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Abstract

In this article, we develop and analyze an efficient numerical technique to solve the nonlinear temporal fractional Burgers’
equation (TFBE). The temporal fractional derivative is considered in the terms of Caputo and approximated by using the
L2 — 1, scheme. The quintic B-spline (QBS) basis function is employed for discretization of the space derivative to obtain
a fully discrete scheme. The proposed method is analyzed for its convergence and stability. Four nonlinear problems are
considered to illustrate the advantage and applicability of the present method. The proposed scheme has an order of convergence
O(A1? + Ax*), where At and Ax are the step sizes in time and space directions, respectively. The comparison with the
corresponding results of an existing method based on cubic parametric spline functions demonstrates that the proposed
method is more accurate when solving the nonlinear time-fractional Burgers’ equation. The CPU time is provided to show
the computational efficiency of the method. The obtained stable and highly-accurate numerical results and low computational
time collectively underscore the significance of the proposed technique in solving the nonlinear time-fractional Burgers’
equation.

Keywords Time-fractional Burgers’ equation - Caputo’s derivative - Quintic B-spline - L2 — 1, formula - Stability -
Convergence analysis

1 Introduction

In recent years, the differential equations of fractional order
have become center of attraction among researchers due to
their wide range of applications in applied sciences and engi-
neering. For more details, one may refer to Podlubny (1999),
Giona et al. (1992), Mainardi (1997), Bagley and Torvik
(1984), Roul et al. (2019b), Roul et al. (2019c¢), Veereshaet al.
(2020), Roul et al. (2023), Roul (2020), Roul (2021), Roul
and Goura (2020) and references therein. It is well known
that the fractional order derivatives can model complex phe-
nomena more accurately than the derivatives of integer order.
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In this article, we deal with the following nonlinear TFBE:

3%u(x, 1) u(x, 1) 9%2u(x, 1)
e THE D v
= fx, 1), (x,1)eX,X)x(0,T), (1)

where v represents the viscosity parameter and f (x, ¢) is the
source term. The initial condition (IC) is

u(x,0) = g(x), x € [X;, X,] @)

and the boundary conditions (BCs) are

u(Xp, 1) = 01(t), u(X,, 1) =0(r), 1r=0. 3

The functions f(x, 1), g(x), 61(¢) and 6>(¢) are assumed
to be sufficiently smooth. The Caputo fractional derivative

% in (1) is defined as follows:
0%u(x, 1) 1 t L Bu(x, 1)
ot F(] _ 0[) /0 ( K) I K,
O<a<l. @
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Burgers’ equation has numerous applications in various fields
of science and engineering and thus the researchers world-
wide have been showing keen interest in the study of this
equation. More specifically, this equation describes nonlinear
wave propagation effects, waves on shallow water surfaces,
chemical reaction-diffusion processes and one-dimensional
turbulence, see Logan (1994), Debtnath (1997), Adomian
(1995), Burgers (1948). The existence and uniqueness of
solutions to the Burgers’ equation of integer order have been
discussedin Gyongy (1998), Wang and Warnecke (2003). For
the fractional Burgers’ equation, the existence and unique-
ness of the solution is discussed by Guesmia and Daili (2010).
Kolkovska (2005) considered the stochastic Burgers-type
equation and studied the existence and regularity of solutions
in appropriate Hilbert spaces. Vieru et al. (2021) numerically
investigated the generalized time-fractional Burgers’ equa-
tion with variable coefficients, utilizing a finite-difference
scheme based on integral representations of Mittag—Leffler
functions. The approach is applied to specific cases, revealing
numerical solutions and comparisons for different time-
fractional derivatives. In Chen et al. (2021), the authors
introduced a nonlinear fully discrete scheme, utilizing the
nonuniform Alikhanov formula and Fourier spectral approx-
imation, for numerically approximating the time-fractional
Burgers equation with nonsmooth solutions. This scheme’s
solvability is established through fixed point theorem and
a priori estimate. Recently, Shafiq et al. (2022) employed
cubic B-spline functions and a 6-weighted scheme to numer-
ically solve the time-fractional Burgers’ equation with the
Atangana—Baleanu derivative, demonstrating its uncondi-
tional stability and second-order convergence in temporal
and spatial directions through finite-difference discretization.
It is well known that Burgers’ equation and Navier—Stokes
equation are similar in the form of their nonlinear terms.

In most of the cases, obtaining an exact solution to the
partial differential equations (PDEs) involving fractional
order derivatives is a challenging task. Therefore, numeri-
cal techniques must be adapted to approximate the solution
of temporal fractional order PDEs. Many authors employed
various kinds of numerical methods to solve the TFBE. For
instance, Mustafa Inc. Inc (2008) considered the application
of variational iteration method for numerical solution of the
homogeneous form of the time-fractional Burgers’ equation
(1).Liu and Hou (2011) proposed the generalized differential
transform method to obtain numerical solution of the space-
and time-fractional coupled Burgers’ equation. In El-Danaf
and Hadhoud (2012), authors developed general framework
of the cubic parametric spline functions to construct a numer-
ical technique for obtaining the approximate solution of
TFBE. Yaseen and Abbas (2020) constructed a numerical
method to solve the problem considered. In this method,
they considered the standard finite-difference formulation to
approximate the Caputo time-fractional derivative and used
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cubic trigonometric B-spline functions for the discretiza-
tion of space variable. This method is first order convergent
in time and second order convergent in space. In Majeed
et al. (2020), authors presented a numerical method based
on cubic B-spline finite element method to solve the TFBE.
They have approximated the Caputo fractional derivative
using the L1 formula for temporal discretization and then
used the Crank—Nicolson scheme based on cubic B-spline
basis functions for the spatial discretization. This scheme has
O (A2 + Ax?) convergence rate. On the other hand, vari-
ous numerical techniques were used to obtain the numerical
solution of Burgers equation of integer order. These meth-
ods include finite-difference method (Hassanien et al. 2005),
finite element method (Kutluay et al. 2004) and B-spline col-
location methods (Ramadan et al. 2005; Saka and Dag 2008).

Our main objective is to develop an efficient and high-
order numerical method for solving TFBE (1)-(3). The
proposed method is based on the L2 — 1, scheme in temporal
direction and the QBS basis function in the spatial direction.
The stability and convergence of this scheme are analyzed,
demonstrating that it achieves second-order convergence in
time and fourth-order convergence in space. The compari-
son of the results obtained by the present scheme with those
obtained using the method in El-Danaf and Hadhoud (2012)
illustrates the advantage of the proposed method. The com-
putational time of the present method is provided. To the
best of our knowledge, this scheme has not been considered
in the literature for the numerical approximation of the prob-
lem defined by (1)-(3).

This paper is organized as follows: in Sect. 2, the proposed
numerical method is developed to solve the TFBE. The sta-
bility and convergence of our method are discussed in Sect. 3.
The obtained numerical results are explained in Sect. 4. Sec-
tion 5 discusses the conclusions.

2 Numerical scheme description

This section aims to derive a numerical scheme to solve the
TFBE (1) subject to IC and BCs given in Egs. (2) and (3),
respectively.

2.1 Time discretization

First, we discretize the problem (1)—(3) in temporal direction
on [0, T']. For an integer N > 1, we set f, = nAt forn =
0, 1,..., N.The uniform time step size is given by At = %
Suppose that t, 115 = (n — 1 +0)At, where o = 1 — 7.
In view of the L2 — 1, formula (Alikhanov 2015), the

Caputo derivative defined by (4) can be approximated at t =
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th—1+0 as follows:

0%u(x, th—140) At™¢ o
= b
EYT] r2—a cou(x, ty)
n—1
= (e =) ulx 1) )

=1

— % qulx, to)] +0AP™), n=1,2,...,N,

where the coefficients are defined as

o __ o

¢y =ay, whenn=1 (6)

and whenn > 2

Jj=0,

ag + by,
ct =1a” -|-b]+1 b‘]’.‘, 1<j<n-2, @)

o . _
bj, j=n-—1,

l—o

1_
ag=0 "7, )y *

af=(j+0) = -1+ j=1,

o 1 . 2 .
bj—m[(]-i-ﬁ) -(-

I
—Eﬂj+w + (-

1 +O_)2—(x]
l+o)' =], jz1

The truncation error term O (A#3~%) in (5) comes under the
assumption that u(-, 1) € C3[0, T'].

Lemma 1 (Alikhanov 2015) For c
ing holds true:

, 0 <o < 1, the follow-

(1) c7>—“(]+0) “>0, j>0,
3‘1>cj,]zl

We consider (1) at t = ,_14, and let u(x, t,) = u"(x), to
obtain

8un—l+a (x) B

aaun—l+o(x) v82un—l+a(x)

n—1+o
o Y = x>
=), x e (X, X,),n=1,2,...,N,
(®)
with IC
u(x, t0) =u’(x) = gx), x e (X, X )
and BCs
M(Xla tn) = ”n(Xl) =6 (tn)’ M(Xr’ tn) = un(Xr)
= 02(ty). (10)

Using Eq. (5), from (8), we have

At "
To—o [Cgun(x) = (e

=1
—e )0 = W]+ @) @ AD
f’l*l‘HT(x) + 0(At37a),
n=1,2,...,N

_ Vun 1+o (X) —

X <x<X,,

Via Taylor’s expansion, we have

un71+0(x) =ou"(x)+ (1 — o')unil(x) + 0(At2)1

(12)

uz_H”(x) =oul(x)+ (1 — U)uﬁ_l(x) + 0(A?),
(13)

WO () = ou (x) + (1 — o)l 1 (x) + 0(Ar),
(14)

Multiplying Egs. (12) and (13), we get

(i) (%) = 02 (uuy)" (x)
+o(l—o)u"u" ' (x) + o (1 —o)u""u (x) (15)
+ (1 —0)? (uuy)"" (x) + 0(AP).

Plugging (14) and (15) into (11) and rearranging the terms,
we obtain

Oc“u"(x)—i—cr (uuy)" (x) +o(l —o)u"u’t™ L(x)

+o(l—c)u"! u't(x) —ovu’l (x)

=6 Z: (ehoimy =) u' ) (16)

+0c_ul(x) — (1 —0)? ()" (x)
+ (1 —o)vu" 71 (x) + 0(Ar?),

Xj<x<X,, n=1,2,...,N,

with ® = 1"(2 )
We linearize the term (uu,)" (x) as follows Rubin and
Graves (1975):

(uu)"™" (x).
(17)

(i)™ (x) = u" w0+ u" " ul (x) —
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Substitution of (17) into (16) and the rearrangement of the
terms lead to

(@cg—i—auﬁ_l(x)) u" (x)+ (Uu”_l(x)> u (x)—ovu'y, (x)

n—1
=0 Z (G ) ' (x)
=1

+ (**)c,“{_luo(x) + Q20 = 1) (uuy)" "' (x)
+ (1 =0 ) + () + oA,
X <x<X,,n=1,2,...,N.

(18)

2.2 Space discretization

Here, we discretize Eq. (18) using a collocation method based
on QBS basis function in spatial direction.

For a given M > 1, we consider a uniform partition / =
{X; =X < X1 < - < Xy = X,} over the domain
[X;, X1, with x,, = mAx, where Ax represents the spatial
mesh sizeandm =0, 1, ..., M. We define the midpoints of
the subintervals of I by 7, = m m=12,...,M.
Suppose that the set of these points be 77 = {11 < » <

- < i) Let 857 = {p(x)|p(x) € C*[X;, X, ]} be the
quintic-spline space (QSS). The QBS basis functions, Q. (x),
—2 <k <M + 2, for S5 ; are given by Boor (1978)

Q) = 30 Axs
(x — xx-3)° = ai, X € [xg—3, xp-2],
a; —6(x — x;—2)° = az, x € [xk—2, X411,
ay + 15(x — xi-1)°, x € [xe—1, x¢l,
by + 15(xk41 — x)°, x € [xg, Xk41], (19)
by — 6(xk42 — x> =by, x€ [kt1, X1,
(xk43 — x)° = by, X € [Xkt2, X431,
0, otherwise.

To support the QBS basis functions, additional 10 grid points
are included outside the interval 7, denoted as x_5 < x_4 <
X; and xyy = X, <
XM+l < XpM42 < XM4+3 < XM+44 < Xp4s. Let O =

X3 < Xp < XxX_1 < Xxo =

{Q*Z(x)s Q*l(x)v QO(X), ) QM(X)v QM+1(-x)9 QM+2(-X)}

be the set of QBS basis functions, which is linearly indepen-
dent. We define Q*(I) as the span of Q over the interval 1.
Therefore, Q*(I) is a M + 5 dimensional QSS. It can be
observed that Q*(I) = Ss ; (Prenter 1975), hence, S5 ; is a
QSS over 1.

Let " (x) represent the approximation of the exact solu-
tion u" (x) of (9)—(11). It can be expressed as

) M+2 R
Py =) AOk(),

k=-2

(20)
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where ):Z’s are the constants that need to be determined. The
values of ¢ (x), as well as its derivatives upto second-order,
are computed at x = X, (for 0 < m < M) and x = 1)
(for 1 < m < M), as presented in Table 1, using (19). Using
the information provided in Table 1, we obtain the following
relations:

N 1 ~ ~ ~
) = 5o (s + 263, + 664,

+263 41+ Ay ) @1)
W (x,) = 24le (—12_2 — 10,
F103 1 + A2 22)
o) = g (o 20
—A 2R A +2) , (23)
" (1) = 3;—40(?\;’1,3 + 2371, + 168237,
F1682R% +237A% L + Al Ls), (24)
W (1) = 3841Ax (= A3 = 75405
— ISR |+ ISART TSR L+ AR L),
(25)
o) = 2o (R + 2140
—203% | — 2200 4 210 4 A +2) . (©6)
Theorem 1 Consider the quintic-spline interpolant (QSI)

U (x) of u" (x) € CO[X;, X, 1. Then,
U () = u" (xp) + 0(AX®), 0<m <M

and

Ax?

720
+0(Ax%),0<m < M.

l[/)?x(xm) = uzx(xm) +

n
Uyxxxxx ()Cm)

Proof The proof of this result is analogous to the argument
presented in Theorem 2.1 of Roul et al. (2019a). O

Theorem 2 Consider the QST W" (x) of u™ (x) € C®[X;, X, ].
Then,
W (tn) = u(Tn) + O(AX), 1 <m < M

and

n n 7Ax* n
Ve (Tm) = uly (Tm) — %uxxxxxx

+0(Ax%), 1 <m < M.

(tm)
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Table 1 The values of Q,,(x), Q,,(x) and Q) (x)

Grid points Mid points
Xm—3 Xm—2 Xm—1 Xm Xm+1 Xm+2 Xm+3 Tm—-3 Tm—2 Tm—1 Tm Tm+1 Tm+2 Tm+3 Tm+4
1 26 66 26 1 1 237 1682 1682 237 1
Q’" (x) 0 120 120 120 120 120 0 0 3840 3840 3840 3840 3840 3840
/ 1 10 —10 —1 1 75 154 —154 -75 —1
Qm ()C) 0 24 Ax 24 Ax 0 24 Ax 24 Ax 0 0 384 Ax 384Ax 384Ax 384 Ax 384 Ax 384Ax
7" 1 2 —6 2 1 1 21 —22 —22 21 1
Onx) 0 6Ax2 6Ax2 6Ax2 6Ax? 6Ax2 0 0 48Ax2 48Ax2 48Ax2 48Ax2 48Ax2 48Ax2

Proof The proof of this result is analogous to the argument  Inserting the expressions for 4 (xm), lIA/)f (x,) and lﬁfx (xXm)
presented in Theorem 2.2 of Roul et al. (2019a). m] from (21), (22) and (23), respectively, into (30) yields

Theorem 3 Consider the QSI ¥"(x) € S5 of u"(x) € il oneltn . Lt

(CG[XI, X,]. Then, we can obtain (refer to Theorem 2.3 of P+ S Yo+ @ F vy DA
. n—1y\7 —1 —1\7

Roul et al. (2019a)): + DM+ (gh T =l ))L;’H]

+ o = s DA

= (k) 0<m <M, n=1,2,...,N,

(32)
IDP (¥ (x) — u" (x)lloc < MAX®™P, p=0,1,2, (27)

with DP = 22

= 5.
where
Considering (18) at x = x;,,, one can obtain
Oct o' (x,y) ov
—1 _ 0 m
(@cg‘ + au;_l(x)) u" (xm) + (au"_l(xm)) P = 120 + x120 T 6Ax2’
W () — VUt () gt = 2094 2600 (x) 0w
nl " 120 120 3Ax2’
I 0 fn—1
=6 Z(Cff—l—l — ) U Com) + Ocy_u’ (xm) 28) 1= 660cy 660! (xm) A ’
I=1 " 120 120 Ax?
+ Q0 = 1) ()" (on) ot _ 09Ty 1009 ()
N = -, v e ————
+ (1= owult Gon) + £ (), " 24Ax " 24Ax
O<m<M,n>1.
and
The BCs (10) lead to
n—1
-1 7l 7,0
" (x0) = 01 (1), 1" (xpr) = O2(1). 29) @' =0 (=) ¥ @) + O ¥ )
=1
~ A -1 ~
According to the collocation approach, we make ¥"(x) to + Q2o —1) (lI/ !l/x> (X)) + (1 — o)vtll;'x_l(xm).
satisfy (28)—(29) at the nodal points. Thus, from (28) to (29),
we obtain

Using (21), from (31) we have
(@cg + ogi/;—l(xm)) G (x,) + (agf/"—l(xm))

G () — o0 (o) Ay + 2607 + 6613 261 +45 = 120011).  (33)
et A o F26R |+ 66A 2647, 4+ A =12002(1).
=0 (ci oy —ciy) ' Gam) + Oci_ ¥ () (34)
= (30)
~ A \N—1
+ (20 =1 (lI/lI/x) (Xm) Equations (32) and (33)—(34) form a system of (M + 3) lin-
. a)vlf/;’x” () + fn71+<7 (tm), ear algebraic equations with (M + 5) unknowns. To make

the system feasible, we need two auxiliary equations. These
additional equations are obtained by enforcing ¥" (x) to sat-
U (xp) = 01(t,), ¥ (xm) = 6:2(1,). (31)  isfy (28) at the midpoints 7, for m = 1, M. Therefore, we

O<m<M,n>1.
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obtain where A" = (", A", A8, .. A% a0 A )T The
matrices P, H"! and F" are defined as:
<@Cg + Ulj’;_l(fm)> " (t) + (U‘pn_l(fm)> 1 26 6 26 1 0 .. 0
B (tn) — oV, (Tr) g gt gt et e 0
n—1 n—1 n—1 -1 n—1 n—1
N A~ £, @, 7 @, 0, 0 0
=0 (cioimy = i) ¥ @) + Oci_ 0 () e e
= (35) 0 ST AT g ! 0
A A n—1 P = s
+@o =1 () @)
+(1— U)Vlj/;lx_l(fm) + fn_H_U(Tm)s (U 0 sx/lfl (p;t,fl rg’/;l zzf;\'[l QZ/I’I
m = 1,M, n = 1,2,...,N 0 Lol ¢X4_I x/l—l ~Irll/[—1 zﬁ_;\l/]—l énM_I
_ ) 0 - 0 1 26 66 26 1
Making use of (24), (25) and (26) in (35) leads to 0 PR
~n—1
o o N o [ fan»a(.[l)
B+ 50 DA 5+ @
~n—1\1n ~n—1 ~n—1\1n “0 fniHU(xO)
O+ @ A o
w p X1
+ (;n—l o wn I)An (36) Hn—l _ 1 ’ o ’
+ @y = O DR+ B =5 : :
=@ @), m= 1, M, n > 1, ! £ )
! I @)
where 0 1206 (1)
pr—l = @Cg Ulp)?_l(fm) — av n—1 n—1 n 1 n n—1 n—1
m 3840 3840 4-8A)627 Em = pm +s ’ (pm - qm m zD-m
i 23705 23709 (r) | 2lov =gt v ot = sl
Om 3840 3840 48 Ax2’ m=0,1, M n> 1,5,’;’1
o fn—1 n— el ~n—
7,’:1_1 _ 16820c¢; 16820 (T,) 220\12’ = " 1+s;}1 I i 1
38A401 3840 A481Ax =g 1+z7;,11 I o 1_;71 b ’;Z 1
n—1 o¥" () ~n—1 150" (i) _ =n—1 ~n—1 _~n—1
N = =, = — 5 r wm ’ w_m
" 384 Ax " 384 Ax =l _ sn—1 zn—l
o =g s O
ao1 15409 N(g,) gl 7;1
w, Ty Pa— =pr ssTtom=1,M,n=1,2,...,N
d .re
an 3 Stability and convergence of the method
n—1

=0 Z (=) ¥ (t) + O 70 (T)
=1

NN N
+ Q20 —1) (wwx) (tw) + (1 — &1 (z,).

Equations (32), (33), (34) and (36) give a linear system of
(M+5) equatlons in (M +15) variables Al "5 )J’ 1 kg, co Ay
A (YERE an M2+ We rewrite this system in the matrix form as
follows:

PV'=H" '+ F" n>1, (37)
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In this section, we analyze the stability and convergence prop-
erties of the proposed method for solving the problem (1)—(3).

3.1 Stability analysis
Here, we analyze the stability of the numerical method given
by (37).

Theorem 4 The stability of the proposed method (37) for the
considered problem is unconditional.

Proof 1t can be seen that the right hand side function f(x, 1)
does not influence the stability of our proposed method. So,
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the proof for unconditionally stability of the method is per-
formed in the case when f(x,t) = 0. For simplicity, we
linearize the nonlinear term uu, by setting u as a constant
in (11). Then, we obtain

Fe—w |0 WL
(o, — C;Xz—l) ul (x) — c,‘f_luo(x)]

1 () — "1 () = 0,
X <x<X,, n=1,2,...,N. (38)
Using (13) and (14) in (38), we have
Ocgu” (x) + opu'y(x) —ovuly, (x)
=@ nZ (1 =) ul (x) + @c‘,)‘h]uo(x)

—(1 —o)pu ) + (1 — o) (),

Xj<x<X,,n=12,...,N 39)

Now, using the method described in Sect. 2 for Eq. (39) yields

(1 —m — M)A 5 + (26n1 — 10m2 — 213)A% _,
+ (661 + 613)Ap, + (2671 + 100, — 203)A7, |
P n—1

120 Z (ca—l—l - Cg—l) ()”in—Z

NG
—1 + 66)‘111 + 26)‘ m—+1 + )‘m+2)

A m— ), =

+ 261!

Ocy 120 20
+ 150 (A0 _5 +2620,_ + 661,
(I-o)u
24 Ax

1 1
10274 + 1032, +A2L)

+ 26)‘m+l + )‘m+2)

(_kn—l
m
(1 —o)
6Ax?2

—6an 2k ) m=0,1,.... M

(ol + 2007
,n=1,
(40)
(f — 3 — nan_s + 237y} — 7503 —
+ (168207 — 154n% + 220)A"
+ (168207 + 15413 + 220)A%
+ (2370 + 7505 — 2177;))» s+ nF+n5 —

) n—1
31
= 3840 Z (Cg7171 - szl) ()\m73
=1
21 21 N 31
+2373L )+ 168230 | + 16823, + 2374,

Oc_, . .
38’20 (W05 +23730,_, + 168235, _,

+ 168239, +23730, + 45 .,) —

21772))»” 2

n3))‘m+2

41t 5”£n+2)

(1 B U)M ( _ n—
384Ax

=TSR — 15430 154k 75An L L)

(1 —a)v - -
sz Pmos 20005
— 2237 =Rt A ) m=1, M, n > 1,
(41)
Ocy Och
W*here m = TS; mn jv%’ M= e = 340
M) = gRaay ad 03 = g7
The error ¢! is defined by
Lh= A=A (42)

with A*)} representing the solution of the perturbed system of
(40)—(41). Using (42), we can get the following error equa-
tions for (40)—(41):

(1 — n2 = 13)¢p_n + (2601 — 10m2 — 213)¢,,
+ (6611 + 613) ¢, + (2601 4+ 1002 — 213)¢,, 44

o) n—1

120 Z (Cff—z—1 - Cff—z)
=1

| + 662, + 26§;£1+1 + §r1n+2)

+mA+m =), =

X(Qéfz4'26§é,

L (g0 ) +2650 | + 6600 + 2650 1 +201)

120
(I—o)u —1
- 24 Ax ( - é‘rrrll—2 - lO{ + lOCm—H
n—1 ( 0)
+%H%%327%¢ 2+ 26"
—6er 2 ) n = Lm=0,1,..., M,
(43)
(n} — 05 — 03)Epm_z + 23707 — 7505 — 21n3)¢,, 5
+ (168217 — 15403 + 2203)¢0_, + (16827}
+ 15477}‘ + 22773‘)(,’,1[ + (23»777’1k + 75773 — 21"§k)§$+1
[C)
* S S _
+ (771 + 1, 773)§m+2 3840

n—1
XY (e =) Gy 23780, o
=1

i 1682;,’,,,1 +1682¢), +237¢), + ¢l o)

sai0 (s + 23760 5 + 16822, + 1682¢;)

+ 23700 1+ b)) —

750" ) —

=0y, 4 1
48Ax2 (K}:llf?) + 21(}272

— 22007 =220 + 2140
+gi). n=1,2....N,m=1M.

(=0 i
384 Ax m—3

154071+ 1540 + 750071 + ¢ h)

+

(44)
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The error ¢} can be chosen as
Gy = E"eMPA, (45)
where i = 4/—1. Inserting (45) into (43) yields

é"eim”“x{(nl — 1y — p3)e 2PA
+ (2601 — 1072 — 2n3)e ™ PA% 4 (6611 + 613)
+ (2611 + 1012

ipAx

+ (1 +n2—n3)e

—2py)e 2ipr}

n—1

e .
= ]20{ Z (03—1—1 - 03_1)51 + CZ—ISO}EHMAX

=1

x (e—Zipr +26e—ipr +66+26eipr _I_e2i,0Ax)

l—0o n—1 _impAx —2ipAx
— —e

( - ) mE" e (

_ loe—ipr + 1061’pr +62i,oAx)

l—o n—1 _impAx
+ ( > ) m&" e

x (6721'pr +2€7ipr _ 6+2€ipr +e2ipr).

(46)
The above equation can be rewritten as

£"[n1(2cos(2pAx) + 52cos(pAx) + 66)
4+ 1n3(6—2c0s(2p Ax)—4cos(pAx))+inz(2sin(2p Ax)
+20 sin(,oAx))]

e n—1
o DGR BER
I=1
X (2c08(2p Ax) 4+ 52cos(p Ax) + 66)

l1—0o

—i (T) mE" 1 (2sin(2p Ax) + 20sin(pAx))

_ (1 ; ”) 13" 1(6 — 2c08(2p Ax) — deos(pAx)).
@7

From Eq. (47), we have

=1

By means of mathematical induction, we prove that

€7 < |£9). (49)

Forn =1, (48) leads to

_mvi- (l%") n3y2 —i (l%") my3

gl : (50)
niyr+n3y2 +imys

Since o € (%, 1), we have

05(1;(’)51. (51)

Furthermore, as At > 0, Ax > 0,v >0and 0 < o < 1,
it can be concluded that I"' (2 — «) > 0 and 7y, 12, n3 are
positive. Therefore, taking into account (51), from (50) we
get

(my1 — (=2 1)’ + ((22) mays)’

< 7.
my1 +1392)? + (n2y3)?

1517 =

(52)

Thus, (48) holds for n = 1. Assume that (48) holds for n <
j — 1, thatis,

€M < €%, n=1,2,...,j—1. (53)

Forn = j, (48) leads to

. A—iB
I = , 54
Y =Cctip (>4

j—1
) ! 0
30 [2 :(C;l—l—l - C(}l—z)é + 4§ :| -

=1

where A =

l1—o - _ i
my2t! " B = (52 mys& =l € = my +
o

n3y2 and D = nays.
Making use of Lemma 1 and (53), one can get

|A| < |Cl1g°| and |B| < |D||&°]. (55)

Finally, making use of (55) into (54), we get

n—1
g -0 _ (1—0 _
(1)2)8 [Z (coy_y—c2 )¢ +C§1‘§0] - < . )7737/25" b ( > )772)/35" !

"= . , (43)
: myr+my2 +imys

where y1 = cos(pAx) + 26cos(pAx) + 33, y» = |§j|2 _ A%+ B? < |§O|2 (56)
3 — cos(2pAx) — 2cos(pAx) and y3 = sin(QpAx) + C2+ D%~ ’

10sin(pAx).
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. . 1—
Wthh gives _ ( G) n:&-n—l {(22 _ COS(S,OAX)
pu :
1€7] < |€9). (57) —22cos(2pAx) 4 cos(pAx)) + i(sin(3pAx)
+20sin(2pAx) — 435in(,oAx))}.
Hence, the result is valid for n = j. Therefore, (49) is valid (60)

for every n, i.e.,

1" < €°], n > 1. (58)

Substituting (45) into (44), we obtain

N [ —————
—7503 — 21n3)e” 2PAY + (16825} — 1540}
+2205)e1PAY 1 (168207 + 15475 + 221)
+(237nF 4+ 7505 — 2195)e' P + (i + 03

) n—1
2ipA
—n3)e” x} - 3840{ ;(CLH =)

fl + cg]gO}eimpr (6731'pr + 2376721‘pr

(I-o)u
384 Ax

—|—1682e_ipr+1682+237eipr+62ipr)_
x (= e 3PAT _ 75,=2ipAx _ |54p=ipdx

ipA 2ipA (-0 3,4
+154 4 756'PA% 4 1P x)+—48Ax2 (e771Pa

H21e7HPAY — 227 IPAY — 22 4+ 211PAY 4 £2PAY),
(59)

Simplifying the terms in (59) yields

g [,ﬁ{(cos(Spr) + 238cos(2p Ax)
+1929cos(p Ax)+1682)—i(sin(3p Ax)+236sin(2p Ax)
+1445sin(p Ax)) } + n3{(154 — cos(3p Ax)
—T74cos(2pAx) — 79cos(pAx)) + i(sin(3pAx)
+76sin(2p Ax)+229sin(p Ax)) }+13{(22 — cos(3pAx)
—22co0s(2pAx) + cos(pAx))
+i(sin(3pAx) 4+ 20sin(2pAx) — 43sin(pr))}]

o
B 3840[2 (2, ) —c )& +co go]

=1

X [(cos(3pAx)+23800s(2,0Ax)+1919cos(,oAx)+1682)
—i(sin(3pAx) + 236sin(2p Ax)
1—
+14455in(pr))] _ ( G) iEn!
o

X {(154—cos(3,oAx)—74cos(2,0Ax)—79cos(pr))
+i(sin(3pAx) + 76sin(2p Ax) + 229sin(p Ax)) }

From (60), we have

n—1
| 2 (et e )€ e e —iv)
=1
—(52) (i B+ BT+ )E !
n (v —iv) + 3B+ i) + n3 (BT +iBy)
(61)

n_

where

vy = cos(3pAx) + 238cos(2p Ax)
+ 1929cos(pAx) + 1682,
vy =sin(3pAx) + 236sin(2p Ax) + 1445sin(p Ax),
B1=154—cos(3pAx)—T4cos(2pAx)—T9cos(p Ax),
Br =sin(3pAx) 4+ 76sin(2p Ax) 4+ 229sin(p Ax),
Bi =22 —cos(3pAx) —22cos(2p Ax) + cos(pAx)
and B3 = sin(3pAx) + 20sin(2p Ax) — 43sin(p Ax).

Using the triangle inequality, the following estimate is
obtained:

n—1
fo| (e amet ) e 16 i =i
=1
+(552 ) [0 Bi-+i o)+ (BF+iBD 16"

S D R Bt B+ nl B i BD)|

(62)

Moreover, it is clearly observed that

Syt —ivEl+ (52) 3B + i) + ni(BE +iBD)]
i r — i) + m(B1+ 1B + M (BE + i)
<. (63)

By means of mathematical induction and (63), one can prove
that

15" < 1&%, n > 1. (64)

From (58) and (64), one can conclude that the present numer-
ical scheme (37) is unconditionally stable. O
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3.2 Convergence analysis

This section is devoted to the convergence analysis of the
proposed scheme (37) for (1)-(3).

Theorem 5 Assume that ¥" (x) be the QBS approximation
of the solution u"(x) € C®[X;, X,] for (1)~(3). Then, for
sufficiently small Ax and a constant L independent of Ax,
we have

¥" (x) — 1" (x)]loo < LAX*, V1 >0. (65)

Proof Linearizing the nonlinear term uu, in (11) by taking
u as a constant 4, we obtain

At™¢
I'2-—ow

n—1
[ce';u"(x)—z (51— ) ul<x>—cz_1u°<x>}
=1

+ ,LLM;_I-’_O-(X) _ vuﬁ;l-‘ra'(x) — fn—l-‘rO'(x).

(66)
From the boundary conditions, we have

u"(Xp) = 01(tn), u"(Xy) = 62(tn). (67)

Making use of the approximations (13) and (14) into (66)
and then rearrangements of the terms leads to

Ocfu" (x) + opu’i(x) — ovuly, (x)
n—1

=0 (@ — ) u () + Oc_u’(x)
=1 (68)

— (1 — o)™ (x) + (1 — ovu T ) + 7717 (x),
X <x<X,,n=1,2,...,N.

In operator form, Eqgs. (67) and (68) can be expressed as

Lu"(x) = Ocgu" (x) + o pu’s (x) — ovuly, (x)
=G" ) + ),
Bu"(x) = {u" (X)) = 01(ty), u"(X,) = 02(ty)},

(69)
(70)

where

n—1

G" ) =0 (e — ) u' @)
=1

+0c%_ u0(x) — (1 — o)L (x) + (1 — o)vu ().
(71)

@ Springer

Let ¥"(x) € S5, be the QSI to the exact solution of (68)
and (67). Let ¥"(x) be given as

M+2
W) = Y MOk). (72)
k=-2
By means of Theorems 1 and 2, we have
LU (xp) = Lu" (xp) + O(AxY), m=0,1,..., M,
(73)
W (x0) = 01 (ta) + O(Ax™Y), W™ (xpr) = O2(tn)
+0(AxY, (74)
LY (1) = Lu" (tm) + O(AxY), m =1, M. (75)

As u"(xp) = P"(xp), 0 < m < M and u"(t,) =
U'(ty,), m = 1, M, thus, Egs. (73)-(75) can be written
in the matrix form, as follows:

[Llll"(x) - Lti/"(x)] —E,

x=xpm, m=0,1,...M, x=11,Ty

(76)

where E = [0(AxY), O(AxY), ..., 0(AxY), 0(AxHT.
For x = xg, from (76), we obtain

(m1 —m2 — n3)A", + (26m1 — 10m — 2m3)A" |
+(66m1 + 6n3)Aq + (2611 + 10m2 — 2n3) A}
+(n1 +m2 = 13)M5 — ((m — m — 3)A",
+(26n1 — 10m2 — 203)A" | + (6611 + 673)A
+(2601 4 10, — 213) A"

+(11 + 12 — 13)A4) = O(Ax*). (77)
For x = x, from (76), we obtain

(m1 — n2 — n3)Ay o + (26m1 — 10m2 — 2n3)A%,
+(66m1 + 6m3) Ay, + (2601 + 10m2 — 2n3) A}, 44
1+ 2 — 0340 — (10— 2 — n3)A%,
+(26m1 — 10m — 2n3)A%,_ | + (66m1 + 6m3)A%,
+(2601 + 1002 — 203) A% |
(11 + m2 — 03 40) = O(AxY). (78)

For x = 11, from (76), we obtain

(nf —m5 — )AL, 4+ (23707 — T5n;5 — 21n3)A" |
+(1682nF — 15403 + 22058 + (16827}
15405 4+ 220N + (23Tt + 7505 — 21Dl + (n
+n5 — 1A — ((rf —n3 — A%,
+(237n} — 753 — 21n)A"
+(1682nF — 15473 + 22n%) 8
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+(1682n% + 15405 4 22n5) A"
+Q237n% + 7505 — 215

+(f + 03 — n)ij) = 0(AxY). (79)

For x = 1), from (76), we obtain

(n} — 03 — n3)Ay_3 + 23T} — 7503 — 215Ny,

+(1682n% — 15403 4+ 22050,

+(1682n% + 15415 4 2205,

+(237n0F + 7505 — 21pA% Ly + i + 0% — DA
—((rf = n5 = DRy _3 + 2370} — 7503 — 21)A,,
+(1682n7 — 15403 4+ 22053,

+(1682nF + 15405 4+ 22n5)A%,

+(237n} + 7503 — 215k,

+(1} + 03 — 1DA4,) = 0(AxD. (80)

By utilizing (33) and (34), the unknowns A" 5, A}, 5, A ,and

A

My 4o can be eliminated from (77)—(80). Hence, for x = xq,
we get

(16m2 + 24n3)A" | + (6612 + 7203)A5 + (3612 + 24n3)A]
—((16m2 + 24n3)A"
(6612 + T213)A8 + (3612 + 2413)AT)

= 0(AxY). (81)

For x = xjs, we obtain

—2maAly_y — (36my — 24n3)AY, | — (66m2 — T2n3)AY,
—(16m — 24n3) M3y — (= 2mi,_,
—(36m — 24n3)A%, | — (6612 — T2n3)A",

— (1612 — 2403, ) = O(AxY). (82)

For x = 11, we obtain

(211nT — 4995 + 5051, + (161677 — 8815 + 88n3)A]
+(1656n7 + 18005 + 480" + (2361}
+7615 — 2005)25 + (17 + 03 — 05
—(Q11n} — 4903 + 51",
+(1616n7 — 8815 + 8813l
(1656177 + 180n% + 4855) A"
+(2361} + 7603 — 20n})A5

+0y + 5 — né*)igl) = 0(Ax™Y). (83)

For x = 1), we obtain

(} — m5 — n3)Ay_s + (23607 — T6m5 — 2003)A7,_,»

+(1656n7 — 18015 + 48n3)A),_,
+(1616n7+88n54-88n3) A+ 21107 +49n5+5n3) My
—((f = m3 — MDAy

+(236n} — 7605 — 200HA%,_,

+(1656nT — 18003 + 48n)A%, | + (161617 + 8813
+8805)A%, + (211nF + 4993 + SnAs,, ) = O(AxY).

(84)
Forx =x,,,m=1,2,..., M — 1, from (76), we obtain
(1 = n2 = n3)Ayy,_p + (26m1 — 1002 — 2m3)A),
(661 + 6m3) AL + (26n1 + 1072 — 273)A% |
+(11+ 2 = )M — (10— 12— n3)Al_,
+(26m1 — 10m; — 2093) A%, + (6611 + 6n3)AL,
+(26n1 + 10m — 2n3)A%
Hm 4 — 03 ,,) = 0(AxY). (85)
Equations (81)—(85) can be expressed as
ROV — ") =E, (86)

where R is a (M + 3) x (M + 3) matrix given by

di dy d3y dg ds 0 --- 0 0
dg d7 dg dg 0 0 --- 0 0
dy do d3 dg d5 0 --- 0 0
R= :
0 0 0 dy dy dy dy ds
0 0 .- 0 0 —dydg dy dg
0 0 0 dyg dy dg dp dg
A=A
-
M=
)\n_in: ,
Mgy =y
Ao
Mirer = Mg

where dy = n) —nm2 — 03, do = 26m; — 102 — 213, d3 =
66n1 + 6m3, dy = 26n; + 102 — 23, ds = n1 + 2 —
n3, dg = 16m2 + 2413, d7 = 66n2 + 7213, dg = 36m2 +
24n3, dg = 2o, d1 = 2117)?—497134—57’];, dy = 161677T—
883 +88n%, d3 = 1656n" + 18003 +48n%, dy = 236" +
765 — 20m%, ds = 0t + 13 — 03, de = 211n% + 4905 +
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Sk, d7 = 1616n% +88n5 +88n%, ds = 16565} — 180n5 +
4813, do = 23617 — 7613 —20113, dio = 0} —n3— 113, de =
—16my 4+ 24n3, d7 = —66m2 + 7213 and dg = —36m; +
24n3.

Lets; (—1 <i < M + 1) denote the sum of ith row of R.
Thus, we obtain

_37200¢f Ax* + 12000 1 Ax 4 96000 v

3840Ax2
_ 4800v + 1200 pnAx

0= 24412
Sk=0cy, k=1,2,.., M — 1,
4800 v — 1200 nAx

= 24452
37200 ¢ Ax? — 12000 L Ax + 96000 v
3840Ax2 '

s

’

)

s

SM+1 =

For sufficiently small Ax, we have s_; > 0,s9 > 0, sy >
0,k =1,....,M — 1,5y > 0 and sy4+1 > 0. Thus, R
exhibits monotonicity and consequently, R~! is well defined.
Let rk_]1 be the (k, j)th element of R~!. Making use of the
theory of matrices, we obtain

M+1
Zr,:}sjzl, for k=—1,0,1,....,M,M+1. (87)
j=-

Using (87), we have
M+1 1
-1
Y o< = (88)
j=—1 J

By Taylor’s expansion, we have

3840 Ax2

rl < é e 0(Ax?),
ol L 2AC
k0 = g0 = 4800V ’
1/'_1.<l=L J=12M—1
Ki=s; T e’ Ty ’
< L < 2442 + O(Ax3)
kM = gy ~ 4800V '
- Lo 3840 Ax? + 04
EM+L = gyir = 96000y ’

From (86), we have

A" — Ao = IR Elloo
IR Mool E lloo

M+1
max Zrk_l.
—1<k<M+1 = ]

Jj==

IA

IA

> 0(Ax™

@ Springer

<  max
—1<k=M+1

<Irkf11| +Irgol
M—1

+ Z |r1:}| + iyl + |r/;M+1|>0(Ax4)
j=I

= 0(Ax™Y). 89)

Therefore, we have

no_an |~ 4
7151}17112;)1(”H | Ay — Ay IS KAXT. 90)

Moreover, using (33), (34) and (90), we can obtain that

| A"y — A, |= 0(AxY), | My — Mys |= O(AXY).

o1
Now, from (20) and (72), we can have
M+2
Uh(x) =¥ (x) = Z % — A1) Ok (x). 92)
k=-2
By the definition of Q(x), it is easily observed that
M+2
186
> ok = —. 93)
=, 120

Taking the Lo, (maximum) norm on (92) and using (90), (91)
and (93), we obtain

M+2
P"(x) =¥ () |loo < [A" —A"] Z [Qk(x)|
k=-2
<NAx*, n>1, (94)

where N = %IC. From Theorem 3, we have
¥ (x) — u" (x)lloo < MAx*, 95)
The triangle inequality gives

W™ (x) — u" () oo < 1¥"(x) — " ()l + 1¥" (x)
—u" (%) [l oo (96)

Using (94) and (95), from (96), we have
¥7(x) — u" (x)]|oo < LAX*Y V> 1. (97)

Hence, Theorem 5 is proved. O
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Theorem 6 Suppose that lf/(x, t) and u(x,t) be the QBS
approximate solution and exact solution of TFBE, respec-
tively. Then, for u(x, t) € CO[X;, X,] x C[0, T, it follows
that

lu(x, 1) — T (x, H)]loo = O(Ax* + AL?). (98)

Proof Applying Theorem 5 and utilizing Eq. (18), we can
derive the expression in (98). O

4 Numerical illustrations

Here, four nonlinear problems are considered to demonstrate
the effectiveness and accuracy of the proposed method (37).
The computed result is compared with that obtained by other
method based on cubic parametric spline functions (El-Danaf
and Hadhoud 2012). We compute the L, norm error (EIM )
of the proposed method which is defined as

EM = max ¥ — u(xm, tn)l, (99)
0<m<M
0<n<N

where u(x,,, t,) and lf/,ﬁ are the exact and approximate solu-
tions, respectively, at the grid point (x,,, #,). We calculate
the OOC (order of convergence) of the present numerical
method based on L, norm error by the formula:

_ log(EM) — log(EM)

d
log(2)

The numerical computations are performed in MATLAB
R2020a on a computer equipped with an AMD Ryzen 5
2500U processor operating at 2.00 GHz.

Example 1 Consider the TFBE (1)—(3) with g(x) = 0,v =
l,X[ = O, Xr = l,T = 1,91(1‘) = t2,92(l) = etz and
fx, 1) = ﬁtz_“e" + t*e¢? — vr2e*. The true solution

isu(x,t) = t2e*,

We apply the proposed method (37) to solve this problem
for several values of mesh points M and N . First, we compute
the rate of convergence of presented technique in temporal
direction. For the purpose, we calculate the errors by varying
N and fixing space step length Ax. Table 2 gives the L
errors with different values of N when « = 0.1, 0.5, 0.9
and Ax = 0.01. One can observe in Table 2 that the present
scheme is of order two in time. Next, to find the OOC of
proposed scheme in spatial direction, we fix Az and find the
L o norm errors for various values of M. Table 3 shows the
L errors with various values of M when o = 0.5, 0.9 and
At = 0.00005. Table 3 shows that the spatial accuracy of the
proposed method is of fourth order. The OOC in Tables 2 and
3 is in good agreement with the theoretical OOC provided

Table2 L., norm errors for Example 1 when Ax = 0.01

o N Loo Order(d) CPU(s)
0.1 160 4.0823e—05 0.153
320 1.0235¢—05 1.9959 0.224
640 2.5625e—06 1.9979 0.504
0.5 160 2.2371e—05 0.136
320 5.6029e—06 1.9974 0.244
640 1.4020e—06 1.9987 0.366
0.9 160 9.6419¢—06 0.125
320 2.4116e—06 1.9993 0.242
640 6.0306e—07 1.9996 0.374
Table 3 L., norm errors for Example 1 when Ar = 0.00005
o M Lo Order(d) CPU(s)
0.5 6 1.6451e—07 11.069
12 1.2066e—08 3.7691 20.078
24 7.9327e—10 3.9270 40.625
0.9 6 1.5914e—07 11.649
12 1.0972e—08 3.8584 20.767
24 7.0694e—10 3.9561 40.873
3 T T T T
......... T=
-=--T=o078}
25 T=05}
s
=
5 2 .
< |
L
s I T
‘t-u' .5 L - 9
g _________ _ - -
X | T -
o | L -
5 1 - J
o -
< ==
05F -
0 L L ) L
0 0.2 0.4 0.6 0.8 1

X

Fig.1 Numerical solution of Example 1 fore = 0.5and 7" = 0.5, 0.75
and 1

in Theorem 6. The CPU time of present numerical scheme
is also provided in Tables 2 and 3, which confirms that our
scheme is computationally efficient. The numerical solutions
atvarious time levels = 0.5, 0.75and 1 are shownin Fig. 1.
Figures 2 and 3 show the 3D surface plots of the numerical
and exact solutions when o = 0.5. These figures indicate
that the presented scheme approximates the exact solution of
TFBE accurately.
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Fig.2 3D graph of numerical solution of Example 1 with N = M = 50

S
S

S
SERBEXE
SIS
(SRS

Exact solution

X

Fig.3 3D graph of exact solution of Example 1 with N = M = 50

Example 2 Consider the TFBE (1)—(3) with g(x) =0, v =

2—a
—t?and f(x,1) = W — wt*cos(mx) sin(mx) +
vrr2t2 cos(rrx). The exact solution is u(x, 1) = 72 cos(7x).

We apply present method (37) to solve this problem for
several values of mesh points M and N. The L, errors when
o = 0.1, 0.5, 0.9 and Ax = 0.01 for various values of N
are presented in Table 4. One can observe in Table 4 that
the present scheme is of order two in time. The L, errors
when ¢ = 0.5, 0.9 and Ar = 0.0001 for different values
of M are reported in Table 5, which shows that our method
has O(Ax*) convergence rate in space. This confirms that
the experimental results are consistent with the theoretical
estimates. The CPU timings of the scheme are also recorded,
which confirm the fastness of our scheme. The numerical
solutions at various time levels + = 0.5, 0.75 and 1 are
plotted in Fig. 4. Figures 5 and 6 show the 3D surface plots
of the numerical and exact solutions when @ = 0.5. These
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Table4 L., norm errors and OOC for Example 2 when & = 0.1, 0.5,
0.9 and Ax = 0.01

o N Lo Order(d) CPU(s)
0.1 160 5.8262e—06 0.206
320 1.4607e—06 1.9959 0.327
640 3.6589e—07 1.9972 0.567
0.5 160 4.4295e—06 0.227
320 1.1090e—06 1.9979 0.356
640 2.7762e—07 1.9981 0.485
0.9 160 3.1706e—06 0.185
320 7.9302e—07 1.9993 0.277
640 1.9848e—07 1.9984 0.584
Table5 L. norm errors for Example-2 with Ar = 0.0001
o M Lo Order(d) CPU(s)
0.5 6 1.6731e—05 3.108
12 1.3170e—06 3.6672 5.377
24 8.5182e—08 3.9506 9.917
0.9 6 1.6548e—05 3.056
12 1.3013e—06 3.6687 5.198
24 8.3927e—08 3.9547 8.726
1.5 T T T T
......... T=
- = 'T=0.75
bk, e T=0.5 |4
c
S
3
S 05F T ~o_ 1
) ~
ki e ——
E
s o '
o -
[>)
< ~
0.5 S~ oo
4 N " L "
0 0.2 0.4 0.6 0.8 1

X

Fig.4 Numerical solution of Example 2 fora = 0.5and 7 = 0.5, 0.75
and 1

figures confirm that the presented scheme approximates the
exact solution of TFBE accurately.

Example 3 In this example, we consider the TFBE (1) with
IC (El-Danaf and Hadhoud 2012):

n
po + 00 + (00 — po)e > P
Ko

I+ev®H

u(x,0) =
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Table7 L norm errors for Example 4 when Ax = 0.005
P N Loo Order (d) CPU (s)
é 0.1 160 3.9770e—06 0.481
3 320 9.9688e—07 1.9962 0.692
; 640 2.5023e—07 1.9942 1.236
£ 0.5 160 7.7475¢—06 0.280
§ 320 1.9382e—06 1.9990 0.363
g 640 4.8554c—07 1.9971 0.851
0.9 160 9.7247e—06 0.424
1 320 2.4322e—06 1.9994 0.821
0.5 0.5 640 6.0900e—07 1.9977 1.418
t 0 o X
Table 8 L, norm errors for Example 4 when Ar = 0.001
Fig.5 3D graph of numerical solution of Example 2with N = M = 50
o M Loo Order(d) CPU(s)
0.5 6 1.7157e—03 0.274
12 1.0531e—04 4.0128 0.355
24 6.5246e—06 4.0126 0.470
0.9 6 1.6985e—03 0.323
12 1.0429¢—04 4.0256 0.397
_§ 24 6.5232e—06 3.9989 0.450
g 20 (x—opr—21)
b u(x,t):lto-l-ﬁo-i-(ao—uo)ev
14+ e%(x—aot—k)

0.5

0.5
t 0 o0 <

Fig.6 3D graph of exact solution of Example 2 with N = M = 50

and BCs

(101)

with f(x,7) = 0. The exact solution of this problem for
a=1is

‘We compare the results of our method with those obtained
by the approach presented in El-Danaf and Hadhoud (2012).
This comparison is given in Table 6 where we used o = 0.3,
o0 =04,v=0.1,2A=0.8and Ax = Ar = 0.01. We can
observe from this Table that our method provides much more
accurate solution than the method in El-Danaf and Hadhoud
(2012).

Example 4 Consider the TFBE (1)—(3) with g(x) =0, v =
0,60(t) = 0

,LX, =0, X, = 1,T = 1,61(t) =
2—a
and f(x,t) = W + 274 sin(2m x) cos(2mx) +

4v72¢2 sin(27 x). The exact solutionis u (x, 1) = ¢2 sin(27x).

We apply present method (37) to solve this problem for
several values of grid points M and N. The L, errors when
o = 0.1, 0.5, 0.9 and Ax = 0.005 for various values of N
are presented in Table 7. We can observe from Table 7 that

Table 6 L, norm errors with

Method in El-Danaf and Hadhoud (2012)

Present method

3<x<3a=1pu=03, Time (T)

oc=04,v=0.1and A =0.8 1.00 4.632e—03

for Example 3
2.00 5.267¢—03
2.50 5.569¢—03
3.00 5.857¢—03

6.7470e—04
6.7470e—04
6.7470e—04
6.7470e—04

@ Springer
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Approximate solution
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Fig.7 Numerical solution of Example 4 fore = 0.5and 7" = 0.5, 0.75
and 1

Approximate solution

0.5

t 0 0 x

Fig.8 3D graph of numerical solution of Example 4 with N = M = 50
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Exact solution

0.5

t 0 o X

Fig.9 3D graph of exact solution of Example 4 with N = M = 50

@ Springer

the proposed method is of order two in time. The L, errors
for various values of M when o = 0.5, 0.9 and At = 0.001
are presented in Table 8. One can observe in Table 8 that the
present scheme has fourth-order accuracy in spatial direction.
Tables 7 and 8 confirm that the numerical results are in good
agreement with the theoretical results. Tables 7 and 8 also
provide the CPU timings of the method which confirm the
fastness of the proposed scheme. The numerical solutions for
t = 0.5, 0.75and 1 are shown in Fig. 7. Figures 8 and 9 show
the 3D surface plots of the numerical and exact solutions
when o = 0.5. These figures indicate that the presented
scheme approximates the exact solution of TFBE accurately.

5 Conclusions

An efficient high-order computational technique has been
described and demonstrated for nonlinear TFBE. This tech-
nique is based on the L2 — 1, formula which is employed
for the approximation of the Caputo derivative of frac-
tional order. We approximate the space derivatives using
the collocation technique with the aid of QBS basis func-
tions. The resulting method is unconditionally stable and
exhibits fourth-order convergence in the spatial direction
and second-order convergence in the temporal direction, as
demonstrated by the convergence analysis. The experimental
OOC confirms the theoretical results proved in Theorem 6.
The experimental results indicates that the proposed method
is highly accurate and efficient in dealing with the nonlinear
TFBE. We have compared our results with those obtained by
the method based on cubic parametric spline functions (El-
Danaf and Hadhoud 2012). Comparison confirmed that the
present method is more accurate than the method proposed in
El-Danaf and Hadhoud (2012). The computational efficiency
of the method is confirmed by the CPU time provided in the
tables.
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