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Abstract
In this article, we develop and analyze an efficient numerical technique to solve the nonlinear temporal fractional Burgers’
equation (TFBE). The temporal fractional derivative is considered in the terms of Caputo and approximated by using the
L2 − 1σ scheme. The quintic B-spline (QBS) basis function is employed for discretization of the space derivative to obtain
a fully discrete scheme. The proposed method is analyzed for its convergence and stability. Four nonlinear problems are
considered to illustrate the advantage and applicability of the presentmethod.Theproposed schemehas anorder of convergence
O(Δt2 + Δx4), where Δt and Δx are the step sizes in time and space directions, respectively. The comparison with the
corresponding results of an existing method based on cubic parametric spline functions demonstrates that the proposed
method is more accurate when solving the nonlinear time-fractional Burgers’ equation. The CPU time is provided to show
the computational efficiency of the method. The obtained stable and highly-accurate numerical results and low computational
time collectively underscore the significance of the proposed technique in solving the nonlinear time-fractional Burgers’
equation.

Keywords Time-fractional Burgers’ equation · Caputo’s derivative · Quintic B-spline · L2 − 1σ formula · Stability ·
Convergence analysis

1 Introduction

In recent years, the differential equations of fractional order
have become center of attraction among researchers due to
their wide range of applications in applied sciences and engi-
neering. For more details, one may refer to Podlubny (1999),
Giona et al. (1992), Mainardi (1997), Bagley and Torvik
(1984),Roul et al. (2019b),Roul et al. (2019c),Veeresha et al.
(2020), Roul et al. (2023), Roul (2020), Roul (2021), Roul
and Goura (2020) and references therein. It is well known
that the fractional order derivatives can model complex phe-
nomenamore accurately than the derivatives of integer order.
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In this article, we deal with the following nonlinear TFBE:

∂αu(x, t)

∂tα
+ u(x, t)

∂u(x, t)

∂x
− ν

∂2u(x, t)

∂x2

= f (x, t), (x, t) ∈ (Xl , Xr ) × (0, T ) , (1)

where ν represents the viscosity parameter and f (x, t) is the
source term. The initial condition (IC) is

u(x, 0) = g(x), x ∈ [Xl , Xr ] (2)

and the boundary conditions (BCs) are

u(Xl , t) = θ1(t), u(Xr , t) = θ2(t), t ≥ 0. (3)

The functions f (x, t), g(x), θ1(t) and θ2(t) are assumed
to be sufficiently smooth. The Caputo fractional derivative
∂αu(x,t)

∂tα in (1) is defined as follows:

∂αu(x, t)

∂tα
= 1

Γ (1 − α)

∫ t

0
(t − κ)−α ∂u(x, κ)

∂κ
dκ,

0 < α < 1. (4)

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-023-09413-0&domain=pdf
http://orcid.org/0000-0001-7929-3069


6154 P. Roul, V. Rohil

Burgers’ equationhas numerous applications in variousfields
of science and engineering and thus the researchers world-
wide have been showing keen interest in the study of this
equation.More specifically, this equation describes nonlinear
wave propagation effects, waves on shallow water surfaces,
chemical reaction-diffusion processes and one-dimensional
turbulence, see Logan (1994), Debtnath (1997), Adomian
(1995), Burgers (1948). The existence and uniqueness of
solutions to the Burgers’ equation of integer order have been
discussed inGyöngy (1998),Wang andWarnecke (2003). For
the fractional Burgers’ equation, the existence and unique-
ness of the solution is discussed byGuesmia andDaili (2010).
Kolkovska (2005) considered the stochastic Burgers-type
equation and studied the existence and regularity of solutions
in appropriate Hilbert spaces. Vieru et al. (2021) numerically
investigated the generalized time-fractional Burgers’ equa-
tion with variable coefficients, utilizing a finite-difference
scheme based on integral representations of Mittag–Leffler
functions. The approach is applied to specific cases, revealing
numerical solutions and comparisons for different time-
fractional derivatives. In Chen et al. (2021), the authors
introduced a nonlinear fully discrete scheme, utilizing the
nonuniform Alikhanov formula and Fourier spectral approx-
imation, for numerically approximating the time-fractional
Burgers equation with nonsmooth solutions. This scheme’s
solvability is established through fixed point theorem and
a priori estimate. Recently, Shafiq et al. (2022) employed
cubic B-spline functions and a θ -weighted scheme to numer-
ically solve the time-fractional Burgers’ equation with the
Atangana–Baleanu derivative, demonstrating its uncondi-
tional stability and second-order convergence in temporal
and spatial directions throughfinite-difference discretization.
It is well known that Burgers’ equation and Navier–Stokes
equation are similar in the form of their nonlinear terms.

In most of the cases, obtaining an exact solution to the
partial differential equations (PDEs) involving fractional
order derivatives is a challenging task. Therefore, numeri-
cal techniques must be adapted to approximate the solution
of temporal fractional order PDEs. Many authors employed
various kinds of numerical methods to solve the TFBE. For
instance, Mustafa Inc. Inc (2008) considered the application
of variational iteration method for numerical solution of the
homogeneous form of the time-fractional Burgers’ equation
(1). Liu andHou (2011) proposed the generalized differential
transform method to obtain numerical solution of the space-
and time-fractional coupled Burgers’ equation. In El-Danaf
and Hadhoud (2012), authors developed general framework
of the cubic parametric spline functions to construct a numer-
ical technique for obtaining the approximate solution of
TFBE. Yaseen and Abbas (2020) constructed a numerical
method to solve the problem considered. In this method,
they considered the standard finite-difference formulation to
approximate the Caputo time-fractional derivative and used

cubic trigonometric B-spline functions for the discretiza-
tion of space variable. This method is first order convergent
in time and second order convergent in space. In Majeed
et al. (2020), authors presented a numerical method based
on cubic B-spline finite element method to solve the TFBE.
They have approximated the Caputo fractional derivative
using the L1 formula for temporal discretization and then
used the Crank–Nicolson scheme based on cubic B-spline
basis functions for the spatial discretization. This scheme has
O(Δt2−α +Δx2) convergence rate. On the other hand, vari-
ous numerical techniques were used to obtain the numerical
solution of Burgers equation of integer order. These meth-
ods include finite-difference method (Hassanien et al. 2005),
finite element method (Kutluay et al. 2004) and B-spline col-
locationmethods (Ramadan et al. 2005; Saka andDag 2008).

Our main objective is to develop an efficient and high-
order numerical method for solving TFBE (1)–(3). The
proposedmethod is based on the L2−1σ scheme in temporal
direction and the QBS basis function in the spatial direction.
The stability and convergence of this scheme are analyzed,
demonstrating that it achieves second-order convergence in
time and fourth-order convergence in space. The compari-
son of the results obtained by the present scheme with those
obtained using the method in El-Danaf and Hadhoud (2012)
illustrates the advantage of the proposed method. The com-
putational time of the present method is provided. To the
best of our knowledge, this scheme has not been considered
in the literature for the numerical approximation of the prob-
lem defined by (1)–(3).

This paper is organized as follows: in Sect. 2, the proposed
numerical method is developed to solve the TFBE. The sta-
bility and convergence of ourmethod are discussed in Sect. 3.
The obtained numerical results are explained in Sect. 4. Sec-
tion5 discusses the conclusions.

2 Numerical scheme description

This section aims to derive a numerical scheme to solve the
TFBE (1) subject to IC and BCs given in Eqs. (2) and (3),
respectively.

2.1 Time discretization

First, we discretize the problem (1)–(3) in temporal direction
on [0, T ]. For an integer N > 1, we set tn = nΔt for n =
0, 1, . . . , N . The uniform time step size is given byΔt = T

N .
Suppose that tn−1+σ = (n − 1 + σ)Δt , where σ = 1 − α

2 .
In view of the L2 − 1σ formula (Alikhanov 2015), the

Caputo derivative defined by (4) can be approximated at t =
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tn−1+σ as follows:

∂αu(x, tn−1+σ )

∂tα
= Δt−α

Γ (2 − α)

[
cα
0 u(x, tn)

−
n−1∑
l=1

(
cα

n−l−1 − cα
n−l

)
u(x, tl)

− cα
n−1u(x, t0)

]
+ O(Δt3−α), n = 1, 2, . . . , N ,

(5)

where the coefficients are defined as

cα
0 = aα

0 , when n = 1 (6)

and when n ≥ 2

cα
j =

⎧⎪⎨
⎪⎩

aα
0 + bα

1 , j = 0,

aα
j + bα

j+1 − bα
j , 1 ≤ j ≤ n − 2,

aα
j − bα

j , j = n − 1,

(7)

where

aα
0 =σ 1−α, aα

j =( j + σ)1−α−( j − 1 + σ)1−α, j ≥ 1,

bα
j = 1

2 − α

[
( j + σ)2−α − ( j − 1 + σ)2−α

]

− 1

2

[
( j + σ)1−α + ( j − 1 + σ)1−α

]
, j ≥ 1.

The truncation error term O(Δt3−α) in (5) comes under the
assumption that u(·, t) ∈ C

3[0, T ].
Lemma 1 (Alikhanov 2015) For cα

j , 0 < α < 1, the follow-
ing holds true:

(1) cα
j > 1−α

2 ( j + σ)−α ≥ 0, j ≥ 0,
(2) cα

j−1 > cα
j , j ≥ 1.

We consider (1) at t = tn−1+σ and let u(x, tn) = un(x), to
obtain

∂αun−1+σ (x)

∂tα
+un−1+σ (x)

∂un−1+σ (x)

∂x
−ν

∂2un−1+σ (x)

∂x2

= f n−1+σ (x), x ∈ (Xl , Xr ), n = 1, 2, . . . , N ,

(8)

with IC

u(x, t0) = u0(x) = g(x), x ∈ (Xl , Xr ) (9)

and BCs

u(Xl , tn) = un(Xl) = θ1(tn), u(Xr , tn) = un(Xr )

= θ2(tn). (10)

Using Eq. (5), from (8), we have

Δt−α

Γ (2 − α)

[
cα
0 un(x) −

n−1∑
l=1

(
cα

n−l−1

−cα
n−l

)
ul(x) − cα

n−1u0(x)
]

+ (uux )
n−1+σ (x)

− νun−1+σ
xx (x) = f n−1+σ (x) + O(Δt3−α),

Xl < x < Xr , n = 1, 2, . . . , N .

(11)

Via Taylor’s expansion, we have

un−1+σ (x) = σun(x) + (1 − σ)un−1(x) + O(Δt2),

(12)

un−1+σ
x (x) = σun

x (x) + (1 − σ)un−1
x (x) + O(Δt2),

(13)

un−1+σ
xx (x) = σun

xx (x) + (1 − σ)un−1
xx (x) + O(Δt2),

(14)

Multiplying Eqs. (12) and (13), we get

(uux )
n−1+σ (x) = σ 2 (uux )

n (x)

+ σ(1 − σ)unun−1
x (x) + σ(1 − σ)un−1un

x (x)

+ (1 − σ)2 (uux )
n−1 (x) + O(Δt2).

(15)

Plugging (14) and (15) into (11) and rearranging the terms,
we obtain

Θcα
0 un(x) + σ 2 (uux )

n (x) + σ(1 − σ)unun−1
x (x)

+ σ(1 − σ)un−1un
x (x) − σνun

xx (x)

= Θ

n−1∑
l=1

(
cα

n−l−1 − cα
n−l

)
ul(x)

+ Θcα
n−1u0(x) − (1 − σ)2 (uux )

n−1 (x)

+ (1 − σ)νun−1
xx (x) + O(Δt2),

Xl < x < Xr , n = 1, 2, . . . , N ,

(16)

with Θ = Δt−α

Γ (2−α)
.

We linearize the term (uux )
n (x) as follows Rubin and

Graves (1975):

(uux )
n (x) = unun−1

x (x) + un−1un
x (x) − (uux )

n−1 (x).

(17)
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Substitution of (17) into (16) and the rearrangement of the
terms lead to

(
Θcα

0+σun−1
x (x)

)
un(x)+

(
σun−1(x)

)
un

x (x)−σνun
xx (x)

= Θ

n−1∑
l=1

(
cα

n−l−1 − cα
n−l

)
ul(x)

+ Θcα
n−1u0(x) + (2σ − 1) (uux )

n−1 (x)

+ (1 − σ)νun−1
xx (x) + f n−1+σ (x) + O(Δt2),

Xl < x < Xr , n = 1, 2, . . . , N .

(18)

2.2 Space discretization

Here,we discretizeEq. (18) using a collocationmethod based
on QBS basis function in spatial direction.

For a given M > 1, we consider a uniform partition I ={
Xl = x0 < x1 < · · · < xM = Xr

}
over the domain

[Xl , Xr ], with xm = mΔx, where Δx represents the spatial
mesh size and m = 0, 1, . . . , M . We define the midpoints of
the subintervals of I by τm = xm−1+xm

2 , m = 1, 2, . . . , M .
Suppose that the set of these points be πI = {τ1 < τ2 <

· · · < τM }. Let S5,I = {p(x)|p(x) ∈ C
4[Xl , Xr ]} be the

quintic-spline space (QSS). TheQBSbasis functions, Qk(x),
−2 ≤ k ≤ M + 2, for S5,I are given by Boor (1978)

Qk(x) = 1

120Δx5⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x − xk−3)
5 = a1, x ∈ [xk−3, xk−2],

a1 − 6(x − xk−2)
5 = a2, x ∈ [xk−2, xk−1],

a2 + 15(x − xk−1)
5, x ∈ [xk−1, xk],

b2 + 15(xk+1 − x)5, x ∈ [xk, xk+1],
b1 − 6(xk+2 − x)5 = b2, x ∈ [xk+1, xk+2 ],
(xk+3 − x)5 = b1, x ∈ [xk+2, xk+3],
0, otherwise.

(19)

To support the QBS basis functions, additional 10 grid points
are included outside the interval I , denoted as x−5 < x−4 <

x−3 < x−2 < x−1 < x0 = Xl and xM = Xr <

xM+1 < xM+2 < xM+3 < xM+4 < xM+5. Let Q̃ =
{Q−2(x), Q−1(x), Q0(x), . . . , QM (x), QM+1(x), QM+2(x)}
be the set of QBS basis functions, which is linearly indepen-
dent. We define Q∗(I ) as the span of Q̃ over the interval I .
Therefore, Q∗(I ) is a M + 5 dimensional QSS. It can be
observed that Q∗(I ) = S5,I (Prenter 1975), hence, S5,I is a
QSS over I .

Let Ψ̂ n(x) represent the approximation of the exact solu-
tion un(x) of (9)–(11). It can be expressed as

Ψ̂ n(x) =
M+2∑
k=−2

λ̂n
k Qk(x), (20)

where λ̂n
k ’s are the constants that need to be determined. The

values of Ψ̂ n(x), as well as its derivatives upto second-order,
are computed at x = xm (for 0 ≤ m ≤ M) and x = τm

(for 1 ≤ m ≤ M), as presented in Table 1, using (19). Using
the information provided in Table 1, we obtain the following
relations:

Ψ̂ n(xm) = 1

120

(
λ̂n

m−2 + 26λ̂n
m−1 + 66λ̂n

m

+26λ̂n
m+1 + λ̂n

m+2

)
, (21)

Ψ̂ n
x (xm) = 1

24Δx

(
−λ̂n

m−2 − 10λ̂n
m−1

+10λ̂n
m+1 + λ̂n

m+2

)
, (22)

Ψ̂ n
xx (xm) = 1

6Δx2

(
λ̂n

m−2 + 2λ̂n
m−1

−6λ̂n
m + 2λ̂n

m+1 + λ̂n
m+2

)
, (23)

Ψ̂ n(τm) = 1

3840

(
λ̂n

m−3 + 237λ̂n
m−2 + 1682λ̂n

m−1

+1682λ̂n
m + 237λ̂n

m+1 + λ̂n
m+2

)
, (24)

Ψ̂ n
x (τm) = 1

384Δx

( − λ̂n
m−3 − 75λ̂n

m−2

−154λ̂n
m−1 + 154λ̂n

m + 75λ̂n
m+1 + λ̂n

m+2

)
,

(25)

Ψ̂ n
xx (τm) = 1

48Δx2

(
λ̂n

m−3 + 21λ̂n
m−2

−22λ̂n
m−1 − 22λ̂n

m + 21λ̂n
m+1 + λ̂n

m+2

)
. (26)

Theorem 1 Consider the quintic-spline interpolant (QSI)
Ψ n(x) of un(x) ∈ C

6[Xl , Xr ]. Then,

Ψ n
x (xm) = un

x (xm) + O(Δx6), 0 ≤ m ≤ M

and

Ψ n
xx (xm) = un

xx (xm) + Δx4

720
un

xxxxxx (xm)

+O(Δx6), 0 ≤ m ≤ M .

Proof The proof of this result is analogous to the argument
presented in Theorem 2.1 of Roul et al. (2019a). ��
Theorem 2 Consider the QSI Ψ n(x) of un(x) ∈ C

6[Xl , Xr ].
Then,

Ψ n
x (τm) = un

x (τm) + O(Δx6), 1 ≤ m ≤ M

and

Ψ n
xx (τm) = un

xx (τm) − 7Δx4

5760
un

xxxxxx (τm)

+O(Δx6), 1 ≤ m ≤ M .
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Table 1 The values of Qm(x), Q′
m(x) and Q′′

m(x)

Grid points Mid points
xm−3 xm−2 xm−1 xm xm+1 xm+2 xm+3 τm−3 τm−2 τm−1 τm τm+1 τm+2 τm+3 τm+4

Qm(x) 0 1
120

26
120

66
120

26
120

1
120 0 0 1

3840
237
3840

1682
3840

1682
3840

237
3840

1
3840 0

Q′
m(x) 0 1

24Δx
10

24Δx 0 −10
24Δx

−1
24Δx 0 0 1

384Δx
75

384Δx
154

384Δx
−154
384Δx

−75
384Δx

−1
384Δx 0

Q′′
m(x) 0 1

6Δx2
2

6Δx2
−6

6Δx2
2

6Δx2
1

6Δx2
0 0 1

48Δx2
21

48Δx2
−22

48Δx2
−22

48Δx2
21

48Δx2
1

48Δx2
0

Proof The proof of this result is analogous to the argument
presented in Theorem 2.2 of Roul et al. (2019a). ��

Theorem 3 Consider the QSI Ψ n(x) ∈ S5,I of un(x) ∈
C
6[Xl , Xr ]. Then, we can obtain (refer to Theorem 2.3 of

Roul et al. (2019a)):

‖D p(Ψ n(x) − un(x))‖∞ ≤ MΔx6−p, p = 0, 1, 2, (27)

with D p = ∂ p

∂x p .

Considering (18) at x = xm, one can obtain

(
Θcα

0 + σun−1
x (x)

)
un(xm) +

(
σun−1(xm)

)

un
x (xm) − σνun

xx (xm)

= Θ

n−1∑
l=1

(
cα

n−l−1 − cα
n−l

)
ul(xm) + Θcα

n−1u0(xm)

+ (2σ − 1) (uux )
n−1 (xm)

+ (1 − σ)νun−1
xx (xm) + f n−1+σ (xm),

0 ≤ m ≤ M, n ≥ 1.

(28)

The BCs (10) lead to

un(x0) = θ1(tn), un(xM ) = θ2(tn). (29)

According to the collocation approach, we make Ψ̂ n(x) to
satisfy (28)–(29) at the nodal points. Thus, from (28) to (29),
we obtain

(
Θcα

0 + σΨ̂ n−1
x (xm)

)
Ψ̂ n(xm) +

(
σΨ̂ n−1(xm)

)

Ψ̂ n
x (xm) − σνΨ̂ n

xx (xm)

= Θ

n−1∑
l=1

(
cα

n−l−1 − cα
n−l

)
Ψ̂ l(xm) + Θcα

n−1Ψ̂
0(xm)

+ (2σ − 1)
(
Ψ̂ Ψ̂x

)n−1
(xm)

+ (1 − σ)νΨ̂ n−1
xx (xm) + f n−1+σ (xm),

0 ≤ m ≤ M, n ≥ 1.

(30)

Ψ̂ n(x0) = θ1(tn), Ψ̂ n(xM ) = θ2(tn). (31)

Inserting the expressions for Ψ̂ n(xm), Ψ̂ n
x (xm) and Ψ̂ n

xx (xm)

from (21), (22) and (23), respectively, into (30) yields

(pn−1
m + sn−1

m )λ̂n
m−2 + (qn−1

m + vn−1
m )λ̂n

m−1

+ (rn−1
m )λ̂n

m + (qn−1
m − vn−1

m )λ̂n
m+1

+ (pn−1
m − sn−1

m )λ̂n
m+2

= ωn−1
m + f n−1+σ (xm), 0≤m ≤ M, n = 1, 2, . . . , N ,

(32)

where

pn−1
m = Θcα

0

120
+ σΨ̂ n−1

x (xm)

120
− σν

6Δx2
,

qn−1
m = 26Θcα

0

120
+ 26σΨ̂ n−1

x (xm)

120
− σν

3Δx2
,

rn−1
m = 66Θcα

0

120
+ 66σΨ̂ n−1

x (xm)

120
+ σν

Δx2
,

sn−1
m = −σΨ̂ n−1(xm)

24Δx
, vn−1

m = −10σΨ̂ n−1(xm)

24Δx

and

ωn−1
m = Θ

n−1∑
l=1

(
cα

n−l−1 − cα
n−l

)
Ψ̂ l(xm) + Θcα

n−1Ψ̂
0(xm)

+ (2σ − 1)
(
Ψ̂ Ψ̂x

)n−1
(xm) + (1 − σ)νΨ̂ n−1

xx (xm).

Using (21), from (31) we have

λ̂n−2 + 26λ̂n−1 + 66λ̂n
0 + 26λ̂n

1 + λ̂n
2 = 120θ1(tn), (33)

λ̂n
M−2+26λ̂n

M−1 + 66λ̂n
M+26λ̂n

M+1 + λ̂n
M+2=120θ2(tn).

(34)

Equations (32) and (33)–(34) form a system of (M + 3) lin-
ear algebraic equations with (M + 5) unknowns. To make
the system feasible, we need two auxiliary equations. These
additional equations are obtained by enforcing Ψ̂ n(x) to sat-
isfy (28) at the midpoints τm for m = 1, M . Therefore, we
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obtain

(
Θcα

0 + σΨ̂ n−1
x (τm)

)
Ψ̂ n(τm) +

(
σΨ̂ n−1(τm)

)

Ψ̂ n
x (τm) − σνΨ̂ n

xx (τm)

= Θ

n−1∑
l=1

(
cα

n−l−1 − cα
n−l

)
Ψ̂ l(τm) + Θcα

n−1Ψ̂
0(τm)

+ (2σ − 1)
(
Ψ̂ Ψ̂x

)n−1
(τm)

+ (1 − σ)νΨ̂ n−1
xx (τm) + f n−1+σ (τm),

m = 1, M, n = 1, 2, . . . , N .

(35)

Making use of (24), (25) and (26) in (35) leads to

( p̃n−1
m + s̃n−1

m )λ̂n
m−3 + (q̃n−1

m

+ ṽn−1
m )λ̂n

m−2 + (r̃ n−1
m + w̃n−1

m )λ̂n
m−1

+ (r̃ n−1
m − w̃n−1

m )λ̂n
m

+ (q̃n−1
m − ṽn−1

m )λ̂n
m+1 + ( p̃n−1

m − s̃n−1
m )

λ̂n
m+2 = ω̃n−1

m + f n(τm), m = 1, M, n ≥ 1,

(36)

where

p̃n−1
m = Θcα

0

3840
+ σΨ̂ n−1

x (τm)

3840
− σν

48Δx2
,

q̃n−1
m = 237Θcα

0

3840
+ 237σΨ̂ n−1

x (τm)

3840
− 21σν

48Δx2
,

r̃ n−1
m = 1682Θcα

0

3840
+ 1682σΨ̂ n−1

x (τm)

3840
+ 22σν

48Δx2
,

s̃n−1
m = −σΨ̂ n−1(τm)

384Δx
, ṽn−1

m = −75σΨ̂ n−1(τm)

384Δx
,

w̃n−1
m = −154σΨ̂ n−1(τm)

384Δx

and

ω̃n−1
m = Θ

n−1∑
l=1

(
cα

n−l−1 − cα
n−l

)
Ψ̂ l(τm) + Θcα

n−1Ψ̂
0(τm)

+ (2σ − 1)
(
Ψ̂ Ψ̂x

)n−1
(τm) + (1 − σ)νΨ̂ n−1

xx (τm).

Equations (32), (33), (34) and (36) give a linear system of
(M+5) equations in (M+5)variables λ̂n−2, λ̂

n−1, λ̂
n
0, . . . , λ̂

n
M ,

λ̂n
M+1, λ̂

n
M+2. We rewrite this system in the matrix form as

follows:

Pλ̂n = Hn−1 + Fn, n ≥ 1, (37)

where λ̂n = (λ̂n−2, λ̂
n−1, λ̂

n
0, . . . , λ̂

n
M , λ̂n

M+1, λ̂
n
M+2)

T . The
matrices P, Hn−1 and Fn are defined as:

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 26 66 26 1 0 · · · 0

ε̃n−1
1 ϕ̃n−1

1 ςn−1
1 ς̃n−1

1 �̃n−1
1 �̃n−1

1 · · · 0

εn−1
0 ϕn−1

0 rn−1
0 �n−1

0 �n−1
0 0 · · · 0

0 εn−1
1 ϕn−1

1 rn−1
1 �n−1

1 �n−1
1 · · · 0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

0 · · · 0 εn−1
M ϕn−1

M rn−1
M �n−1

M �n−1
M

0 · · · ε̃n−1
M ϕ̃n−1

M ςn−1
M ς̃n−1

M �̃n−1
M �̃n−1

M

0 · · · 0 1 26 66 26 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Hn−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

ω̃n−1
1

ωn−1
0

ωn−1
1

.

.

.

ωn−1
M

ω̃n−1
M

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Fn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

120θ1(tn )

f n−1+σ (τ1)

f n−1+σ (x0)

f n−1+σ (x1)

.

.

.

f n−1+σ (xM )

f n−1+σ (τM )

120θ2(tn )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

εn−1
m = pn−1

m + sn−1
m , ϕn−1

m = qn−1
m + vn−1

m , � n−1
m

= qn−1
m − vn−1

m , �n−1
m = pn−1

m − sn−1
m ,

m = 0, 1, . . . , M, n ≥ 1, ε̃n−1
m

= p̃n−1
m + s̃n−1

m , ϕ̃n−1
m

= q̃n−1
m + ṽn−1

m , ςn−1
m = r̃ n−1

m + w̃n−1
m , ς̃n−1

m

= r̃ n−1
m − w̃n−1

m , �̃ n−1
m

= q̃n−1
m − ṽn−1

m , �̃n−1
m

= p̃n−1
m − s̃n−1

m , m = 1, M, n = 1, 2, . . . , N .

3 Stability and convergence of themethod

In this section,we analyze the stability and convergenceprop-
erties of the proposedmethod for solving theproblem (1)–(3).

3.1 Stability analysis

Here, we analyze the stability of the numerical method given
by (37).

Theorem 4 The stability of the proposed method (37) for the
considered problem is unconditional.

Proof It can be seen that the right hand side function f (x, t)
does not influence the stability of our proposed method. So,
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the proof for unconditionally stability of the method is per-
formed in the case when f (x, t) = 0. For simplicity, we
linearize the nonlinear term uux by setting u as a constant μ
in (11). Then, we obtain

Δt−α

Γ (2 − α)

[
cα
0 un(x) −

n−1∑
l=1(

cα
n−l−1 − cα

n−l

)
ul(x) − cα

n−1u0(x)
]

+μun−1+σ
x (x) − νun−1+σ

xx (x) = 0,

Xl < x < Xr , n = 1, 2, . . . , N . (38)

Using (13) and (14) in (38), we have

Θcα
0 un(x) + σμun

x (x) − σνun
xx (x)

= Θ

n−1∑
l=1

(
cα

n−l−1 − cα
n−l

)
ul(x) + Θcα

n−1u0(x)

−(1 − σ)μun−1
x (x) + (1 − σ)νun−1

xx (x),

Xl < x < Xr , n = 1, 2, . . . , N . (39)

Now, using themethod described in Sect. 2 for Eq. (39) yields

(η1 − η2 − η3)λ̂
n
m−2 + (26η1 − 10η2 − 2η3)λ̂

n
m−1

+ (66η1 + 6η3)λ̂
n
m + (26η1 + 10η2 − 2η3)λ̂

n
m+1

+ (η1 + η2 − η3)λ̂
n
m+2 = Θ

120

n−1∑
l=1

(
cα

n−l−1 − cα
n−l

) (
λ̂l

m−2

+ 26λ̂l
m−1 + 66λ̂l

m + 26λ̂l
m+1 + λ̂l

m+2

)

+ Θcα
n−1

120

(
λ̂0m−2 + 26λ̂0m−1 + 66λ̂0m

+ 26λ̂0m+1 + λ̂0m+2

) − (1 − σ)μ

24Δx( − λ̂n−1
m−2 − 10λ̂n−1

m−1 + 10λ̂n−1
m+1 + λ̂n−1

m+2

)

+ (1 − σ)ν

6Δx2
(
λ̂n−1

m−2 + 2λ̂n−1
m−1

− 6λ̂n−1
m + 2λ̂n−1

m+1 + λ̂n−1
m+2

)
, m = 0, 1, . . . , M, n ≥ 1,

(40)

(η∗
1 − η∗

2 − η∗
3)λ̂

n
m−3 + (237η∗

1 − 75η∗
2 − 21η∗

3)λ̂
n
m−2

+ (1682η∗
1 − 154η∗

2 + 22η∗
3)λ̂

n
m−1

+ (1682η∗
1 + 154η∗

2 + 22η∗
3)λ̂

n
m

+ (237η∗
1 + 75η∗

2 − 21η∗
3)λ̂

n
m+1 + (η∗

1 + η∗
2 − η∗

3)λ̂
n
m+2

= Θ

3840

n−1∑
l=1

(
cα

n−l−1 − cα
n−l

) (
λ̂l

m−3

+ 237λ̂l
m−2 + 1682λ̂l

m−1 + 1682λ̂l
m + 237λ̂l

m+1 + λ̂l
m+2

)

+ Θcα
n−1

3840

(
λ̂0m−3 + 237λ̂0m−2 + 1682λ̂0m−1

+ 1682λ̂0m + 237λ̂0m+1 + λ̂0m+2

) − (1 − σ)μ

384Δx

( − λ̂n−1
m−3

− 75λ̂n−1
m−2 − 154λ̂n−1

m−1 + 154λ̂n−1
m + 75λ̂n−1

m+1 + λ̂n−1
m+2

)

+ (1 − σ)ν

48Δx2
(
λ̂n−1

m−3 + 21λ̂n−1
m−2

− 22λ̂n−1
m−1−22λ̂n−1

m +21λ̂n−1
m+1+λ̂n−1

m+2

)
, m=1, M, n ≥ 1,

(41)

where η1 = Θcα
0

120 , η2 = σμ
24Δx , η3 = σν

6Δx2
, η∗

1 = Θcα
0

3840 ,

η∗
2 = σμ

384Δx and η∗
3 = σν

48Δx2
.

The error ζ n
m is defined by

ζ n
m = λ̂n

m − λ∗n
m, (42)

with λ∗n
m representing the solution of the perturbed system of

(40)–(41). Using (42), we can get the following error equa-
tions for (40)–(41):

(η1 − η2 − η3)ζ
n
m−2 + (26η1 − 10η2 − 2η3)ζ

n
m−1

+ (66η1 + 6η3)ζ
n
m + (26η1 + 10η2 − 2η3)ζ

n
m+1

+ (η1 + η2 − η3)ζ
n
m+2 = Θ

120

n−1∑
l=1

(
cα

n−l−1 − cα
n−l

)

× (
ζ l

m−2 + 26ζ l
m−1 + 66ζ l

m + 26ζ l
m+1 + ζ l

m+2

)

+ Θcα
n−1

120

(
ζ 0

m−2 + 26ζ 0
m−1 + 66ζ 0

m + 26ζ 0
m+1 + ζ 0

m+2

)

− (1 − σ)μ

24Δx

( − ζ n−1
m−2 − 10ζ n−1

m−1 + 10ζ n−1
m+1

+ ζ n−1
m+2

) + (1 − σ)ν

6Δx2
(
ζ n−1

m−2 + 2ζ n−1
m−1

− 6ζ n−1
m + 2ζ n−1

m+1 + ζ n−1
m+2

)
, n ≥ 1, m = 0, 1, . . . , M,

(43)

(η∗
1 − η∗

2 − η∗
3)ζ

n
m−3 + (237η∗

1 − 75η∗
2 − 21η∗

3)ζ
n
m−2

+ (1682η∗
1 − 154η∗

2 + 22η∗
3)ζ

n
m−1 + (1682η∗

1

+ 154η∗
2 + 22η∗

3)ζ
n
m + (237η∗

1 + 75η∗
2 − 21η∗

3)ζ
n
m+1

+ (η∗
1 + η∗

2 − η∗
3)ζ

n
m+2 = Θ

3840

×
n−1∑
l=1

(
cα

n−l−1 − cα
n−l

) (
ζ l

m−3 + 237ζ l
m−2

+ 1682ζ l
m−1 + 1682ζ l

m + 237ζ l
m+1 + ζ l

m+2

)

+ Θcα
n−1

3840

(
ζ 0

m−3 + 237ζ 0
m−2 + 1682ζ 0

m−1 + 1682ζ 0
m

+ 237ζ 0
m+1 + ζ 0

m+2

) − (1 − σ)μ

384Δx

( − ζ n−1
m−3

− 75ζ n−1
m−2 − 154ζ n−1

m−1 + 154ζ n−1
m + 75ζ n−1

m+1 + ζ n−1
m+2

)

+ (1 − σ)ν

48Δx2
(
ζ n−1

m−3 + 21ζ n−1
m−2

− 22ζ n−1
m−1 − 22ζ n−1

m + 21ζ n−1
m+1

+ ζ n−1
m+2

)
, n = 1, 2, . . . , N , m = 1, M . (44)
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The error ζ n
m can be chosen as

ζ n
m = ξneimρΔx , (45)

where i = √−1. Inserting (45) into (43) yields

ξneimρΔx
{
(η1 − η2 − η3)e

−2iρΔx

+ (26η1 − 10η2 − 2η3)e
−iρΔx + (66η1 + 6η3)

+ (26η1 + 10η2

− 2η3)e
iρΔx + (η1 + η2 − η3)e

2iρΔx
}

= Θ

120

{ n−1∑
l=1

(
cα

n−l−1 − cα
n−l

)
ξ l + cα

n−1ξ
0
}

eimρΔx

× (
e−2iρΔx + 26e−iρΔx + 66 + 26eiρΔx + e2iρΔx)

−
(
1 − σ

σ

)
η2ξ

n−1eimρΔx( − e−2iρΔx

− 10e−iρΔx + 10eiρΔx + e2iρΔx)

+
(
1 − σ

σ

)
η3ξ

n−1eimρΔx

× (
e−2iρΔx + 2e−iρΔx − 6 + 2eiρΔx + e2iρΔx).

(46)

The above equation can be rewritten as

ξn[η1(2cos(2ρΔx) + 52cos(ρΔx) + 66)

+ η3(6−2cos(2ρΔx)−4cos(ρΔx))+iη2(2 sin(2ρΔx)

+ 20 sin(ρΔx))
]

= Θ

120

[ n−1∑
l=1

(
cα

n−l−1 − cα
n−l

)
ξ l + cα

n−1ξ
0
]

× (2cos(2ρΔx) + 52cos(ρΔx) + 66)

− i

(
1 − σ

σ

)
η2ξ

n−1(2 sin(2ρΔx) + 20 sin(ρΔx))

−
(
1 − σ

σ

)
η3ξ

n−1(6 − 2cos(2ρΔx) − 4cos(ρΔx)).

(47)

From Eq. (47), we have

ξn =
Θγ1
120

[ n−1∑
l=1

(
cα

n−l−1 − cα
n−l

)
ξ l + cα

n−1ξ
0
]

−
(
1 − σ

σ

)
η3γ2ξ

n−1 − i

(
1 − σ

σ

)
η2γ3ξ

n−1

η1γ1 + η3γ2 + iη2γ3
, (48)

where γ1 = cos(ρΔx) + 26cos(ρΔx) + 33, γ2 =
3 − cos(2ρΔx) − 2cos(ρΔx) and γ3 = sin(2ρΔx) +
10 sin(ρΔx).

By means of mathematical induction, we prove that

|ξn| ≤ |ξ0|. (49)

For n = 1, (48) leads to

ξ1 = η1γ1 − ( 1−σ
σ

)
η3γ2 − i

( 1−σ
σ

)
η2γ3

η1γ1 + η3γ2 + iη2γ3
. (50)

Since σ ∈ ( 1
2 , 1

)
, we have

0 ≤
(
1 − σ

σ

)
≤ 1. (51)

Furthermore, as Δt > 0, Δx > 0, ν ≥ 0 and 0 < α < 1,
it can be concluded that Γ (2 − α) > 0 and η1, η2, η3 are
positive. Therefore, taking into account (51), from (50) we
get

|ξ1|2 =
(
η1γ1 − ( 1−σ

σ

)
η3γ2

)2 + (( 1−σ
σ

)
η2γ3

)2
(η1γ1 + η3γ2)

2 + (η2γ3)
2 ≤ |ξ0|2.

(52)

Thus, (48) holds for n = 1. Assume that (48) holds for n ≤
j − 1, that is,

|ξn| ≤ |ξ0|, n = 1, 2, . . . , j − 1. (53)

For n = j, (48) leads to

ξ j = A − i B

C + i D
, (54)

where A = Θγ1
120

[ j−1∑
l=1

(
cα

j−l−1 − cα
j−l

)
ξ l + cα

j−1ξ
0
]

−
(
1 − σ

σ

)
η3γ2ξ

j−1, B = ( 1−σ
σ

)
η2γ3ξ

j−1, C = η1γ1 +
η3γ2 and D = η2γ3.

Making use of Lemma 1 and (53), one can get

|A| ≤ |C ||ξ0| and |B| ≤ |D||ξ0|. (55)

Finally, making use of (55) into (54), we get

|ξ j |2 = A2 + B2

C2 + D2 ≤ |ξ0|2, (56)
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which gives

|ξ j | ≤ |ξ0|. (57)

Hence, the result is valid for n = j . Therefore, (49) is valid
for every n, i.e.,

|ξn| ≤ |ξ0|, n ≥ 1. (58)

Substituting (45) into (44), we obtain

ξneimρΔx
{
(η∗

1 − η∗
2 − η∗

3)e
−3iρΔx + (237η∗

1

−75η∗
2 − 21η∗

3)e
−2iρΔx + (1682η∗

1 − 154η∗
2

+22η∗
3)e

−iρΔx + (1682η∗
1 + 154η∗

2 + 22η∗
3)

+(237η∗
1 + 75η∗

2 − 21η∗
3)e

iρΔx + (η∗
1 + η∗

2

−η∗
3)e

2iρΔx
}

= Θ

3840

{ n−1∑
l=1

(
cα

n−l−1 − cα
n−l

)

ξ l + cα
n−1ξ

0
}

eimρΔx(e−3iρΔx + 237e−2iρΔx

+1682e−iρΔx+1682+237eiρΔx+e2iρΔx)− (1−σ)μ

384Δx
×( − e−3iρΔx − 75e−2iρΔx − 154e−iρΔx

+154 + 75eiρΔx + e2iρΔx) + (1 − σ)ν

48Δx2
(
e−3iρΔx

+21e−2iρΔx − 22e−iρΔx − 22 + 21eiρΔx + e2iρΔx).
(59)

Simplifying the terms in (59) yields

ξn
[
η∗
1

{
(cos(3ρΔx) + 238cos(2ρΔx)

+1929cos(ρΔx)+1682)−i(sin(3ρΔx)+236sin(2ρΔx)

+1445sin(ρΔx))
} + η∗

2

{
(154 − cos(3ρΔx)

−74cos(2ρΔx) − 79cos(ρΔx)) + i(sin(3ρΔx)

+76sin(2ρΔx)+229sin(ρΔx))
}+η∗

3

{
(22 − cos(3ρΔx)

−22cos(2ρΔx) + cos(ρΔx))

+i(sin(3ρΔx) + 20sin(2ρΔx) − 43sin(ρΔx))
}]

= Θ

3840

[ n−1∑
l=1

(
cα

n−l−1 − cα
n−l

)
ξ l + cα

n−1ξ
0
]

×
[
(cos(3ρΔx)+238cos(2ρΔx)+1919cos(ρΔx)+1682)

−i(sin(3ρΔx) + 236sin(2ρΔx)

+1445sin(ρΔx))
]

−
(
1 − σ

σ

)
η∗
2ξ

n−1

×{
(154−cos(3ρΔx)−74cos(2ρΔx)−79cos(ρΔx))

+i(sin(3ρΔx) + 76sin(2ρΔx) + 229sin(ρΔx))
}

−
(
1 − σ

σ

)
η∗
3ξ

n−1{(22 − cos(3ρΔx)

−22cos(2ρΔx) + cos(ρΔx)) + i(sin(3ρΔx)

+20sin(2ρΔx) − 43sin(ρΔx))
}
.

(60)

From (60), we have

ξn =

Θ
3840

[ n−1∑
l=1

(
cα

n−l−1 − cα
n−l

)
ξ l + cα

n−1ξ
0
]
(γ ∗

1 − iγ ∗
2 )

−
(
1−σ
σ

)
(η∗

2(β1+iβ2)+η∗
3(β

∗
1+iβ∗

2 ))ξn−1

η∗
1(γ

∗
1 − iγ ∗

2 ) + η∗
2(β1 + iβ2) + η∗

3(β
∗
1 + iβ∗

2 )
,

(61)

where

γ ∗
1 = cos(3ρΔx) + 238cos(2ρΔx)

+ 1929cos(ρΔx) + 1682,

γ ∗
2 = sin(3ρΔx) + 236sin(2ρΔx) + 1445sin(ρΔx),

β1=154−cos(3ρΔx)−74cos(2ρΔx)−79cos(ρΔx),

β2 = sin(3ρΔx) + 76sin(2ρΔx) + 229sin(ρΔx),

β∗
1 = 22 − cos(3ρΔx) − 22cos(2ρΔx) + cos(ρΔx)

and β∗
2 = sin(3ρΔx) + 20sin(2ρΔx) − 43sin(ρΔx).

Using the triangle inequality, the following estimate is
obtained:

|ξn|≤

Θ
3840

[ n−1∑
l=1

(
cα

n−l−1−cα
n−l

) |ξ l |+cα
n−1|ξ0|

]
|γ ∗

1 −iγ ∗
2 |

+
(
1−σ
σ

)|η∗
2(β1+iβ2)+η∗

3(β
∗
1+iβ∗

2 )||ξn−1|
|η∗

1(γ
∗
1 − iγ ∗

2 )+η∗
2(β1+iβ2)+η∗

3(β
∗
1+iβ∗

2 )| .

(62)

Moreover, it is clearly observed that

Θcα
0

3840 |γ ∗
1 − iγ ∗

2 | + ( 1−σ
σ

) ∣∣η∗
2(β1 + iβ2) + η∗

3(β
∗
1 + iβ∗

2 )
∣∣

|η∗
1(γ

∗
1 − iγ ∗

2 ) + η∗
2(β1 + iβ2) + η∗

3(β
∗
1 + iβ∗

2 )|
≤ 1. (63)

Bymeans of mathematical induction and (63), one can prove
that

|ξn| ≤ |ξ0|, n ≥ 1. (64)

From (58) and (64), one can conclude that the present numer-
ical scheme (37) is unconditionally stable. ��
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3.2 Convergence analysis

This section is devoted to the convergence analysis of the
proposed scheme (37) for (1)–(3).

Theorem 5 Assume that Ψ̂ n(x) be the QBS approximation
of the solution un(x) ∈ C

6[Xl , Xr ] for (1)–(3). Then, for
sufficiently small Δx and a constant L independent of Δx,
we have

‖Ψ̂ n(x) − un(x)‖∞ ≤ LΔx4, ∀ n ≥ 0. (65)

Proof Linearizing the nonlinear term uux in (11) by taking
u as a constant μ, we obtain

Δt−α

Γ (2 − α)[
cα
0 un(x)−

n−1∑
l=1

(
cα

n−l−1−cα
n−l

)
ul(x)−cα

n−1u0(x)

]

+ μun−1+σ
x (x) − νun−1+σ

xx (x) = f n−1+σ (x).

(66)

From the boundary conditions, we have

un(Xl) = θ1(tn), un(Xr ) = θ2(tn). (67)

Making use of the approximations (13) and (14) into (66)
and then rearrangements of the terms leads to

Θcα
0 un(x) + σμun

x (x) − σνun
xx (x)

= Θ

n−1∑
l=1

(
cα

n−l−1 − cα
n−l

)
ul(x) + Θcα

n−1u0(x)

− (1 − σ)μun−1
x (x) + (1 − σ)νun−1

xx (x) + f n−1+σ (x),

Xl < x < Xr , n = 1, 2, . . . , N .

(68)

In operator form, Eqs. (67) and (68) can be expressed as

Lun(x) ≡ Θcα
0 un(x) + σμun

x (x) − σνun
xx (x)

= Gn−1(x) + f n−1+σ (x), (69)

Bun(x) ≡ {un(Xl) = θ1(tn), un(Xr ) = θ2(tn)}, (70)

where

Gn−1(x) = Θ

n−1∑
l=1

(
cα

n−l−1 − cα
n−l

)
ul(x)

+Θcα
n−1u0(x) − (1 − σ)μun−1

x (x) + (1 − σ)νun−1
xx (x).

(71)

Let Ψ n(x) ∈ S5,I be the QSI to the exact solution of (68)
and (67). Let Ψ n(x) be given as

Ψ n(x) =
M+2∑
k=−2

λn
k Qk(x). (72)

By means of Theorems 1 and 2, we have

LΨ n(xm) = Lun(xm) + O(Δx4), m = 0, 1, . . . , M,

(73)

Ψ n(x0) = θ1(tn) + O(Δx4), Ψ n(xM ) = θ2(tn)

+O(Δx4), (74)

LΨ n(τm) = Lun(τm) + O(Δx4), m = 1, M . (75)

As un(xm) = Ψ̂ n(xm), 0 ≤ m ≤ M and un(τm) =
Ψ̂ n(τm), m = 1, M, thus, Eqs. (73)–(75) can be written
in the matrix form, as follows:

[
LΨ n(x) − LΨ̂ n(x)

]
x=xm , m=0,1,...,M, x=τ1,τM

= E, (76)

where E = [O(Δx4), O(Δx4), . . . , O(Δx4), O(Δx4)]T .
For x = x0, from (76), we obtain

(η1 − η2 − η3)λ
n−2 + (26η1 − 10η2 − 2η3)λ

n−1

+(66η1 + 6η3)λ
n
0 + (26η1 + 10η2 − 2η3)λ

n
1

+(η1 + η2 − η3)λ
n
2 − (

(η1 − η2 − η3)λ̂
n−2

+(26η1 − 10η2 − 2η3)λ̂
n−1 + (66η1 + 6η3)λ̂

n
0

+(26η1 + 10η2 − 2η3)λ̂
n
1

+(η1 + η2 − η3)λ̂
n
2

) = O(Δx4). (77)

For x = xM , from (76), we obtain

(η1 − η2 − η3)λ
n
M−2 + (26η1 − 10η2 − 2η3)λ

n
M−1

+(66η1 + 6η3)λ
n
M + (26η1 + 10η2 − 2η3)λ

n
M+1

+(η1 + η2 − η3)λ
n
M+2 − (

(η1 − η2 − η3)λ̂
n
M−2

+(26η1 − 10η2 − 2η3)λ̂
n
M−1 + (66η1 + 6η3)λ̂

n
M

+(26η1 + 10η2 − 2η3)λ̂
n
M+1

+(η1 + η2 − η3)λ̂
n
M+2

) = O(Δx4). (78)

For x = τ1, from (76), we obtain

(η∗
1 − η∗

2 − η∗
3)λ

n−2 + (237η∗
1 − 75η∗

2 − 21η∗
3)λ

n−1

+(1682η∗
1 − 154η∗

2 + 22η∗
3)λ

n
0 + (1682η∗

1

+154η∗
2 + 22η∗

3)λ
n
1 + (237η∗

1 + 75η∗
2 − 21η∗

3)λ
n
2 + (η∗

1

+η∗
2 − η∗

3)λ
n
3 − (

(η∗
1 − η∗

2 − η∗
3)λ̂

n−2

+(237η∗
1 − 75η∗

2 − 21η∗
3)λ̂

n−1

+(1682η∗
1 − 154η∗

2 + 22η∗
3)λ̂

n
0
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+(1682η∗
1 + 154η∗

2 + 22η∗
3)λ̂

n
1

+(237η∗
1 + 75η∗

2 − 21η∗
3)λ̂

n
2

+(η∗
1 + η∗

2 − η∗
3)λ̂

n
3

) = O(Δx4). (79)

For x = τM , from (76), we obtain

(η∗
1 − η∗

2 − η∗
3)λ

n
M−3 + (237η∗

1 − 75η∗
2 − 21η∗

3)λ
n
M−2

+(1682η∗
1 − 154η∗

2 + 22η∗
3)λ

n
M−1

+(1682η∗
1 + 154η∗

2 + 22η∗
3)λ

n
M

+(237η∗
1 + 75η∗

2 − 21η∗
3)λ

n
M+1 + (η∗

1 + η∗
2 − η∗

3)λ
n
M+2

−(
(η∗

1 − η∗
2 − η∗

3)λ̂
n
M−3 + (237η∗

1 − 75η∗
2 − 21η∗

3)λ̂
n
M−2

+(1682η∗
1 − 154η∗

2 + 22η∗
3)λ̂

n
M−1

+(1682η∗
1 + 154η∗

2 + 22η∗
3)λ̂

n
M

+(237η∗
1 + 75η∗

2 − 21η∗
3)λ̂

n
M+1

+(η∗
1 + η∗

2 − η∗
3)λ̂

n
M+2

) = O(Δx4). (80)

Byutilizing (33) and (34), the unknownsλn−2, λ
n
M+2, λ̂

n−2 and

λ̂n
M+2 can be eliminated from (77)–(80). Hence, for x = x0,

we get

(16η2 + 24η3)λ
n−1 + (66η2 + 72η3)λ

n
0 + (36η2 + 24η3)λ

n
1

−(
(16η2 + 24η3)λ̂

n−1

+(66η2 + 72η3)λ̂
n
0 + (36η2 + 24η3)λ̂

n
1

)
= O(Δx4). (81)

For x = xM , we obtain

−2η2λ
n
M−2 − (36η2 − 24η3)λ

n
M−1 − (66η2 − 72η3)λ

n
M

−(16η2 − 24η3)λ
n
M+1 − ( − 2η2λ̂

n
M−2

−(36η2 − 24η3)λ̂
n
M−1 − (66η2 − 72η3)λ̂

n
M

−(16η2 − 24η3)λ̂
n
M+1

) = O(Δx4). (82)

For x = τ1, we obtain

(211η∗
1 − 49η∗

2 + 5η∗
3)λ

n−1 + (1616η∗
1 − 88η∗

2 + 88η∗
3)λ

n
0

+(1656η∗
1 + 180η∗

2 + 48η∗
3)λ

n
1 + (236η∗

1

+76η∗
2 − 20η∗

3)λ
n
2 + (η∗

1 + η∗
2 − η∗

3)λ
n
3

−(
(211η∗

1 − 49η∗
2 + 5η∗

3)λ̂
n−1

+(1616η∗
1 − 88η∗

2 + 88η∗
3)λ̂

n
0

+(1656η∗
1 + 180η∗

2 + 48η∗
3)λ̂

n
1

+(236η∗
1 + 76η∗

2 − 20η∗
3)λ̂

n
2

+(η∗
1 + η∗

2 − η∗
3)λ̂

n
3

) = O(Δx4). (83)

For x = τM , we obtain

(η∗
1 − η∗

2 − η∗
3)λ

n
M−3 + (236η∗

1 − 76η∗
2 − 20η∗

3)λ
n
M−2

+(1656η∗
1 − 180η∗

2 + 48η∗
3)λ

n
M−1

+(1616η∗
1+88η∗

2+88η∗
3)λ

n
M+(211η∗

1+49η∗
2+5η∗

3)λ
n
M+1

−(
(η∗

1 − η∗
2 − η∗

3)λ̂
n
M−3

+(236η∗
1 − 76η∗

2 − 20η∗
3)λ̂

n
M−2

+(1656η∗
1 − 180η∗

2 + 48η∗
3)λ̂

n
M−1 + (1616η∗

1 + 88η∗
2

+88η∗
3)λ̂

n
M + (211η∗

1 + 49η∗
2 + 5η∗

3)λ̂
n
M+1

) = O(Δx4).

(84)

For x = xm , m = 1, 2, . . . , M − 1, from (76), we obtain

(η1 − η2 − η3)λ
n
m−2 + (26η1 − 10η2 − 2η3)λ

n
m−1

+(66η1 + 6η3)λ
n
m + (26η1 + 10η2 − 2η3)λ

n
m+1

+(η1 + η2 − η3)λ
n
m+2 − (

(η1 − η2 − η3)λ̂
n
m−2

+(26η1 − 10η2 − 2η3)λ̂
n
m−1 + (66η1 + 6η3)λ̂

n
m

+(26η1 + 10η2 − 2η3)λ̂
n
m+1

+(η1 + η2 − η3)λ̂
n
m+2

) = O(Δx4). (85)

Equations (81)–(85) can be expressed as

R(λn − λ̂n) = E, (86)

where R is a (M + 3) × (M + 3) matrix given by

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d̃1 d̃2 d̃3 d̃4 d̃5 0 · · · 0 0

d6 d7 d8 d9 0 0 · · · 0 0

d1 d2 d3 d4 d5 0 · · · 0 0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

0 0 · · · 0 d1 d2 d3 d4 d5

0 0 · · · 0 0 −d9 d̂8 d̂7 d̂6

0 0 · · · 0 d̃10 d̃9 d̃8 d̃7 d̃6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

λn − λ̂n =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λn−1 − λ̂n−1

λn
0 − λ̂n

0

λn
1 − λ̂n

1

.

.

.

λn
M−1 − λ̂n

M−1

λn
M − λ̂n

M

λn
M+1 − λ̂n

M+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where d1 = η1 − η2 − η3, d2 = 26η1 − 10η2 − 2η3, d3 =
66η1 + 6η3, d4 = 26η1 + 10η2 − 2η3, d5 = η1 + η2 −
η3, d6 = 16η2 + 24η3, d7 = 66η2 + 72η3, d8 = 36η2 +
24η3, d9 = 2η2, d̃1 = 211η∗

1−49η∗
2+5η∗

3, d̃2 = 1616η∗
1−

88η∗
2 +88η∗

3, d̃3 = 1656η∗
1 +180η∗

2 +48η∗
3, d̃4 = 236η∗

1 +
76η∗

2 − 20η∗
3, d̃5 = η∗

1 + η∗
2 − η∗

3, d̃6 = 211η∗
1 + 49η∗

2 +
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5η∗
3, d̃7 = 1616η∗

1 +88η∗
2 +88η∗

3, d̃8 = 1656η∗
1 −180η∗

2 +
48η3, d̃9 = 236η∗

1−76η∗
2−20η∗

3, d̃10 = η∗
1−η∗

2−η∗
3, d̂6 =

−16η2 + 24η3, d̂7 = −66η2 + 72η3 and d̂8 = −36η2 +
24η3.

Let si (−1 ≤ i ≤ M + 1) denote the sum of i th row of R.

Thus, we obtain

s−1 = 3720Θcα
0Δx2 + 1200σμΔx + 9600σν

3840Δx2
,

s0 = 480σν + 120σμΔx

24Δx2
,

sk = Θcα
0 , k = 1, 2, ..., M − 1,

sM = 480σν − 120σμΔx

24Δx2
,

sM+1 = 3720Θcα
0Δx2 − 1200σμΔx + 9600σν

3840Δx2
.

For sufficiently small Δx, we have s−1 > 0, s0 > 0, sk >

0, k = 1, . . . , M − 1, sM > 0 and sM+1 > 0. Thus, R
exhibitsmonotonicity and consequently, R−1 is well defined.
Let r−1

k, j be the (k, j)th element of R−1. Making use of the
theory of matrices, we obtain

M+1∑
j=−1

r−1
k, j s j = 1, for k = −1, 0, 1, . . . , M, M + 1. (87)

Using (87), we have

M+1∑
j=−1

r−1
k, j ≤ 1

s j
. (88)

By Taylor’s expansion, we have

r−1
k,−1 ≤ 1

s−1
≤ 3840Δx2

9600σν
+ O(Δx3),

r−1
k,0 ≤ 1

s0
≤ 24Δx2

480σν
+ O(Δx3),

r−1
k, j ≤ 1

s j
= 1

Θcα
0
, j = 1, 2, . . . , M − 1,

r−1
k,M ≤ 1

sM
≤ 24Δx2

480σν
+ O(Δx3),

r−1
k,M+1 ≤ 1

sM+1
≤ 3840Δx2

9600σν
+ O(Δx3).

From (86), we have

‖λn − λ̂n‖∞ = ‖R−1E‖∞
≤ ‖R−1‖∞‖E‖∞

≤ max−1≤k≤M+1

(∣∣∣∣
M+1∑
j=−1

r−1
k, j

∣∣∣∣
)

O(Δx4)

≤ max−1≤k≤M+1

(
|r−1

k,−1| + |r−1
k,0 |

+
M−1∑
j=1

|r−1
k, j | + |r−1

k,M | + |r−1
k,M+1|

)
O(Δx4)

= O(Δx4). (89)

Therefore, we have

max−1≤m≤M+1
| λn

m − λ̂n
m |≤ KΔx4. (90)

Moreover, using (33), (34) and (90), we can obtain that

| λn−2 − λ̂n−2 |= O(Δx4), | λn
M+2 − λ̂n

M+2 |= O(Δx4).

(91)

Now, from (20) and (72), we can have

Ψ n(x) − Ψ̂ n(x) =
M+2∑
k=−2

(λn
k − λ̂n

k )Qk(x). (92)

By the definition of Qk(x), it is easily observed that

M+2∑
k=−2

|Qk(x)| ≤ 186

120
. (93)

Taking the L∞ (maximum) norm on (92) and using (90), (91)
and (93), we obtain

‖Ψ n(x) − Ψ̂ n(x)‖∞ ≤ |λn − λ̂n|
M+2∑
k=−2

|Qk(x)|

≤ NΔx4, n ≥ 1, (94)

where N = 186
120K. From Theorem 3, we have

‖Ψ n(x) − un(x)‖∞ ≤ MΔx4. (95)

The triangle inequality gives

‖Ψ̂ n(x) − un(x)‖∞ ≤ ‖Ψ̂ n(x) − Ψ n(x)‖∞ + ‖Ψ n(x)

−un(x)‖∞. (96)

Using (94) and (95), from (96), we have

‖Ψ̂ n(x) − un(x)‖∞ ≤ LΔx4 ∀ n ≥ 1. (97)

Hence, Theorem 5 is proved. ��
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Theorem 6 Suppose that Ψ̂ (x, t) and u(x, t) be the QBS
approximate solution and exact solution of TFBE, respec-
tively. Then, for u(x, t) ∈ C

6[Xl , Xr ] × C
3[0, T ], it follows

that

‖u(x, t) − Ψ̂ (x, t)‖∞ = O(Δx4 + Δt2). (98)

Proof Applying Theorem 5 and utilizing Eq. (18), we can
derive the expression in (98). ��

4 Numerical illustrations

Here, four nonlinear problems are considered to demonstrate
the effectiveness and accuracy of the proposed method (37).
The computed result is compared with that obtained by other
method based on cubic parametric spline functions (El-Danaf
and Hadhoud 2012). We compute the L∞ norm error (EM

1 )

of the proposed method which is defined as

EM
1 = max

0≤m≤M
0≤n≤N

|Ψ̂ n
m − u(xm, tn)|, (99)

where u(xm, tn) and Ψ̂ n
m are the exact and approximate solu-

tions, respectively, at the grid point (xm, tn). We calculate
the OOC (order of convergence) of the present numerical
method based on L∞ norm error by the formula:

d = log(EM
1 ) − log(E2M

1 )

log(2)
.

The numerical computations are performed in MATLAB
R2020a on a computer equipped with an AMD Ryzen 5
2500U processor operating at 2.00 GHz.

Example 1 Consider the TFBE (1)–(3) with g(x) = 0, ν =
1, Xl = 0, Xr = 1, T = 1, θ1(t) = t2, θ2(t) = et2 and
f (x, t) = 2

Γ (3−α)
t2−αex + t4e2x − νt2ex . The true solution

is u(x, t) = t2ex .

We apply the proposed method (37) to solve this problem
for several values ofmesh points M and N . First, we compute
the rate of convergence of presented technique in temporal
direction. For the purpose, we calculate the errors by varying
N and fixing space step length Δx . Table 2 gives the L∞
errors with different values of N when α = 0.1, 0.5, 0.9
and Δx = 0.01. One can observe in Table 2 that the present
scheme is of order two in time. Next, to find the OOC of
proposed scheme in spatial direction, we fix Δt and find the
L∞ norm errors for various values of M . Table 3 shows the
L∞ errors with various values of M when α = 0.5, 0.9 and
Δt = 0.00005. Table 3 shows that the spatial accuracy of the
proposedmethod is of fourth order. The OOC in Tables 2 and
3 is in good agreement with the theoretical OOC provided

Table 2 L∞ norm errors for Example 1 when Δx = 0.01

α N L∞ Order(d) CPU(s)

0.1 160 4.0823e−05 0.153

320 1.0235e−05 1.9959 0.224

640 2.5625e−06 1.9979 0.504

0.5 160 2.2371e−05 0.136

320 5.6029e−06 1.9974 0.244

640 1.4020e−06 1.9987 0.366

0.9 160 9.6419e−06 0.125

320 2.4116e−06 1.9993 0.242

640 6.0306e−07 1.9996 0.374

Table 3 L∞ norm errors for Example 1 when Δt = 0.00005

α M L∞ Order(d) CPU(s)

0.5 6 1.6451e−07 11.069

12 1.2066e−08 3.7691 20.078

24 7.9327e−10 3.9270 40.625

0.9 6 1.5914e−07 11.649

12 1.0972e−08 3.8584 20.767

24 7.0694e−10 3.9561 40.873

Fig. 1 Numerical solution of Example 1 for α = 0.5 and T = 0.5, 0.75
and 1

in Theorem 6. The CPU time of present numerical scheme
is also provided in Tables 2 and 3, which confirms that our
scheme is computationally efficient. The numerical solutions
at various time levels t = 0.5, 0.75 and 1 are shown in Fig. 1.
Figures 2 and 3 show the 3D surface plots of the numerical
and exact solutions when α = 0.5. These figures indicate
that the presented scheme approximates the exact solution of
TFBE accurately.
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Fig. 2 3D graph of numerical solution of Example 1with N = M = 50

Fig. 3 3D graph of exact solution of Example 1 with N = M = 50

Example 2 Consider the TFBE (1)–(3) with g(x) = 0, ν =
1, Xl = 0, Xr = 1, T = 1, θ1(t) = t2, θ2(t) =
−t2 and f (x, t) = 2t2−α cos(πx)

Γ (3−α)
− π t4 cos(πx) sin(πx) +

νπ2t2 cos(πx). The exact solution is u(x, t) = t2 cos(πx).

We apply present method (37) to solve this problem for
several values of mesh points M and N . The L∞ errors when
α = 0.1, 0.5, 0.9 and Δx = 0.01 for various values of N
are presented in Table 4. One can observe in Table 4 that
the present scheme is of order two in time. The L∞ errors
when α = 0.5, 0.9 and Δt = 0.0001 for different values
of M are reported in Table 5, which shows that our method
has O(Δx4) convergence rate in space. This confirms that
the experimental results are consistent with the theoretical
estimates. The CPU timings of the scheme are also recorded,
which confirm the fastness of our scheme. The numerical
solutions at various time levels t = 0.5, 0.75 and 1 are
plotted in Fig. 4. Figures 5 and 6 show the 3D surface plots
of the numerical and exact solutions when α = 0.5. These

Table 4 L∞ norm errors and OOC for Example 2 when α = 0.1, 0.5,
0.9 and Δx = 0.01

α N L∞ Order(d) CPU(s)

0.1 160 5.8262e−06 0.206

320 1.4607e−06 1.9959 0.327

640 3.6589e−07 1.9972 0.567

0.5 160 4.4295e−06 0.227

320 1.1090e−06 1.9979 0.356

640 2.7762e−07 1.9981 0.485

0.9 160 3.1706e−06 0.185

320 7.9302e−07 1.9993 0.277

640 1.9848e−07 1.9984 0.584

Table 5 L∞ norm errors for Example-2 with Δt = 0.0001

α M L∞ Order(d) CPU(s)

0.5 6 1.6731e−05 3.108

12 1.3170e−06 3.6672 5.377

24 8.5182e−08 3.9506 9.917

0.9 6 1.6548e−05 3.056

12 1.3013e−06 3.6687 5.198

24 8.3927e−08 3.9547 8.726

Fig. 4 Numerical solution of Example 2 for α = 0.5 and T = 0.5, 0.75
and 1

figures confirm that the presented scheme approximates the
exact solution of TFBE accurately.

Example 3 In this example, we consider the TFBE (1) with
IC (El-Danaf and Hadhoud 2012):

u(x, 0) = μ0 + σ0 + (σ0 − μ0)e
μ0
ν

(x−λ)

1 + e
μ0
ν

(x−λ)
, −3 ≤ x ≤ 3

(100)
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Fig. 5 3D graph of numerical solution of Example 2with N = M = 50

Fig. 6 3D graph of exact solution of Example 2 with N = M = 50

and BCs

u(−3, t) = θ1(t), u(3, t) = θ2(t), t ≥ 0, (101)

with f (x, t) = 0. The exact solution of this problem for
α = 1 is

Table 7 L∞ norm errors for Example 4 when Δx = 0.005

α N L∞ Order (d) CPU (s)

0.1 160 3.9770e−06 0.481

320 9.9688e−07 1.9962 0.692

640 2.5023e−07 1.9942 1.236

0.5 160 7.7475e−06 0.280

320 1.9382e−06 1.9990 0.363

640 4.8554e−07 1.9971 0.851

0.9 160 9.7247e−06 0.424

320 2.4322e−06 1.9994 0.821

640 6.0900e−07 1.9977 1.418

Table 8 L∞ norm errors for Example 4 when Δt = 0.001

α M L∞ Order(d) CPU(s)

0.5 6 1.7157e−03 0.274

12 1.0531e−04 4.0128 0.355

24 6.5246e−06 4.0126 0.470

0.9 6 1.6985e−03 0.323

12 1.0429e−04 4.0256 0.397

24 6.5232e−06 3.9989 0.450

u(x, t) = μ0 + σ0 + (σ0 − μ0)e
μ0
ν

(x−σ0t−λ)

1 + e
μ0
ν

(x−σ0t−λ)
.

We compare the results of our method with those obtained
by the approach presented in El-Danaf and Hadhoud (2012).
This comparison is given in Table 6wherewe usedμ0 = 0.3,
σ0 = 0.4, ν = 0.1, λ = 0.8 and Δx = Δt = 0.01. We can
observe from this Table that our method provides muchmore
accurate solution than the method in El-Danaf and Hadhoud
(2012).

Example 4 Consider the TFBE (1)–(3) with g(x) = 0, ν =
1, Xl = 0, Xr = 1, T = 1, θ1(t) = 0, θ2(t) = 0

and f (x, t) = 2t2−α sin(2πx)
Γ (3−α)

+ 2π t4 sin(2πx) cos(2πx) +
4νπ2t2 sin(2πx).Theexact solution isu(x, t) = t2 sin(2πx).

We apply present method (37) to solve this problem for
several values of grid points M and N . The L∞ errors when
α = 0.1, 0.5, 0.9 and Δx = 0.005 for various values of N
are presented in Table 7. We can observe from Table 7 that

Table 6 L∞ norm errors with
−3 ≤ x ≤ 3, α = 1, μ = 0.3,
σ = 0.4, ν = 0.1 and λ = 0.8
for Example 3

Time (T ) Method in El-Danaf and Hadhoud (2012) Present method

1.00 4.632e−03 6.7470e−04

2.00 5.267e−03 6.7470e−04

2.50 5.569e−03 6.7470e−04

3.00 5.857e−03 6.7470e−04
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Fig. 7 Numerical solution of Example 4 for α = 0.5 and T = 0.5, 0.75
and 1

Fig. 8 3D graph of numerical solution of Example 4with N = M = 50

Fig. 9 3D graph of exact solution of Example 4 with N = M = 50

the proposed method is of order two in time. The L∞ errors
for various values of M when α = 0.5, 0.9 and Δt = 0.001
are presented in Table 8. One can observe in Table 8 that the
present schemehas fourth-order accuracy in spatial direction.
Tables 7 and 8 confirm that the numerical results are in good
agreement with the theoretical results. Tables 7 and 8 also
provide the CPU timings of the method which confirm the
fastness of the proposed scheme. The numerical solutions for
t = 0.5, 0.75 and 1 are shown in Fig. 7. Figures 8 and 9 show
the 3D surface plots of the numerical and exact solutions
when α = 0.5. These figures indicate that the presented
scheme approximates the exact solution of TFBE accurately.

5 Conclusions

An efficient high-order computational technique has been
described and demonstrated for nonlinear TFBE. This tech-
nique is based on the L2 − 1σ formula which is employed
for the approximation of the Caputo derivative of frac-
tional order. We approximate the space derivatives using
the collocation technique with the aid of QBS basis func-
tions. The resulting method is unconditionally stable and
exhibits fourth-order convergence in the spatial direction
and second-order convergence in the temporal direction, as
demonstrated by the convergence analysis. The experimental
OOC confirms the theoretical results proved in Theorem 6.
The experimental results indicates that the proposed method
is highly accurate and efficient in dealing with the nonlinear
TFBE.We have compared our results with those obtained by
the method based on cubic parametric spline functions (El-
Danaf and Hadhoud 2012). Comparison confirmed that the
present method is more accurate than themethod proposed in
El-Danaf andHadhoud (2012). The computational efficiency
of the method is confirmed by the CPU time provided in the
tables.
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