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Abstract
Mathematical models derived from the physical systems are usually complex and in the form of higher order differential

equations. Such systems are difficult for analysis and controller synthesis. Therefore, it is desirable to develop an efficient

algorithm for reducing such higher order systems to a lower order model by preserving all the significant characteristics of

the original higher order system. For this, we have proposed an improved adaptive differential evolution algorithm (I-

ADE), which is mixed with Routh approximation (RA) to determine the numerator and denominator coefficients of the

corresponding lower order stable model (LOSM) by preserving the fundamental characteristics of a higher order

stable system (HOSS). The superiority of the proposed method is illustrated by numerical test cases of single-input single-

output (SISO) systems and multiple-input multiple-output (MIMO) systems. To evaluate the efficiency of proposed I-ADE

algorithm, 23 benchmark functions are considered, and the results are statistically compared with nine promising meta-

heuristic algorithms. The proposed I-ADE algorithm and the Routh approximation technique provide superior results in

reducing the model order of SISO and MIMO systems. It achieves statistically the best rank among nine promising meta-

heuristic algorithms employing the Friedman and Nemenyi Hypothesis test for optimizing 23 benchmark functions. This

shows the proposed I-ADE algorithm’s reliability, robustness and applicability for other optimization problems.

Keywords Model order reduction � Adaptive differential evolution based artificial neural network training �
Routh approximation � SISO � MIMO

1 Introduction

In the last few decades, the model order reduction of

higher order systems has been a significant research topic

in the domain of control engineering. Mathematical

modelling for complex physical systems is too expensive

and tedious. Indeed, the mathematical modelling of

intricate physical systems frequently yields higher-order

differential equations or transfer functions. These more

complex mathematical models can pose significant diffi-

culties when it comes to both analyzing and constructing

controller design. To overcome this scenario, model order

reduction (MOR) has become the most promising tech-

nique to construct a corresponding lower order model that

retains the significant characteristics of the higher order

stable system (HOSS). A lower order stable model

(LOSM) can enhance the comprehension of the original

system, reduce computational complexities, and stream-

line the control design.

Various model order reduction techniques for linear

continuous-time SISO systems have been documented in

existing literature, encompassing both time-domain and

frequency domain approaches (Fortuna et al. 2012;

Schilders et al. 2008). Moreover, the model order reduction

methods initially developed for SISO systems have also

been extended to encompass MIMO systems. In the context

of model order reduction for linear time-invariant (LTI)
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systems in the frequency domain, various techniques

(Shamash 1974; Ashoor and Singh 1982) have been

developed to match the time moments of HOSSs with

LOSMs. One commonly used method is Padé approxima-

tion (Shamash 1974). Padé approximation is a straightfor-

ward approach that retains the initial time moments of the

HOSS in the LOSM, while also matching their steady-state

characteristics (Ashoor and Singh 1982). However, a sig-

nificant limitation of Padé approximation is that it does not

guarantee the stability of the lower order model, even when

the higher order system is stable. This drawback raises

concerns about the reliability of this technique. Researchers

have introduced hybrid approaches to address the stability

issue associated with Padé approximation (Hwang 1984;

Lucas 1993; Mukherjee and Mittal 2005; Padhy et al.

2023). These hybrid techniques combine the characteristics

of two different algorithms to generate more stable and

accurate reduced-order models. Hwang (Hwang 1984)

proposed a method that combines the Routh approximation

(RA) technique with an integral square error (ISE) criterion

to compute stable LOSMs. This approach minimizes the

steady-state error between the original system and the

reduced-order model. Lucas (Lucas 1993) presented a

popular multipoint Padé approximation iterative technique

focusing on generating optimal models by iteratively

refining the approximation. This iterative process helps to

improve the accuracy of the reduced-order model.

Mukherjee and Mittal (Mukherjee and Mittal 2005) intro-

duced a pole pattern technique for model reduction. This

technique is designed to minimize the ISE between the

higher order system and the lower order model, empha-

sizing the importance of capturing the system’s dynamic

behaviour accurately. Padhy et al. (Padhy et al. 2023)

introduced a combined approach that utilizes both time

moment (TM) matching and integrated stability equation

methods to calculate lower order models. Furthermore, this

technique aids in enhancing the stability performance of

the lower order model. These hybrid approaches attempt to

overcome the stability issues associated with Padé

approximation and improve the accuracy of reduced-order

models by integrating stability-retaining methods and

optimal reduction techniques. Researchers continue to

explore and develop various methodologies to effectively

address the challenges of model reduction in the frequency

domain.

Nowadays, soft computing techniques have fascinated

researchers and industry to solve a wide variety of complex

problems, including reducing large-scale systems. The

recent emergence of nature-inspired swarm and evolu-

tionary algorithms, namely, genetic algorithm (GA)

(Goldberg 1989), particle swarm optimization (PSO)

(Kennedy and Eberhart 1995), Moth-flame optimization

algorithm (Mirjalili 2015), Sine cosine algorithm (Mirjalili

2016a; Padhy et al. 2021), Dragon fly algorithm (Mirjalili

2016b; Padhy 2022), artificial gorilla troops optimizer

(Abdollahzadeh et al. 2021) have been used in the opti-

mization problems. In the field of model order reduction,

these algorithms are applied to minimize the objective/fit-

ness function. The fitness function is often the integral

square error (ISE), mean square error (MSE), or root mean

square error (RMSE). Several authors (Vishwakarma and

Prasad 2009; Desai and Prasad 2013a; Sikander and Prasad

2015a) proposed combined MOR methods in which

denominator coefficients are computed using a mathemat-

ical technique, and the numerator polynomials are obtained

by using swarm and evolutionary algorithms to match the

system’s transient response. A combined order reduction

technique based on modified pole clustering and genetic

algorithm is proposed in Vishwakarma and Prasad (2009).

Desai and Prasad (Desai and Prasad 2013a) integrated the

benefits of the Big Bang Big Crunch (BBBC) optimization

technique and stability equation method for MOR. Another

mixed technique for obtaining a lower order model based

on the stability equation method and the nature-inspired

PSO algorithm is presented in Sikander and Prasad 2015a.

Furthermore, single nature-inspired optimization algo-

rithms like PSO, GA, DF, SCA, etc., cannot provide global

optimal solutions because of their limited feature and poor

convergence characteristics. Therefore, now, researchers

give attention towards hybrid optimization algorithms in

the application of MOR. Evolutionary algorithms are fre-

quently utilized to identify global maxima or minima of

intricate fitness functions. In a referenced paper (Ganji

et al. 2017), the author introduced a hybrid algorithm

named PSO-DV. This algorithm integrates a selection

mechanism into the Particle Swarm Optimization (PSO)

approach and incorporates the differential vector operator

from Differential Evolution (DE) to enhance the velocity

update scheme within the PSO framework. Recently, a new

optimization algorithm has been proposed by combining

the benefits of the firefly algorithm (FA) (Yang and Slowik

2020) and Grey wolf optimization (GWO) (Mirjalili et al.

2014). In this hybrid algorithm, the solution vectors are

initialised using the FA and the GWO algorithm is used to

fine-tune the solution.

The main objective of this manuscript is to simplify the

SISO and MIMO higher order linear continuous system by

minimizing the integral square error of step response

between HOSS and LOSM. The Routh approximation

technique determines the denominator polynomial of the

LOSM, while the numerator polynomial is determined

using the proposed I-ADE algorithm. In summary, the key

contributions of the paper are:

i. An improved adaptive DE algorithm (I-ADE) is

proposed, which is reliable and robust.
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ii. The denominator polynomial of the lower-order

model is determined by the Routh approximation

technique.

iii. The numerator polynomial of the lower-order model

is determined by minimizing the step response ISE

and using the proposed I-ADE algorithm.

iv. Numerical test cases of SISO systems and MIMO

systems illustrate the superiority of the proposed

method.

v. To evaluate the reliability, robustness and applica-

bility of proposed I-ADE algorithm to different

optimization problems, statistical comparative per-

formance analysis is carried out in optimizing 23

benchmark functions using nine promising meta-

heuristic algorithms.

This article has been structured into six sections. Sec-

tion 1 contains the introduction and a comprehensive lit-

erature survey on model order reduction. The problem

formulation of the order reduction has been given in

Sect. 2. Differential evolution and algorithmic overview

are discussed in Sect. 3. The proposed method of order

reduction is illustrated in Sect. 4. Simulated results are

provided in Sect. 5. Finally, Sect. 6 comprises the con-

clusion and the future scope of the work presented.

2 Problem formulation

The assessment of the proposed method’s performance

involves the utilization of both SISO and MIMO systems.

Therefore, in this section, the SISO and MIMO systems are

briefly mentioned.

2.1 Single-input single-output (SISO) system

Consider an hth order large-scale dynamic HOSS transfer

function described in the form of Eq. 1

Gh sð Þ ¼ Ch sð Þ
Dh sð Þ ¼

c0 þ c1sþ c2sþ � � � þ ch�1s
h�1

d0 þ d1sþ d2sþ � � � þ dhsh
; ð1Þ

where c0; c1; c2; � � � ; ch�1 and d0; d1; � � � ; dh are the coeffi-

cients of higher order stable system. The prime objective of

the representation (given in Eq. 2) is to determine an order

‘l’ of the lower order model, which is less than the order ‘h’

of higher order system. Further, the lower order model

must retain the significant characteristics of the higher

order system in terms of its transient and steady-state

parameters.

Ĥl sð Þ ¼ Êl

F̂l

¼ ê0 þ ê1sþ ê2s
2 þ � � � þ êl�1s

l�1

f̂0 þ f̂1sþ f̂2s
2 þ � � � þ f̂ls

l
; ð2Þ

where ê0; ê1; ê2 � � � êl�1 and f̂0; f̂1; f̂2 � � � f̂l are the unknown

coefficients of lower order stable model.

2.2 Multi-input multi-output (MIMO) system

This paper extends the research to encompass systems with

m inputs and n outputs, which are represented by the

transfer matrix illustrated in Eq. 3. Such systems are

commonly referred to as multi-input multi-output (MIMO)

systems. These systems are frequently employed in the

modelling of real time control structure of power plant

model. Thus, the nth-order MIMO model is expressed as in

Eq. 3.

Gh sð Þ ¼

G11ðsÞ G12ðsÞ � � � G1mðsÞ
G21ðsÞ G22ðsÞ � � � G2mðsÞ

..

. ..
. . .

. ..
.

Gn1ðsÞ Gn2ðsÞ � � � GnmðsÞ

2
6664

3
7775; ð3Þ

where i ¼ 1; 2; 3; � � � ; n; j ¼ 1; 2; 3; � � � ;m
Now, individual transfer functions are expressed in

corresponding numerator and denominator form as given

by Eq. 4.

Hh sð Þ ¼ 1

DhðsÞ

C11ðsÞ C12ðsÞ � � � C1mðsÞ
C21ðsÞ C22ðsÞ � � � C2mðsÞ

..

. ..
. . .

. ..
.

Cn1ðsÞ Cj2ðsÞ � � � CnmðsÞ

2
6664

3
7775 ð4Þ

In general,hij sð Þ ¼ Cij sð Þ
Dh sð Þ ;

where i ¼ 1; 2; 3; � � � ; n; j ¼ 1; 2; 3; � � � ;m
The MIMO model of order l(l\ h) is represented by

Eq. 5

Ĥl sð Þ ¼ 1

F̂lðsÞ

Ê11ðsÞ Ê12ðsÞ � � � Ê1mðsÞ
Ê21ðsÞ Ê22ðsÞ � � � Ê2mðsÞ

..

. ..
. . .

. ..
.

Ên1ðsÞ Êj2ðsÞ � � � ÊnmðsÞ

2
666664

3
777775

Ĥl sð Þ ¼ Êij sð Þ
F̂l sð Þ

;

ð5Þ

where Êij sð Þ and F̂l sð Þ are the numerator and denominator

polynomial of LOSM transfer functions, respectively.

i ¼ 1; 2; 3; � � � ; n; j ¼ 1; 2; 3; � � � ;m

3 Differential evolution and algorithmic
overview

Storn and Price (Kenneth and Storn 1997) proposed an

efficient evolutionary algorithm called differential evolu-

tion (DE) whose extended versions have shown promising

results in the CEC competition series (Awad et al.
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2016, 2017; Akhmedova et al. 2018). The recent review

papers (Bilal et al. 2020; Das et al. 2016) present the

algorithmic developments of DE algorithm. It is a

stochastic search algorithm initiating chromosome set,

commonly known as decision vectors or population) where

each chromosome has of a set of genes, often called as

decision variables or individuals. In this technique, chro-

mosomes of a generation follows three major steps such as

mutation, crossover and optimal selection iteratively to

feed the population forwardly till an optimal solution is

obtained.

The approach towards DE algorithm is mentioned in the

stepwise manner:

1. Parameter initialization for problem statement, tech-

nique to be used and decision vector.

2. Computation of the fitness value for each decision

variable.

3. This step comprises of three sub-steps.

a. Apply the mutation operator to produce the mutant

vector.

b. Crossover between the target vector and mutant vector

to generate trial vector.

c. Selection of the fittest between target vector and trial

vector

Sub-step a to c to be followed to produce chromosomes

for following generation.

4. If the stopping criteria has achieved, then continue with

step-5 otherwise back to step-3.

5. Determine the most suitable fitness value as the

optimal solution.

Consider the set of decision vector of nth generation is

popn ¼ P1
n;P

2
n; � � � ;Pi

n; � � �Ppsz
n

� �
; with Pi

n ¼
Gj1

n ;G
j2
n ; � � �Gjk

n � � �Gjl
n

� �
for j ¼ 1; 2; 3 � � � psz; l ¼ each

chromosome length,Gjk
n ¼ kth gene of the jth variable in

nth generation. Thereafter, mutation for jth chromosome

generates a mutant vector

MV j
n ¼ MVj1

n ;M
j2
n ; � � �Mjk

n � � �Mjl
n

� �
, which is implemented

in the crossover operator with the chosen chromosome

Pi
n ¼ Gj1

n ;G
i2
n ; � � �Gjk

n � � �Gjl
n

� �
to generate a trial vector

TV j
n ¼ TVj1

n ; TV
j2
n ; � � � TVjk

n � � � TVjl
n .

The DE algorithm shows changes in characteristics

through the mutation and crossover operators. Different

mutation operators are proposed in Price et al. (2006),

Corne et al. (1999) to produce mutant vector. Different DE

mutation schemes include DE/best/1 (Eq. 6), DE/rand/1

(Eq. 7), DE/rand/2 (Eq. 8), DE/best/2 (Eq. 9) and DE/tar-

get-to-best/1 (Eq. 10). Once the mutant vector is generated

using any of the mutation scheme, crossover operators such

as binomial (Eq. 11) or exponential (Eq. 12) is applied to

obtain a trial vector. Thereafter, selection process (Eq. 13)

is implemented to identify fittest chromosomes between

trial vector and target vector for choosing the fittest indi-

vidual among the chromosomes for the following

generations.

DE=best=1 : MV j
n ¼ pbestn þ Sf prnd1n � prnd2n

� �
ð6Þ

DE=rand=1 : MV j
n ¼ prnd1n þ Sf prnd2n � prnd3n

� �
ð7Þ

DE=rand=2 : MV j
n

¼ prnd1n þ E prnd2n � prnd3n

� �
þ Sf prnd4n � prnd5n

� �

ð8Þ

DE=best=2 : MV j
n

¼ pbestn þ Sf prnd1n � prnd2n

� �
þ Sf prnd3n � prnd4n

� �

ð9Þ

DE=target� to� best=1 : MV j
n

¼ p j
n þ Sf pbestn � prnd1n

� �
þ Sf pbestn � prnd2n

� �
ð10Þ

TVji
n ¼

MVji
n if randð0; 1Þ\Cp

Gji
n else

(
for i ¼ 1; 2; :::l

TVji
n ¼

MVji
n h� i� hþ tð Þ

Gji
n else

(
for i ¼ 1; 2; :::l

P j
nþ1 ¼

TV j
n if TV j

n [Pj
n

P j
n else

(

ð11Þ

TVji
n ¼

MVji
n h� i� hþ tð Þ

Gji
n else

(
ð12Þ

Pj
nþ1 ¼

TV j
n if TV j

n [Pj
n

P j
n else

(
ð13Þ

The abbreviations used in this paper are denoted as

DE=c=d, where DE is differential evolution, c is meant for

choosing the base vector in mutation, d denotes the number

of difference vectors used in mutation; MV j
n meant for jth

mutant vector in nth generation;pbestn is the most suit-

able vector among the decision vector set in nth genera-

tion;prndn is a randomly selected decision vector;p j
n is the

target vector; the crossover probability is denoted as Cp; Sf

is termed to be the scale factor;TVji
n represents the ith gene

of jth chromosome in nth generation; rand (0,1) ranges

between 0 and 1 chosen randomly. It should be noted that

all the selected decision vectors for mutation must be dis-

tinct to each other.
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Fig. 1 Flowchart of proposed

I-ADE Algorithm
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4 Methodology

This research aims to introduce a novel mixed-order

reduction method applicable to continuous-time fixed

coefficient systems. The proposed approach leverages the

Routh Approximation method to calculate the denominator

coefficients of the lower order model and employs the

I-ADE optimization algorithm to determine the optimal

numerator coefficients for the lower order model. The

primary objective of this study is to minimize the Integral

of Squared Error (ISE) between the step responses of the

original higher order system and the lower order model. In

this article, SISO and MIMO test systems from existing

literature are selected as benchmarks to evaluate the

effectiveness of the proposed technique. To gauge its

performance, the proposed method is compared against

established reduction methods in the literature. The paper

provides step responses and Bode diagrams for both the

original higher order system and its corresponding lower

order models. A comprehensive comparative analysis is

conducted using various error metrics and time-domain

specifications. The simulation results and the comparative

study collectively demonstrate that the proposed approach

yields an acceptably accurate lower order model for the

original higher order system.

4.1 Proposed improved adaptive differential
evolution algorithm (I-ADE)

In this paper, an improved adaptive differential evolution

algorithm (I-ADE) is proposed. Figure 1 presents the

flowchart of the proposed I-ADE algorithm. The algorithm

operates in three stages: initialization, iteration and termi-

nation. In the initialization stage, the algorithm starts with a

psz number of randomly generated decision vectors from

an upper bound and lower bound with each decision vector

denoting a candidate solution of the problem. Each deci-

sion vector has a set of variables with each variable

denoting an independent variable of the problem. The

generation counter n, mean of crossover probability Cpm
and number of trial vectors upon stagnation is initialized.

In the iteration stage, mutation, crossover and selection

operations are repeatedly applied to move the population of

decision vectors to next generation until a termination

criterion is satisfied. In the proposed algorithm, DE/best/1

mutation scheme is used with a modification in generating

multiple mutant vectors upon stagnation. In this algorithm,

it is assumed that the population stagnates if the rate of

improvement of best solution is less than 1%. The novelty

of the proposed algorithm lies in its parameter adaption

which is presented in Algorithm 1.

When stagnation occurs, NT scale factors (Sf ) are

employed to generate NT number of mutant vectors. Then,

the target vector and mutant vectors undergo a crossover

operation to generate multiple trial vectors. Finally, the

best trial vector is used for selection operation between the

trial vector and target vector. The generation of multiple

trial vectors around the existing solution helps in getting

out of stagnation. This is because: a) If the difference

vector Pr1
n � Pr2

n becomes small, or the vector converges to

a tiny domain, then the Sf having larger values are used to

generate a larger difference vector which ultimately assists

in avoiding the suboptimal peaks causing stagnation, b) If

the difference vector Pr1
n � Pr2

n is large, the decision vector

may jump the near-optimal solutions. But the use of Sf with

smaller value may overcome this problem. This is because

when a larger difference vector is multiplied with a smaller

scale factor (less than one), the difference vector large

value reduces significantly which will assist in making

local search around the existing solution. Thereby avoids

the chances of overshooting the near-optimal solution due

to addition of larger difference vector value. Thus, the

multiple Sf from a uniform distribution ranging (0–2) will

be beneficial for both local search and global search.

When stagnation does not occur, the initial generation

scale factor values are larger while the later generation

scale factor values are smaller. Thus, initially, it makes

exploration of the search space while in later generations, it

does exploitation of the solution by making local search

around the existing solutions. Thereby, a trade between

exploration and exploitation is implicitly maintained.

The crossover probability (Cp) does not depend on any

stagnation criterion. Additionally, the Cp is generated from

a large Gaussian distribution with a fixed value of standard

deviation and mean of 0.1 and Cpm, respectively. The

adaptation of Cpm is predominantly depends on the pre-

serving the better crossover probabilities to obtain the most

suitable trial vectors. The implication of arithmetic mean

during adjusting Cpm avoids the bias of Cp towards smaller

values (as in Eq. 14). Additionally, Cpm uses Cpsuccess
along with a factor of randomness. Thereby, it not only

makes use of better crossover probabilities but also adds an

element of randomness into it. In this research, Gaussian

distribution is used on Cpm which improvises the chances

to obtain the fittest trial vectors with the help of Cpm values

within a unity range. The value of Cpm is initially set to 0.5,

thereby gradually updated in every iteration (using Eq. 14).

Wf
cr ¼ 0:7þ 0:3� rand 0; 1ð Þ

Cpm ¼ Wf
cr � Cpm þ 1�Wf

cr

� �
� mean Cpsuccessð Þ;

ð14Þ

where Wf
cr is the weight factor in the range of (0.7,

1).Cpsuccess is the set of Cp generating better trial vectors.

A. P. Padhy et al.

123



Once the best trial vector is obtained, it is used in

selection to move the candidate solution with better fitness

to next generation. Once the termination criteria are satis-

fied, the decision vector of final generation with best fitness

value is used as the solution of the problem. The proposed

algorithm is an improved and faster version of ADE-ANNT

(Panigrahi and Behera 2020) algorithm. Hence, it is named

as I-ADE.

Algorithm 1 Pseudo-code of parameter adaptation

Here rand (1, NT) represents NT numbers from a uni-

form distribution space in a span of (0, 1), Gaussianrnd

(Cpm, 0.1) is generated from a Gaussian distribution having

standard deviation and mean of 0.1 and Cpm, respectively.

In this algorithm, when there is less than 1% change in the

best solution between two generations then only multiple

trial vectors are generated. Otherwise, only one trial vector

will be generated and the computational efficiency of the

algorithm is same to other algorithms. Additionally, one

can employ parallel computing to compute the multiple

trial vectors parallel which will again diminish the ques-

tions on computational complexity and applicability of the

proposed algorithm in practice. Of course, the number of

trial vectors and choice of stagnation criteria maintains a

trade between exploration and exploitation which need to

be carefully chosen based on the problem in hand.

4.2 Application of Routh approximation
for computation of denominator
polynomials of lower-order model

Routh approximation (RA) is initially highlighted by

Hutton et al. (1975) to reduce the order of HOSS to its

corresponding LOSM in the frequency domain. The tech-

nique is quite simple to use, thereby used for preserving the

stable approximants in LOSM, only if the HOSS is termed

to be stable. This technique is suitable to evaluate

denominator coefficients of the LOSM depending on the b-
table (as in Table 1).

Step-1: Compute the reciprocal transformation of HOSS

using Eq. 15.

Qh sð Þ ¼ 1

s
Qh

1

s

� �
ð15Þ

Step-2: Considering the coefficients of Q sð Þ, determine

the values of b1; b2; � � � bn; by using Beta table.

Step-3: Obtain lth-order denominator polynomial Q̂l

considering the Beta coefficients of Qh sð Þ.
For second order, Q̂2ðsÞ ¼ b1b2s

2 þ b2sþ 1.

For third order,

Q̂3ðsÞ ¼ b1b2b3s
3 þ b2b3s

2 þ b1 þ b3ð Þsþ 1.

Table 1 Beta table
q00 ¼ q0 q02 ¼ q2 q04 ¼ q4 q66 ¼ q6 � � �
q10 ¼ q1 q12 ¼ q3 q14 ¼ q5 � � �

b1 ¼ q00
�
q10 q20 ¼ q20 � b1q

1
2 q22 ¼ q04 � b1q

1
4 q24 ¼ q06 � b1q

1
6

� � �
b2 ¼ q10

�
q20 q30 ¼ q12 � b2q

2
2 q32 ¼ q14 � b2q

2
4

� � �
b3 ¼ q20

�
q30 q40 ¼ q22 � b3q

3
2 q42 ¼ q24 � b3q

3
4

� � �
b4 ¼ q30

�
q40 q50 ¼ q32 � b4q

4
2

� � � � � �
b5 ¼ q40

�
q50 q60 ¼ q42 � b5q

5
2

� � �
b6 ¼ q50

�
q60 � � � � � �

If Stagnation  

Generate ( )1NT > scale factors ( )1 2 3, , ,f f f ff
NTS S S S S=

(1, )* _ ff
mS rand NT Max S=

Else

           Generate ( )1v = scale factor ( ) ( )1 1
f ffS S S=

( )( )1 * / _fS a epoch a Max iteration= −

End of if
Crossover probability generation

( ) [ ],0.1 0;1mCp Gaussianrnd Cp with Cp∈=
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Table 2 Parameter

configuration of different

optimization algorithms

Algorithm Parameters Values

I-ADE F (0,1)

Gaussianrnd ðCpm; 0:1Þ
Mean Cpmð Þ 0.6

Standard deviation (Stndv) 0.1

ADE-ANNT v 0; 1ð Þ
Cauchyrnd 0; 1ð Þ
Weight factor Wf

cr
ð0:8; 1Þ

Scale parameter 0.1

Location parameter Fm 0.5

Gaussianrnd ðCpm; 0:1Þ
Mean Cpmð Þ 0.6

Standard deviation (Stndv) 0.1

DE rnd (0,1)

Scaling factor 0.5

Crossover factor 0.8

PSO Inertia weight 1 ! 0:7

Random velocity rule weight (lower Limit) 0

Random velocity rule weight (higher limit) 2

GWO a 2 ! 0(decreases linearly)

A 2� a� rnd1 � a

C 2� rnd2

ALO rnd (0.1)

WOA a 2 ! 0(Decreases linearly)

a2 �1 ! �2

A 2� a� rnd1 � a

C 2� rnd2

SSA C1 2� exp �4=T2ð Þ
C2 rnd

C3 rnd

SCA a 2

r1 a ! 0(decreases linearly

r2 2�P� rnd

r3 rnd

r4 rnd

GOA Cmax 1

Cmin 0.00004

MFO a �1 ! �2(linearly decreases)

b 1

DF r ub�lbð Þ
4

þ ub� lbð Þ � t
T

� �2
w 0:9� t

T � 0:9� 0:4ð Þ
Distraction weight dt cð Þ 0:1� t

T � 0:1�0
2

� �

Separation weight swð Þ 2� rnd � dt cð Þ
Alignment weight awð Þ 2� rnd � dt cð Þ
Cohesion weight cwð Þ 2� rnd � dt cð Þ
Food attraction weight fwð Þ 2� rnd
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Equation 16 represents the generalized form of

denominator polynomial.

Ql ¼ blsQl�1 sð Þ þ Ql�2 sð Þ ð16Þ

4.3 Application of proposed I-ADE algorithm
for computation of numerator polynomials
of lower order model

The proposed I-ADE algorithm is used to compute the

numerator polynomials of lower order model. For this each

numerator polynomial is considered as a decision variable

and all numerator polynomials form a decision vector.

Then, the mutation, crossover and selection scheme of

I-ADE algorithm employing the proposed parameter

adaption scheme is repeatedly applied until the termination

criteria are satisfied. Note that the objective function is a

minimization one and is used to minimize the integral

square error (ISE) between the step responses of original

higher order system and the reduced model. Once the

I-ADE algorithm terminates, the decision vector of the final

generation with the best fitness (lowest ISE) is selected as

the values of numerator polynomials of lower order model.

5 Simulated results and discussion

5.1 Experimental evaluation of proposed I-ADE
algorithm for optimizing benchmark
functions

The proposed I-ADE algorithm’s performance is evaluated

using benchmark functions, both unimodal and multi-

modal, as detailed in Mirjalili’s work (El-Kenawy et al.

2022). This includes information on the dimensionality

(Dim), ranges, and optimal solutions (fmin) for these

benchmark functions. To assess the effectiveness of the

proposed I-ADE algorithm, it is compared with several

well-known meta-heuristic algorithms. Specifically, these

algorithms are the original SCA, PSO, ALO, DE, MFO,

and DF. Since the proposed I-ADE method is a modifica-

tion of the DE (Differential Evolution) algorithm, the

original DE algorithm is chosen as a comparison bench-

mark. Additionally, PSO, ALO, and DE have recently been

applied in the context of model order reduction, making

them relevant for comparison. Two other popular meta-

heuristic algorithms, MFO and DF, are also included as

comparative methods. The control parameters for SCA,

PSO, ALO, and MFO remain the same. However, for the

DE algorithm, a specific strategy called DE/best/1/bin is

employed, with control parameter values F set to 0.5 and

Cr set to 0.6. All algorithms, including the proposed

I-ADE, are run independently 20 times, each with a swarm

size of 20 search agents (also referred to as individuals or

chromosomes) and a maximum of 400 iterations. For the

convenience of interested readers, the algorithm parameters

are summarized in Table 2.

In this field, it is a common practice to evaluate the

performance of algorithms using a set of well-established

mathematical functions that have known global optima.

Computational experiments are typically conducted on a

set of 23 benchmark functions, which can be categorized

into three groups: unimodal functions, multimodal func-

tions with varying numbers of local optima, and fixed-di-

mension multimodal functions. The details of these three

categories of functions are mentioned below.

• Benchmark functions 1–7 are unimodal functions (as in

Table 3). These functions are primarily used to assess

how well algorithms can exploit the search space and

Table 3 Parameter

configuration of the Unimodal

benchmark Functions

Sl. No. Function Dimension Range fmin

1
f1 uð Þ ¼

Pn
j¼1

u2
30 [- 100, 100] 0

2
f2 uð Þ ¼

Pn
j¼1

uj
�� ��þ Q

n

j¼1

uj
�� �� 30 [- 10,10] 0

3
f3 uð Þ ¼

Pn
j¼1

Pj
i¼1

uj

� �2 30 [- 100, 100] 0

4 f4 uð Þ ¼ maxj uj
�� ��; 1� j� n
� 	

30 [- 100, 100] 0

5
f5 uð Þ ¼

Pn�1

j¼1

100 ujþ1 � u2j


 �2
� uj � 1
� �2� 

30 [- 30, 30] 0

6
f6 uð Þ ¼

Pn
j¼1

uj þ 0:5
� �2 30 [- 100, 100] 0

7
f7 uð Þ ¼

Pn
j¼1

ju4j þ rand 0; 1½ � 30 [- 1.28, 1.28] 0
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find the global optimum. Unimodal functions have a

single global optimum.

• Benchmark functions 8–13 are flexible dimension

multimodal functions (as in Table 4). These functions

are characterized by having multiple local optima, and

the number of local optima tends to increase with the

number of dimensions. These functions are utilized to

evaluate the ability of algorithms to explore the search

space effectively and locate multiple local optima.

• Benchmark functions 14–23 are fixed-dimension mul-

timodal benchmark functions (as in Table 5). They are

designed to test the exploration capabilities of algo-

rithms in situations where the dimensionality of the

optimization problem is fixed, and multiple local

optima exist.

In summary, these benchmark functions serve as a

standardized way to test and compare the performance of

algorithms in terms of their ability to exploit global optima,

explore the search space efficiently, and handle optimiza-

tion problems with various characteristics and dimensions.

The global optimum values of the benchmark functions are

also given in Tables 3, 4 and 5 to give an idea to the

readers about the performances of the proposed algorithm.

Table 6 provides a summary of the mean and standard

deviation (StDev) results obtained from the suggested

I-ADE algorithm as well as the compared algorithms

across the benchmark functions (f1 to f23). These results

reveal that the I-ADE algorithm has achieved impressive

performance, even obtaining zero values for both mean and

standard deviation in some cases. Additionally, it outper-

forms the compared algorithms in various instances.

Table 7, on the other hand, presents the outcomes of the

Wilcoxon signed-rank test (WSRT) conducted on the 23

sample functions (f1 to f23). Since meta-heuristic algo-

rithms exhibit stochastic behaviour, it is essential to

employ statistical tests to make conclusive assessments.

The WSRT, conducted at a 95% significance level, is used

to determine whether a method is inferior (-), superior

( ?), or equivalent (&) to the proposed I-ADE algorithm.

These statistical tests aid in providing a rigorous and reli-

able evaluation of the algorithms, allowing for comparisons

and identifying the strengths and weaknesses of each

method. These results are crucial in making informed

Table 4 Parameter configuration of the flexible dimension multimodal benchmark functions

Sl. No. Function Dimension Range fmin

8
f8 uð Þ ¼

Pn
j¼1

�u sin
ffiffiffiffi
uj

p� � 30 [- 100, 100] 0

9
f9 uð Þ ¼

Pn
j¼1

u2i � 10cos 2Puj
� �

þ 10
� � 30 [- 5.12, 5.12] 0

10
f10 uð Þ ¼ �20exp �0:2

ffiffi
1
n

q Pn
j¼1

u2j

 !
� exp 1

n

Pn
j¼1

cos 2Puj
� �

 !
þ 20þ e

30 [- 32,32] 0

11
f11 uð Þ ¼ 1

4000

Pn
j¼1

u2j �
Qn
j¼1

cos
ujffi
j

p

 �

þ 1

" #
30 [- 600, 600] 0

12
f12 uð Þ ¼ P

n
10sin Py1ð Þ þ

Xn�1

j¼1

yj � 1
� �2

1þ 10sin2 Pyjþ1

� �� �
þ yn þ 1ð Þ2

( )

þ
Xn
j¼1

t uj; 10; 100; 4
� �

yj ¼ 1þ uj þ 1

4

t ui; a; k;mð Þ ¼

k uj � a
� �m

uj [ a

0 � a\uj\a

k �uj � a
� �m

uj\� a

8>><
>>:

30 [- 50, 50] 0

13

f13 uð Þ ¼ 0:1

sin2 3Pð Þ þ
Xn
j¼1

uj � 1
� �2

1þ sin2 3Pui þ 1ð Þ
� �

þ un � 1ð Þ2 1þ sin2 2Punð Þ
� �

þ
Xn
j¼1

t uj; 5; 100; 4
� �

8>>>><
>>>>:

9>>>>=
>>>>;

30 [- 50, 50] 0
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decisions about the algorithm’s suitability for optimization

tasks.

Table 8 presents the frequency of statistical significance

comparative algorithms than proposed I-ADE algorithm

than other in optimizing 23 benchmark functions. The

ADE-ANNT algorithm provides inferior, superior and

equivalent results than proposed I-ADE algorithm in 10, 1

and 12 benchmark functions, respectively. Table 8 reveals

that the proposed I-ADE algorithm has demonstrated sta-

tistically superior performance when compared to several

other algorithms, including the original ADE, DE, GWO,

WOA, PSO, MFO, ALO, DF, and SCA. This statistical

analysis provides strong evidence of the effectiveness of

the I-ADE algorithm across various benchmark functions.

To rank the meta-heuristic algorithms comprehensively,

taking into account all 23 functions, a Friedman and

Nemenyi hypothesis test is conducted at a 95% confidence

level, and the results are depicted in Fig. 2. It is evident

from Fig. 2 that the proposed I-ADE algorithm attains the

lowest mean rank (51.34), which is significantly lower than

the mean ranks of other algorithms by at least a critical

distance of 2.8. ADE-ANNT acquires the second rank,

SCA acquires the worst rank, and so on. The GWO and

PSO algorithms are statistically equivalent to each other,

since the difference in mean rank is less than the critical

distance 2.8.

5.2 Performance evaluation of proposed method
for optimizing the parameters of numerator
and denominator polynomial of SISO system

In order to evaluate the performance of proposed method

for model order reduction of SISO system, the fourth-order

system (Vishwakarma and Prasad 2008) is considered

which is expressed in Eq. 17. Equation 18 presents the

reciprocal of denominator polynomial of HOSS. Then

Routh approximation is used and the computed Beta

table for denominator polynomial of the fourth-order SISO

system is presented in Table 9.

Gh sð Þ ¼ Ch sð Þ
Dh sð Þ ¼

s3 þ 7s2 þ 24sþ 24

sþ 1ð Þ sþ 2ð Þ sþ 3ð Þ sþ 4ð Þ ð17Þ

~Dh sð Þ ¼ shDh
1

s

� �
¼ 1þ 10sþ 35s2 þ 50s3 þ 24s4 ð18Þ

The second-order denominator polynomial is obtained

by using Table 9 and is presented in Eq. 19.

~Fl sð Þ ¼ 1þ b1sþ b1b2s
2¼ 1þ 1.656sþ 0.7946s2 ð19Þ

Table 5 Parameter configuration of the fixed dimension multimodal benchmark functions

Sl. No. Function Dimension Range fmin

14

f14 uð Þ ¼ 1
500

þ
P25
j¼1

1

jþ
P2
i¼1

ui�aijð Þ6

0
B@

1
CA

�1 2 [- 50, 50] 1

15
f15 uð Þ ¼

P11
j¼1

aj �
uj bjþbju2ð Þ
b2j þbju3þu4

� 2 4 [- 5, 5] 0.00030

16 f16 uð Þ ¼ 4u21 þ 2:1u41 þ 1
3
u61 þ u1u2 � 4u22 þ 4u42 2 [- 5, 5] - 1.0316

17 f17 uð Þ ¼ u2 � 5:1
4p2 u

2
1 þ 5

p u1 � 6
� �2þ10 1� 1

8p

� �
cos u1 þ 10 2 [- 5, 5] 0.398

18 f18 uð Þ ¼ 1þ u1 þ u2 þ 1ð Þ2 19� 14x1 þ 3x21 � 14x2 þ 6x1x2 þ 3x22
� �j k

� 30þ 2u1 � 3u2ð Þ2� 18� 32u1 þ 12u21 þ 48u2 � 36u1u2 þ 27u22
� �h i

2 [- 2, 2] 3

19
f19 uð Þ ¼ �

P4
j¼1

Cjexp �
P3
i¼1

aji uj � Pji

� �2� �
3 [0, 1] - 3.86

20
f20 uð Þ ¼ �

P4
j¼1

Cjexp �
P6
i¼1

aji uj � Pji

� �2� �
6 [0, 1] - 3.32

21
f21 uð Þ ¼ �

P5
j¼1

P4
i¼1

ui � aji
� �2þcj

� �1 4 [0, 10] - 10.1532

22
f22 uð Þ ¼ �

P7
j¼1

P4
i¼1

xi � aji
� �2þcj

� �1 4 [0, 10] - 10.4028

23
f23 uð Þ ¼ �

P10
j¼1

P4
i¼1

xi � aji
� �2þcj

� �1 4 [0, 10] - 10.5363
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For computing the denominator polynomial of the

desired reduced LOSM, the reciprocal transformation of

Eq. 19 is taken and it is presented in Eq. 20.

F̂l sð Þ ¼ s2þ1.6555sþ 0.7946 ð20Þ

After computation of denominator polynomial men-

tioned in Eq. 20, the numerator polynomial of the LOSM is

computed using I-ADE by setting population size to 50, the

maximum number of iterations to 400 and minimizing the

ISE between HOSS and LOSM. The numerator polynomial

is presented in Eq. 21.

Êl sð Þ ¼ 0.8242sþ 0.7889: ð21Þ

Thus, the obtained second-order transfer function

stable model using the proposed technique is presented in

Eq. 22.

Ĥl sð Þ ¼ Êl

F̂l

¼ 0.8242sþ 0.7889

s2þ1.6555sþ 0.7946
: ð22Þ

Figures 3 and 4 demonstrate that the error gap between

the step and frequency responses of theHOSS and the LOSM

obtained through the proposed method is remarkably small.

This observation indicates that the LOSM effectively cap-

tures the essential characteristics of the original system.

Equation 22 represents a second-order steady-state model

for a fourth-order system, and it is worth noting that this

reduced model encapsulates all the significant attributes of

the original system. Furthermore, Table 10 provides evi-

dence that the reduced-order model obtained through the

proposed method maintains the stability of the original sys-

tem while achieving impressive results in various error

metrics, including integral square error (ISE), integral

absolute error (IAE), integral time square error (ITSE), mean

square error (MSE), and root mean square error (RMSE).

These error indices demonstrate that the proposed LOSM

performs better than other well-known reduction techniques

found in the literature.As a result, it can be concluded that the

simplified LOSM derived from the proposed method is the

closest match to the original system’s behaviour. This makes

it highly useful for dynamic simulations of large-scale sys-

tems, as it reduces computational complexity, simulation

time, and memory requirements while maintaining accuracy

and stability.

5.3 Performance evaluation of proposed method
for optimizing the parameters of numerator
and denominator polynomial of MIMO
system

Consider a sixth order MIMO system (Padhy et al. 2021;

Bistritz and Shaked 1984) having two inputs two outputs

(TITO) described by Eq. 23
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Hh sð Þ ¼ Ch sð Þ
Dh sð Þ ¼

1

Dh sð Þ
C11 C12

C21 C22

� 

¼

2 sþ 5ð Þ
sþ 1ð Þ sþ 10ð Þ

sþ 4ð Þ
sþ 2ð Þ sþ 5ð Þ

sþ 10ð Þ
sþ 1ð Þ sþ 20ð Þ

sþ 6ð Þ
sþ 2ð Þ sþ 3ð Þ

2
664

3
775:

ð23Þ

The denominator and numerator polynomial of the

MIMO system is represented by Eqs. 24 and 25,

respectively.

Table 7 Wilcoxon signed-rank

test results on unimodal and

multimodal functions indicating

the inferior (�), superior (þ), or

equivalent (�) algorithm in

comparison to the proposed

I-ADE algorithm

I-ADE DE PSO ALO MFO GWO WOA SCA DF

F1 � � � � � � þ � �
F2 � � � � � þ þ � �
F3 þ þ � � � � � � �
F4 � � � � � � � � �
F5 � � � � � � � � �
F6 � � � � � � � � �
F7 � � � � � � � � �
F8 � � � � � � � � �
F9 � � � � � � þ � �
F10 � � � � � � � � �
F11 � � � � � � � � �
F12 � � � � � � � � �
F13 � � � � � � � � �
F14 � � � � � � � � �
F15 � � � � � � � � �
F16 � � � � � � � � �
F17 � � � � � � � � �
F18 � � � � � � � � �
F19 � � � � � � � � �
F20 � � � � � � � � �
F21 � � � � � � � � �
F22 � � � � � � � � �
F23 � � � � � � � � �

Table 8 Frequency summary of statistical significance of compara-

tive meta-heuristic algorithms than proposed I-ADE algorithm

Inferior (�) Superior (þ), Equivalent (�)

ADE-ANNT 10 1 12

DE 7 1 15

PSO 14 0 9

ALO 18 0 5

MFO 14 0 9

GWO 15 01 7

WOA 17 03 03

SCA 22 00 01

DF 16 00 07

Fig. 2 Mean rank of meta-heuristic algorithms using 23 benchmark

functions with P value = 0.0 and critical distance = 2.8
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Dh sð Þ ¼ s6 þ 41s5 þ 571s4 þ 3491s3 þ 10060s2 þ 13100s
þ 6000

ð24Þ

C11 sð Þ ¼ 2s5 þ 70s4 þ 762s3 þ 3610s2 þ 7700sþ 6000;

C12 sð Þ ¼ s5 þ 38s4 þ 459s3 þ 2182s2 þ 4160sþ 2400;

C21 sð Þ ¼ s5 þ 30s4 þ 331s3 þ 1650s2 þ 3700sþ 3000;

C22 sð Þ ¼ s5 þ 42s4 þ 601s3 þ 360s2 þ 9100sþ 6000;

ð25Þ

By using beta table, the lower-order denominator poly-

nomial is represented by Eq. 26.

F̂l sð Þ ¼ s2 þ 1:548sþ 0:709: ð26Þ

The numerator coefficients of the LOSMs are computed

using I-ADE algorithm by minimizing the integral square

error between higher-order system and lower-order model

which are represented in Eq. 27.

Ê11 sð Þ ¼ 0:834sþ 0:707

Ê12 sð Þ ¼ 0:453sþ 0:281

Ê21 sð Þ ¼ 0:444sþ 0:354

Ê22 sð Þ ¼ 1:325sþ 0:703

ð27Þ

For transfer function H11 sð Þ.
The transfer matrix of second-order lower order model

obtained by using proposed method which are represented

by Eq. 28.

Ĥ11 sð Þ ¼ Ê11 sð Þ
f̂l sð Þ

¼ 0:838sþ 0:707

s2 þ 1:548sþ 0:709

Ĥ12 sð Þ ¼ Ê12 sð Þ
f̂l sð Þ

¼ 0:453sþ 0:281

s2 þ 1:548sþ 0:709

Ĥ21 sð Þ ¼ Ê21 sð Þ
f̂l sð Þ

¼ 0:444sþ 0:354

s2 þ 1:548sþ 0:709

Ĥ22 sð Þ ¼ Ê21 sð Þ
f̂l sð Þ

¼ 1:325sþ 0:703

s2 þ 1:548sþ 0:709

ð28Þ

For transfer function H12 sð Þ.
For transfer function H21 sð Þ.
For transfer function H22 sð Þ.
For MIMO system, the proposed LOSM is compared

with the lower order models obtained by the particle swarm

optimization and SE (Sikander and Prasad 2015a), BBBC

optimization algorithm and RA (Desai and Prasad 2013b),

cuckoo search optimization and SE (Narwal and Prasad

Table 9 Computed beta

table for denominator

polynomial of fourth-order

SISO system

24 35 1

50 10

b1 = 0.49 30.23 1

b2 = 1.656 8.346 0

Fig. 3 Step response of HOSS and LOSMs for SISO system

Fig. 4 Frequency response of HOSS and LOSMs for SISO system
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Table 10 Comparison of various model order reduction techniques based on performance error indices for SISO system

MOR techniques LOSM ISE IAE ITSE MSE RMSE

Proposed method 0:824sþ0:788
s2þ1:655sþ0:794 8:8230� 10�5 0:0171 1:7272� 10�4 1.287� 10�05 0:0036

Stability equation (SE) and Big Bang-

Big crunch (BBBC) algorithm (Desai

and Prasad 2013a)

0:799sþ0:675
s2þ1:469sþ0:685

3:448� 10�4 0.0364 0:0012 4:957� 10�5 0.0070

SE and genetic algorithm (GA) (Parmar

et al. 2007a)

0:7442sþ0:699
s2þ1:458sþ0:6997

0:0015 0:0832 0:0055 2:213� 10�4 0.0149

Dominant pole retention and BBBC

algorithm (Philip and Pal 2010)

0:9314sþ1:6091
s2þ2:7562sþ1:6092

0.0015 0:0819 0:0037 2:115� 10�4 0:0145

Truncation method (Smamash 1981) 24sþ24
35s2þ50sþ24

0:0030 0:1170 0:0069 4:421� 10�4 0:0210

Fig. 5 Step response of HOSS H11 sð Þ and LOSMs

Fig. 6 Step reposes of HOSS H12 sð Þ and LOSMs

Fig. 7 Step response of HOSS H21 sð Þ and LOSMs

Fig. 8 Step responses of HOSS H22 sð Þ and LOSMs
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2016), GA and SE method (Parmar et al. 2007a), factor

division (FD) and Eigen spectrum analysis (ESA) (Parmar

et al. 2007b), FD and SE method (Sikander and Prasad

2015b) to assess the efficacy of the proposed model order

reduction technique. Figures 5, 6, 7, and 8 illustrate the

step responses of the LOSM alongside its corresponding

HOSS. Additionally, Figs. 9, 10, 11, and 12 clearly

demonstrate that the frequency responses of the LOSM by

the proposed method closely resemble those of the HOSS.

To further evaluate the performance of the LOSM, various

performance indices, such as ISE, IAE, ITSE, MSE, and

RMSE, are employed. These indices are used for com-

paring the LOSM with models obtained through existing

Fig. 9 Frequency response of

HOSS H11 sð Þ and LOSMs

Fig. 10 Frequency responses of HOSS H12 sð Þ and LOSMs

Fig. 11 Frequency responses of HOSS H21 sð Þ and LOSMs
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methods, as outlined in Tables 11, 12, 13, and 14. The

optimal values for each of the test systems are obtained

using the proposed method which are highlighted in bold

face for easy identification.

6 Conclusion

A method based on the proposed improved adaptive dif-

ferential evolution algorithm (I-ADE) and Routh approxi-

mation is implicated in the model order reduction of higher

order SISO and MIMO systems. In the proposed method,

the denominator polynomial is calculated using the Routh

approximation technique and the numerator polynomial is

obtained by employing the proposed I-ADE algorithm. The

key factor of the proposed model order reduction method is

obtaining an LOSM for an HOSS with minimum error

Table 11 Comparison of various model order reduction techniques based on performance error indices for H11 sð Þ (Best values are presented in

Bold face)

Model order reduction techniques Lower-order

model

ISE IAE ITSE MSE RMSE

Proposed technique 0:889sþ0:704
s2þ1:548sþ0:709

6.5789 3 10–04 0.0722 0.0035 4.9933 3 10–05 0.0071

Particle swarm optimization (PSO) and SE method (Sikander

and Prasad 2015a)

0:659sþ0:616
s2þ1:349sþ0:618

0.0099 0.1983 0.0219 7.0978 9 10–04 0.0266

BBBC optimization algorithm and (RA) method (Desai and

Prasad 2013b)

0:947sþ0:709
s2þ1:548sþ0:709

0.0027 0.1264 0.0097 1.9544 9 10–04 0.0140

Cuckoo Search Optimization and SE method (Narwal and

Prasad 2016)

0:893sþ0:618
s2þ1:349sþ0:618

0.0107 0.2490 0.0379 7.6777 9 10–04 0.0277

GA and SE method (Parmar et al. 2007a) 0:850sþ0:617
s2þ1:349sþ0:618

0.0061 0.1848 0.0239 4.3390 9 10–04 0.0208

Factor division (FD) and Eigen spectrum analysis (ESA)

(Parmar et al. 2007b)

6:042sþ8:470
s2þ13:666sþ8:470

0.0037 0.1431 0.0107 2.6301 9 10–04 0.0162

FD and SE method (Sikander and Prasad 2015b) 0:793sþ0:618
s2þ1:349sþ0:618

0.0038 0.1336 0.0168 2.7276 9 10–04 0.0165

Table 12 Comparison of various model order reduction techniques based on performance error indices for H12 sð Þ (Best values are presented in

Bold face)

Model order reduction techniques Lower-order

model

ISE IAE ITSE MSE RMSE

Proposed technique 0:459sþ0:280
s2þ1:548sþ0:709

3.8515 3 10–04 0.0531 0.0019 2.8863 3 10–05 0.0054

PSO and SE method (Sikander and Prasad 2015a) 0:463sþ0:247
s2þ1:349sþ0:618

0.0036 0.1392 0.0124 2.5542 9 10–04 0.0160

BBBC optimization and RA method (Desai and Prasad

2013b)

0:489sþ0:283
s2þ1:548sþ0:709

0.0011 0.0751 0.0040 7.5086 9 10–05 0.0087

Cuckoo search optimization and SE method (Narwal and

Prasad 2016)

0:451sþ0:247
s2þ1:349sþ0:618

0.0029 0.1251 0.0107 2.0814 9 10–04 0.0144

GA and SE method (Parmar et al. 2007a) 0:461sþ0:246
s2þ1:349sþ0:618

0.0033 0.1345 0.0116 2.3796 9 10–04 0.0154

FD and ESA (Parmar et al. 2007b) 3:941sþ3:3883
s2þ13:6666sþ8:4707

0.0011 0.0639 0.0024 7.5952 9 10–05 0.0087

FD and SE method (Sikander and Prasad 2015b) 0:4272sþ0:2471
s2þ1:3495sþ0:6181

0.0018 0.0926 0.0074 1.2905 9 10–04 0.0114

Fig. 12 Frequency response of HOSS H22 sð Þ and LOMs
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bounds and retaining the significant characteristics of the

HOSS. Additionally, the performance of the model order

reduction method is evaluated by employing diverse test

case studies for SISO and MIMO systems. The frequency

and step responses show the transient and steady-state

behaviour of HOSS and LOSM. The results obtained using

the proposed method are better than those obtained using

different model order reduction methods of the published

literature pertaining to stability checks by employing step

and frequency responses. Performance indices results

indicate that the proposed method for LOSM is effective,

efficient, reliable and feasible. Hence, it can be concluded

that the proposed approximation method is stable and

superior to the other alternative methods existing in the

literature. Additionally, the proposed I-ADE algorithm is

robust and reliable, which is statistically confirmed from

the simulation results for optimizing 23 benchmark func-

tions. The proposed I-ADE algorithm is so adaptive that it

can be applied to a wide range of optimization problems

with the least intervention. In the future, one can extend the

proposed scheme for simplifying discrete, fractional-order

SISO and MIMO systems.
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Table 13 Comparison of various model order reduction techniques based on performance error indices for H21 sð Þ(Best values are presented in

Bold face)

Model order reduction techniques Lower-order

model

ISE IAE ITSE MSE RMSE

Proposed technique 0:434sþ0:352
s2þ1:548sþ0:709

1.4089 3 10–04 0.0336 7.4489 3 10–04 1.0716 3 10–05 0.0033

PSO and SE method (Sikander and Prasad 2015a) 0:4092sþ0:3086
s2þ1:3495sþ0:6181

0.0012 0.0808 0.0049 8.5690 9 10–05 0.0093

BBBC algorithm and RA method (Desai and Prasad

2013b)

0:455sþ0:3546
s2þ1:5482sþ0:7091

4.5576 9 10–04 0.0521 0.0017 3.2555 9 10–05 0.0057

Cuckoo Search Optimization and SE method

(Narwal and Prasad 2016)

0:4314sþ0:3091
s2þ1:3492sþ0:6181

0.0022 0.1145 0.0081 1.59561 9 10–04 0.0126

GA and SE method (Parmar et al. 2007a) 0:40933sþ0:30860
s2þ1:34952sþ0:6181

0.0012 0.0810 0.0050 8.6094 9 10–05 0.0093

FD and ESA (Parmar et al. 2007b) 2:8097sþ4:2354
s2þ13:6666sþ8:4707

0.0010 0.0751 0.0030 7.2185 9 10–05 0.0085

FD and SE method (Sikander and Prasad 2015b) 0:3795sþ0:3090
s2þ1:34952sþ0:6181

8.2416 9 10–04 0.0691 0.0035 5.8870 9 10–05 0.0077

Table 14 Comparison of various model order reduction techniques based on performance error indices for H22 sð Þ (Best values are presented in

Bold face)

Model order reduction techniques Lower-order

model

ISE IAE ITSE MSE RMSE

Proposed technique 1:103sþ0:702
s2þ1:548sþ0:709

1.7505 3 10–03 0.1147 0.0089 1.7505 3 10–04 0.0115

PSO and SE method (Sikander and Prasad 2015a) 1:0187sþ0:6169
s2þ1:3495sþ0:6181

0.0083 0.1978 0.0342 5.9038 9 10–04 0.0243

BBBC algorithm and RA method (Desai and Prasad 2013b) 1:126sþ0:7091
s2þ1:5482sþ0:7091

0.0031 0.1163 0.0129 2.1841 9 10–04 0.0148

Cuckoo Search algorithm and SE method (Narwal and

Prasad 2016)

1:0579sþ0:6181
s2þ1:3492sþ0:6181

0.0124 0.2575 0.0480 8.8915 9 10–04 0.0298

GA and SE method (Parmar et al. 2007a) 0:99766sþ0:617112
s2þ1:34952sþ0:6181

0.0072 0.1713 0.0305 5.1238 9 10–04 0.0226

FD and ESA (Parmar et al. 2007b) 8:0195sþ8:4707
s2þ13:6666sþ8:4707

0.0133 0.2321 0.0307 9.5307 9 10–04 0.0309

FD and stability equation SE method (Sikander and Prasad

2015b)

0:9338sþ0:6181
s2þ1:34952sþ0:6181

0.0065 0.1935 0.0253 4.6369 9 10–04 0.0215

Model order reduction for SISO and MIMO system using improved…

123



References

Abdollahzadeh B et al (2021) Artificial gorilla troops optimizer: a

new nature-inspired metaheuristic algorithm for global opti-

mization problems. Int J Intell Syst 36:5887–5958

Akhmedova S, Stanovov V, Semenkin E (2018) LSHADE Algorithm

with a Rank-based Selective Pressure Strategy for the Circular

Antenna Array Design Problem. In ICINCO (1). 2018

Ashoor N, Singh V (1982) A note on low-order modeling. IEEE Trans

Autom Control 27:1124–1126

Awad NH et al. (2016) An ensemble sinusoidal parameter adaptation

incorporated with L-SHADE for solving CEC2014 benchmark

problems. In 2016 IEEE congress on evolutionary computation

(CEC). IEEE

Awad NH, Ali MZ, Suganthan PN (2017) Ensemble sinusoidal

differential covariance matrix adaptation with Euclidean neigh-

borhood for solving CEC2017 benchmark problems. in 2017

IEEE Congress on Evolutionary Computation (CEC). IEEE

Bilal, Pant M, Zaheer H, Garcia-Hernandez L, Abraham A (2020)

Differential evolution: a review of more than two decades of

research. Eng Appl Artif Intell 90:103479

Bistritz Y, Shaked U (1984) Minimal Pade model reduction for

multivariable systems. J Dyn Syst Meas Control. https://doi.org/

10.1115/1.3140688

Corne D et al (1999) New ideas in optimization. McGraw-Hill Ltd.,

UK

Das S, Mullick SS, Suganthan PN (2016) Recent advances in

differential evolution–an updated survey. Swarm Evol Comput

27:1–30

Desai S, Prasad R (2013a) A new approach to order reduction using

stability equation and big bang big crunch optimization. Syst Sci

Control Eng an Open Access J 1:20–27

Desai S, Prasad R (2013b) A novel order diminution of LTI systems

using Big Bang Big Crunch optimization and Routh Approxi-

mation. Appl Math Model 37:8016–8028

El-Kenawy E-SM et al (2022) Novel meta-heuristic algorithm for

feature selection, unconstrained functions and engineering

problems. IEEE Access 10:40536–40555

Fortuna L, Nunnari G, Gallo A (2012) Model order reduction

techniques with applications in electrical engineering. Springer

Science and Business Media

Ganji V et al (2017) A novel model order reduction technique for

linear continuous-time systems using PSO-DV algorithm. J Con-

trol Autom Electr Syst 28:68–77

Goldberg DE (1989) Genetic algorithms in search optimization and

machine learning. Addison-Wesley Reading. https://doi.org/10.

1007/s10589-009-9261-6

Hutton M, Friedland B (1975) Routh approximations for reducing

order of linear, time-invariant systems. IEEE Trans Autom

Control 20:329–337

Hwang C (1984) Mixed method of Routh and ISE criterion

approaches for reduced-order modeling of continuous-time

systems. J Dyn Syst Meas Control. https://doi.org/10.1115/1.

3140697

Kennedy J, Eberhart R (1995) Particle swarm optimization. In IEEE

International Conference on Neural Networks, vol. 4, IEEE,

pp. 1942–1948. https://doi.org/10.1109/ICNN.1995.488968

Kenneth SR, Storn RM (1997) Differential evolution-a simple and

efficient heuristic for global optimization over continuous

spaces. J Global Optim 11(4):341–359

Lucas TN (1993) Optimal model reduction by multipoint Padé
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