (g1000-1-01 (K =20)). Also,
ABC_MEDKC is much faster than GA1 and GA2 on 42 BB
weighted instances except one instance (steind5 (K = 20))
reported in Table 3; however, ABC_MEDKC is much better
than GA1 in terms of Avg, and is much better than GA2 in
terms of Best and Avg on this instance (steind5 (K = 20)).
It is important to note that the execution environment for
GA1 and GA2 in (Matic et al. 2017) was a PC with a 3.40
GHz Intel Core i7-4770 processor and 8 GB RAM, while
ABC_MEDKC is executed on a PC with a 3.2 GHz× 4 Intel
Core i5 processor and 4 GB RAM.

In summary, the results of ABC_MEDKC on 49 BX
weighted instances and 42 BB weighted instances highlight
its superior robustness compared to GA1 and GA2, in both
solution quality (Avg) and computational time (AT ET).
Additionally, ABC_MEDKC identifies new Best values in
17 out of 91 instances, as indicated by the instances high-
lighted in bold in Tables 2 and 3.

5.4 Convergence behavior of ABC_MEDKC

This subsection discusses the convergence behavior of
ABC_MEDKC. To carry out this experimentation, three
instances < g400_4_01 (k = 10), bb33×33_1 (k = 15),
steinc5 (k = 10) > are considered. Figure1a–c illustrates
the evolution of solution quality (Avg) against the succes-
sive average number of generations. The X-axis represents
the “Average Number of Generations" over 20 runs, while
the Y -axis represents the “Average Solution Quality" over
20 runs. It is noteworthy that we opted for successive aver-
age number of generations instead of average total execution
time (ATET) or the termination criterion of ABC_MEDKC,
as the total number of generations executed within a given
termination criterion of ABC_MEDKC can be easily com-
puted. The curves in Fig. 1a–c depict a continuous decrease
in the fitness of the solution obtained by ABC_MEDKCwith
the increase in generations.

5.5 Impact of neighborhood operators (Nbr_cv and
Nbr_swp)

Before considering the use of both neighborhood opera-
tors (Nbr_cv and Nbr_swp) in a mutually exclusive way in
ABC_MEDKC, a preliminary experiment was conducted.
Two variants, namely, ABC_Nbr_cv and ABC_Nbr_swp,
were created by disablingNbr_swp andNbr_cv, respectively,
in ABC_MEDKC. These variants were executed on some
benchmark instances using a setup similar toABC_MEDKC.
The results, including the average solution quality (Avg)
and average total execution time (AT ET) of ABC_Nbr_cv,
ABC_Nbr_swp, and ABC_MEDKC, are reported in Table
4. The findings indicate that ABC_MEDKC, utilizing both
neighborhood operators (Nbr_cv and Nbr_swp) in a mutu-
ally exclusive way, achieves better average solution quality
(highlighted in bold) on most of the considered instances
while requiring less computational time. It is noteworthy
that the Nbr_swp operator is computationally more expen-
sive compared to Nbr_cv. The use of both operators (Nbr_cv
andNbr_swp) in amutually exclusive way in ABC_MEDKC
demonstrates its effectiveness in obtaining high-quality solu-
tions within a reasonable computational time.

5.6 Statistical analysis

For the statistical analysis, a two-tailed nonparametric
Wilcoxon’s signed-rank test was conducted on the best
(Best) and average solution quality (Avg) values across 91
benchmark instances (49 BX instances and 42 BB instances,
as reported in Tables 2 and 3) usingWilcoxon’s Signed-Rank
test calculator (Wilcoxon 1945). The significance criterion
was set at 0.05. The results of Wilcoxon’s signed-rank test,
reported in Tables 5 and 6, show that ABC_MEDKC finds
significant difference with GA1 and GA2.

6 Conclusion

This paper presents an artificial bee colony algorithm,
denoted as ABC_MEDKC, for the minimum edge-dilation
K -Center (MEDKC) problem on a connected, undirected
and edge-weighted graph. ABC_MEDKC incorporates two
adaptable neighborhood operators specifically tailored for
this problem. The synergistic coordination of all com-
ponents within ABC_MEDKC contributes to achieving
solutions of high quality for the MEDKC problem. To
evaluate its performance, ABC_MEDKC is compared with
state-of-the-art approaches, namely two variants (GA1 and
GA2) of the genetic algorithm (Matic et al. 2017), using
available benchmark instances. Computational results show
that ABC_MEDKC dominates the existing two variants of
genetic algorithm in both solution quality and computational

123

An artificial bee colony algorithm... 8505

Ta
bl
e
2

R
es
ul
ts
of

A
p
pr

ox
_
K
on

,G
A
1,

G
A
2,

an
d
A
B
C
_M

E
D
K
C
on

B
X
in
st
an
ce
s

In
st
an
ce

|V
|

K
A
p
pr

ox
_
K
on

G
A
1

G
A
2

A
B
C
_M

E
D
K
C

V
al
ue

B
es
t

A
vg

A
T
T
B

A
T
E
T

B
es
t

A
vg

A
T
T
B

A
T
E
T

B
es
t

A
vg

SD
A
T
T
B

A
T
E
T

g2
5-
4-
01

25
2

20
.6
00
00
0

10
.3
33
33
3

10
.3
33
33
3

0.
03
3

0.
60
7

10
.3
33
33
3

10
.3
33
33
3

0.
00
6

0.
67
6

10
.3
3

10
.3
3

0
0.
00

0.
01

3
8.
34
48
28

8
8

0.
02
2

0.
77
3

8
8

0.
01
1

0.
61
4

8
8

0
0.
00

0.
01

4
7.
16
66
67

5.
4

5.
4

0.
21
6

1
5.
4

5.
43
51
35

0.
05
6

0.
74
6

5.
96

5.
96

0
0.
00

0.
01

5
5.
96
55
17

5
5.
11
44
79

0.
19
8

1.
11
2

5.
14
28
57

5.
19
65
71

0.
04

0.
74
7

5.
14

5.
14

0
0.
00

0.
01

10
4.
91
66
67

2.
6

2.
65
14
29

0.
68
4

2.
02
3

2.
6

2.
82
10
22

0.
40
6

1.
71
3

2.
16

2.
16

0
0.
00

0.
02

15
4.
91
66
67

2.
11
11
11

2.
11
11
11

0.
42

2.
34
1

2.
11
11
11

2.
11
71
11

0.
55
6

2.
74
6

1.
74

1.
74

0
0.
00

0.
01

20
4.
91
66
67

1.
82
35
29

1.
82
35
29

0.
13
6

2.
28
9

1.
82
35
29

1.
82
81
86

0.
19
2

3.
37
7

1.
13

1.
13

0
0.
00

0.
02

g5
0-
4-
01

50
2

22
.4
28
57
1

16
16
.7

0.
28
5

3.
68
3

16
16
.2
45
23
8

0.
06

0.
73
5

17
17

0
0.
00

0.
03

3
14
.4
28
57
1

11
.2
22
22
2

11
.9
52
35

1.
04

4.
48
5

11
.2
22
22
2

11
.9
11
11
1

0.
09
8

0.
90
9

11
.7
3

11
.7
3

0
0.
00

0.
04

4
14
.4
28
57
1

9.
58
82
35

10
.6
23
64
8

0.
73
1

4.
42
1

9.
58
82
35

10
.7
32
25

0.
14
2

1.
01
9

10
.2
7

10
.2
9

0.
07

0.
01

0.
04

5
14
.4
28
57
1

9
9.
17
77
45

1.
10
5

4.
67
2

9
9.
61
83
84

0.
20
3

1.
27
2

9
9.
05

0.
15

0.
01

0.
05

10
8.
70
83
33

5
5.
75
13
02

2.
26
7

6.
62
3

5
6.
11
80
29

1.
07
3

4.
09
9

5.
46

5.
46

0
0.
03

0.
11

15
7.
16
66
67

4.
23
40
43

4.
55
42
1

2.
62
3

9.
18
4

4.
23
40
43

4.
53
19
34

2.
46
8

7.
54
7

4.
32

4.
32

0
0.
04

0.
15

20
5.
36
36
36

3.
19
56
52

3.
65
58
56

3.
77
4

11
.2
88

3.
32
83
58

3.
78
11
73

3.
82
4

10
.9
86

3.
29

3.
32

0.
04

0.
11

0.
3

g7
5-
4-
01

75
2

27
.7
50
00
0

22
.6
66
66
7

22
.6
66
66
7

0.
30
3

4.
14
9

22
.6
66
66
7

23
.2
14
58
3

0.
15
6

1.
28
7

22
.6
7

22
.6
7

0
0.
01

0.
09

3
31
.7
50
00
0

17
.7
5

17
.7
62
5

0.
75
3

4.
73
2

17
.7
5

17
.9
64
16
7

0.
13
7

1.
83
7

17
.8

17
.8

0
0.
01

0.
09

4
19
.6
66
66
7

16
.2

16
.2
02
5

0.
14
3

4.
39
7

16
.2

16
.4
07
5

0.
12
2

2.
10
1

16
.2

16
.2

0.
01

0.
02

0.
1

5
18
.3
33
33
3

11
.6
66
66
7

12
.4
20
44
9

0.
72
2

4.
25
7

11
.6
66
66
7

13
.6
69
03

0.
64
3

2.
95
1

11
.6
7

11
.6
7

0
0.
04

0.
12

10
11
.0
47
61
9

7.
66
66
67

8.
48
92
12

2.
50
7

7.
62
9

8.
30
43
48

9.
26
00
38

1.
08
6

6.
07
5

7.
67

7.
94

0.
5

0.
09

0.
27

15
10
.7
40
74
1

5.
46
66
67

6.
46
84
17

4.
57
5

11
.0
43

5.
46
66
67

6.
42
53
34

3.
21
2

10
.3
24

5.
47

5.
69

0.
1

0.
17

0.
45

20
9.
00
00
00

4.
11
62
79

4.
78
64
97

6.
77
2

14
.9
76

4.
48
21
43

4.
96
95
06

11
.0
35

19
.8
92

4.
33

4.
59

0.
18

0.
36

0.
86

123

8506 M. Israni, S. Sundar

Ta
bl
e
2

co
nt
in
ue
d

In
st
an
ce

|V
|

K
A
p
pr

ox
_
K
on

G
A
1

G
A
2

A
B
C
_M

E
D
K
C

V
al
ue

B
es
t

A
vg

A
T
T
B

A
T
E
T

B
es
t

A
vg

A
T
T
B

A
T
E
T

B
es
t

A
vg

SD
A
T
T
B

A
T
E
T

g1
00
-4
-0
1

10
0

2
33
.3
33
33
3

30
.2
5

30
.2
5

0.
02
5

3
30
.2
5

30
.4
04
16
7

0.
00
8

1.
56
2

30
.2
5

30
.2
5

0
0.
00

0.
17

3
29
.2
30
76
9

24
.3
33
33
3

24
.5
66
66
6

0.
79
2

4.
87
9

24
.5
55
55
6

24
.9
77
77
8

0.
01
9

2.
34
8

24
.3
3

24
.4
3

0.
24

0.
04

0.
18

4
29
.2
30
76
9

13
.3
33
33
3

14
.2
29
98
2

0.
64
4

4.
94
6

14
17
.5
60
80
6

0.
41

2.
92
6

14
14
.0
4

0.
18

0.
05

0.
19

5
15
.5
00
00
0

12
.2
4

13
.3
36
5

0.
74
5

5.
44

13
.3
33
33
3

14
.0
51
92
3

0.
45
8

3.
50
8

12
.2
4

13
.0
1

0.
5

0.
04

0.
2

10
12
.5
38
46
2

8.
93
75

9.
74
79
68

3.
38
3

10
.0
62

9.
30
76
92

10
.1
17
31
3

1.
57
3

9.
16
2

8.
94

9.
14

0.
15

0.
22

0.
57

15
13
.4
61
53
8

7.
37
5

8.
11
43
72

6.
53
5

15
.9
02

7.
54
54
55

8.
26
25
83

4.
01
9

16
.5
6

7.
38

7.
61

0.
18

0.
33

0.
87

20
8.
52
63
16

6.
05
26
32

7.
15
94
88

9.
68
9

21
.3
23

5.
93
18
18

7.
09
54
3

8.
28
4

25
.8
43

6.
26

6.
47

0.
14

0.
83

1.
84

g2
00
-4
-0
1

20
0

2
78
.0
00
00
0

40
.1
42
85
7

40
.1
42
85
7

0.
24
5

9.
49
3

40
.1
42
85
7

41
.1
25
71
4

0.
33
3

6.
94
5

40
.1
4

40
.1
4

0
0.
04

1.
04

3
31
.8
00
00
0

31
.8

31
.8

0.
49

11
.7
86

31
.8

32
.3
65
71
4

0.
28
3

9.
29
8

31
.8

31
.8

0
0.
05

1.
04

4
31
.8
00
00
0

27
.1
11
11
1

28
.8
11
11
1

1.
03
9

13
.3
48

29
29

1.
39
3

11
.4
77

27
.1
1

27
.9
6

0.
94

0.
27

1.
13

5
31
.9
23
07
7

22
.4
54
54
5

23
.6
62
09
3

2.
35
3

15
.6
49

23
26
.8
13
88
9

4.
44
5

15
.8
04

22
.6

22
.6
2

0.
09

0.
31

1.
14

10
27
.1
42
85
7

16
.6

17
.5
32
97
6

5.
99
1

25
.6
66

17
18
.5
21
62
8

12
.2
29

32
.0
72

15
.6
2

16
.2
2

0.
42

1.
78

3.
8

15
20
.0
00
00
0

11
12
.8
05
14
8

17
.5
28

40
.4
4

11
.1
81
81
8

14
.9
53
01
4

11
.7
52

40
.5
2

10
.6
2

11
.0
1

0.
17

2.
18

5.
06

20
13
.4
61
53
8

10
.3
93
93
9

11
.0
74
20
2

19
.7
36

48
.7
63

10
.6
85
71
4

11
.2
25
31

18
.0
98

56
.6
71

10
.0
9

10
.4
1

0.
18

5.
45

11
.6
3

g4
00
-4
-0
1

40
0

2
44
1.
00
00
00

93
93

1.
64
8

36
.5
37

93
15
7.
1

5.
89
5

31
.4
97

93
93

0
0.
34

7.
3

3
91
.0
00
00
0

71
.5

71
.5

5.
49
7

47
.9
88

72
82
.9
08
33
3

8.
56
2

41
.1
3

71
.5

71
.5

0
0.
93

7.
17

4
91
.0
00
00
0

55
55
.3
75

8.
24
5

52
.6
75

55
.6
66
66
7

66
.2
33
33
3

7.
84
4

43
.9
16

55
55

0
1.
77

7.
24

5
91
.0
00
00
0

51
.4

54
.6
4

10
.1
32

60
.3
28

55
65
.2
75

6.
45
7

46
.7
97

51
.4

53
.5
6

1.
76

1.
64

7.
56

10
54
.0
00
00
0

29
32
.1
21
90
5

32
.1
56

95
.3
82

31
.5

38
.2
48
57
1

22
.0
96

70
.5
35

25
.8
6

29
.4
8

1.
11

12
.0
3

23
.8
5

15
47
.4
44
44
4

21
24
.4
48
88
9

41
.6
24

11
9.
68
4

24
.6

29
.6
86
27

31
.3
25

91
.1
47

21
.1

22
.3
4

0.
47

20
.4
0

38
.7
3

20
25
.4
00
00
0

17
.7
69
23
1

20
.5
12
64
9

95
.5
92

19
3.
91
2

19
.4

25
.0
71
42
9

30
.8
28

10
5.
14
5

17
.8

19
.0
5

0.
65

41
.2
2

85
.0
4

g1
00
0-
4-
01

10
00

2
19
6.
00
00
00

13
8

13
8.
2

38
.1
95

46
7.
51
9

14
3

15
9.
9

29
.2
03

22
4.
29
6

13
8

13
8

0
13
.9
4

10
2.
3

3
19
6.
00
00
00

11
4

11
4.
4

33
.0
21

48
3.
74
3

12
2

14
2.
05

40
.4
86

24
8.
21
1

11
4

11
4

0
10
.2
6

10
0.
7

4
14
3.
00
00
00

90
94
.0
5

12
1.
11
6

55
8.
24
9

10
7.
66
66
67

12
1.
35

84
.4
62

28
4.
88
6

90
90
.4
5

1.
96

39
.8
3

11
0.
94

5
14
3.
00
00
00

78
88
.0
5

16
0.
48
5

59
4.
20
3

90
11
0.
85

94
.6
91

52
1.
56
4

76
.3
3

80
.4
8

4.
93

63
.5
2

14
2.
05

10
11
8.
75
00
00

55
63
.0
08
33
3

37
1.
54
8

89
1.
10
3

70
.5

79
.3
66
66
7

26
3.
64
5

75
8.
72
9

54
.3
3

57
.0
1

2.
2

18
2.
29

35
6.
4

15
10
2.
00
00
00

45
.6
66
66
7

55
.4

33
0.
47
2

90
8.
48
6

57
65
.8

24
1.
23
5

81
4.
24
7

43
.6
7

45
.2
7

1.
81

35
8.
84

69
0.
12

20
70
.8
33
33
3

38
.5

46
.1
97
61
9

42
9.
58
9

98
8.
09
1

53
64
.7

27
6.
54
5

90
5.
57
3

38
.5

40
.5

1.
33

62
0.
23

13
95
.7
3

123

An artificial bee colony algorithm... 8507

Ta
bl
e
3

R
es
ul
ts
of

A
p
pr

ox
_
K
on

,G
A
1,

G
A
2,

an
d
A
B
C
_M

E
D
K
C
on

B
B
w
ei
gh
te
d
in
st
an
ce
s

In
st
an
ce

|V
|

K
A
p
pr

ox
_
K
on

G
A
1

G
A
2

A
B
C
_M

E
D
K
C

V
al
ue

B
es
t

A
vg

A
T
T
B

A
T
E
T

B
es
t

A
vg

A
T
T
B

A
T
E
T

B
es
t

A
vg

SD
A
T
T
B

A
T
E
T

15
×

15
25
5

2
85
5.
00
00
00

40
3

40
3

0.
22
6

12
.2
07

42
3

42
3

0.
01
9

6.
13
7

40
3

40
3

0
0.
05

1.
22

3
24
7.
00
00
00

15
7

15
9.
4

1.
63
6

15
.1
48

16
7

17
6.
05

0.
21
7

9.
86
5

15
7

15
7

0
0.
15

1.
23

4
20
9.
00
00
00

13
4

14
2.
4

2.
07
1

15
.9
52

14
8

15
2.
35

0.
51
7

11
.6
76

13
4

13
8.
88

6.
64

0.
39

1.
31

5
20
9.
00
00
00

98
10
0.
50
83
33

3.
72
2

18
.0
17

98
11
6.
59
33
33

7.
43
2

21
.2
48

98
98

0
0.
38

1.
29

10
81
.4
00
00
0

50
.5
55
55
6

53
.2
66
66
7

7.
22
3

28
.8
5

51
57
.5

10
.5
16

29
.5
62

50
.5
6

50
.6
7

0.
19

0.
74

2.
31

15
57
.3
75
00
0

25
31
.9
06
66
7

14
.3
64

41
.6
38

26
.2
5

36
.4
63
37
3

11
.3
21

36
.4
33

24
.7
1

25
.1
6

0.
56

2.
85

5.
18

20
62
.7
14
28
6

20
.6
66
66
7

23
.1
9

20
.6
56

53
.1
42

21
23
.4
60
83
3

22
.3
03

52
.2
67

18
.3
3

19
.7
1

0.
75

6.
76

12
.4
7

33
×

33
10
89

2
18
63
.0
00
00
0

10
87

10
88

10
5.
54
1

77
2.
05
8

10
87

11
34
.3

32
.7
31

59
1.
81
8

10
87

10
91
.2

7.
53

31
.4
4

11
7.
11

3
18
63
.0
00
00
0

70
7

70
7

15
9.
03
1

91
0.
83
5

70
7

74
3

83
.9
01

67
3.
26
5

70
7

70
7

0
23
.2

11
6.
78

4
93
1.
00
00
00

60
9

61
3.
7

36
3.
14
8

10
60
.1
07

64
3

68
8.
7

20
8.
04
1

80
8.
34
4

60
9

61
1

4
66
.5
7

13
1.
73

5
79
5.
00
00
00

60
1

60
7

19
5.
90
2

10
12
.9
1

59
5

62
8.
4

14
8.
95
1

82
1.
42
8

59
5

60
0.
6

4.
13

44
.3
4

12
9.
09

10
58
1.
00
00
00

31
9

36
8.
35

65
0.
38
6

13
54
.2
73

34
3

38
3.
7

22
2.
94
7

96
8.
63

31
9

32
7.
1

9.
01

26
5.
81

41
5.
42

15
42
3.
00
00
00

19
5

25
8.
41
66
67

90
2.
79
2

15
48
.0
94

22
7

28
4.
31
66
67

38
3.
55
8

11
30
.5
92

19
5

21
1.
9

9.
65

41
9.
97

64
5.
36

20
28
1.
00
00
00

18
5

20
6.
15

74
1.
42
2

15
19
.9
92

18
5

21
5.
15

34
8.
99
1

11
49
.5
19

14
8

16
8.
1

6.
61

89
0.
89

14
70
.5
9

45
×

5
22
5

2
96
3.
00
00
00

48
3

48
3

0.
29
3

12
.4
29

48
3

48
3

0.
08
5

10
.0
3

48
3

48
3

0
0.
04

1.
23

3
33
7.
00
00
00

20
8.
33
33
33

20
8.
33
33
33

0.
63
8

15
.0
7

20
8.
33
33
33

24
6.
6

2.
28
5

14
.2
31

20
8.
33

20
8.
33

0
0.
12

1.
22

4
33
7.
00
00
00

18
3

18
3

1.
54
9

16
.7
7

18
3

19
8.
53
33
33

3.
47
8

16
.4
29

18
3

18
3

0
0.
15

1.
23

5
33
7.
00
00
00

14
6.
33
33
33

15
0.
9

3.
22
2

18
.2
21

14
6.
33
33
33

17
5.
03
33
33

1.
97
6

17
.1
22

14
6.
33

14
6.
83

2.
18

0.
62

1.
49

10
85
.6
66
66
7

59
64
.9
26
66
7

4.
19
3

23
.0
6

61
73
.9
4

9.
11
6

25
.9

59
59
.1

0.
44

0.
83

2.
39

15
49
.0
00
00
0

32
37
.1
5

8.
84
8

32
.7
95

34
40
.7
33
33
3

14
.3
71

40
.8
08

32
33
.0
3

1.
25

2.
02

4.
33

20
38
.0
00
00
0

19
25
.6
08
33
3

19
.1
3

44
.7
55

39
5

47
3.
3

22
60
.5
95

66
77
.6

17
.6
7

18
.5
4

0.
63

7.
31

12
.9
6

123

8508 M. Israni, S. Sundar

Ta
bl
e
3

co
nt
in
ue
d

In
st
an
ce

|V
|

K
A
p
pr

ox
_
K
on

G
A
1

G
A
2

A
B
C
_M

E
D
K
C

V
al
ue

B
es
t

A
vg

A
T
T
B

A
T
E
T

B
es
t

A
vg

A
T
T
B

A
T
E
T

B
es
t

A
vg

SD
A
T
T
B

A
T
E
T

10
0

×
10

10
00

2
30
37
.0
00
00
0

16
89

16
89

35
.1
78

48
4.
53
5

16
89

17
33

22
.1
28

27
1.
1

16
89

16
89

0
7.
71

96
.5
1

3
14
97
.0
00
00
0

10
41

10
41
.1

16
7.
01
4

62
3.
22
7

11
21

11
46
.3

30
.0
88

35
1.
56
7

10
41

10
41

0
22
.3
8

90
.3
2

4
13
99
.0
00
00
0

86
7

86
9.
1

16
3.
16
7

62
3.
72
4

93
7

10
41

59
.0
17

36
6.
92
4

86
7

86
9.
1

5
39
.5
8

96

5
12
93
.0
00
00
0

70
3

71
8.
7

12
7.
25
7

62
6.
31
2

74
3

83
1.
4

41
.4
86

38
8.
88
5

70
3

70
3.
6

2.
62

41
.5
7

10
3.
33

10
63
3.
00
00
00

39
5

40
5.
1

19
4.
57
5

76
0.
97
3

39
7

48
7.
1

88
.9
35

49
2.
90
7

37
5

39
1.
9

8.
8

11
1.
23

22
8.
9

15
52
7.
00
00
00

26
5

29
7.
3

33
3.
96
8

88
6.
38
5

32
6

35
9

16
9.
16
2

60
4.
22

25
9

26
9.
35

10
.7
5

33
1.
72

50
7.
5

20
34
7.
00
00
00

18
9

22
8.
12
33
33

53
2.
29
6

10
62
.3
99

22
3

26
1.
4

17
3.
97

64
7.
44
2

18
3

19
4.
6

6.
91

66
7.
07

11
20
.4

st
ei
nc
5

50
0

2
46
3.
00
00
00

25
7

25
7.
7

10
.1
94

75
.4
83

26
1

27
8.
6

5.
96
7

54
.8
61

25
7

25
7

0
0.
52

12
.4

3
53
7.
00
00
00

20
3

20
4.
6

13
.1
31

82
.8
95

22
1

25
1.
1

14
.0
68

72
.9
82

20
3

20
3

0
2.
26

12
.4
7

4
35
7.
00
00
00

17
9

18
2.
85

8.
91
1

83
.4
91

18
6

21
8.
85

5.
65
6

68
.2
37

17
9

17
9.
35

1.
53

4.
82

12
.6
1

5
27
5.
00
00
00

16
9

17
0.
55

24
.2
68

10
3.
02
1

17
6

20
0.
45

24
.6
27

93
.1
2

16
9

16
9

0
4.
71

13
.1
8

10
13
5.
00
00
00

88
96
.7
5

38
.4
33

13
8.
41
1

99
12
9.
27
5

48
.7
09

13
6.
83
8

88
89
.3
5

3.
21

13
.4
2

29
.5
8

15
97
.0
00
00
0

52
.4
28
57
1

62
.5
27
38
1

88
.0
57

19
9.
47
2

61
.5

97
.9
75

56
.5
65

16
1.
84
6

52
.4
3

54
2.
54

43
.4
3

66
.9
3

20
10
0.
00
00
00

47
.6
66
66
7

54
.9
78
57
1

88
.1
44

23
1.
48
2

49
.5
71
42
9

68
.4
00
79
4

71
.5
07

20
0.
10
1

47
.6
7

48
.5
3

0.
75

67
.4
3

12
7.
67

st
ei
nd
5

10
00

2
81
5.
00
00
00

47
3

47
3

27
.7
34

48
5.
41
8

50
9

53
8.
8

50
.6
92

39
5.
57
6

47
3

47
3

0
4.
7

90
.2
3

3
79
5.
00
00
00

45
7

45
7.
1

50
.0
96

55
1.
60
8

45
9

47
7.
5

33
.3
35

47
7.
75
5

45
7

45
7

0
16
.5
3

90
.7
5

4
73
7.
00
00
00

36
7

37
8.
8

14
4.
64
3

65
2.
20
6

43
5

44
9.
4

72
.8
68

50
4.
82

36
7

37
4.
2

11
28
.1

95
.9
5

5
54
1.
00
00
00

34
9

35
1.
6

75
.5
88

60
6.
52
7

36
7

41
3.
8

82
.4
37

53
0.
67
4

34
9

34
9.
2

0.
87

22
.4
7

92
.5
8

10
42
5.
00
00
00

19
7

23
7.
4

34
1.
62
3

90
1.
82
9

27
1

31
6.
9

20
5.
51
1

68
8.
88

19
7

21
3

12
.7
6

16
1.
52

28
0.
12

15
30
3.
00
00
00

13
9

16
2.
7

63
0.
99
6

10
72
.2
9

20
1

24
7.
9

21
7.
66
1

74
7.
03
4

13
9

14
6.
85

5.
49

27
1.
93

45
0.
91

20
20
1.
00
00
00

11
7

13
7.
85

55
1.
43
3

11
23
.2
58

14
5

20
4.
6

31
9.
59
6

85
4.
02
2

11
7

11
9.
11

3.
27

70
5.
07

11
66
.8

123

An artificial bee colony algorithm... 8509

Fig. 1 Evolution of average solution quality over average number of generations

time. Notably, ABC_MEDKC exhibits greater robustness (in
terms of average solution quality) compared to the genetic
algorithm variants (GA1 and GA2). ABC_MEDKC also
dominates an existing polynomial-time approximation algo-
rithm (Approx_Kon) in terms of finding solutions of high
quality. Moreover, ABC_MEDKC finds new values for 17

instances out of 91 instances. The paper also explores the
convergence behavior of ABC_MEDKC and conducts a sta-
tistical test, revealing a significant difference with GA1 and
GA2.

123

8510 M. Israni, S. Sundar

Table 4 Results of
ABC_Nbr_cv, ABC_Nbr_swp,
and ABC_MEDKC on some
benchmark instances

Instance |V | K ABC_Nbr_cv ABC_Nbr_swp ABC_MEDKC

Avg ATET Avg ATET Avg ATET

g25-4-01 25 10 2.21 0.01 2.22 0.02 2.16 0.02

g50-4-01 50 10 5.67 0.07 5.47 0.13 5.46 0.08

15 4.37 0.09 4.33 0.15 4.32 0.1

g75-4-01 75 4 16.39 0.04 16.2 0.18 16.2 0.08

5 13.05 0.06 11.73 0.19 11.67 0.1

20 4.62 0.36 4.79 1.25 4.59 0.62

g200-4-01 200 3 31.97 0.29 31.8 2.5 31.8 0.89

10 18.33 0.98 16.27 7.43 16.22 2.99

g400-4-01 400 3 73.03 1.65 71.5 19.41 71.5 6.47

4 62.56 1.77 55 19.61 55 6.48

g1000-4-01 1000 2 139.3 17.33 138 292.42 138 92.79

3 116.43 12.31 114 293.46 114 90.88

15×15 255 2 411.6 0.33 403 3.52 403 1.22

3 167.1 0.39 157 3.51 157 1.23

5 108.26 0.45 98 3.56 98 1.29

33×33 1089 3 718.6 14.11 707 379.51 707 116.78

10 358.95 36.94 334.55 484.45 327.1 415.42

15 244.83 66.49 224.35 830.83 211.9 645.36

20 184.02 95.05 168.27 1822.32 168.1 1470.59

45×5 225 2 483 0.33 483 3.63 483 1.23

20 20.24 2.64 19.43 36.22 18.54 12.96

100×10 1000 2 1689 23.32 1689 300.97 1689 96.51

3 1058 13.65 1041 302 1041 90.32

5 757.3 13.31 703.8 117.55 703.6 103.33

10 405.4 30.55 398.6 268.4 391.9 228.9

15 290.42 48.83 273.05 830.52 269.35 507.5

steinc5 500 2 257.4 3.52 257 38.35 257 12.4

3 211.7 2.93 203 38.39 203 12.47

5 177.6 2.85 169 38.87 169 13.18

10 99.8 6.85 89.35 87.89 89.35 29.58

steind5 1000 2 480.2 11.11 473 300.87 473 90.23

3 458.7 9.81 457 303.1 457 90.75

Table 5 Statistical test on the results of Best values

Approaches p-value Significant

ABC_MEDKC vs GA1 0.02444 Yes

ABC_MEDKC vs GA2 <0.00001 Yes

Table 6 Statistical test on the results of Avg values

Approaches p-value Significant

ABC_MEDKC vs GA1 0.00001 Yes

ABC_MEDKC vs GA2 <0.00001 Yes

As futurework, the research can be extended for the devel-
opment of newmetaheuristic techniques specifically tailored
for the MEDKC problem.

AuthorContributions MI: conceptualization, programming, validation,
and writing—original draft. SS: supervision, and writing—review &
editing.

Funding No funding is available.

Data availability All the data used in this study are available at Matic
et al. (2017) and can be made available on request.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Ethical approval This article does not contain any studies with human
participants or animals performed by any of the authors.

123

An artificial bee colony algorithm... 8511

References

Abraham I, Gavoille C, Malkhi D, Nisan N, ThorupM (2004) Compact
name-independent routing with minimum stretch. In: Proceedings
of the sixteenth annual ACM symposium on Parallelism in algo-
rithms and architectures, pp 20–24

Awerbuch B, Bar-Noy A, Linial N, Peleg D (1990) Improved routing
strategies with succinct tables. J Algorithms 11(3):307–341

Awerbuch B, Peleg D (1990) Sparse partitions. In: Proceedings [1990]
31st Annual Symposium on Foundations of Computer Science, pp
503–513

Blesa MJ, Xhafa F (2000) A c++ implementation of tabu search for
k- cardinality tree problem based on generic programming and
component reuse. Young Researchers Workshop, Citeseer

Blum C, Blesa MJ (2005) New metaheuristic approaches for the
edge-weighted k-cardinality tree problem. Comput Oper Res
32(6):1355–1377

Chechik S (2013) Compact routing schemes with improved stretch.
In: Proceedings of the 2013 ACM symposium on Principles of
distributed computing, pp 33–41

Cowen LJ (2001) Compact routing withminimum stretch. J Algorithms
38(1):170–183

Davidović T, Ramljak D, Šelmić M, Teodorović D (2011) Bee
colony optimization for the p-center problem. Comput Oper Res
38(10):1367–1376

Eilam T, Gavoille C, Peleg D (2003) Compact routing schemes with
low stretch factor. J Algorithms 46(2):97–114

Enachescu M, Wang M, Goel A (2008) Reducing maximum stretch in
compact routing. In: IEEE INFOCOM 2008-The 27th Conference
on Computer Communications, pp 336–340. IEEE

Garcia-Diaz J, Menchaca-Mendez R, Menchaca-Mendez R, Hernán-
dez SP, Pérez-Sansalvador JC, Lakouari N (2019) Approximation
algorithms for the vertex k-center problem: Survey and experi-
mental evaluation. IEEE Access 7:109228–109245

Ghoshal S, Sundar S (2020) Two heuristics for the rainbow spanning
forest problem. Eur J Oper Res 285(3):853–864

Ghoshal S, Sundar S (2020) Two heuristics for the rainbow spanning
forest problem. Eur J Oper Res 285(3):853–864

Ghoshal S, Sundar S (2021) Two approaches for the min-degree con-
strained minimum spanning tree problem. Appl Soft Comput
111:107715

Karaboga D (2005) An idea based on honey bee swarm for numerical
optimization. Technical report, Citeseer

KarabogaD,AkayB (2009)A survey: algorithms simulating bee swarm
intelligence. Artif Intell Rev 31(1–4):61

Karaboga D, Gorkemli B, Ozturk C, Karaboga N (2014) A comprehen-
sive survey: artificial bee colony (abc) algorithm and applications.
Artif Intell Rev 42(1):21–57

Khuller S, Pless R, Sussmann YJ (2000) Fault tolerant k-center prob-
lems. Theor Comput Sci 242(1–2):237–245

Khuller S, Sussmann YJ (2000) The capacitated k-center problem.
SIAM J Discr Math 13(3):403–418

Könemann J, Li Y, Parekh O, Sinha A (2004) An approximation
algorithm for the edge-dilation k-center problem. Oper Res Lett
32(5):491–495

Krioukov D, Claffy K, Fall K, Brady A (2007) On compact routing for
the internet. ACMSIGCOMMComputCommunRev 37(3):41–52

López-Sánchez AD, Sánchez-Oro J, Hernández-Díaz AG (2019) Grasp
and vns for solving the p-next center problem. Comput Oper Res
104:295–303

Lučić P, Teodorović D (2001) Bee system: modeling combinatorial
optimization transportation engineering problems by swarm intel-
ligence. u: Preprints of the triennial symposium on transportation
analysis tristan iv. Azores, Portugal, June, pp 13–19

Matic D, Kratica J, Maksimovic Z (2017) Solving the minimum edge-
dilation k-center problem by genetic algorithms. Comput Ind Eng
113:282–293

Moy J (1998) Ospf version 2, ietf rfc 2328,1998 (at http://www.ietf.
org/rfc)

Olague G, Puente C (2006) The honeybee search algorithm for three-
dimensional reconstruction. In: Workshops on applications of
evolutionary computation, Springer, pp 427–437

Osaba E, Villar-Rodriguez E, Del Ser J, Nebro AJ, Molina D, LaTorre
A, Suganthan PN, Coello C AC, Herrera F (2021) A tutorial
on the design, experimentation and application of metaheuristic
algorithms to real-world optimization problems. Swarm Evolut
Comput, p 100888

Pan Q-K, Tasgetiren MF, Suganthan PN, Chua TJ (2011) A discrete
artificial bee colony algorithm for the lot-streaming flow shop
scheduling problem. Inf Sci 181(12):2455–2468

Peleg D, Upfal E (1989) A trade-off between space and efficiency for
routing tables. J ACM (JACM) 36(3):510–530

PhamDT,GhanbarzadehA,KoçE,Otri S,RahimS,ZaidiM (2006)The
bees algorithm-a novel tool for complex optimisation problems. In
Intelligent productionmachines and systems, Elsevier, pp 454–459

Rajasekhar A, Lynn N, Das S, Suganthan PN (2017) Computing with
the collective intelligence of honey bees-a survey. Swarm Evolut
Comput 32:25–48

Roditty L, Tov R (2015) New routing techniques and their applications.
In: Proceedings of the 2015 ACM Symposium on Principles of
Distributed Computing, pp 23–32

Singh A (2009) An artificial bee colony algorithm for the leaf-
constrained minimum spanning tree problem. Appl Soft Comput
9(2):625–631

SinghK, Sundar S (2018)Artifical bee colony algorithmusing problem-
specific neighborhood strategies for the tree t-spanner problem.
Appl Soft Comput 62:110–118

Singh K, Sundar S (2018) Two new heuristics for the dominating tree
problem. Appl Intell 48(8):2247–2267

Sundar S, Suganthan PN, Chua TJ, Cai TX, Soon CC (2017) A hybrid
artificial bee colony algorithm for the job-shop scheduling problem
with no-wait constraint. Soft Comput 21(5):1193–1202

Thorup M, Zwick U (2001) Compact routing schemes. In: 13th annual
acm symposium on parallel algorithms and architectures (spaa)

Wedde HF, Farooq M, Zhang Y (2004) Beehive: an efficient fault-
tolerant routing algorithm inspired by honey bee behavior. In:
International Workshop on Ant Colony Optimization and Swarm
Intelligence, Springer, pp 83–94

Wilcoxon F (1945) Wilcoxon signed-rank test calculator. https://www.
socscistatistics.com/tests/signedranks/default2.aspx

XuY,Peng J,XuY (2018)Themixed center location problem. JCombin
Optim 36(4):1128-1144

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

http://www.ietf.org/rfc
http://www.ietf.org/rfc
https://www.socscistatistics.com/tests/signedranks/default2.aspx
https://www.socscistatistics.com/tests/signedranks/default2.aspx

	An artificial bee colony algorithm for the minimum edge-dilation K-center problem
	Abstract
	1 Introduction
	2 Literature review
	3 Artificial bee colony algorithm
	4 ABC algorithm for the MEDKC problem
	4.1 Solution representation
	4.2 Initial solution generation
	4.3 Fitness computation
	4.4 Probability of selecting a solution
	4.5 Neighborhood operators
	4.5.1 First neighborhood operator (Nbr_cv)
	4.5.2 Second neighborhood operator (Nbr_swp)

	4.6 Scout bee phase

	5 Computational results
	5.1 Instances
	5.2 Parameter settings
	5.3 Comparison of results of ABC_MEDKC against state-of-the-art approaches
	5.4 Convergence behavior of ABC_MEDKC
	5.5 Impact of neighborhood operators (Nbr_cv and Nbr_swp)
	5.6 Statistical analysis

	6 Conclusion
	References

