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Abstract

The behavior of reinforced concrete (RC) deep beams is complex and difficult to predict due to factors such as compressive
and shear stress and beam geometry. To address this challenge, researchers have proposed various machine learning models
such as Artificial Neural Network, Decision Tree, Support Vector Machine, Adaptive Boosting, Extreme Gradient Boosting,
Random Forest, Gradient Boosting, and Voting Regressor. In this study, the authors evaluated the performance of these models
in predicting shear strength of RC deep beams by using metrics such as R?, Mean Squared Error, Root Mean Squared Error,
Mean Absolute Percentage Error and Mean Absolute Error. Furthermore, the authors optimize the ensemble learning models
using customized hyperparameters. The XGBoost model exhibited the highest accuracy with an R? value of 0.92 and the
least model error, with MAE of 29.65 and RMSE of 47.76 and MAPE of 9.79.The authors compared these models with
mechanics-driven models from different country codes including the United States, China, Europe, British (CIRIA), Canada
and found that ensemble learning models, specifically XGBoost, outperformed mechanics-driven models. The authors used
an explainable machine learning (EML) technique called SHapley Additive exPlanations (SHAP) to gain additional insights
into the developed XGBoost model. The outcomes of feature selection and SHAP analysis suggest that the grade of concrete
and beam geometry predominantly influence the prediction of shear strength in RC deep beams, whereas steel properties
exert minimal impact in this regard.

Keywords Ensemble learning - Machine learning - Boosting - Reinforced concrete deep beams - Shear strength - SHapley
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b Width
a Span
1Ji Reinforcement ratio
Sy Reinforcement strength
Ph Horizontal reinforcement ratio
Sh Horizontal reinforcement spacing
fyn Horizontal reinforcement strength
Py Vertical reinforcement ratio
Sy Vertical reinforcement spacing
v Vertical reinforcement strength
M Concrete strength
Vi Shear strength

1 Introduction

The exponential growth and advancements in computational
sciences have brought new technologies such as artificial
intelligence (AI) and machine learning (ML) (Tapeh and
Naser 2023a; Ma et al. 2021; Tiwari et al. 2023). In various
fields of engineering As computational power has become
more democratised and widely available for research pur-
poses, new paradigms are evolving some of which are
structural health monitoring, computer-aided design devel-
opment, longevity of structures etc. (Tapeh and Naser 2023b;
Dimiduk et al. 2018; Salehi and Burguefio 2018; Baduge et al.
2022; Sacks et al. 2019; Hatami et al. 2022; Pan and Zhang
2021; Palsara et al. 2023). These computational sciences
have permeated various sectors of the economy, including
the real estate industry. Modern structures focuses on various
factors such as resilience, safety, sustainability, reliability,
economy and aesthetics. Most fundamental building block
of any infrastructure is reinforced concrete beams which is
widely used in construction to support loads and distribute
them to the columns or walls (Rahman et al. 2021a; Truong-
Hong and Lindenbergh 2022). The use of RC Deep Beams
has increased exponentially since the start of building taller
structures (Fujino et al. 2019; Hao et al. 2023). However,
these tall structures face various failures like tensile, bend-
ing, or shear failures, which can be prevented by embedding
steel reinforcing bars in concrete beams (Jin et al. 2019).
Shear failure, caused by shear force combined with axial
loads and moments, is one of the most dangerous failure
types as it can occur without warning (Zhang et al. 2022). In
contrast, flexural failure develops gradually due to the yield-
ing of rebars (Al-Osta et al. 2017). The shear transmission
process becomes random after shear fractures begin (Zhang
et al. 2022).

Studies have shown that computational science plays a
vital role in engineering, specifically in Civil Engineering.
Ensemble learning, a computer science field, is widely used
in various disciplines such as biology, engineering, and soci-
ology (Tiwari et al. 2022; Zhang and Lu 2021; Xu et al. 2021;
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Gundersen and Kjensmo 2018; Aristodemou and Tietze
2018). Machine Learning (ML) is commonly used in build-
ing structural design and performance assessment, enhancing
concrete properties predictions, and improving the finite ele-
ment modeling of structures (Selvaraj and Sivaraman 2019;
Castelli et al. 2013; Sun et al. 2021a; Naranjo-Pérez et al.
2020; Abuodeh et al. 2020b; Sun et al. 2021b). Ensemble
learning is a powerful ML technique that improves the accu-
racy of predictions made by amodel (Dong et al. 2020; Tiwari
et al. 2022). It is particularly useful for large datasets with
many features, as it trains a group of models on different sub-
sets of the data and combines their predictions to make a final
prediction. This technique can be used to reduce variance in
the model’s predictions (Dong et al. 2020).

Predicting reinforced concrete beam shear strength is a
complex problem due to the nature of the materials involved.
Using ensemble learning can be beneficial in reducing vari-
ance in predictions made by the model (Zhang et al. 2020b).
The most common type of shear reinforcement in concrete
beams is stirrups, which transfer shear forces between the
concrete and steel. There are several ways to predict the shear
strength of reinforced concrete beams, but empirical codes
are the most common method. Every country has its own
empirical codes to find shear strength. In the US, the Ameri-
can Concrete Institute (ACI) 318 code governs the design of
reinforced concrete beams (Committee 2008). Similarly, in
Europe, the use of Eurocode 2 Bethlehem (Bethlehem 2004)
for designing concrete structures is prominent.

This study aims to formulate and compare various boost-
ing machine learning algorithms to predict the shear strength
of Reinforced Concrete (RC) deep beams, which is a complex
task due to uncertain factors. The study explores ensemble
learning methods like Adaptive Boosting, Extreme Gradi-
ent Boosting, Random Forest, Gradient Boosting, and Voting
Regressor. In addition, conventional ML algorithms includ-
ing ANN, DT and SVM are also compared. The objective
is to identify the most effective machine learning approach
that outperforms traditional mechanics-driven models based
on country codes, including the United States (Committee
2008), China (Standard 2002), Europe (Bethlehem 2004),
British (CIRIA) (Arup and Partners 1977), and Canada (Dar-
winetal. 2016) by evaluating their performance using metrics
like R2, MSE, RMSE, and MAE. This comparison aims to
assess whether the machine learning-based approach, par-
ticularly the XGBoost model, can surpass the accuracy and
performance of traditional mechanics-driven models in pre-
dicting the shear strength of RC deep beams across various
regions.

The study also incorporates the use of the explain-
able machine learning (EML) technique, SHapley Additive
exPlanations (SHAP) (Lundberg and Lee 2017), to gain inter-
pretability and insights into the developed best performing
model. This step is crucial for understanding the factors
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that contribute to the predictions and enhancing transparency
in the decision-making process. The authors have also per-
formed feature selection analysis to understand how varied
parameters affect the prediction of shear strength while using
ML Models.

In summary, the objectives of this study are to advance
the understanding and prediction capabilities of RC deep
beam shear strength through the application of state-of-the-
art machine learning methods. By comparing these models
against established mechanics-driven models, the study aims
to provide engineers and researchers with a more accurate
and reliable tool for designing and assessing the structural
behaviour of RC deep beams, ultimately contributing to
advancements in the field of civil engineering and construc-
tion.

The simulation conducted uses Python language to code
and build the relevant models on colab.research.google.com.
For comparison and calculations of mechanics-driven mod-
els, Microsoft excel was used.

The remainder of this paper will describe the literature
review in Sect. 2, methodology of ML models in Sect. 3,
model structure, dataset collection, dataset limitation, model
selection, model evaluation and hyper-parameter optimisa-
tion in Sect. 4 and comparison between conventional and
ensemble models, comparison between ML models and
mechanics-driven models, SHAP of XGboost model, feature
importance analysis in Sect. 5.

2 Literature review

The use of artificial intelligence (AI) and machine learn-
ing (ML) techniques in structural engineering has been in
play since the 1980s as the researchers realised the conven-
tional approaches e.g., finite element models and analytical
models have difficulties in accurately and efficiently predict-
ing the structural behaviours (Tapeh and Naser 2023a). With
the rapid development and democratisation of computer sci-
ence, new paradigms came into play. As the computation
power was widely available, more powerful algorithms were
proposed which turned out to widen the scope of structural
engineering. There are three major fields that showed sig-
nificant progress, i.e. Structural Health Monitoring (SHM),
performance evaluation and modelling of mechanical prop-
erties (Tapeh and Naser 2023a).

SHM uses machine learning as it collects huge amounts
of data using various sensors and later processes these large
amounts of collected data making data-driven models. In
addition, unsupervised algorithms or clustering techniques
can also be used (He et al. 2022; Gordan et al. 2022; Sarmadi
and Yuen 2022).

Performance evaluation is another major area that has
improved with the implementation of ML. Conventional

performance evaluation methods including fragility and reli-
ability assessment require huge amounts of data in order to
take into account the uncertainty and randomness in the struc-
ture. As seen in SHM, the data are collected using sensors
which can even collect real-time data. Applying ML to for-
mulate dynamic models in accordance with situational data
results in low use of computation as seen in various stud-
ies (Dubourg et al. 2011, 2013; Kersaudy et al. 2015; Dai
and Cao 2017; Lagaros and Fragiadakis 2007; Lagaros et al.
2009; Mangalathu et al. 2018a; Wang et al. 2018; Jalayer et al.
2017; Mangalathu et al. 2018b; Mahmoudi and Chouinard
2016).

In the last 2 decades, there has been a prevalence of
modelling the mechanical behavior of structures, while also
exploring the diverse usage of concrete and its dynamic
behaviors in various structures. Concrete has been widely
employed in the construction of structures due to its advan-
tageous engineering characteristics, including rich raw mate-
rials, low cost, strong compressive strength, and exceptional
durability. Long spans and structures without intermediary
columns both benefit from the use of deep beams. Deep
beams are employed as girders to support the carriageway
in bridges. Deep beams are also employed as side walls in
RCC water tanks and as connections for the pile caps in pile
foundations. The shear span depth ratio is used to classify
deep beams, which are ones with a greater depth than com-
monly utilised beams. The deep beams are defined differently
by different codes. The beams having a depth greater with
respect to its span are generally referred to as deep beams
(Arup and Partners 1977; Committee 2008; Standard 2002;
Darwin et al. 2016; Bethlehem 2004). The ratio of effec-
tive span to overall depth when considered less than 3 the
beam is called as deep as per Eurocode (Bethlehem 2004).
As per ACI Code (Committee 2008), shear design is specially
done when clear span to effective depth ratio is less than 5
(Committee 2008). Leonhardt and Walter 1966 (Leonhardt
and Walter 1966), experimentally proved that elastic design
for such deep beam is not valid. Their investigation further
highlighted the significance of accurate steel details in deep
beams. The distribution of strain in a section of a deep beam
is not linear and cannot be determined by elasticity theory. In
general, impact of shear in beam design is taken care of by
longitudinal reinforcement provisions. However, in case of
excess shear transverse reinforcement is separately designed
(Ismail et al. 2018). For the case of deep beams such simpli-
fying assumptions are not adequate and various approaches
such as compression field theory, tension field theory, etc.
are proposed by various researchers based on which differ-
ent country codes have proposed their procedures for shear
design (Arup and Partners 1977; Committee 2008; Standard
2002; Darwin et al. 2016; Bethlehem 2004). The amount
of reinforcement to be used and concrete directly depends
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on accurate prediction of the shear capacity of a section
(Mihaylov et al. 2010).

Machine learning (ML) is one of the widely accepted
methods to tackle structural problems (Yaseen et al. 2018;
Zhang et al. 2020c; Biswas et al. 2022; Asteris et al. 2019;
Armaghani etal. 2019; Basilio and Goliatt 2022; Esteghamati
and Flint 2021; Wakjira et al. 2022b; Salman and Kadhum
2022; Farrar and Worden 2012). In Sandeep et al. (2023),
the authors thoroughly discuss the implementation of ML
approaches for predicting the shear strength of RC deep
beams, covering in-depth procedures, various algorithms,
and the basics of modeling, training, testing, underfitting,
and overfitting. However, the authors show no real-time
implementation and results. In Fu and Feng (2021), the
authors formulate ML algorithms to predict the shear strength
of Corroded reinforced concrete beams using a gradient
gradient-boosting regression tree. Authors use 158 shear tests
for the corroded reinforced concrete beam meanwhile show-
ing how empirical models cannot take into account how
corrosion influences calculations. The authors also calculate
Time-dependent corrosion extent and lifetime shear strength
prediction. However, the issue of interpretability is not dis-
cussed. Similarly, the dataset taken into account is very small.
In Chou et al. (2020b), the authors integrate the smart fly
algorithm and least square support vector regression to build
a hybrid model into a multi-source dataset sourced from
North America, Australia and America. The hybrid model
shows promising results of MAPE 18.95%. However, the
authors show no correlations of features and any method
for interpretability of models employed. In Naik and Kute
(2013), the authors have implemented an artificial neural net
for predicting the shear strength of high-strength steel fibre-
reinforced concrete deep beams. The validation method used
is the residual sum of squares. Authors also establish a rela-
tionship between various features using ANN. The developed
ANNS establishes the relations between various parameters
affecting the complex behaviour of steel fibre-reinforced con-
crete deep beams. In Concha et al. (2023), authors develop
a hybrid Neuro-Swarn model to predict the shear strength
of steel fibre-reinforced concrete deep beams. The model
was developed using 116 experimental datasets. The anal-
ysis of the variance test showed prominent results. Authors
also present various models used for shear strength calcula-
tion and prediction in conventional approaches (Committee
2008; Vamdewalle and Mortelmans 1994; Al-Ta’an and Al-
Feel 1990; Sharma 1986; Khuntia et al. 1999; Cho and Kim
2003). However, the experimental data size is small which
may resultin overfitting. In Pak et al. (2023), the authors have
proposed a novel approach named the transfer ensemble neu-
ral network (TENN) model to increase the performance of
the model while predicting shear capacity on small datasets.
In the models, authors have incorporated both ensemble
learning and transfer learning in order to control the high
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variability of ML models. However, the results are impres-
sive, similarly the the issue of the black box approach and
overfitting remains an open issue. In Almasabha et al. (2023),
the authors have worked on a new dataset of 102 instances of
synthetic fibre-reinforced concrete (SyFRC) for reinforced
concrete structures. Authors predict the shear strength of
SyFRC beams without stirrups using ACI code and ML
algorithms- LightGBM, XGBoost and Gene Expression. The
study shows that, apart from the ACI equation, all considered
models effectively predict the effects of the shear span-to-
depth ratio. In Ly et al. (2020), the authors have implemented
real-code genetic algorithms and animal-based firefly algo-
rithms in order to predict the shear strength of reinforced
concrete deep beams. The dataset contains 463 instances.
Later, in the study, the authors compare the obtained results
with neural nets which shows promising results. In Olalusi
and Awoyera (2021), the authors implement Gaussian Pro-
cess regression (GPR) and the Random Forest (RF) to predict
the shear resistance of steel fibre-reinforced concrete slen-
der beams without stirrups. The results obtained during the
study were compared with statistical and German guidelines.
The authors also present the inconsistencies in prediction
observed during the study. In Hossain et al. (2017), the
authors have formulated an ANN approach to predict shear
strength on the experimental database containing 173 steel
fibre-reinforced concrete (SFRC) beams without stirrups.
Additionally, the approach is tested with data from 36 exper-
imental beams. The authors show how ANN is better when it
comes to empirical equations for high and ultra-high strength
of SFRC beams. However other possible techniques are not
explored in this scenario. In Tapeh and Naser (2023a), the
authors have conducted state of a state-of-the-art review for
Al, ML and Deep Learning (DL) implementations in struc-
tural engineering, particularly earthquake, wind, and fire
engineering. The authors introduce a wide range of tech-
niques and their varied implications and benefits in the field of
structural engineering. Authors cover more than 4000 schol-
arly works in order to identify best practices. The authors
also cover shear strength prediction for RC deep beams,
however, the scholarly works are limited to only two on the
specific issue. Overall, the paper gives an overview of the
last decades of how AI, ML and DL have shaped structural
engineering. In Marie et al. (2022), the authors present a
framework predicting the shear strength of reinforced con-
crete beam-column connections which is subjected to cyclic
loading. The authors use classical prediction models such as
K-nearest neighbour regression (KNN), Multivariate Adap-
tive Regression Splines (MARS), Ordinary least Squares
(OLS), Support Vector Machines (SVM), Artificial Neural
Networks (ANN), and kernel regression with mixed data
types (Kernel regression) which are implemented on a dataset
of 98 instances. The authors show kernel regression predicted
the joint shear strength with the highest accuracy. How-



A robust approach to shear strength prediction of reinforced...

6347

ever, neither model interpretability nor feature importance is
present. In Wakjira et al. (2022c), authors have implemented
Existing predictive models which have shown unsatisfactory
results. In response, the research proposed machine learn-
ing (ML)-based models, considering all important variables,
for predicting shear capacity. The analyses demonstrated
successful predictions using the ML models, with extreme
gradient boosting (XGBoost) showing the highest capability.
Comparisons with existing models revealed the superiority of
XGBoost in terms of accuracy, safety, and economic aspects.
However, limitations concerning model interpretability were
not addressed. Finally, reliability analysis was performed to
calibrate resistance reduction factors, improving the con-
fidence and applicability of the proposed model. Further
research is needed to address this issue and explore additional
avenues for enhancing ML techniques in structural engineer-
ing. In Liu et al. (2022), the authors aimed to establish an
accurate prediction model for precast concrete joints (PCJ)
direct shear strength (DSS) using support vector regression
(SVR), a machine learning algorithm. They assembled a
comprehensive database of 304 test results with 23 input
parameters and employed a novel correlation matrix-based
feature selection method for improving the SVR model’s
performance. The experimental validation showed that the
SVR model outperformed traditional mechanical models in
predicting DSS for PCJs. Additionally, the study provided
insights into the SVR model’s results using partial depen-
dence and individual conditional expectation plots. Another
study addressed the challenges in accurately predicting the
shear strength of fiber-reinforced steel (FRS) due to the com-
plex soil-fiber interaction mechanism. To tackle this, they
compiled a high-quality database of triaxial and direct shear
tests on FRS from 1983 to 2015, including crucial infor-
mation on sand properties, fiber characteristics, soil-fiber
interface properties, and stress parameters. This database
served as a solid foundation for further analysis and future
developments of improved mechanical models for predicting
FRS shear strength.

3 Methodology
3.1 Ensemble learning

Ensemble learning is a machine learning technique that com-
bines multiple models to improve the accuracy and robust-
ness of predictions. Ensemble learning is a very advanced
and significant machine learning technique within the aca-
demic domain. The core principle of this approach is centred
on combining various foundational models or “learners” to
generate a more powerful prediction model that exhibits
improved accuracy and robustness. This technique is based
on the long-standing belief that the combined knowledge and

insights of a group frequently exceed those of an individual.
Within the domain of machine learning, ensemble learning
encompasses the use of this principle to algorithms, hence
showcasing the potential for enhanced predictive results
through the collaborative integration of several models.

Ensemble learning, at its fundamental essence, aims to
enhance predictive accuracy, strengthen generalisation skills,
and reinforce model stability. The objective is to mitigate
the inherent constraints of individual models through the use
of variety and collaboration among the constituent learners.
In the realm of academic discourse pertaining to ensemble
learning, a number of crucial notions emerge as prominent.

The first consideration pertains to the concept of diversity
within the foundational models. Diversity plays a fundamen-
tal role in ensemble learning, which is accomplished through
arange of strategies including the utilisation of diverse algo-
rithms, the incorporation of distinct subsets of data, and
the introduction of variances in hyperparameters through-
out the training process. The underlying concept posits that
the presence of diverse models results in distinct errors being
made on various portions of the data. This collective diver-
sity ultimately enhances the probability of making accurate
predictions.

Another crucial factor to consider is the consolidation of
forecasts generated by individual models. Ensemble meth-
ods utilise many aggregation approaches, such as majority
voting, weighted averaging, and stacking, each of which is
based on distinct mathematical concepts and possesses dis-
tinct features.

The selection of base learners is a critical aspect in the
ensemble learning procedure. The category of basic learners
includes both elementary models, such as decision trees, as
well as more intricate ones, such as neural networks. The
choice of suitable base learners is contingent upon the distinct
attributes of the data and the inherent nature of the problem
under consideration.

Ensemble learning comprises a range of ensemble forms,
including bagging, boosting, and stacking, each charac-
terised by unique methodologies for aggregating base mod-
els. The scholarly literature has exhaustively examined these
many sorts of ensembles, providing insights into their indi-
vidual merits and limitations.

Ensemble learning offers a structured approach to effec-
tively manage the bias-variance trade-off, a crucial consid-
eration within the field of machine learning. Ensembles has
the ability to address the issue of overfitting, characterised
by large variance, by integrating various models. Simultane-
ously, ensembles are capable of capturing detailed patterns
in the data, hence minimising bias.

The topic of model interpretability is a subject of schol-
arly inquiry in the field of ensemble learning. Ensemble
approaches frequently augment prediction performance, but
concomitantly bring complexity to the overarching model.
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Scholars are currently engaged in the investigation of meth-
ods that aim to achieve a harmonious equilibrium between
precision and interpretability of models, so guaranteeing that
the knowledge obtained from the model remains lucid and
comprehensible.

Finally, scholarly discourse surrounding ensemble learn-
ing encompasses its practical implementation in various
fields, such as banking, healthcare, image identification, and
natural language processing. Researchers continually strive
to illustrate the capacity of ensemble methodologies to offer
more effective solutions to real-world situations, thus empha-
sising the practical significance of ensemble learning.

The mathematical notation for ensemble learning involves
defining a set of base models, and then combining them to
produce a final prediction (Dietterich 2000).

Let X be the input data, and Y be the target variable we
wish to predict. We define a set of N base models, denoted
by M1, M2, ..., MN.Eachbase model takes X as input and
produces a predicted output, denoted by Mi(X).

The ensemble model then combines the predictions of the
base models to produce a final prediction, denoted by F(X).
There are many ways to combine the predictions of the base
models, but one common approach is to use a weighted aver-
age is defined by Eq. (1).

F(X) = wls«M1(X)+w2sM2(X)+---+wN* MN (X),
ey

where wl, w2, ..., wN are the weights assigned to each
base model. The weights can be learned from the data or
set manually based on prior knowledge.

Ensemble learning is a popular machine learning tech-
nique that combines multiple models to achieve better
accuracy and generalization performance than using a sin-
gle model. In the context of classification, ensemble learning
involves constructing a set of base classifiers that make
predictions on a given dataset, and then combining these pre-
dictions using a specified aggregation method to obtain the
final classification result (Tiwari et al. 2022).

3.1.1 Boosting

Boosting is a common ensemble learning method that
sequentially trains a set of weak classifiers on re-weighted
versions of the training data, such that the misclassified
samples in each iteration receive higher weights in the sub-
sequent iterations. The final classification is then obtained by
weighted voting of the individual classifier outputs (Freund
et al. 2003, 1996). Mathematically, the boosting algorithm
can be formulated as follows:

Given atraining dataset D = (x;, yi)?zl , where x; denotes
the feature vector of the i-th sample and y; € —1, +1 rep-

@ Springer

resents its class label, and a set of weak classifiers A, (x),
m =1, ..., M, the boosting algorithm aims to learn a strong
classifier H(x) as follows:

1. Initialize sample weights w; = 1/n,i =1,...,n.
2. For each iterationm =1, ..., M:

e Train the m-th weak classifier /,, (x) on the weighted
training dataset Dy, = (x;, yi, wi)i_;.

e Compute the error rate €, = » ;  wil(yi #
hy, (x;)), where () is the indicator function.

e Compute the classifier weight o, = % log 1;%

e Update the sample weights as w; < w; exp(—o, i
R (x1)).

3. Output the final classifier is defined by Eq. (2).

M
H(x) = sign (Z amhm(x)> . )

m=1
3.1.2 Stacking

Stacking is another popular ensemble learning technique that
combines the outputs of multiple base classifiers using a
higher level meta-classifier, which is trained on the predic-
tions of the base classifiers. Specifically, stacking consists of
the following steps:

1. Split the training dataset D into k disjoint subsets, or
folds, Dy, ..., Dg.

2. Foreach foldi = 1, ..., k: Train the M base classifiers
on the k — 1 folds other than D;. Obtain the predicted
class probabilities for the samples in D; from each base
classifier. Concatenate the predicted probabilities from
all base classifiers to form a new feature vector for each
sample in D;. Store the new feature vectors and the cor-
responding true class labels as a new training dataset D).

3. Train a meta-classifier, such as logistic regression or
SVM, on the augmented training dataset D|, ..., D;.

4. Combine the base classifiers and the meta-classifier to
form the final stacked classifier.

Mathematically, the stacking algorithm can be represented
as follows:

Given atraining dataset D = (x;, y; )?zl , where x; denotes
the feature vector of the i-th sample and y; € —1, 41 repre-
sents its class label, and a set of base classifiers

3.1.3 Bootstrap aggregating algorithm
Bagging, short for Bootstrap Aggregating, is another popular

ensemble learning method that trains multiple base classi-
fiers on different bootstrap samples of the training data, and
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combines their outputs by majority voting to obtain the final
classification. The bagging algorithm can be mathematically
represented as follows:

Given atraining dataset D = (x;, y; ),’.’: 1» Where x; denotes
the feature vector of the i-th sample and y; € —1, +1 rep-
resents its class label, and a set of weak classifiers A, (x),
m =1, ..., M, the bagging algorithm aims to learn a strong
classifier H(x) as follows:

1. For each iteration m = 1, ..., M: Generate a bootstrap
sample D,, of size n by randomly sampling n samples
from Dwith replacement. Train the m-th weak classifier
h,,, (x) on the bootstrap sample D,,.

2. Output the final classifier is defined by Eq. (3).

M
H(x) = sign (Z hm(x)) ) 3)

m=1

3.2 Overview of the ML models
3.2.1 Artificial neural network

An Artificial Neural Network is a computational model
inspired by the structure and functionality of biological neu-
ral networks in the human brain. It is a type of machine
learning algorithm designed to recognize patterns, solve
complex problems, and make decisions based on input data
(Yegnanarayana 2009).

3.2.2 Decision tree

A decision tree is a non-linear predictive model and a popu-
lar supervised learning algorithm used for classification and
regression tasks. It is a graphical representation of a set of
rules and decisions based on input features that recursively
partition the data into subsets, leading to a hierarchical tree-
like structure (Maimon and Rokach 2014).

3.2.3 Support vector machine

The concept behind Support Vector Machine (SVM) is to
find the best decision boundary (hyperplane) that separates
the data points of different classes with the largest margin
possible. The data points closest to the hyperplane, known
as support vectors, play a crucial role in defining the optimal
hyperplane. These support vectors are used to determine the
margin and influence the overall performance of the SVM
(Hamel 2011).

3.2.4 Random forest

Random forest is a supervised learning algorithm. It can be
used for both classification and regression. The algorithm
works by building multiple decision trees (hence the “forest™)
and then selecting the tree that predicts the label for a new
data point which is the best. The decision trees are built using
arandom subset of the features, and the predictions are made
by averaging the predictions of all the trees (Bakouregui et al.
2021; Belgiu and Dragut 2016).

3.2.5 Gradient boosting

Gradient boosting is a machine learning technique that can
be used for both regression and classification problems. It
creates a prediction model as an ensemble of weak prediction
models, often decision trees. Like other boosting methods,
it builds the model incrementally in a stage-wise fashion. It
also allows for the optimization of an arbitrary differentiable
loss function, which helps to generalize the model. (Natekin
and Knoll 2013).

3.2.6 Adaptive boosting

The Adaptive Boosting Algorithm is a classification tech-
nique that is used to improve the accuracy of a model by
combining a set of weak models. The algorithm adaptively
changes the weights of the models in the ensemble so that
the model with the highest error rate is given more weight.
The algorithm then continues to iteratively train the model
and update the weights until the desired accuracy is achieved
(Wu et al. 2010).

3.2.7 Extreme gradient boosting (XGBoost)

The extreme gradient boosting algorithm is a powerful
machine learning algorithm that is often used for classifi-
cation tasks. This algorithm is a modification of the gradient
boosting algorithm that is designed to be more efficient and
to better handle data with a large number of features. The
extreme gradient boosting algorithm works by building a
model in a stage-wise fashion. In each stage, a new tree is
added to the model and the predictions of the new tree are
combined with the predictions of the existing trees in the
model. The trees are added in a way that minimizes the loss
function of the model. The elaborated model is shown in the
Fig. 1 (Chen et al. 2015).

The extreme gradient boosting algorithm is very effec-
tive at handling data with a large number of features. This
is because the algorithm can choose which features to use in
each stage of the model. This allows the algorithm to focus
on the most important features and to ignore the less impor-
tant features. The extreme gradient boosting algorithm is also
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Fig.1 Evolution of XGBoost

effective at handling data that is imbalanced. This is because
the algorithm can learn from the mistakes that it makes on
the minority class and use this knowledge to improve the
predictions on the minority class. XGBoost is also used in
classifying image (Jiang et al. 2019), malware detection (Wu
et al. 2020), predicting the death of patient during COVID-
19 treatment (Kivrak et al. 2021) and detecting fraudulent
activities (Hancock and Khoshgoftaar 2020).

3.2.8 Voting regressor

A voting regressor is an ensemble learning method for
regression that works by combining the predictions of mul-
tiple individual regressors. The individual regressors can
be any type of regression algorithm, such as linear regres-
sion, support vector regression, or decision tree regression.
The predictions from the individual regressors are combined
using a simple majority vote. The voting regressor is a power-
ful tool, because it can reduce the variance of the predictions,
making the predictions more robust and accurate. In addition,
the voting regressor can help to avoid overfitting because it is
less likely to overfit to the training data than a single regressor
(Chen et al. 2019).

4 Model structure
4.1 Data collection

The data set of RC beams is compiled from the published
literature (Feng et al. 2021). In this study, a total of 271 test
data samples of RC beams from the literature were collected
and used. These test data samples were related to RC deep
beams of which 52 samples were from (Smith and Vantsiotis
1982), 25 samples were from (Kong et al. 1970), 37 samples
were from (Clark 1951), 53 samples were from (Oh and Shin
2001), 4 samples were from (Aguilar et al. 2002), 12 samples
were from (Quintero-Febres et al. 2006), 19 specimens are
from (Tan et al. 1995). 12 samples were from (Ramakrish-
nan and Ananthanarayana 1968) and 39 samples were from
(Shaoxi 1982).
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The database includes a wide range of RC deep beams
so that the model can generate data more effectively. The
database contains four different types of deep beams, includ-
ing beam without web reinforcements (WOR), beams with
horizontal web reinforcements (WHR), beams with vertical
web reinforcements (WVR), and beams with both horizon-
tal and vertical reinforcements (WHVR). Four distinct deep
beam types-beams without web reinforcements, beams with
horizontal web reinforcements, beams with vertical web rein-
forcements, and beams with both horizontal and vertical web
reinforcements-are represented in the dataset used for this
work. In the data set, this classification is marked with the
help of parameters such as area/spacing of vertical web rein-
forcement and area/spacing of horizontal web reinforcement.

The input variables for these beams are 16 design features
that fall into 4 groups, (1) geometric dimensions: beam span
lp, height h.effective height A, width b, shear span a.; (2)
longitudinal reinforcement information: reinforcement ratio
o1 and strength fy;; (3) web reinforcement information: hor-
izontal reinforcement ratio op, spacing sy and strength fyp,
vertical reinforcement ratio py, spacing sy and strength fyy;
(4) concrete property: concrete strength f7. The output is the
beam’s shear strength, denoted by V,,. The value ranges for
these variables, as well as the statistical information (mean
and standard derivation, etc.), are listed in Table 1. Mean-
while, Fig. 2 also plots the distributions of the deep beam
parameters frequencies.

4.1.1 Limitations

The dataset used for the analysis of shear strength in RC
(Reinforced Concrete) deep beams poses certain limitations
that need to be considered when implementing machine
learning algorithms. Firstly, the dataset contains only 271
samples, which might not be sufficient to fully capture the
wide variability of RC deep beams in practice. A small sam-
ple size could lead to reduced statistical significance and limit
the generalizability of the machine learning models.
Secondly, the data are retrieved from old construction
sites, potentially introducing bias and representativeness
issues. Construction practices, materials, and design stan-
dards may have evolved, making the dataset less relevant to
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Z? ']J)Iaer;mgtt:rtésitlilcgleégfg;?;ﬁOn Category Variable  Unit  Min Max Mean SD Type
database Geometrical dimensions o mm  500.00 4065.00 1484.45 643.56  Input
h mm 254.00 915.00 523.48  147.94  Input
ho mm 216.00 844.00  469.01 145.44  Input
b mm 76.00 305.00  122.81 44.33  Input
a mm 125.00  1290.00  467.73  238.75  Input
lo/h - 0.91 5.00 2.93 1.07  Input
alho - 0.22 2.70 1.06 0.52  Input
Longitudinal reinforcement o1 % 0.12 4.08 1.62 0.71  Input
fy MPa  210.00 504.80  361.76 86.86  Input
Horizontal web reinforcement  py, % 0.00 2.45 0.38 0.44  Input
Sh mm 50.18 801.00  127.63 98.95  Input
Sfyn MPa  210.00 586.00  402.17 71.75  Input
Vertical web reinforcement Dy % 0.00 2.45 0.41 0.41 Input
Sy mm 50.80 45750  204.48 99.03  Input
Sfyv MPa  210.00 586.00  387.23 66.19  Input
Concrete property Il MPa 12.26 73.60 30.89 14.86  Input
Shear strength Vu kN 67.62  1357.00  287.20  180.67  Output

current scenarios. This temporal difference might affect the
accuracy of the predictions.

Thirdly, the limited sample size can result in a lack of
diversity within the dataset. As a result, the machine learn-
ing algorithms might not adequately capture the variations in
beam configurations, reinforcement details, and loading con-
ditions, which are crucial factors influencing shear strength.

To address some of these limitations, researchers should
interpret the results with caution.

4.2 Model selection

In this study, the authors have utilised Random forest,
Adaptive boosting, Gradient Boosting, XGBoost, Support
Vector Machine (SVM) and ANN. The authors have also
implemented Voting Regressor over the top best performing
algorithms to ensure better and generalised results. Figure 3
shows the step-by-step model approach taken in this study.

4.3 Hyper-parameter optimization

Once the data preprocessing is complete, the next task is
to tune the hyperparameters in accordance with correlations
and multiple other factors. In order to discover the hyper-
parameters, the grid search approach is paired with k-fold
cross-validation (CV) as shown in Fig. 4. The optimisation
of model parameters is a crucial phase in ensemble learning,
which involves making decisions on many factors such as
the quantity of weak learners, learning rates, and maximum
tree depths. In order to facilitate this procedure, a methodical
methodology is employed, commencing with the determina-

tion of parameter boundaries derived from previous research
and scholarly sources. This frequently involves constructing
a parameter grid that encompasses potential values for every
hyperparameter.

The succeeding stage encompasses numerous iterations
of model training, wherein different combinations of hyper-
parameters inside the specified grid are examined. Neverthe-
less, the effectiveness and dependability of this procedure are
contingent upon the manner in which we assess the perfor-
mance of the model. K-fold cross-validation (CV) assumes
a crucial function in this context.

The K-fold cross-validation technique involves dividing
the dataset into ‘k’ folds of equal size. The model is subse-
quently trained ‘k’ times, where each fold is utilised as the
validation set once, while the remaining ‘4 — 1’ folds are
employed as training data. K-fold cross-validation (CV) is
considered to be of utmost importance for various reasons.

Firstly, the practise of evaluating the model on several
data subsets helps mitigate bias in performance estimates.
This approach enhances the robustness of the results and
reduces their dependence on specific data divisions. Addi-
tionally, the utilisation of k-fold cross-validation (CV) offers
a more accurate estimation of the variability in the perfor-
mance of the model. This aids in evaluating the consistency
and reliability of the model when applied to diverse subsets
of data.

Furthermore, the selection of the value ‘k’ in k-fold cross-
validation has an impact on the determination of the optimal
hyperparameters. A higher value of ‘k” (for example, 10) pro-
vides a more extensive investigation of hyperparameters, but
at the expense of increased processing burdens. On the other
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hand, a reduced value of ‘k’ (such as 5) exhibits computa-
tional efficiency, although it may result in estimations that
are comparatively less reliable. Therefore, the selection of
‘k’ is determined by balancing the available computational
resources with the desired level of reliability.

The average of the ‘k’ rounds of training and validation is
commonly used to describe the overall model performance.
This metric offers a thorough evaluation of the model’s ability
to generalise across various subsets of data.

N ,

N 7

\\ /'/
|
! Yes ]

v

Final Model —>

SHapley Additive
exPlanations

\

It is generally advised to choose a value of ‘6 = 10’ in
most search scenarios, since this choice achieves a suitable
compromise between computational feasibility and accurate
performance estimation. However, the precise value of the
‘k’ parameter may differ based on factors like as the size
of the dataset, the computational resources at hand, and the
desired level of confidence in the obtained results.

A better technique for dealing the bias of the training set’s
random selection is the k-fold CV. A loop of k rounds is
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Fig.4 K-fold cross-validation method (Rathakrishnan et al. 2022)

conducted, where the training set is divided into k equal-
sized subsets. In each round, one subset is used to test the
model and the remaining k — 1 subsets are used to train the
model. The Random forest algorithm involves optimizing
three parameters, which include the total number of trees, the
total number of features chosen randomly, and the maximum
tree depth.

For XGBoost, there are separate value ranges specified
using grids for the number of trees, learning rate, and max-
imum tree depth. [0: 20: 600], [0.02, 0.05, 0.1, 0.2], and [2,
4, 8, 12, 14]. When the tree number is low, the R? score
rises fast with it, and once it reaches a specific value, the
trend becomes progressively steady. The learning rate has a
big impact on performance. In order to achieve the same R>
score for a training set, a model trained with a smaller learn-
ing rate will require more trees than a model trained with a
larger learning rate. Increasing the number of trees, however,
is not essential to improve the R? score for a high learning
rate. For instance, when the learning rate is between 0.1 and
0.2, the score drops as the number of trees exceeds between
100 and 200. For learning rates of 0.02 and 0.05, however,
the score does not peak until the number of trees exceeds
400, at about 0.8. The greatest tree depth of 8 and 16 yields
scores that are quite close. Based on the analysis, the optimal
values for the number of trees, learning rate, and maximum
depth are 600, 0.1, and 10, respectively.

4.4 Model evaluation

This study used four different statistical measurement param-
eters to assess the prediction accuracy of various ensemble
learning models. These evaluation parameters compare the
accumulated error in the predictions with the actual obser-
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Final Evaluation

vations. The statistical parameters used are the coefficient
of determination (R-squared), mean absolute error (MAE),
root mean squared error (RMSE), and mean absolute per-
centage error (MAPE). These metrics provide information
about the accuracy and precision of the predictions made by
the ensemble learning models. These mathematical formula-
tions are defined as follows:

e Coefficient of determination R? (Di Bucchianico 2008)

R2 -1 Zlm:l (Pl - Tl)Z (4)
- -2
anzl (P i T)
e Mean Absolute Error (MAE) (Maragos 1989)
mo\P =T
MAE = Zizi 1P = T 5)
m

e Root Mean Squared Error (RMSE) (Chai and Draxler
2014)

S (P —Th)?
m

RMSE = (6)

e Mean Absolute Percentage Error (MAPE) (De Mytte-
naere et al. 2015)

P —T;
T;

100% &
MAPE =
Y

)

where P; and_Ti are the predicted and tested values,
respectively; T is the mean value of all the samples in
the database.
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Fig.5 Comparison of RZ, MAE, RMSE and MAPE values between Ensemble ML algorithms

Clearly, the four metrics provide for a thorough assess-
ment of the model’s performance. RZ, which is better if closer
to 1 (Renaud and Victoria-Feser 2010), assesses the lin-
ear relationship between predicted values and actual values.
The first-order and second-order relative errors (measured by
RMSE, MAE, and MAPE) between the predicted value and
actual value are better when smaller (Hackeling 2017).

5 Results and discussion
5.1 Comparison between ML algorithms

Traditional single learning techniques like decision trees
(DT), support vector machines (SVM), and artificial neu-
ral networks (ANN) are contrasted with the performance of
ensemble learning techniques. To ensure a fair comparison,
the hyper parameters of the single learning methods are also
established through grid search and 10-fold cross-validation.

The authors have compared seven machine learning mod-
els on the testing dataset, i.e. three conventional ML models
and four ensemble learning model. Figure 5 compares the
performance of the four ensemble models on the testing
dataset. It is clear that compared to single learning models,
ensemble learning models exhibit significant improvements.
For instance, the worst ensemble learning random forest (RF)

model has an R? value of 0.906 whereas the greatest sin-
gle learning DT model has an R-squared value of 0.887.
As shown in Tables 2 and 3, the root mean squared error
(RMSE) in prediction of shear strength of single learning
models ranges from 63 to 72 kN, but that of the four ensem-
ble models is around 55 kN. The MAE of the single learning
model is greater than 40 kN, whereas the MAE of the ensem-
ble models is less than 38 kN. The mean absolute percentage
error (MAPE) of the ANN model is higher than 18%, whereas
that of the ensemble models is lower than 14%, and that of
the XGBoost model is only about 10%.

As shown in Table 3, the root mean squared error (RMSE)
in prediction of shear strength of ensemble learning models
ranges from 47 to 57 kN. The MAE of the ensemble models is
less than 38 kN. The mean absolute percentage error (MAPE)
of the ensemble models is lower than 14%, and that of the
XGBoost model is only about 10%. Overall, the ensemble
models and the XGBoost model in particular-perform better
than conventional machine learning models.

The dataset is split in two parts i.e. 80% training set and
20% testing set. The performance of four ensemble learning
models and voting regressor is shown in Fig. 6, where the
models are evaluated on the basis of testing dataset compared
to given experimental data. The experimental data and the
prediction are identical, as shown by the diagonal line (y =
X). As can be observed from the scatter plots’ near proximity
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Table 2 Comparison of R?, Models Sets R2 MAE (kN) RMSE (kN) MAPE (%)
MAE, RMSE and MAPE values
between conventional ML DT Training 0.958 22912 36.416 8.43
models Testing 0.887 42,559 63.145 14.41
SVM Training 0.980 11.916 24.672 3.64
Testing 0.852 40.260 72.020 11.76
ANN Training 0.984 16.526 22,612 6.51
Testing 0.856 52.050 71111 18.13
Table 3 Comparison of R?, Models Sets R2 MAE (kN) RMSE (kN) MAPE (%)
MAE, RMSE and MAPE values
in ensemble learning models Random forest Training 0.956 20.887 37.327 7.93
Testing 0.906 38.302 57.477 12.35
AdaBoost Training 0.970 25.889 30.594 12.38
Testing 0.919 36.659 53.274 13.16
GBRT Training 0.999 2.211 3.298 0.85
Testing 0.910 36.294 56.158 12.47
XGBoost Training 0.999 0.240 1.450 0.78
Testing 0.928 29.65 47.76 9.79

to the diagonal, all four ensemble models generally obtained
good results. In case of Voting Regressor, the regressor shows
much generalised results compared to all other models.

5.2 Overview of mechanics-driven models

As opposed to normal beams, deep beams structural anal-
ysis is more complex, hence, the assumption that the plane
section will remain plane before and after bending is invalid,
because the strain is not distributed linearly. The pressure
that is applied will have a greater impact on the stress than
the strain. Shear deformation can also be ignored in normal
beams, but it cannot be ignored in deep beams where shear is
a major factor in failure. Larger depths, when applied in the
conventional procedure, cause stress to not be linear in the
elastic stage and prevent the ultimate stress from becoming
the parabolic shape, which is another important factor in the
shear failure of deep beams. European guideline states that a
beam is considered to be deep if its effective span to overall
depth ratio is less than 3.0 beam (Bethlehem 2004).

Deep beams are members that are loaded on one face
and supported on the other face in accordance with ACI-318
clause 10.7.1 so that compression struts can form between
the loads and the supports. In four times, the overall member
depth or less, or areas where loads are concentrated within
a member’s depth of twice the support’s face (Committee
2008).

Five expressions for determining the shear strength of RC
deep beams are taken from the design codes of China, British
(CIRIA), the United States, Canada, and Europe. While the
other three are determined based on the strut-and-tie model,
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the expression of China in Chinese code and British (CIRIA)
are semi-empirical semi-analytical equation. The following
is a list of the detailed expressions:

e British (CIRIA Guide) (Arup and Partners 1977)
a S
— 02
Vu,cria, = C1 (1 - 0.35h0) fibhy + Co ;Al i sin® o

where C; and C; are constants depending on grade of
concrete and steel; f; = 0.5 VA fe ; A1 = Area of rein-
forcement; y; = depth from the top of the beam to the
point where the bar intersects the critical diagonal crack
line o= angle between the bar considered and the critical
diagonal crack.

e US code: ACI 318 (Committee 2008)

Vu,act = 0.85,35fc/bws sin @
with
ws = [1.85w; cos O + (e + [pp) sin 6] /2

6 = arctan @ > 25°
a
where S is strut coefficient; 6 is the angel between the
strut and the longitudinal axis; wg is the width of the
strut; w; is the height of the nodal region; [,z and [,p
are the width of the top loading and bottom supporting
plates, respectively; dy is the distance between the top
and bottom nodal region.
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e Chinese code: GB50010-2010 (Standard 2002) where f; is the concrete tensile strength; & = a/ho is the

Vu,cB =

shear spanto-depth ratio. Other variables are the same as
defined in Table 1.

1.75 lo/h—2 A e Canadian code: CSA A23.3-04 (Darwin et al. 2016)
: bho + —= Y h
i lft 0+ = Syv o 0
S—1Ilo/h . Asn fe .
g S ho WCSAZ 08 + 1706, M
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Table 4 Performance comparison between mechanics-driven models
and best performing ensemble model

Models Predicted-to-test-ratio
Min. Max. SD Mean COV (%)
CIRIA 0.29 2.79 0.47 1.23 38.38
ACI 318 0.3 5.27 0.69 1.57 44.25
GB50010-2010 0.36 3.24 0.39 1.43 27.01
CSA 23.3-04 0.59 4.50 0.56 1.56 35.71
EC2 0.44 3.47 0.54 1.42 38.05
XGBoost 0.74 1.60 0.06 1.00 6.38
with

ws = [1.88w; cos 0 + (e +[pp) sin6] /2¢) = &
+ (€5 + 0.002) cot? 0

where €= 0.75) f{w;b/ EsAjs is the tensile strain of the
tie.
e European code: EN 1-1-1992:2004 (Bethlehem 2004)

ViEu = 0.858, fbw sin 6.

5.3 Comparison between Ml algorithms and
mechanics-driven models

In this section, a comparison of various statistical metrics
with Ml algorithms and mechanics-driven models is drawn.

Table 4 compares the ratio of predicted shear strength to
experimentally tested shear strength datasets mean, maxi-
mum, minimum, standard deviation and covariance values
from five codal provisions and the best performing ensemble
learning model i.e. XGBoost algorithm. In this case, if the
standard deviation of the dataset is low, it might indicate that
the data is consistent and reliable and that any predictions or
conclusions drawn from the data are likely to be accurate.
On the other hand, a high standard deviation would suggest
that the data are more variable and less predictable and that
any predictions or conclusions based on the data should be
interpreted with caution.

In general, a low standard deviation is desirable in many
applications, because it indicates that the data is well-behaved
and can be easily analyzed and understood. XGBoost evo-
lution is depicted in Fig. 1. It is one of the most superior
boosting ensemble learning models, because it has both lin-
ear model solver and tree learning algorithms. As also shown
in Table 4, predicted to test ratios dataset mean value is com-
ing nearly about 1 and the standard deviation is also very
low.

A comparison between predicted to test shear strength
ratio plotted against various a/d ratios for mechanics-driven
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model results (Fig. 7) versus ensemble learning models
(Fig. 8) clearly depicts better prediction of shear strength on
all types of RC deep beams with the XGBoost algorithm. In
this study, the authors have also implemented voting regres-
sor over top-performing boosting algorithms to get a better
generalised view of ML models as shown in Fig. 8. Unlike
black box ML algorithms, Voting regressors are prominent
when it comes to transparency.

5.4 SHapley additive exPlanations for XGBoost

The key idea behind SHapley Additive exPlanations (SHAP)
is to evaluate the contribution of each feature in a predic-
tion by considering all possible combinations of features and
how they affect the XGBoost model’s output. It calculates
the average marginal contribution of each feature across all
possible feature permutations. This process provides a more
robust and balanced measure of feature importance compared
to other methods that might suffer from issues like feature
interdependence or lack of consistency (Lundberg and Lee
2017). SHAP overcomes the major drawback of using ML
models which is its black box nature.

The authors have interpreted the SHAP values for all the
features (lo, h, ho, b, @, p1, fyi, Phs Shs fyhs Ovs Svs fyvs fos
V) as shown in Fig. 9. Concrete compressive strength f
affects the model the highest and horizontal reinforcement
strength fyy affects the model the least. Concrete compres-
sive strength f/, shear span a, width b and height & affects
the models prediction majorly.

In summary, SHAP values provide an interpretable way
to understand how each feature affects the model’s output.
They can help identify which features are driving the model
predictions and the direction of their impact. Understanding
these feature contributions can be valuable in gaining insights
into the XGBoost model’s behavior and making data-driven
decisions.

5.5 Feature importance analysis

Feature importance is important in machine learning models
because it helps identify which features are most important
for making predictions. This is useful for anumber of reasons.
First, understanding the relative importance of each feature
can help build simpler, more interpretable models. By only
using the most important features, it is possible to build a
model that is easier to understand and explain to others. This
can be especially useful in domains where interpretability is
important, such as in healthcare or finance. Second, feature
importance can help identify features that are redundant or
irrelevant. These features can be removed from the model,
which can improve its performance by reducing overfitting
and increasing generalization. Third, understanding feature
importance can help guide feature engineering efforts. By
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Fig.7 Predicted to test shear strength ratio for different RC beams by mechanics-driven models

focusing on the most important features, it is possible to cre-
ate new features that are more predictive and improve the
performance of the model (Konig et al. 2021).

Overall, feature importance is an important tool for under-
standing and improving machine learning models. It can
help identify the most important features, remove redundant
or irrelevant features, and build simpler, more interpretable
models.

The concrete compressive strength (f.), standardised to
a relative relevance of 100%, was discovered to be the most
crucial factor for forecasting the shear strength of RC deep
beams, as shown in Fig. 10. Shear span (a) and vertical
web reinforcement spacing, which have importance values
between one-fourth and one-third of the concrete strength,
are the second and third most crucial properties, respectively.
This makes sense given that these characteristics have a direct
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impact on the shear mechanism of deep beams. Other char-
acteristics, which account for around 18% of the relevance
of shear strength, include section width, shear span-to-depth
ratio, and horizontal web reinforcement spacing. Web and
longitudinal reinforcement ratios are less important char-
acteristics, with importance values of only about 10% of
concrete strength. Other features were found to be of minor
significance, with their combined influences being less than
10% of the most significant ones.
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5.6 Conclusion

This paper presents an ML technique-based approach with
SHAP to predict the shear strength of RC deep beams. A
total of 271 test data samples of RC beams were divided
into four groups namely beams without web reinforcements
(WOR), beams with horizontal web reinforcements (WHR),
beams with vertical web reinforcements (WVR), and beams
with both horizontal and vertical reinforcements (WHVR)
from the literature were collected and used to train and test
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Fig. 10 Feature importance
analysis result
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the models. The models were trained upon 16 parameters
using 3 machine learning and 4 ensemble learning algo-
rithms which were evaluated with each other on parameters
coefficient of determination, mean absolute error, root mean
squared error and mean absolute percentage error in which
XGboost algorithms performed the best. XGboost algorithm
was then compared with the mechanics-driven model of
CIRIA, United States, Euro Code, Chinese code and Cana-
dian code. According to the results, the following conclusion
can be drawn:

e The ML models provide a superior approach to pre-
dicting the shear strength of RC deep beams. The
approach is robust in nature and can be replicated easily.
The approach can be understood with ease rather than
the numerical and theoretical derivations of mechanics-
driven modelling. The only fundamental requirement is
the dataset which can be easily collected and used for
long-term structural health monitoring systems.

e The XGBoost algorithm performance the best among
ANN, Decision Tree, Support Vector Machine, Ran-
dom Forest, Gradient Boosting Algorithm and Adaptive
boosting algorithm with a coefficient of determination
of 0.92 (testing), 0.99 (training), mean absolute error of
29.65 (testing), 2.47 (training), root mean squared error
of 47.76 (training), 1.45 (testing) and mean absolute per-
centage error of 9.79 (training), 0.78 (testing) which are
far superior to the mechanics-driven models.

e The hyperparameters for all the models are selected
based on their performance in producing the best k-fold
cross-validation results. The XGBoost model is found to
perform optimally based on multiple iterations in learn-
ing rate, number of trees, and maximum depth, with the

\
. B B B E—— ()0 ).
P — 35 6%
5, P 25 2%

T T T
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Relative importance (%)

most suitable parameters being 600 trees, 0.1 learning
rate, and a maximum depth of 10.

e The standard deviation, mean and covariance value
of predicted to test ratio for XGBoost model were
found 0.06, 1.00 and 6.38, respectively, in comparison
to mechanics driven models British (CIRIA Guide)-
—0.47, 1.23, 38.38; United States code: 0.69, 1.57,
44.25; Chinese code: 0.39, 1.43, 27.01, Canadian code:
0.56, 1.56 35.71; and European code: 0.54, 1.42, 38.05.
This validates the superiority of the ensemble learn-
ing approach, particularly the XGBoost model, over
traditional mechanics-driven models, highlighting its
potential for accurate shear strength prediction.

e SHapley Additive exPlanations is proposed for XGBoost
algorithms results in order to interpret the inner working
of the model removing the black box nature of these ML
algorithms and feature importance is shown to deduce the
parameters which affects the shear strength of RC deep
beams the most.

e From SHapley Additive exPlanations and feature impor-
tance analysis, the Study concludes that compressive
strength of concrete and geometry of the beam are the
most influential parameters while properties of steel
affects the least while predicting the shear strength of
RC deep beams.

5.7 Discussion

This study deduces that the ensemble learning models specif-
ically the XGBoost model is the best choice to predict the
shear strength of RC deep beams that predicted to experi-
mentally tested shear strength ratio data has the best mean
and least standard deviation as compared to other codal meth-
ods. The XGBoost model’s predictions of the shear strength
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ratio for different RC beams indicate that the WHR predic-
tion value is closest to the mean, followed by WVR, WHVR,
and WOR, which also show proximity to the mean value
in that order. In general, the use of ensemble learning for
shear strength prediction may lead to a reliance on black
box algorithms that are difficult to interpret and understand.
This could potentially pose challenges for engineers in com-
prehending the rationales behind ensemble predictions and
evaluating their reliability. Consequently, a lack of trust in the
ensemble’s predictions might impede its widespread adop-
tion within the construction industry. Meanwhile, the authors
have utilized SHapley Additive Explanations (SHAP) to
interpret the internal mechanisms of the model and identify
correlations among parameters that influence the model pre-
dictions. This approach effectively addresses the challenges
associated with black box algorithms.

Predicting the shear strength of reinforced concrete (RC)
deep beams using ensemble learning can have several impli-
cations and potential problems. One potential implication is
that the use of ensemble learning for shear strength predic-
tion could improve the accuracy of structural design in the
construction industry. By combining the predictions of mul-
tiple models, ensemble learning can provide more reliable
estimates of shear strength, which can help engineers design
safer and more efficient structures. This could ultimately lead
to a reduction in structural failures and improve the safety of
buildings and other infrastructure (Fathipour-Azar 2022).

However, there are also potential problems associated
with the use of ensemble learning for shear strength predic-
tion. One potential problem is that the accuracy of ensemble
learning models depends on the quality and diversity of the
individual models that are combined. If the models used in
the ensemble are not sufficiently diverse or are based on lim-
ited or biased data, the predictions of the ensemble may not
be accurate. This could lead to incorrect design decisions and
potentially unsafe structures (Alobaidi et al. 2018; Seni and
Elder 2010).

When it comes to drawing direct comparisons between
different studies in the literature on the prediction of shear
strength in RC deep beams can be challenging for several
reasons. One major obstacle is the variation in the datasets
used across different studies. Each study may utilize differ-
ent experimental data or numerical simulations, resulting in
disparities in the dataset size, composition, and quality. This
variation can significantly impact the performance and reli-
ability of the predictive models. Moreover, the studies often
involve a wide range of parameters affecting shear strength
prediction, such as the concrete mix design, steel reinforce-
ment, beam geometry, loading conditions, and boundary con-
ditions. The differences in these parameters among studies
can lead to divergent outcomes and hinder the establishment
of a consistent comparison framework (Chou et al. 2020b; Fu
and Feng 2021; Olalusi and Awoyera 2021; Ly et al. 2020;
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Sandeep et al. 2023; Oh and Shin 2001; Kwak et al. 2002;
Rahmanetal. 2021b; Zhang et al. 2020a; Wakjiraet al. 2022a;
Abuodeh et al. 2020a; Mangalathu and Jeon 2018; Chou
et al. 2020a; Prayogo et al. 2020). Furthermore, researchers
adopt various methodologies to solve the problem of shear
strength prediction in RC deep beams. These methods may
include analytical approaches, experimental investigations,
empirical equations, and machine learning techniques. Each
method possesses its unique assumptions, limitations, and
uncertainties, making it challenging to directly compare their
outcomes. Given these variations in datasets, parameters, and
methodologies, it becomes impractical to draw straightfor-
ward and reasonable comparisons between the literature.

Overall, the use of ensemble learning for predicting the
shear strength of RC deep beams has the potential to improve
the accuracy and efficiency of structural design. However, it
is important to carefully consider the potential problems and
challenges associated with this approach and to address them
in order to ensure that it is used safely and effectively in the
future.

Acknowledgements The authors acknowledge the invaluable contribu-
tions of the reviewers to the manuscript, as their feedback and comments
played a crucial role in improving the content of the paper.

Author contributions AT: conceptualisation, methodology, software,
validation, investigation, writing the original draft. AKG: conceptuali-
sation, methodology, formal analysis, supervision, review and editing.
TG: comparison with mechanics-driven models of CIRIA, the US,
Canada, China and European Union, review and editing.

Funding The authors declare that no funds, grants, or other support
were received during the preparation of this manuscript

Data availability The datasets generated during and analyzed during the
current study are available from the corresponding author on reasonable
request.

Declarations

Conflict of interest The authors have no relevant financial or non-
financial interests to disclose.

References

Abuodeh OR, Abdalla JA, Hawileh RA (2020a) Prediction of shear
strength and behavior of RC beams strengthened with externally
bonded FRP sheets using machine learning techniques. Compos
Struct 234:111698

Abuodeh OR, Abdalla JA, Hawileh RA (2020b) Assessment of com-
pressive strength of ultra-high performance concrete using deep
machine learning techniques. Appl Soft Comput 95:106552

Aguilar G, Matamoros AB, Parra-Montesinos G, Ramirez JA, Wight
JK (2002) Experimental evaluation of design procedures for shear
strength of deep reinfoced concrete beams. American Concrete
Institute, London

Almasabha G, Al-Shboul KF, Shehadeh A, Alshboul O (2023) Machine
learning-based models for predicting the shear strength of syn-



A robust approach to shear strength prediction of reinforced...

6363

thetic fiber reinforced concrete beams without stirrups. In: Struc-
tures, vol 52. Elsevier, London, pp 299-311

Alobaidi MH, Chebana F, Meguid MA (2018) Robust ensemble learning
framework for day-ahead forecasting of household based energy
consumption. Appl Energy 212:997-1012

Al-Osta M, Isa M, Baluch M, Rahman M (2017) Flexural behavior
of reinforced concrete beams strengthened with ultra-high perfor-
mance fiber reinforced concrete. Constr Build Mater 134:279-296

Al-Ta’an S, Al-Feel J (1990) Evaluation of shear strength of fibre-
reinforced concrete beams. Cement Concr Compos 12:87-94

Aristodemou L, Tietze F (2018) The state-of-the-art on intellectual
property analytics (IPA): a literature review on artificial intelli-
gence, machine learning and deep learning methods for analysing
intellectual property (IP) data. World Patent Inf 55:37-51

Armaghani DJ, Hatzigeorgion GD, Karamani C, Skentou A,
Zoumpoulaki I, Asteris PG (2019) Soft computing-based tech-
niques for concrete beams shear strength. Proc Struct Integr
17:924-933

Arup O (1977) Partners, the design of deep beams in reinforced con-
crete. CIRIA Guide 144

Asteris PG, Armaghani DJ, Hatzigeorgiou GD, Karayannis CG, Pilak-
outas K (2019) Predicting the shear strength of reinforced concrete
beams using artificial neural networks. Comput Concr Int J
24:469-488

Baduge SK, Thilakarathna S, Perera JS, Arashpour M, Sharafi P, Teo-
dosio B, Shringi A, Mendis P (2022) Artificial intelligence and
smart vision for building and construction 4.0: machine and deep
learning methods and applications. Autom Constr 141:104440

Bakouregui AS, Mohamed HM, Yahia A, Benmokrane B (2021)
Explainable extreme gradient boosting tree-based prediction
of load-carrying capacity of FRP-RC columns. Eng Struct
245:112836

Basilio SA, Goliatt L (2022) Gradient boosting hybridized with expo-
nential natural evolution strategies for estimating the strength of
geopolymer self-compacting concrete. Knowl Based Eng Sci 3:1—
16

BelgiuM, Drigut L (2016) Random forest in remote sensing: areview of
applications and future directions. ISPRS J Photogrammet Remote
Sens 114:24-31

Bethlehem D (2004) The European union. In: National implementation
of United Nations sanctions, Brill Nijhoff, pp 123-165

Biswas R, Li E, Zhang N, Kumar S, Rai B, Zhou J (2022) Development
of hybrid models using metaheuristic optimization techniques to
predict the carbonation depth of fly ash concrete. Constr Build
Mater 346:128483

Castelli M, Vanneschi L, Silva S (2013) Prediction of high performance
concrete strength using genetic programming with geometric
semantic genetic operators. Expert Syst Appl 40:6856—-6862

Chai T, Draxler RR (2014) Root mean square error (RMSE) or mean
absolute error (MAE)? Arguments against avoiding RMSE in the
literature. Geosci Model Develop 7:1247-1250

Chen T, He T, Benesty M, Khotilovich V, Tang Y, Cho H, Chen K, et al
(2015) Xgboost: extreme gradient boosting, R package version
04-21,pp 1-4

ChenR,MaY, ChenN, Lee D, Wang W (2019) Cephalometric landmark
detection by attentive feature pyramid fusion and regression-
voting. In: International conference on medical image computing
and computer-assisted intervention. Springer, London, pp 873-881

Cho S-H, Kim Y-I (2003) Effects of steel fibers on short beams loaded
in shear. Struct J 100:765-774

Chou J-S, Pham T-P-T, Nguyen T-K, Pham A-D, Ngo N-T (2020a)
Shear strength prediction of reinforced concrete beams by base-
line, ensemble, and hybrid machine learning models. Soft Comput
24:3393-3411

Chou J-S, Pham T-P-T, Nguyen T-K, Pham A-D, Ngo N-T (2020b)
Shear strength prediction of reinforced concrete beams by base-

line, ensemble, and hybrid machine learning models. Soft Comput
24:3393-3411

Clark AP (1951) Diagonal tension in reinforced concrete beams. J Proc
48:145-156

Committee A (2008) Building code requirements for structural concrete
(ACT 318-08) and commentary. American Concrete Institute

Concha N, Aratan JR, Derigay EM, Martin JM, Taneo RE (2023) A
hybrid neuro-swarm model for shear strength of steel fiber rein-
forced concrete deep beams. J Build Eng 2023:107340

Dai H, Cao Z (2017) A wavelet support vector machine-based neural
network metamodel for structural reliability assessment. Comput
Aided Civ Infrastruct Eng 32:344-357

Darwin D, Dolan CW, Nilson AH (2016) Design of concrete structures,
vol 2. McGraw-Hill Education, Frontiers of Computer

De Myttenaere A, Golden B, Le Grand B, Rossi F (2015) Using the mean
absolute percentage error for regression models. In: Proceedings,
Presses universitaires de Louvain, p 113

Di Bucchianico A (2008) Coefficient of determination (R2). Encyclop
Stat Qual Reliab 1:1

Dietterich TG (2000) Ensemble methods in machine learning. In: Mul-
tiple classifier systems: first international workshop, MCS 2000
Cagliari, Italy, June 21-23, 2000 proceedings 1. Springer, Lon-
don, pp 1-15

Dimiduk DM, Holm EA, Niezgoda SR (2018) Perspectives on the
impact of machine learning, deep learning, and artificial intelli-
gence on materials, processes, and structures engineering. Integr
Mater Manuf Innov 7:157-172

Dong X, Yu Z, Cao W, Shi Y, Ma Q (2020) A survey on ensemble
learning. Front Comput Sci 14:241-258

Dubourg V, Sudret B, Bourinet J-M (2011) Reliability-based design
optimization using kriging surrogates and subset simulation. Struct
Multidiscip Optim 44:673-690

Dubourg V, Sudret B, Deheeger F (2013) Metamodel-based impor-
tance sampling for structural reliability analysis. Probab Eng Mech
33:47-57

Esteghamati MZ, Flint MM (2021) Developing data-driven surrogate
models for holistic performance-based assessment of mid-rise RC
frame buildings at early design. Eng Struct 245:112971

Farrar CR, Worden K (2012) Structural health monitoring: a machine
learning perspective. Wiley, London

Fathipour-Azar H (2022) Stacking ensemble machine learning-based
shear strength model for rock discontinuity. Geotech Geol Eng
40:3091-3106

Feng D-C, Wang W-J, Mangalathu S, Hu G, Wu T (2021) Implementing
ensemble learning methods to predict the shear strength of RC deep
beams with/without web reinforcements. Eng Struct 235:111979

Freund Y, Schapire RE et al (1996) Experiments with a new boosting
algorithm. In: ICML, vol 96. Citeseer, pp 148-156

Freund Y, Iyer R, Schapire RE, Singer Y (2003) An efficient boosting
algorithm for combining preferences. ] Mach Learn Res 4:933—
969

FuB, Feng D-C (2021) A machine learning-based time-dependent shear
strength model for corroded reinforced concrete beams. J Build
Eng 36:102118

Fujino Y, Siringoringo DM, Ikeda Y, Nagayama T, Mizutani T (2019)
Research and implementations of structural monitoring for bridges
and buildings in japan. Engineering 5:1093-1119

Gordan M, Sabbagh-Yazdi S-R, Ismail Z, Ghaedi K, Carroll P, McCrum
D, Samali B (2022) State-of-the-art review on advancements
of data mining in structural health monitoring. Measurement
193:110939

Gundersen OE, Kjensmo S (2018) State of the art: reproducibility in
artificial intelligence. In: Proceedings of the AAAI conference on
artificial intelligence, vol 32

Hackeling G (2017) Mastering machine learning with scikit-learn. Packt
Publishing Ltd, London

@ Springer



6364

A. Tiwari et al.

Hamel LH (2011) Knowledge discovery with support vector machines.
Wiley, London

Hancock J, Khoshgoftaar TM (2020) Performance of catboost and
XGBoost in medicare fraud detection. In: 2020 19th IEEE interna-
tional conference on machine learning and applications (ICMLA).
IEEE, London, pp 572-579

Hao H, Bi K, Chen W, Pham TM, Li J (2023) Towards next generation
design of sustainable, durable, multi-hazard resistant, resilient, and
smart civil engineering structures. Eng Struct 277:115477

Hatami M, Franz B, Paneru S, Flood I (2022) Using deep learning artifi-
cial intelligence to improve foresight method in the optimization of
planning and scheduling of construction processes. In: Computing
in civil engineering 2021, pp 1171-1178

He Z, Li W, Salehi H, Zhang H, Zhou H, Jiao P (2022) Integrated
structural health monitoring in bridge engineering. Autom Constr
136:104168

Hossain KM, Gladson LR, Anwar MS (2017) Modeling shear strength
of medium-to ultra-high-strength steel fiber-reinforced concrete
beams using artificial neural network. Neural Comput Appl
28:1119-1130

Ismail KS, Guadagnini M, Pilakoutas K (2018) Strut-and-tie modeling
of reinforced concrete deep beams. J Struct Eng 2018:144

Jalayer F, Ebrahimian H, Miano A, Manfredi G, Sezen H (2017) Ana-
lytical fragility assessment using unscaled ground motion records.
Earthq Eng Struct Dyn 46:2639-2663

Jiang Y, Tong G, Yin H, Xiong N (2019) A pedestrian detection method
based on genetic algorithm for optimize XGBoost training param-
eters. IEEE Access 7:118310-118321

Jin L, Wang T, Jiang X-A, Du X (2019) Size effect in shear failure of
RC beams with stirrups: simulation and formulation. Eng Struct
199:109573

Kersaudy P, Sudret B, Varsier N, Picon O, Wiart J (2015) A new surro-
gate modeling technique combining kriging and polynomial chaos
expansions-application to uncertainty analysis in computational
dosimetry. J Comput Phys 286:103—-117

Khuntia M, Stojadinovic B, Goel SC (1999) Shear strength of normal
and high-strength fiber reinforced concrete beams without stirrups.
Struct J 96:282-289

Kivrak M, Guldogan E, Colak C (2021) Prediction of death status on
the course of treatment in SARS-COV-2 patients with deep learn-
ing and machine learning methods. Comput Methods Programs
Biomed 201:105951

Kong F-K, Robins PJ, Cole DF (1970) Web reinforcement effects on
deep beams. J Proc 67:1010-1018

Konig G, Molnar C, Bischl B, Grosse-Wentrup M (2021) Relative fea-
ture importance. In: 2020 25th international conference on pattern
recognition (ICPR). IEEE, London, pp 9318-9325

Kwak Y-K, Eberhard MO, Kim W-S, Kim J (2002) Shear strength of
steel fiber-reinforced concrete beams without stirrups. ACI Struct
199:530-538

Lagaros ND, Fragiadakis M (2007) Fragility assessment of steel frames
using neural networks. Earthq Spect 23:735-752

Lagaros ND, Tsompanakis Y, Psarropoulos PN, Georgopoulos EC
(2009) Computationally efficient seismic fragility analysis of
geostructures. Comput Struct 87:1195-1203

Leonhardt F, Walter R (1966) Deep beams. In: Bulletin 178, Deutcher
Ausschuss fur Stahlbeton, Berlin

Liu T, Wang Z, Long Z, Zeng J, Wang J, Zhang J (2022) Direct shear
strength prediction for precast concrete joints using the machine
learning method. J Bridge Eng 27:04022026

Lundberg SM, Lee S-1(2017) A unified approach to interpreting model
predictions. Adv Neural Inf Process Syst 2017:30

Ly H-B, Le T-T, Vu H-LT, Tran VQ, Le LM, Pham BT (2020) Computa-
tional hybrid machine learning based prediction of shear capacity
for steel fiber reinforced concrete beams. Sustainability 12:2709

@ Springer

Ma B, Terayama K, Matsumoto S, Isaka Y, Sasakura Y, Iwata H, Araki
M, Okuno Y (2021) Structure-based de novo molecular generator
combined with artificial intelligence and docking simulations. J
Chem Inf Model 61:3304-3313

Mahmoudi S, Chouinard L (2016) Seismic fragility assessment of
highway bridges using support vector machines. Bull Earthq Eng
14:1571-1587

Maimon OZ, Rokach L (2014) Data mining with decision trees: theory
and applications, vol 81. World Scientific, London

Mangalathu S, Jeon J-S (2018) Classification of failure mode and pre-
diction of shear strength for reinforced concrete beam—column
joints using machine learning techniques. Eng Struct 160:85-94

Mangalathu S, Heo G, Jeon J-S (2018a) Artificial neural network
based multi-dimensional fragility development of skewed concrete
bridge classes. Eng Struct 162:166-176

Mangalathu S, Jeon J-S, DesRoches R (2018b) Critical uncertainty
parameters influencing seismic performance of bridges using lasso
regression. Earthq Eng Struct Dyn 47:784-801

Maragos P (1989) Morphological correlation and mean absolute error
criteria. In: International conference on acoustics, speech, and sig-
nal processing. IEEE, London, pp 1568-1571

Marie HS, Abu El-hassan K, Almetwally EM, El-Mandouh MA (2022)
Joint shear strength prediction of beam-column connections using
machine learning via experimental results. Case Stud Constr Mater
17:¢01463

Mihaylov BI, Bentz EC, Collins MP (2010) Behavior of large deep
beams subjected to monotonic and reversed cyclic shear. ACI
Struct J 2010:107

Naik U, Kute S (2013) Span-to-depth ratio effect on shear strength of
steel fiber-reinforced high-strength concrete deep beams using ann
model. Int J Adv Struct Eng 5:29

Naranjo-Pérez J, Infantes M, Jiménez-Alonso JF, Saez A (2020) A col-
laborative machine learning-optimization algorithm to improve the
finite element model updating of civil engineering structures. Eng
Struct 225:111327

Natekin A, Knoll A (2013) Gradient boosting machines, a tutorial. Front
Neurorobot 7:21

Oh J-K, Shin S-W (2001) Shear strength of reinforced high-strength
concrete deep beams. Struct J 98:164-173

Olalusi OB, Awoyera PO (2021) Shear capacity prediction of slen-
der reinforced concrete structures with steel fibers using machine
learning. Eng Struct 227:111470

Pak H, Leach S, Yoon SH, Paal SG (2023) A knowledge transfer
enhanced ensemble approach to predict the shear capacity of rein-
forced concrete deep beams without stirrups. Comput Aided Civ
Infrastruct Eng 2023:1

Palsara C, Kumar V, Pal J, Naresh M (2023) Structural health monitoring
of ASCE benchmark building using machine learning algorithms.
Asian J Civ Eng 2023:1-14

Pan Y, Zhang L (2021) Roles of artificial intelligence in construction
engineering and management: a critical review and future trends.
Autom Constr 122:103517

Prayogo D, Cheng M-Y, Wu Y-W, Tran D-H (2020) Combining machine
learning models via adaptive ensemble weighting for prediction
of shear capacity of reinforced-concrete deep beams. Eng Comput
36:1135-1153

Quintero-Febres CG, Parra-Montesinos G, Wight JK (2006) Strength
of struts in deep concrete members designed using strut-and-tie
method. ACI Mater J 103:577

Rahman J, Ahmed KS, Khan NI, Islam K, Mangalathu S (2021a) Data-
driven shear strength prediction of steel fiber reinforced concrete
beams using machine learning approach. Eng Struct 233:111743

Rahman J, Ahmed KS, Khan NI, Islam K, Mangalathu S (2021b) Data-
driven shear strength prediction of steel fiber reinforced concrete
beams using machine learning approach. Eng Struct 233:111743



A robust approach to shear strength prediction of reinforced...

6365

Ramakrishnan V, Ananthanarayana Y (1968) Ultimate strength of deep
beams in shear. J Proc 65:87-98

Rathakrishnan V, Beddu SBt, Ahmed AN (2022) Predicting compres-
sive strength of high-performance concrete with high volume
ground granulated blast-furnace slag replacement using boosting
machine learning algorithms. Sci Rep 12:9539

Renaud O, Victoria-Feser M-P (2010) A robust coefficient of determi-
nation for regression. J Stat Plan Inference 140:1852-1862

Sacks R, Bloch T, Katz M, Yosef R (2019) Automating design review
with artificial intelligence and Bim: state of the art and research
framework. In: ASCE international conference on computing in
civil engineering 2019. American Society of Civil Engineers
Reston, VA, pp 353-360

Salehi H, Burguefio R (2018) Emerging artificial intelligence methods
in structural engineering. Eng Struct 171:170-189

Salman B, Kadhum MM (2022) Predicting of load carrying capacity
of reactive powder concrete and normal strength concrete column
specimens using artificial neural network. Knowl Based Eng Sci
3:45-53

Sandeep MS, Tiprak K, Kaewunruen S, Pheinsusom P, Pansuk W
(2023) Shear strength prediction of reinforced concrete beams
using machine learning. In: Structures, vol 47. Elsevier, London,
pp 1196-1211

Sarmadi H, Yuen K-V (2022) Structural health monitoring by a novel
probabilistic machine learning method based on extreme value
theory and mixture quantile modeling. Mech Syst Signal Process
173:109049

Selvaraj S, Sivaraman S (2019) Prediction model for optimized self-
compacting concrete with fly ash using response surface method
based on fuzzy classification. Neural Comput Appl 31:1365-1373

Seni G, Elder JF (2010) Ensemble methods in data mining: improving
accuracy through combining predictions. Synth Lect Data Min
Knowl Disc 2:1-126

Shaoxi G (1982) The shear strength capability of reinforced concrete
deep beam under symmetric concentrated loads. J Zhengzhou
Technol Inst 1:52—68

Sharma A (1986) Shear strength of steel fiber reinforced concrete
beams. J Proc 83:624-628

Smith K, Vantsiotis A (1982) Shear strength of deep beams. J Proc
9:201-213

Standard GC (2002) 50010-2010, code for design of concrete structures

Sun H, Burton HV, Huang H (2021a) Machine learning applications for
building structural design and performance assessment: state-of-
the-art review. J Build Eng 33:101816

Sun H, Burton HV, Huang H (2021b) Machine learning applications for
building structural design and performance assessment: state-of-
the-art review. J Build Eng 33:101816

Tan K-H, Kong F-K, Teng S, Guan L (1995) High-strength concrete
deep beams with effective span and shear span variations. Struct J
92:395-405

Tapeh ATG, Naser M (2023a) Artificial intelligence, machine learn-
ing, and deep learning in structural engineering: a scientometrics
review of trends and best practices. Arch Comput Methods Eng
30:115-159

Tapeh ATG, Naser M (2023b) Artificial intelligence, machine learn-
ing, and deep learning in structural engineering: a scientometrics
review of trends and best practices. Arch Comput Methods Eng
30:115-159

Tiwari A, Chugh A, Sharma A (2022) Ensemble framework for cardio-
vascular disease prediction. Comput Biol Med 2022:105624

Tiwari A, Chugh A, Sharma A (2023) Chapter 7—Uses of artificial
intelligence with human—omputer interaction in psychology. In:
Innovations in artificial intelligence and human—computer interac-
tion in the digital era, intelligent data-centric systems. Academic
Press, London, pp 173-205

Truong-Hong L, Lindenbergh R (2022) Automatically extracting sur-
faces of reinforced concrete bridges from terrestrial laser scanning
point clouds. Autom Constr 135:104127

Vamdewalle MI, Mortelmans F (1994) Shear capacity of steel fiber
high-strength concrete beams. Spec Publ 149:227-242

Wakjira TG, Al-Hamrani A, Ebead U, Alnahhal W (2022) Shear
capacity prediction of FRP-RC beams using single and ensenble
explainable machine learning models. Compos Struct 287:115381

Wakjira TG, Al-Hamrani A, Ebead U, Alnahhal W (2022b) Shear
capacity prediction of FRP-RC beams using single and ensenble
explainable machine learning models. Compos Struct 287:115381

Wakjira TG, Ebead U, Alam MS (2022c) Machine learning-based shear
capacity prediction and reliability analysis of shear-critical RC
beams strengthened with inorganic composites. Case Stud Constr
Mater 16:e01008

Wang Z, Pedroni N, Zentner I, Zio E (2018) Seismic fragility analysis
with artificial neural networks: application to nuclear power plant
equipment. Eng Struct 162:213-225

Wu Q, Burges CJ, Svore KM, Gao J (2010) Adapting boosting for
information retrieval measures. Inf Retrieval 13:254-270

Wu D, Guo P, Wang P (2020) Malware detection based on cascading
XGBoost and cost sensitive. In: 2020 international conference on
computer communication and network security (CCNS). IEEE,
LOndon, pp 201-205

Xu Y, Liu X, Cao X, Huang C, Liu E, Qian S, Liu X, Wu Y, Dong F,
Qiu C-W et al (2021) Artificial intelligence: a powerful paradigm
for scientific research. Innovation 2:1

Yaseen ZM, Deo RC, Hilal A, Abd AM, Bueno LC, Salcedo-Sanz S,
Nehdi ML (2018) Predicting compressive strength of lightweight
foamed concrete using extreme learning machine model. Adv Eng
Softw 115:112-125

Yegnanarayana B (2009) Artificial neural networks. PHI Learning Pvt.
Ltd., London

Zhang C, Lu Y (2021) Study on artificial intelligence: the state of the
art and future prospects. J Ind Inf Integr 23:100224

Zhang J, Sun Y, Li G, Wang Y, Sun J, Li J (2020a) Machine-learning-
assisted shear strength prediction of reinforced concrete beams
with and without stirrups. Eng Comput 2020:1-15

Zhang J, Sun Y, Li G, Wang Y, Sun J, Li J (2020b) Machine-learning-
assisted shear strength prediction of reinforced concrete beams
with and without stirrups. Eng Comput 2020:1-15

Zhang G, Ali ZH, Aldlemy MS, Mussa MH, Salih SQ, Hameed
MM, Al-Khafaji ZS, Yaseen ZM (2020c) Reinforced concrete
deep beam shear strength capacity modelling using an integra-
tive bio-inspired algorithm with an artificial intelligence model.
Eng Comput 2020:1-14

Zhang W, Liu X, Huang Y, Tong M-N (2022) Reliability-based analysis
of the flexural strength of concrete beams reinforced with hybrid
BFRP and steel rebars. Arch Civ Mech Eng 22:1-20

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

@ Springer



	A robust approach to shear strength prediction of reinforced concrete deep beams using ensemble learning with SHAP interpretability
	Abstract
	1 Introduction
	2 Literature review
	3 Methodology
	3.1 Ensemble learning
	3.1.1 Boosting
	3.1.2 Stacking
	3.1.3 Bootstrap aggregating algorithm

	3.2 Overview of the ML models
	3.2.1 Artificial neural network
	3.2.2 Decision tree
	3.2.3 Support vector machine
	3.2.4 Random forest
	3.2.5 Gradient boosting
	3.2.6 Adaptive boosting
	3.2.7 Extreme gradient boosting (XGBoost)
	3.2.8 Voting regressor


	4 Model structure
	4.1 Data collection
	4.1.1 Limitations

	4.2 Model selection
	4.3 Hyper-parameter optimization
	4.4 Model evaluation

	5 Results and discussion
	5.1 Comparison between ML algorithms
	5.2 Overview of mechanics-driven models
	5.3 Comparison between Ml algorithms and mechanics-driven models
	5.4 SHapley additive exPlanations for XGBoost
	5.5 Feature importance analysis
	5.6 Conclusion
	5.7 Discussion

	Acknowledgements
	References




