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Abstract
In today’s internet-driven world, a multitude of attacks occurs daily, propelled by a vast user base. The effective detection

of these numerous attacks is a growing area of research, primarily accomplished through intrusion detection systems (IDS).

IDS are vital for monitoring network traffic to identify malicious activities, such as Denial of Service, Probe, Remote-to-

Local, and User-to-Root attacks. Our research focused on evaluating different auto-encoders for enhancing network

intrusion detection. The proposed method sparse deep denoising auto-encoder approach produces the dimensionality

reduction used to predict and classify attacks in datasets. With the most records among the datasets by training the auto-

encoder on normal network data, this utilized reconstruction error as an indicator of anomalies. We tested our approach

using standard datasets like KDDCup99, NSL-KDD, UNSW-NB15, and NMITIDS. Remarkably, our sparse deep

denoising auto-encoder achieved an accuracy of over 96% based solely on reconstruction error. The primary aim of this

work is to improve intrusion detection by achieving higher detection accuracy compared to existing methods.

Keywords Intrusion detection � Auto-encoder � Dimensionality reduction � Network security � NMITIDS �
Support vector machine

1 Introduction

An intrusion detection system (IDS) is a specialized tool

for analyzing and interpreting network and/or host behav-

ior. These data can come from a variety of places,

including network packet analysis, router, firewall, and

server log files, local system logs and access calls, network

traffic statistics, and other sources. An IDS may also

compare patterns of activity, traffic, or behavior found in

the data it monitors to those signatures to detect when a

signature and current or recent behavior are virtually same.

Intrusion detection is a safety component that scans and

analyzes web traffic for threats and alerts the system/set of

connections administrator to take appropriate action. It is

considered as second security gate between the firewall is

given in Fig. 1. In the figure, IDS represents a critical

component in ensuring the safety and security of net-

worked systems. They play a pivotal role in scanning and

analyzing web traffic, continuously monitoring for poten-

tial threats, and promptly alerting system administrators

when suspicious activity is detected. In the hierarchy of

network security, IDS stands as the second line of defense,

following the firewall. The significance of IDS has grown

exponentially in the realm of network security. As cyber-

criminals and hackers develop increasingly sophisticated

techniques for infiltrating systems, the capabilities of IDS

must evolve in tandem. It is imperative for an IDS to strike
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a delicate balance between precision and speed. In terms of

precision, an IDS must possess the capability to accurately

identify and classify various types of intruders and mali-

cious activities. This involves the continuous refinement of

its detection algorithms and the ability to recognize both

known and novel threats. It should be able to distinguish

between normal network behavior and anomalies that may

signify an attack or intrusion.

Moreover, the speed at which an IDS operates is of

paramount importance. In today’s digital landscape, threats

can materialize swiftly, and an IDS must be agile enough to

make rapid assessments and judgments. Delayed responses

can result in severe security breaches and data loss.

Types of intrusion detection systems

1. Network intrusion detection system (NIDS) is

deployed within a system’s architecture to analyze

incoming and outgoing traffic. Any deviations from the

expected traffic patterns are reported to the network

security team for action.

2. Host intrusion detection systems (HIDS) monitor all

computers and devices within a network, capable of

detecting threats originating from within the local

system.

3. Signature-based IDS employs predefined rules to detect

traffic deviations. It is a common method used in both

NIDS and HIDS, known for its simplicity but reliant on

rule quality.

4. Anomaly-based IDS passively analyze network traffic,

typically using hardware or software tools for moni-

toring. These systems often have two network links for

listening and control purposes.

Data intake, data pre-processing, feature reduction, and

classification are all part of the IDS process. The

KDDCup99 (Pervez and Farid 2014), NSL-KDD (Kdd-

cup99 Public Dataset 2023), UNSW-NB15 (A. C. for

Cyber Security 2023), and NMITIDS (Manjunatha and

Gogoi 2020a) are publicly privately available standard

datasets that will be utilized to develop and assess the

system. The system’s data pre-processing unit will execute

data encoding by transforming symbolic data into numeric

values, followed by data normalization for quick and

accurate results.

The paper is structured as follows: the initial section

covers the fundamentals of intrusion detection and its

requirements, while the subsequent segment delves into the

existing literature on intrusion detection. Section 3 elabo-

rates on the methodologies employed in our research, and

the outcomes are analyzed in Sect. 4. The paper concludes

with Sect 5, which presents our conclusions and outlines

potential avenues for further research.

2 Literature review

In this section, we have discussed most current research

works which belongs to dimensionality reduction, and

classification of intrusion detection.

Zhang et al. (2017) develop a system that uses LapSVM

to integrate labeled and unlabeled data to improve classi-

fication results. The research gap is that the approach

requires more memory and processing speed. For catego-

rization, this strategy does not take into account all of the

attack labels. For network intrusion detection, Al-Qatf et al.

(2021) utilized a Deep Learning Approach combining

Fig. 1 Intrusion detection system architecture
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sparse auto-encoder with SVM. The suggested method is

used to learn features and reduce dimensionality. It sig-

nificantly decreases training and testing time while signif-

icantly improving the prediction accuracy of support vector

machines (SVM) in terms of assaults. For good represen-

tation features and dimensionality reduction processes,

many stages of STL and a hybrid feature learning model

were used. The accuracy for U2R and R2L attacks with

their true-positive rate and false-positive rate is low. Tayel

and Rizk ( 2021) propose the hybrid model for feature

selection by combining the filter and wrapper-based

approaches. The proposed model uses the best available

clustering techniques and radian-based neural networks

approaches in building the system. The IDS system is built

using the clustering techniques, the artificial neural net-

works techniques and their types, such as feed forward

neural network and radial basis neural network. Author

proves that the proposed model improves the system per-

formance. Complex and classification accuracy is not in

line in with the selected artificial neural network models.

Shakya and Makwana ( 2021) have used the combination

of DBSCAN, K-mean??, and SMO algorithms for feature

extraction. Not much work done on to find best and optimal

value for classifier parameters. Needs to set and config-

ure the appropriate value. Test needs to be done with dif-

ferent datasets. Comparison can be extended for other latest

and generalized classifiers. It is observed that obtained

accuracy is 96.922%. Nkiama et al. (2016a) address the

elimination of irrelevant and redundant features, thereby

producing the better classification accuracy. The selected

features using this model will contribute to improve the

detection rate, based on the score of each feature achieved

during the selection process. Uses NSL-KDD dataset, no

new dataset used for test and validation. As it performs the

recursive operations, it takes long time for the process in

achieving the optimized feature set. Lu et al. (2017) pro-

pose a hybrid feature selection method combining mutual

information maximization and genetic algorithms, and the

hybrid version is named as MIMAGA feature selection

algorithm (Kumar et al. 2018). This method reduces the

dimension of the original dataset features and removes the

redundant records. The multiple classifiers are applied and

evaluated for the performance results for the selected fea-

ture set, and the results shows the effectiveness of the

selected model. Takes long time in processing the records

as the gene expression data grow exponentially in size.

Therefore, limited in resource application and memory

space. Anbar et al. (2018) worked on analyzing the IPv6-

based attacks and ICMPv6 DoS flooding, and classification

was done using the decision tree, random forest, and

k-nearest neighbor (k-NN) classification algorithms (Ste-

fanova and Ramachandran 2017). The author analyzed the

performance of three classification algorithms to detect the

IPv6-based attacks. Not much work done on to find best

and optimal value for classifier parameters. Needs to set

and configure the appropriate value. Hoque et al. (2016)

introduce the greedy feature selection method using mutual

information in building the IDS system (Nkiama et al.

2016a). The combination of feature–feature and feature

class mutual information is used to find get the suitable and

optimized subset with low redundancy and maximization

of relevancy across the features. This approach can be

extended to other application types. Hybrid enhancements

for optimized feature list, better detection rates. Kumar

et al. (2018) propose a Machine Learning Classification

Model in building the network-based intrusion detection

system, and is mainly for the threats induced in mobile

devices network. As we know, the threats in the mobile

world increase rapidly, and the attackers steals the sensitive

information, exploiting the users by sending unwanted

SMS. The evaluation results show that the ML model can

detect and classify known and unknown attacks with 99.4%

accuracy. It can be combined with the other IDS feature

selection and classification models in detecting and clas-

sifying the advanced and new threats, thereby reducing the

false alarms. Shah et al. (2017) present network intrusion

detection using sparse regression techniques and discrimi-

native feature selection. SPLR may integrate feature

extraction and categorization into a cohesive framework,

unlike features extraction methods such as filter (ranking)

and wrapper methods, which separate the feature selection

and classification concerns. In identifying and categorizing

sophisticated and novel threats, IDS uses selection and

classification models, which reduces false alarms. Abuali-

gah et al. (2021a) proposed Aquila optimizer (AO) is a

novel population-based optimization method, which is

inspired by the Aquila’s behaviors in nature during the

process of catching the prey, this algorithm simulates the

behaviors of Aquila in nature. The author Abualigah et al.

(2021b) proposed the Arithmetic Optimization Algorithm

(AOA) excels in solving complex optimization problems,

outperforming 11 other algorithms in various scenarios and

applications. Abualigah (2019) presents an effective text

document clustering method with broad applicability,

demonstrating superior performance compared to compa-

rable methods in various domains, including biomedical

sciences. Zheng et al. (2020a) introduces a novel two-level

data augmentation approach for automatic modulation

classification in cognitive radios. It leverages interference-

based spectrum augmentation to enhance the performance,

showing superiority over existing methods on RadioML

2016.10a dataset. Qinghe Zheng’s paper (Zheng et al.

2021) introduces the MR-DCAE model for identifying

unauthorized radio broadcasting. It employs a specially

designed auto-encoder with manifold regularization,

achieving state-of-the-art performance on the AUBI2020
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dataset. The paper (Zheng et al. 2022) presents the multi-

scale radio transformer (Ms-RaT) for fine-grained modu-

lation classification. It incorporates dual-channel repre-

sentation and multi-scale analysis, outperforming the

existing deep learning methods with comparable or lower

computational complexity, as confirmed by simulation

results and ablation studies. Zheng et al. (2020b) paper

introduces Drop-path, a novel pruning method for 2D deep

CNNs to reduce model parameters, addressing the com-

putational cost challenge. Drop-path is evaluated on

benchmark datasets, showing substantial model compres-

sion and acceleration with minimal accuracy loss. Zheng

et al. (2023) introduces DL-PR, a priori regularization

method for deep learning in automatic modulation classi-

fication (AMC). DL-PR enhances inter-class distance,

reducing intra-class distance while maintaining signal

information, improving AMC accuracy on diverse signal-

to-noise ratios (SNRs). It outperforms other methods on the

RadioML 2016.10a dataset with various deep learning

models.

The discussed research works cover various aspects of

intrusion detection, dimensionality reduction, and classifi-

cation. Authors propose innovative methods, such as

LapSVM, Deep Learning with Sparse Autoencoder, Hybrid

Models for Feature Selection, and more, to enhance

intrusion detection and classification accuracy. These

approaches address issues like memory utilization, feature

extraction, and model optimization. While some methods

improve accuracy significantly, others focus on resource-

efficient solutions. Additionally, research extends to

diverse domains, including network-based intrusion

detection, IPv6-based attack analysis, and mobile device

network threats. These contributions aim to bolster network

security and optimize performance in detecting both known

and emerging threats. Many papers are provided that use a

variety of data mining and deep learning strategies. Even

though the correctness of the detection limit of abnormal-

ities is good, there is always room for development in

terms of intrusion detection accuracy and other metrics.

3 Proposed framework

For the IDS system, the suggested solution in this study

effort employs a deep learning strategy. Artificial neural

networks can filter through massive volumes of data to

identify and categorize a variety of abnormal behaviors. An

auto-encoder is a form of artificial neural network that can

learn both linear and non-linear input representations and

then use those representations to recreate the original data.

When the auto-encoder is trained on the conventional

network data, the reconstruction error (the difference

between the original input and the reconstructed output) is

often utilized to identify aberrant behavior. Using a sug-

gested sparse deep denoising auto-encoder, a high degree

of accuracy was achieved with low reconstruction error.

Auto-encoder An auto-encoder is a specific type of

artificial neural network employed in machine learning and

deep learning for the purpose of creating efficient repre-

sentations or codings of unlabeled input data. This process

is typically referred to as unsupervised learning, because

the network learns to encode data without the need for

labeled examples.

The primary objective of an auto-encoder is to capture

essential features or patterns within the input data while

filtering out noise or irrelevant information. By training the

network to disregard input samples that do not contribute

significantly to the representation, the auto-encoder strives

to generate a compact encoding of the data. This often

involves reducing the dimensionality of the data, which can

be advantageous for various applications, such as feature

extraction, compression, or denoising.

The architecture of an auto-encoder comprises two

essential components: the encoder and the decoder. The

encoder is responsible for mapping the input data into a

new representation, typically of lower dimensionality than

the input itself. This encoding is designed to capture the

most salient features of the input. The decoder, on the other

hand, aims to reconstruct the output as closely as possible

to the original input data using the encoded representation.

The figure shown in Fig. 2 illustrates the architectural

layout of an auto-encoder, showcasing its encoder and

decoder components. The ‘‘code’’ mentioned refers to the

middle or bottleneck layer of the artificial neural network,

which represents the encoded data in a compressed form

with a chosen dimensionality.

In essence, an auto-encoder is a versatile tool in machine

learning that can uncover meaningful patterns in data,

reduce its dimensionality, and facilitate various down-

stream tasks such as data compression or feature extraction.

It is particularly valuable when dealing with unlabelled

data and holds applications across multiple domains,

including image processing, natural language processing,

and more.

Denoising auto-encoder Its design resembles that of a

standard auto-encoder. The major distinction is that the

inputs are distorted to guarantee that the neurons/layers

acquire more robust characteristics, resulting in greater

generalization as shown in Eq. (1). Corruption may take in

the input data, i.e., x. The corrupting procedure is not done

during the testing phase

ex ¼ qD ex=xð Þ ð1Þ

where qD is an additive noise function, x is noise data, and

x is input data. The loss is determined in this case as well,

though, the issue is with the input layer rather than with the

4506 B. A. Manjunatha et al.

123



defective inputs. Because it learns to rebuild the genuine

inputs from corrupted inputs, the model’s generalization

has been proven to improve. Reconstruction error was

employed to detect broken data packets once again. The

prime work of DA is reconstructing from noise input data

to noise-free output data.

3.1 Sparse auto-encoder for dimensionality
reduction

Transferring an auto-encoder to the output layer simplifies

the input data, which is an issue, because no relevant

information is extracted. This encourages the auto-encoder

to pick up and create succinct features with lower dimen-

sionality. To put it another way, sparse restrictions are used

to increase the precision of the input characteristics shown

in Eq. (2). It took into account the average activation

function, which is defined in the hidden layer

bqj ¼
1

m

X

m

i¼1

a
2ð Þ
j ðx ið ÞÞ

h i

ð2Þ

The auto change which might happen and which the

hope is that the average activation function bqj approaches q
which is close to zero.

Kullback–Leibler (KL) divergence is added to the auto-

encoder’s loss function as a regularizer term this is given

by Eq. (3)

KLðqj bqj
�

�

�

¼ qlog
q
bqj
þ 1� qð Þlog

1� q
1� bqj

ð3Þ

This is the result of combining entropy and cross-en-

tropy. The KL divergence turns data point similarity into

joint probability. In the next sections, we will look at how

this term was added to the error function and how it helps

with dimensionality reduction.

3.2 Deep sparse auto-encoder

Numerous sparse auto-encoders make up a deep sparse

auto-encoder. The feed forward network operates by sup-

plying the contribution of the next layer of the self-encoder

as the yield of the previous layer. It enables the auto-en-

coder to recognize finer details while eliminating duplica-

tion. The weights and biases of the network are reduced,

and a minimal squared error function value is obtained.

This implies that altering the weights and bias will result in

beneficial results. The Adam optimization method is uti-

lized to accomplish dynamic parameter adjustment, and the

greedy layer-by-layer pre-preparing technique is used to

prepare each layer of the successively.

3.3 Proposed framework of sparse deep
denoising auto-encoder (SDDA)
dimensionality reduction method

This is a denoising auto-encoder with a sparse auto-en-

coder and a deep auto-encoder wrapped into one. The

proposed SDDA, which may be a generative model used to

solve a variety of issues. The SDDA will correctly recon-

struct normal data after training, but will fail to do so with

unexpected anomalous input. To discover anomalies, the

reconstruction error (the difference between the actual data

and its re-constructed data) is utilized to be the anomaly

percent. The proposed SDDA method reconstructs from

noise input data to noise-free output data. Our proposed

method to take away the noise and produce the basic sig-

nificant information such as accuracy in the data. In SDDA,

after the input layer, there is a noise layer that corrupts the

input and adds noise or masking a few of the input data.

The input data x are converted into corrupted input x. The

encoder uses a non-linear transformation for the input data

x from High dimension P to low dimension Q in the most

Fig. 2 Architecture of auto-

encoder
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basic form. The name for this representation of the input is

called encoder function or latent representation, as shown

in Eq. (4)

g ¼ e W ~xþ bð Þ ð4Þ

where W is the weight matrix, b is the bias vector, and e is

the active function, where ‘g’ is the encoder function and

x is noisy input data as given in Eq. (1). The SDDA method

include additional dropout layer, parameterized rectified

linear activation function, cross-entropy, and L2 regular-

ization term given next.

In the proposed SDDA approach, a dropout layer was

added after the input layer. Dropout is a technique for

preventing a model from overfitting. At each update of the

training stage, Dropout indiscriminately sets the active

edges of hidden units (neurons that make up hidden layers)

to 0. With a likelihood (probability) of 0.5, there is a half

change that the yield of a given neuron will be compelled

to 0. It means for the specific probability at which layers of

the output dropped out in hidden layers. The rescaling of

the loads (weight) can be performed at training time con-

sidered, at the end of each concealed layer after each

weight update. The output layer must be kept in the

decoder the probability is close to 0.8 for retaining the

output layers. From this dropout layer increases the gen-

eralization performance on each dataset. Denoising

autoencoder with dropout and parameterized rectified lin-

ear activation function to achieve state-of-the-art results on

an anomaly identification task.

3.4 Parameterized rectified linear activation
function

An activation function is nothing but transfer function or

squashing function, many active functions are non-linear.

The various active functions give a huge impact on the

accuracy and performance of the neural network. Gener-

ally, all hidden layers typically use the active function.

Rectified linear activation (ReLU), logistic (Sigmoid), and

hyperbolic tangent (Tanh) are the three most widely uti-

lized activation functions for hidden layers (Anbar et al.

2016). ReLU activation function is simple and effective at

overcoming the constraints of other existing famous acti-

vation functions, like Sigmoid and Tanh. ReLU functions

at a hidden layer overcoming the limitations of vanishing

gradients problem, but it can experience different issues

like dying ReLU or dead units. To overcome these draw-

backs in our proposed work used parameterized rectified

linear activation (PReLU) function. The PReLU function is

calculated as follows in Eq. (5):

e ¼ max 0; ~xð Þ þ Kmin 0; ~xð Þ ð5Þ

where K is learning parameter. The SDDA decoder section

that reconstruction of hidden patterns into visible repre-

sentations (reconstruction of original feature set) is calcu-

lated as shown in Eq. (6)

x0 ¼ e0 W 0gþ b0ð Þ ð6Þ

where x0 is reconstructed output, parameter W0 is decoding

weight, b0 is decoding bias, g is encoder function, and e0 is

shown in Eq. (7)

e0 ¼ 1� e�x

1þ e�x
ð7Þ

For non-linear active functions, the reconstruction loss

function is measured based on cross-entropy, as shown in

Eq. (8)

L xi; x
0ð Þ ¼ �

X

n

i¼1

½xi logðx0Þ þ ð1� xiÞ log 1� x0ð Þ�

þ a
X

ni

i¼1

KL
q
q̂

� �

þ k
2

wj jj j2 ð8Þ

where n is number of samples, k is coefficient of weight,

||w|| is L2-weight regularizer, a is weight coefficient of

punishment, ni is number of hidden layers, and KL is

divergence of Kullback–Leibler. To achieve sparsity, the

Kullback–Leibler (KL) divergence is used as a regularizer

term in the autoencoder’s squared loss function. The sparse

factor control using coefficient of weight factor error (k).

KL divergence changes close to similar data points focus

on joint probabilities. The expansion of this term to loss

function and it benefits dimensionality decrease as shown

in Eq. (9)

KL
q
bq

� �

¼ qlog
q
bq
þ 1� qð Þlog

1� q
1� bq

ð9Þ

where p̂ is an average activation of neurons in hidden layer,

and q is a desired activation value of random neuron, if q is

small value showing without a redundant features can be

obtained in deep abstract set.

Next, to avoid overfitting, add the weight regularizer to

the loss function. It is difficult to choose an accept-

able learning rate for all network parameters when using

these equations to address stochastic and mini-batch gra-

dient descent issues. Use the adaptive moment (Adam)

estimation technique proposed by Kingma and Ba to tackle

this problem. Calculate the first-order moment estimate and

the second-order moment estimate, such as mt and vt, in

Algorithm 1 to update the dynamic network parameters.

Following that, the formulae reveal first-order exponential

damping decrements e1 and second-order exponential

damping decrements e2 (10). In the loss function, the

gradient parameter gt is at timestamp t
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mt ¼ e1mt�1 þ ð1� e1Þgt ð10Þ

vt ¼ e2vt�1 þ ð1� e2Þg2
t

where mt and vt is first and second moment estimate for

computer bias corrected.

gt  DhJtðht�1Þ

Updated parameters

ht�1 ¼ ht �
w
ffiffiffiffi

vt
p þ n

mt

where w is updated stepsize, n is small constant to avoid

denominator to be 0(zero). For every iteration, the Adam

optimizer optimizes the entire process reducing the weights

and the bias units, taking out all the unwanted information

out of the dataset. In the proposed SDDA approach, a

dropout layer is introduced after the input layer to prevent

overfitting during training. Dropout randomly deactivates a

fraction of hidden units (neurons) during each training

update, enhancing the model’s generalization performance.

A key innovation in this framework is the use of the

Parameterized Rectified Linear Activation Function

(PReLU). While common activation functions like ReLU,

Sigmoid, and Tanh are widely used, PReLU is introduced

to address issues like vanishing gradients and dead units,

thus enhancing the model’s learning capabilities. The

decoder in SDDA aims to reconstruct hidden patterns into

visible representations, essentially mapping the encoded

data back to its original form. The reconstruction process

involves weight matrices (W0), bias vectors (b0), and the

encoder function (g). To train SDDA effectively, several

loss functions are introduced, including cross-entropy for

non-linear activation functions, L2-weight regularization,

and a Kullback–Leibler (KL) divergence term to achieve

sparsity. Sparsity is controlled by a weight coefficient (k),

which focuses on joint probabilities between similar data

points, aiding in dimensionality reduction.

3.4.1 Adam optimization algorithm

Algorithm 1 Adam optimization algorithm

After applying the feature reduction technique, the

dataset’s dimensionality is significantly reduced. The

model is trained using fewer than 10 epochs, with the first

hidden layer comprising 144 neurons and the second con-

taining 150 neurons. Both of these layers incorporate L2

activity regularization with a coefficient of 10e-4. The

model construction and training follow similar procedures

to the previous networks. In our model, parameters, such as

p = 0.50, k = 0.01, b = 3, and the number of epochs is less

than 10 for multiclass classification. This SDDA model

improves upon the OLS-SVM approach, which is

employed for categorizing the dataset records.

3.5 Classification of intrusion using OLS-SVM

To accelerate the training process and gain better accuracy

and less false-positive rate, an instance will be considered

as intrusion, since more anomalous classes within attack

classes are present as compared to those that are benign or

attack free. Our technique may be naturally modified to

become cost-sensitive using OLS-SVM (Abualigah et al.

2021b), making it ideal for intrusion datasets. This pro-

posed SDDA-OLS-SVM gives better accuracy and less

false-positive rate with empirical results given next.
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4 Experimental results

4.1 Standard measure: confusion matrix

A confusion matrix is a widely used statistic for classifier

results. Actually, it is a table that describes how a classi-

fier’s test results are shown when the real values are

known. There are two possible classes to expect: yes and

no.

True-negative rate (TNR): The TNR counter is

increased by one when the dataset record’s actual class is

abnormal, and the dataset record is classed as abnormal.

True-positive rate (TPR): If the dataset’s real and cate-

gorized classes are the same (normal), the counter is

increased.

False-positive rate (FPR): If an actual abnormal class

record is classed as a normal record, the FPR counter is

increased.

False-negative rate (FNR): When a normal class record

is classed as an abnormal record, the FNR counter is

incremented.

Predicted no Predicted yes

Actual no TN FP

Actual yes FN TP

Confusion matrix.

Accuracy Accuracy is the degree of information that is

correct or precise is given in the equation

Accuracy ¼ TPþ TN

ðTPþ TNþ FNþ FPÞ ð11Þ

False-positive rate ¼ FP

Actual no
: ð12Þ

4.2 Results for KDDcup99

The KDDcup99 dataset (Kddcup99 Public Dataset 2023) is

the most often used dataset in IDS research and is publicly

available. The dataset was generated by MIT’s Lincoln

labs. It includes all records of both normal and attack types,

and it makes up 10% of the original dataset as training data.

In these datasets, each record is labeled as normal or attack,

and each record provides information on 41 distinct

Fig. 3 Confusion matrix of deep auto-encoder

Fig. 4 Confusion matrix of denoising auto-encoder

Fig. 5 Confusion matrix of sparse auto-encoder
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attributes. The three categories of features are basic fea-

tures, content-based features, and traffic-based feature

groups.

The loss values of the individual models 10 epoch are

used and establish the threshold value is 0.01. The cost vs

epoch graph on KDDcup99 dataset is shown in Fig. 14a. A

data point is considered as a regular data point if its

reconstruction error is smaller than the threshold. If it is

not, it is classified as an aberrant data point. A violin plot

graph gives the whole distribution along with the proba-

bility density function, median, and mode information. It is

a combination of box plot and probability density of the

data as shown in results (Fig. 3).

The deep auto-encoder achieves an accuracy of 85.78%

and false-positive rate is 07.50% on this KDDcup99 data-

set. U2R packets were detected as attack packets with

99.24% accuracy, as shown in Fig. 3.

On the whole, the denoising auto-encoder is 84.91%

accurate and false-positive rate is 6.14%. It is 99.55%

accurate in identifying U2R packets as assault packets as

shown in Fig. 4.

The sparse auto-encoder correctly classifies packets as

attack packets with an accuracy of 85.27%, 8.25% is false-

positive rate on the whole dataset, and 83.58% on the U2R

packets, as shown in Fig. 5.

On the dataset, the hybrid auto-encoder obtains an

accuracy of 94.68%, with a less false-positive rate accuracy

of 5.16% on the whole dataset. The 84.28% on U2R

packets is shown in Fig. 6. The violin graph depicts the

distribution of reconstruction error for sparse deep

denoising auto-encoder in relation to this attack shown in

Fig. 7.

The sparse deep denoising auto-encoder clearly beats

the other Auto-encoder kinds which is shown in Table 1. It

was able to accomplish so with only a reconstruction

inaccuracy. The capacity of the model to recognize the

(virtual) absence of U2R packets from the training data has

no effect on their attack packets. One of the key benefits of

a denoising auto-encoder-based anomaly detection system

is that it learns the distribution of a certain type of data and

utilizes it to identify other data types from it.

4.3 Results for NSL-KDD dataset

Despite the widespread usage of KDDcup99, several lim-

itations, such as a large amount of data, duplicate records,

and so forth, will make getting high-performance results

difficult. The efficiency of the IDS system will be harmed

as a result of these issues. The revised version of NSL-

KDD (Pervez and Farid 2014) will fix these issues. The

dataset is analyzed, and duplicate and superfluous records

are removed. As a consequence, in terms of operation

speed and accuracy, this dataset surpasses the KDDcup99.

This dataset has the same 41 normal and attack label fea-

tures as KDDcup99.

Fig. 6 Confusion matrix of sparse deep denoising auto-encoder

Fig. 7 Sparse deep denoising auto-encoder reconstruction error

distribution on KDDcup99

Table 1 Comparison of results

for all classification algorithms

on KDD-cup 99 dataset

Models Total Normal Dos R2L U2R Probe FPR

Deep-OLS-SVM 86.78 76.56 93.03 88.69 99.24 99.95 7.50

Denoising-OLS-SVM 84.91 70.62 93.54 98.04 99.55 99.95 6.14

Sparse-OLS-SVM 85.27 72.35 96.12 87.85 83.58 99.87 8.25

SDDA-OLS-SVM 94.68 87.41 96.33 80.89 84.28 99.87 5.16
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The loss values of the individual models 10 epochs are

used and establish the threshold value is 0.01. The cost vs

epoch graph on NSL-KDD dataset as shown in Fig. 14b. A

data point is considered as a regular data point if its

reconstruction error is smaller than the threshold. If it is

not, it is considered an anomalous data point. Because of

duplicated records, the NSL-KDD dataset has a greater

accuracy rate than the KDDcup99 dataset. The accuracy

percentage is greater than 98%, but not quite 99%, as

shown in the Table 2.

The sparse deep denoising auto-encoder (SDDA) clearly

beats the other autoencoder kinds is shown in the Table 2.

With just the reconstruction error, it was able to do so. The

model’s ability to identify U2R and R2L packets as attack

packets was not hampered by their (virtual) absence in the

training data. One of the main advantages of a denoising

auto-encoder-based anomaly detection system is that the

model learns the distribution of a certain type of data and

uses it to distinguish other data types from it.

More specifically, in deep auto-encoder, total accuracy

of 95.98% and U2R and R2L attacks packets detect 86.36

and 97.17%. The denoising auto-encoder is 96.91% accu-

rate, and it is 96.92% accurate in identifying U2R packets

as assault packets. The sparse auto-encoder correctly

classifies packets as attack packets with an accuracy of

93.87% on the whole dataset and 90.84% on the R2L

packets, as shown in Table 2. The proposed SDDA method

total accuracy of 98.21 percent and false-positive rate is

1.01%. U2R and R2L attacks detect 90.64 and 98.89%

accuracy for NSL-KDD. The confusion matrix using

SDDA on NSL-KDD is shown in Fig. 8. The graph depicts

the distribution of reconstruction error for sparse deep

denoising auto-encoder in relation to this attack shown in

Fig. 9.

4.4 Results for UNSW-NB15 dataset

Moustafa and Slay created this dataset in 2015 (A. C. for

Cyber Security 2023), which is a mix of real-time and

simulated network traffic attack activities. In comparison to

KDDcup99, this dataset has nine different attack types.

There are 49 distinct features in all, vs 41 in the

KDDcup99. The loss values of the individual models 10

epochs are used and establish the threshold value is 0.01.

The cost vs epoch graph on UNSW-NB15 dataset, as

shown in Fig. 14c. When the reconstruction error of a data

point is less than the threshold, it is classified as a regular

data point. If it is not, it is classified as an aberrant data

point. The UNSW-NB15 accuracy rates on various auto-

encoder models are more than 92% as shown in Table 3.

The proposed method sparse deep denoising auto-en-

coder (SDDA) clearly beats the other Auto-encoder kinds

is shown in Table 3. The accuracy of SDDA model is 96.57

and 2.20% false-positive rate. More specifically, in deep

auto-encoder, total accuracy of 92.87 and 3.6% false-

Table 2 Comparison of results

for all classification algorithms

on NSL-KDD dataset

Models Total Normal Dos R2L U2R Probe FPR

Deep-OLS-SVM 95.98 91.05 93.78 86.36 97.17 99.10 2.89

Denoising-OLS-SVM 96.91 90.82 94.14 89.48 96.92 99.99 2.78

Sparse-OLS-SVM 93.87 89.65 96.12 90.84 98.98 97.07 1.59

SDDA-OLS-SVM 98.21 91.24 93.54 90.64 98.89 99.99 1.01

Fig. 8 Confusion matrix using SDDA on NSL-KDD

Fig. 9 Sparse deep denoising auto-encoder reconstruction error

distribution on NSL-KDD
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Table 3 Comparison of results for all classification algorithms on UNSW-NB15 dataset

Models Total Normal Worms Shell

code

Reconnaissance Analysis Generic Backdoor DOS Exploits fuzzer FPR

Deep-OLS-SVM 92.87 89.65 86.12 90.84 92.95 91.07 89.65 92.12 90.84 91.98 92.07 3.60

Denoising-OLS-

SVM

94.89 89.82 88.14 94.48 98.92 91.99 91.82 88.14 93.48 86.92 91.99 3.01

Sparse-OLS-SVM 94.01 87.05 86.78 92.36 97.17 92.10 89.05 93.78 86.36 93.17 92.10 3.00

SDDA-OLS-SVM 96.57 95.24 93.54 94.64 97.98 94.99 96.24 93.54 94.64 97.89 97.99 2.20

Fig. 10 Confusion matrix using SDDA on UNSW-NB15

Fig. 11 Sparse deep denoising auto-encoder reconstruction error distribution on UNSW-NB15

Table 4 Comparison of results

for all classification algorithms

on NMITIDS dataset

Models Total Normal Dbot Mydoom SSH FPR

Deep-OLS-SVM 99.00 98.95 98.78 99.36 99.99 0.28

Denoising-OLS-SVM 99.30 99.12 98.14 99.48 99.99 0.23

Sparse-OLS-SVM 99.01 98.99 97.51 99.84 99.99 0.27

SDDA-OLS-SVM 99.35 99.24 98.54 99.64 99.99 0.20

Fig. 12 Confusion matrix using SDDA on NMITIDS
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positive rate. Similarly, for denoising auto-encoder is 94.89

and 3.01% false-positive rate. The sparse auto-encoder

correctly classifies packets as attack packets with an

accuracy of 94.01% and false-positive rate is 3% on the

whole dataset as Table 3 shows the results. Figure 10

shows the confusion matrix obtained using SDDA on

UNSW-NB15. Figure 11 depicts the distribution of

reconstruction error for the sparse deep denoising auto-

encoder in relation to this assault. One of the main

advantages of a denoising auto-encoder-based anomaly

detection system is that the model learns the distribution of

a certain type of data and uses it to distinguish other data

types from it.

4.5 Results for NMITIDS dataset

The NMITIDS dataset (Manjunatha and Gogoi 2020a) is

consistent, consists of real-time network data. This dataset

consists of 8,97,182 records, six type of attacks, 31 fea-

tures, and several protocols, such as IP, TCP, UDP, ICMP,

SSH, DNS, FTP, HTTP, ARP, etc. Finally, the NMITIDS

dataset is split into train and test subsets. The loss values of

the individual models 10 epochs are used and establish the

threshold value is 0.01. The cost vs epoch graph on

NMITIDS dataset is shown in Fig. 14d. A data point is

considered as a regular data point if its reconstruction error

is smaller than the threshold. If it is not, it is considered an

anomalous data point.

Fig. 13 Sparse deep denoising auto-encoder reconstruction error

distribution on NMITIDS

Fig. 14 a Cost vs epoch graph on KDD-cup 99. b Cost vs epoch graph on NSL-KDD. c Cost vs epoch graph on UNSW NB15. d Cost vs epoch

graph on NMITIDS
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The sparse deep denoising auto-encoder (SDDA) clearly

beats the other auto-encoder kinds as shown in Table 4.

With just the reconstruction error, it was able to do so. The

model’s ability to identify Dbot, Mydoom, and SSH

packets as attack packets was not hampered by their (vir-

tual) absence in the training data. One of the main

advantages of a denoising auto-encoder-based anomaly

detection system is that the model learns the distribution of

a certain type of data and uses it to distinguish other data

types from it.

More specifically, in deep auto-encoder, total accuracy

of 99.00% and false-positive rate is 0.28% packets detects.

The denoising auto-encoder accuracy of 99.30% and false-

positive rate is 0.23% packet detects. The sparse auto-en-

coder correctly classifies packets as attack packets with an

accuracy of 99.01 percent on the whole dataset and 0.27%

for false-positive rate as shown in Table 4. The Proposed

SDDA method’s total accuracy of 99.35% and false-posi-

tive rate is 0.20 percent for NMITIDS. The confusion

matrix using SDDA on NMITIDS is shown in Fig. 12. The

graph depicts the distribution of reconstruction error for

sparse deep denoising auto-encoder in relation to this

attack shown in Figs. 13 and 14.

4.6 Conducted additional performance
comparisons with several related approaches

The superiority of our model by comparing its detection

accuracy with that of other classification algorithms found

in related studies. In Qureshi et al. (2020), Al-Qatf et al.

(2018), Narayana Rao et al. (2021), the authors reported

their model, constructed using various classifiers, and

evaluated on KDD-cup99, NSL-KDD, UNSW NB15, and

NMITIDS datasets. They compared their results with var-

ious classification algorithms discussed in Qureshi et al.

(2020), Al-Qatf et al. (2018), Narayana Rao et al. (2021),

as illustrated in Table 5.

We evaluated the efficiency and performance of our

proposed sparse deep denoising auto-encoder (SDDA)

approach using publicly accessible intrusion detection

Table 5 Comparison of the proposed technique with the existing methods

Classifiers NSL-KDD KDDcup- 99 UNSW NB15 NMITIDS

Accuracy FPR Accuracy FPR Accuracy FPR Accuracy FPR

J48 (Qureshi et al. 2020) 81.05 NA NA NA NA NA NA NA

Naıve Bayes (Qureshi et al. 2020) 76.56 NA NA NA NA NA NA NA

NB tree (Qureshi et al. 2020) 82.02 NA NA NA NA NA NA NA

Random tree (Qureshi et al. 2020) 81.59 NA NA NA NA NA NA NA

MLP (Qureshi et al. 2020) 77.41 NA NA NA NA NA NA NA

NLPCA (Qureshi et al. 2020) 76.73 NA NA NA NA NA NA NA

DBN (Qureshi et al. 2020) 76 NA 93.49 NA NA NA NA NA

AE ? DBN (Narayana Rao et al. 2021) NA NA 92.10 NA NA NA NA NA

CFA (Narayana Rao et al. 2021) NA NA 91.98 3.9 NA NA NA NA

Multi-scale CNN (Narayana Rao et al. 2021) NA NA 94.11 2.18 NA NA NA NA

STL-IDS (Al-Qatf et al. 2018) 80.48 NA 93.96 NA NA NA NA NA

SAE-SVM (Narayana Rao et al. 2021) 80.48 NA NA NA NA NA NA NA

SVM ? ELM (Al-Qatf et al. 2018) 84.96 NA 95.75 NA NA NA NA NA

s-NDAE (Narayana Rao et al. 2021) 85.42 14.5 NA NA NA NA NA NA

ID-CAVE (Narayana Rao et al. 2021) 80.10 8.18 NA NA NA NA NA NA

Savaer-DNN (Narayana Rao et al. 2021) 89.36 4.70 NA NA 93.01 5.67 NA NA

DAE-IDS (Al-Qatf et al. 2018) NA NA 94.71 8.12 NA NA NA NA

TSDL (Narayana Rao et al. 2021) NA NA NA NA 89.13 0.74 NA NA

Cascade-ANN (Narayana Rao et al. 2021) NA NA NA NA 86.40 13.1 NA NA

Random forest (Manjunatha and Gogoi 2020b) 97.53 0.9 95.49 0.3 95.11 0.1 95.67 0.8

PCA (Manjunatha and Gogoi 2020b) 97.53 0.8 93.23 0.1 92.77 0.8 91.10 0.6

SVM (Manjunatha and Gogoi 2020b) 89.63 0.1 93.60 0.7 89.99 0.27 93.25 0.9

Deep-OLS-SVM 95.98 2.89 86.78 7.50 92.87 3.60 99.00 0.28

Denoising-OLS-SVM 96.91 2.78 84.91 6.14 94.89 3.01 99.30 0.23

Sparse-OLS-SVM 93.87 1.59 85.27 8.25 94.01 3.00 99.01 0.27

SDDA-OLS-SVM 98.21 1.01 94.68 5.16 96.57 2.20 99.35 0.20
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training and testing datasets. The model SDDA-OLS-SVM

learned low-dimensional features to enhance classification

performance of the classifiers. SDDA-OLS-SVM can retain

the information in the data and achieve optimum low-di-

mensional features. The proposed model is well above and

above the given KDDcup-99, NSL-KDD, UNSW-NB15,

and NMITIDS test datasets, which is a significant indicator

for efficiency, because the model has never before been

seen. The proposed experiment produced optimal number

of low-dimensional features 10 for KDDCup99 and NSL-

KDD dataset and 11 for UNSW-NB15 and 9 for NMITIDS

dataset. We built three classification models with SDDA-

OLS-SVM, named sparse OLS-SVM, denoising OLS-

SVM, and deep-OLS-SVM. Figures 7, 8, 9, 10, 11, 12 and

13 show the comparison results on KDDcup-99, NSL-

KDD, UNSW-NB15, and NMITIDS datasets.

The model SDDA-OLS-SVM classifier obtained highest

detection rate using four datasets. While we use KDDCup-

99 and NSL-KDD, the model achieved significant detec-

tion rate especially in U2R and R2L attack categories. The

proposed SDDA-OLS-SVM model overall detection per-

formance for KDDCup99, NSL-KDD, UNSW-NB15, and

NMITIDS datasets is illustrated in Table 5 as regards

accuracy, and FPR. Table 5 shows that, in all publicly

available datasets, implemented SDDA-OLS-SVM has

done a good performance compared to existing methods.

5 Conclusion and future scope

The most current research works which belongs to

dimensionality reduction, classification of intrusion detec-

tion. Our goal in this study is to identify intrusions with a

high degree of accuracy and a low percentage of false

positives. The datasets KDD-cup 99, NSL-KDD, UNSW-

15nb, and NMITIDS were utilized in the analysis. These

databases are highly regarded by research groups all

throughout the world. The extracted features are lowered

the dimensionality of the feature due to elimination of

unusual features. Due to low dimensionality of the dataset

train and test time of the classification reduced and

improved the attack classification accuracy. Result of this

research showed that sparse deep denoising auto-encoder-

OLS-SVM can not only detect known and unknown attacks

but can also produce good detection rate on lowered

number records, such as R2L and U2R in KDDCup99 and

NSL-KDD dataset. Besides that, the model is outperformed

by the comparative research results on the UNSW-NB15

and NMITIDS dataset to detect complex network attacks.

As compared to other existing feature learning methods,

the proposed model outperformed with overall accuracy

and detection rate. It is obvious from the examination of

the results that all of the algorithms identify intrusions at a

rate of greater than 96%. In the future, we will use more

deep learning approaches to filter data and increase the

accuracy of intrusion detection.
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