
Soft Computing
https://doi.org/10.1007/s00500-023-09390-4

APPL ICAT ION OF SOFT COMPUTING

A recurrent neural network-based identification of complex nonlinear
dynamical systems: a novel structure, stability analysis and a
comparative study

R. Shobana1 · Rajesh Kumar2 · Bhavnesh Jaint1

Accepted: 17 October 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023, corrected publication 2023

Abstract
For the purpose of identifying nonlinear dynamic systems, a compound recurrent feed-forward neural network based on the
combination of feed-forward neural network (FFNN) and locally recurrent neural network is proposed. FFNNs are known to
approximate any function, but since they lack memory in their structures, they are unable to reliably forecast the outputs of
complex dynamical systems, which are characterized by severe non-linearities. On the other hand, recurrent neural networks
(RNNs) lack simplicity (in their structure) but are able to capture the temporal relationship existing between the input–output
data. In this study, an attempt is made to merge the FFNN and RNN to provide a straightforward and efficient model for
capturing the complex dynamics of any nonlinear systems. Back-propagation (BP) algorithm is used to derive the weight
update equations and theLyapunov-stability principles are applied to test the stability of the proposed framework. The proposed
model performance is evaluated and compared with state-of-the-art neural models by applying it for the identification of the
unknown dynamics of three complex nonlinear systems. The results of the simulation demonstrate that, in comparison to
other neural models, the suggested structure has provided greater prediction accuracy, better performance in the scenario of
disturbance signals, and better response in the case of parameter variation.

Keywords Recurrent neural network · Identification · Lyapunov-stability analysis · Nonlinear systems

1 Introduction

The use of neural networks for dynamic system identifica-
tion and control has attracted a lot of attention in recent
years. If there is insufficient knowledge about the sys-
tem being modeled, identification is required. In contrast to
mathematical modeling, which bases the behavior of the sys-
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tem on the physical principles, one simply needs observed
input–output data and the order of the system for identifi-
cation. Neural networks can be used to readily obtain an
empirical model, rather than a mathematical model, to char-
acterize the system once input–output data have been seen
and the system’s order has been established (Coban 2013).
The limits of conventional techniques to nonlinear, resilient,
and adaptive control of uncertain complex systems have
been increasingly addressed by the application of intelli-
gent and cognitive control mechanisms. Although uncertain
complex systems are undoubtedly difficult to regulate, such
intelligent controllers have achieved significant theoretical
advancements. For example, whileNNand fuzzy systems are
essentially intelligent architectures inspired by the way the
human mind and brain work, they are also architectures with
a shown capacity for universal approximation, and they have
frequently been utilized to create controllers with theoreti-
cally verifiable stability (Baghbani et al. 2018). According
to Mohammed et al. (2018) and Mostafa et al. (2019), the
neural network (NN) is a well-known supervised machine
learning technology that can classify difficult and nonlinear
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situations. It is a computational approach that is used to pro-
vide answers to some classification or prediction issues based
on a collection of parameters that are expressed inmathemat-
ical operations (Pathiravasam et al. 2020; Kumar Chandar
2021). There are many different types of NN, such as feed
forward neural networks, multi-layer perceptron, recurrent
neural networks (RNN), such as the Elman and Jordan recur-
rent neural networks, as well as modular neural networks,
radial basis function neural networks, convolutional neural
networks, and self-organizing neural networks. The RNN
model is utilized in numerous applications, such as forecast-
ing financial data or power consumption, evaluating water
quality, modeling nonlinear systems, adaptive control, and
forecasting medical data (Yu et al. 2019; Nawi et al. 2019;
Bai et al. 2019; Chen et al. 2020).

Dynamic systems serve as the fundamental structure for
modeling and control of a vast variety of complex sys-
temswith research significance (Kumpati andKannan 1990).
Dynamic systems, such as heat transfer, distillation column,
robotic manipulator, and Mackey glass series prediction to
mention a few, have unknown non-linearity that arise at
random and are challenging to model and control using
linear model structures, such as ARMAX and OE models
(Schoukens and Ljung 2019). There are many articles in
the literature that examine the social component of supply
chain resilience and sustainability (Abbasi and Chouko-
laei 2023; Abbasi and Erdebilli 2023; Abbasi et al. 2021,
2022, 2023a, b, c). Contrarily, the social dimension is com-
plex and has a variety of uncertain components that cannot
be adequately characterized by the traditional Boolean logic
of totally true or false. Simulation of nonlinear models is
one of the commonly used approaches for studying the
complex nature of dynamic systems. With the increasing
necessity to generate accurate models, complex models of
dynamic systems with various possible configurations are
being developed (Quaranta et al. 2020). To overcome this
computational complexity, it is now necessary to design an
accurate model that is fast and efficient in approximating the
full-order dynamic system over an entire range of parame-
ters. The advancement of technology in the field of ANN
has created a subject of interest among researchers. ANN is
widely been used to solve a variety of applications including
image recognition, medical diagnosis, control and identifica-
tion, forecasting, and speech recognition (Noël andKerschen
2017; Quaranta et al. 2020; Basheer and Hajmeer 2000;
Kroll and Schulte 2014). ANN is distinguished from other
state-of-art approaches for its flexibility and self-learning
ability based on experience (Basheer and Hajmeer 2000).
ANN is categorized as static and dynamic models. The static
type of ANN known as Feed Forward Neural Networks
(FFNN) only traverses receiving signals in the forward direc-
tion. The output layer’s influence does not alter the input
layer’s characteristics. FFNN is further classified into Multi-

Layer Perceptron (MLP) and Radial Basis Function Network
(RBFN). Elman Neural Network (ENN), the Hopfield neu-
ral network (HNN), JordanNeural Network (JNN), Diagonal
Recurrent Neural Network (DRNN), LSTM, and GRU net-
works form the dynamic models of ANN. RNN structures
traverse the receiving signals in both forward and feedback
direction (Ge et al. 2009). MLP is a single or several hidden
layer networkwithweight connections between the input and
output without dynamic mapping (Savran 2007). An alter-
nate approach to MLP is RBFN, which has only one hidden
layer. The output of the hidden layer is calculated by comput-
ing the radial distance between the inputs and the weights.
ENN (Elman 1990), JNN (Jordan 1986), and DRNN (Kumar
et al. 2017) are the extensions of MLP with the addition of
a context layer that acts as memory neurons. They possess
dynamic mapping by nature (Laddach et al. 2022). ENN and
JNNbelong to the Fully Recurrent Neural Networks (FRNN)
and DRNN belongs to the group of Partial RNN (PRNN).
Hopfield structures are fully recurrent structures that depend
on the initial conditions due to the absence of external input
(Hopfield 1982). Higher order LSTM and GRU are widely
used in most of the current applications. They are known
for capturing long-time dependencies and do not suffer from
optimization issues as RNN (Hochreiter and Schmidhuber
1997).MLPoffers better processing capabilities as compared
to other structures in literature but lacks proper identification
of dynamic systems due to the absence of dynamic mapping.

1.1 Related work

In Perrusquía and Yu (2021), the author has proposed a tem-
poral convolutional network for the identification of dynamic
systems. TCN is verified against MLP and LSTM. TCN and
LSTMwere found to give better results for large data sets and
non-white noise. In Psichogios andUngar (1992), the authors
have proposed a hybrid Jordan–Elman network for a single-
input single-output system. Online training and control of
the CSTR plant are carried out. Extended Kalman Filter
(EKF) is used as an optimization algorithm. In this paper (Şen
et al. 2020), a modified Elman–Jordan structure with GA as
an optimization algorithm is used. Optimization algorithms,
such as EKF, and GA though perform better than BP, yet
suffer long training times due to their confined search space.
With the addition of white noise into the system, the opti-
mization fails to predict accurate models. A novel Dynamic
Neural Network (DNN) is proposed in this paper (Kumar
et al. 2017). Though DNNs can be used with online control
methods, they suffer from mapping capability due to their
fixed structures. In Mohajerin andWaslander (2019), Hybrid
NNbased on global clustering and local learning is proposed.
The clustering algorithm is used for updating model weights.
Though this structure performs well, a good number of input
densities is required for cluster pairing and faster conver-
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gence. In Hernández et al. (2020), the authors have proposed
amodified dynamicHopfield network. The dynamic network
was found to perform multi-step prediction using the past
information of the system. Following the single ANN archi-
tecture, hybrid architecture resulting from the combination of
the above structures is also implemented in the literature. In
Alkhasawneh (2019), the authors have proposed a cascaded
FFNNwith ENN called HECFNN for disease prediction The
results were verified on six different data sets and hybrid
models are found to outperform single models efficiently. In
Wang and Lin (1998), the author has used FNN, RBFNN,
Runge–Kutta neural networks, and ANFIS mechanisms for
the identification of nonlinear systems. Runge–Kutta ANN
has shown better performance than feed-forward structures
and ANFIS. In this work (Huang et al. 2021), the authors
have proposed a novel hybrid deep learning model for 1h-
ahead solar forecasting. A hybrid WPD–CNN–LSTM–MLP
model is designed and the proposed method is found to give
better forecasting results compared to standard MLP and
RNN models. The authors in Alkhasawneh and Tay (2018)
have proposed a cascaded FFNN with ENN to predict six
categories of diseases. The results demonstrate the higher
accuracy of the proposed method over other standard ENN
models. In Kalinli and Sagiroglu (2006), Elman with Non-
linear ARX is designed for system identification. The results
once again show better performance with hybridmodels over
single models. Compound FNN (CFNN) is combined with
ENN for time-series prediction of linear and nonlinear sys-
tems. The ability of the proposed model is tested on six data
sets and found to perform with greater accuracy. Identifica-
tion of twin rotor multi-input multi-output system is done
on modified MLP and Elman structure in Toha et al. (2008).
Many-to-one RNN for recommendation system is proposed
by the authors in Dadoun and Troncy (2008). In this Hong
et al. (2020), a total of six algorithms like Decision tree algo-
rithm (DT), MLP, random forest algorithm (RF), gradient
boosting algorithm (GB), RNN–LSTM, and CNN–LSTM
were tested to predict the dam inflow. MLP has shown the
best results over others. Further, a hybrid model based on
ensemble methods was combined with MLP for the pre-
diction of inflow. The author has extended the conclusion
that simple machine learning algorithms along with ensem-
ble methods produce accurate results. In Wang et al. (2023),
a time-delay recursive neural network is used to develop the
suggested controller. The proposed control method can be
easily generalized to the actual systems, which exhibit hys-
teresis behavior, in contrast to those current DAC approaches
established under the generic Lipschitz condition. A Hop-
field neural network (HNN) estimator is then suggested as a
means of online parametrization of the proposed controller.
In the meantime, a modular model based on the HNN esti-
mator is created to represent the piezo-actuated stage in this
study. It consists of a linear sub-model, a hysteresis sub-

model, and lumped uncertainty. In Legaard et al. (2023), the
authors provided a survey of the various approaches for build-
ing neural networkmodels of dynamical systems. In addition
to providing a general overview, we evaluate the pertinent
literature and list the most significant challenges this model-
ing paradigm faces as a result of numerical simulations. We
offer a discussion on promising research areas based on the
examined literature and highlighted difficulties. In de Car-
valho Junior et al. (2023), the major component of the model
reference control method for the rotary inverted pendulum
is a recurrent para-consistent neural network. The rotating
inverted pendulum is a perfect tool for applying and testing
the recurrent para-consistent neural network due to its non-
linearity, two-degree-of-freedommotion, and under-actuated
system. Three of these neural models are used by the devel-
oped para-consistent neural model reference controller: two
of them are used to represent the arm and pendulum angles,
and the third one is used to operate the system while follow-
ing a reference trajectory. In Yang et al. (2023), the authors
developed a stock price prediction model through neural net-
work to enhance the stock price prediction effect based on
the enhanced Particle SwarmOptimization (PSO) algorithm.
To improve the global search ability of the algorithm in the
early stage of evolution and the local search ability in the
later stage of evolution, the adaptive adjustment of inertial
weight is proposed, and the algorithm is improved by com-
bining with neural network. This approach is based on the
idea of avoiding particles falling into the same local solu-
tion as much as possible and always keeping the particles
with a certain diversity. This research also builds a neural
network-based stock price prediction system on the basis of
the enhanced algorithm. In Villegas et al. (2023), for the pur-
pose of predicting COVID-19 patient death, the authors used
deep learning algorithms. Two datasets containing clinical
data were used. Two Spanish hospitals had received 2307
and 3870 COVID-19-infected patients, respectively. First,
they created a time-line of events, compiling all the clinical
data for each patient and evaluating several data representa-
tion techniques. The sequences were then utilized to train an
RNNmodelwith an attentionmechanism to investigate inter-
pretability. They carried out a thorough cross-validation and
hyper-parameter search, and then, they ensemble the result-
ing RNNs to increase sensitivity. In Zhao et al. (2023), the
authors created a reduced-order machine learning model for
distributed model predictive control of nonlinear processes
utilizing feature selection techniques. A subset of input char-
acteristics that significantly affects the prediction of system
output is initially chosen using filter, wrapper, and embedded
feature selection approaches. The creation of reduced-order
RNN models utilizing only the chosen input features after
integrating the feature selection techniques to capture the
system dynamics. To stabilize the nonlinear system at steady
state, the reduced-order RNN models are then included into
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sequential and iterative distributedmodel predictive controls.
In Hu et al. (2023), the main goal of the proposed study is
to construct a Lyapunov-based economic model predictive
control technique that makes use of RNNs with an online
update to maximize the economic advantages of switched
non-linear systems according to a predetermined switching
schedule. To increase model prediction accuracy, we first
create an initial offline-learning RNN using operational data
from the past. We then update RNNs with data from the
present. For RNNs updated online using independent and
identically distributed (i.i.d.) and non-i.i.d. data samples, the
generalized error bounds are calculated, accordingly. Then,
for switched non-linear systems accounting for the RNN
generalized error constraint, probabilistic closed-loop sta-
bility and economic optimality are concurrently attained by
introducing online updatingRNNs intoLyapunov-based eco-
nomic model predictive control. In Han et al. (2023a), an
iterative learning model predictive control (FNN-ILMPC)
for complicated nonlinear systems is based on a fuzzy neu-
ral network. A data-driven model is first created using a
dynamic linearization technique that solely uses input and
output data. An FNN is utilized to analyze the disturbance
in the established model, since it has an unidentified distur-
bance term that could affect the control performance. This
captures the uncertainty of the system. The development of
an FNN-ILMPCapproach to reduce the impact of disruptions
is then done on the basis of the data-driven model discussed
above. The developed controller is then shown to be capa-
ble of ensuring the stability of the closed-loop system while
gradually reducing both modeling error and tracking error.
Finally, the experimental findings support the superiority and
efficacy of the created controller. In Han et al. (2023b), for
the uncertain nonlinear systems, the data-driven robust opti-
mum control approach is suggested. The proposed technique
has three advantages: To capture the relationship between
the approximation errors and the control variables, a data-
driven assessment technique is first developed. After that,
nonlinear systems’ control performance indices can be deter-
mined inside uncertain disturbances. Second, a co-evolution
technique is used to construct a multi-objective resilient opti-
mization algorithm. The control performance can then be
enhanced by obtaining reliable optimal control laws. Third,
a theoretical discussion of data-driven robust optimum con-
trol’s robust boundedness is presented. Analytical assurance
of the control systems’ stability is then possible. Last but
not least, two multiple-input multiple-output second-order
nonlinear systems are used to demonstrate the efficacy of
data-driven robust optimum control. In Luo et al. (2021), a
numerous large data-related application, including the ter-
minal interaction pattern analysis system under research,
typically uses a weighted directed networks is analyzed. It
consists of extensive dynamic interactions between a great
number of nodes. A dynamically weighted directed net-

work that results is high dimensional and unfinished when
the number of involved nodes rises sharply, since it is dif-
ficult to see all of their interactions at each time slot. In
spite of its shortcomings, it provides extensive knowledge
about the diverse behavioral patterns of the involved nodes. A
unique alternating direction multipliers-based non-negative
latent factorization of tensors model is proposed in this
research. In Luo et al. (2023), the authors put forth a unique
method for nonlinear canonical polyadic decomposition on a
high-dimensional, incomplete tensor called the neural latent
factorization of tensors model. Three interesting ideas are
used to implement it: using the density-oriented modeling
principle to create rank-one tensor series with high com-
putational efficiency and low storage costs; treating each
rank-one tensor as a hidden neuron to create an effective
neural network structure; and creating an adaptive backward
propagation learning strategy for effective model training. In
Luo et al. (2020), to prevent accuracy loss due to premature
convergence without adding to the computational load, the
authors carefully examined the evolution of a particle swarm
optimization (PSO) algorithm and then proposed to incorpo-
rate more dynamic information into it. This creatively led to
the development of a novel position-transitional PSO algo-
rithm.

Based on the above literature, we find the following short-
comings :

1. Feedforward models (MLP and RBFN) cannot be used
as a standalone structure, since they lack the memory to
record previous observations. They have to be supplied
with a large number of inputs and are easily affected
by external noise (Kumpati and Kannan 1990). To make
MLP dynamic, they must be supplied with the system’s
order in advance or combined with any of the suggested
ANN models above.

2. Although fully recurrent structures, such as Elman, Jor-
dan, and DRNN, are successful in the identification of
many applications, they always require modification of
the original structure for better prediction accuracy. Most
of the original structure causes slow convergence and is
therefore unsuitable for online identification and time-
series applications.Themajority of themodified structure
necessitates the use of a complex optimization algorithm
to update their parameters, resulting in high computa-
tional complexity.

3. LSTM and GRU are very efficient at identifying com-
plex sequential data than feedforward and standard RNN
models. The major limitations of these structures are that
they are more complicated and require large datasets to
learn efficiently. They do not workwell with highly noisy
data.
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4. Even with massive models and methodologies cited in
the literature, the best benchmark neural architecture for
the identification of dynamic systems is not available.

This has motivated us to attempt to improve the architecture
of ANN by designing a novel hybrid neural network for the
identification of dynamic systems. A hybrid neural network
calledCRFNN is proposed in this work. Themainmotivation
and outcome of this work are as follows:

1. An effective structure for dynamic system identification
is proposed. The hybrid structure takes advantage of both
the feed-forward and feedback structure (fast processing
and the presence of memory neurons). With the addition
of dynamic LRNN, it also overcomes the shortcomings
of static MLP.

2. The proposed model is independent of the order of the
plant and takes minimum inputs for prediction (present
value of external input and one-time delayed value of the
plant).

3. Gradient descent-based BP algorithm is used to develop
a weight update equation and the convergence is proved
using Lyapunov stability principles.

4. The performance of the proposed structure is evaluated
by comparing it with two identification approaches on
the benchmark problems. The hybrid structure is found
to give better accuracy and prediction of dynamic models
as compared to LRNN and FFNN single models.

5. The proposed structure is also analyzed for robustness
and parameter variation for various plant complexity. The
structure is found to have less mean square error and bet-
ter accuracy than single models. The performance of the
structure is foundperformequallywell as other suggested
methods in the literature.

6. The proposed structure can be identified both online and
offline, and hence can be extended for adaptive control
of nonlinear dynamic systems.

The rest of the paper is organized as follows: The intro-
duction section discusses the shortcomings of single models
and the need for hybrid models. The novel works carried out
by different researchers are also elaborated. Section 2 briefs
the problem statement. Section 3 discusses the identification
structure, learning algorithm, and design of the proposed
structure. The convergence of the update weight equations
is also proved using Lyapunov stability analysis in this sec-
tion. Section 4 discusses the simulation results obtained. Two
examples of complex plant equations and one example of a
benchmark problem are selected and the performance of the
hybrid structure is discussed. In Sect. 5 conclusion based on
the simulation results is discussed.

2 Problem statement

Let the nonlinear plant has r(k) inputs and yp(k) outputs. The
discrete difference equation of the nonlinear plant is given
by

yd(k) = f [yp(k), yp(k − 1), yp(k − 2), . . . , yp(k − n),

r(k), r(k − 1), r(k − 2), . . . , r(k − m)], (1)

where f is the unknown differentiable nonlinear function.
m and n are the orders of the plant and n ≤ m. Here, the
output depends on both present as well as past output and
the external input of the plant. If CRFNN is considered an
identifier, the difference equation of the identifier will be as
below

ycrfnn(k) = f̂ [yp(k − 1), r(k)]. (2)

The output of CRFNN depends on the present external input
andonedelayedoutput of the plant. Themain objective of this
work is to make f̂ � f , so that the identified model becomes
the exact representation of the plant. To achieve this, a series–
parallel type of identification is selected and the weights are
updated continuously using the BP algorithm. With train-
ing progress, the weights converge to desired values and the
model starts following the desired plant trajectory with error
decreasing to a very minimal value or zero. That is

lim
k→∞ |yp(k) − ycrfnn(k)| ≤∈, (3)

where ∈→ 0.

3 Structural comparison of FFNN, LRNN, and
CRFNN

See Figs. 1, 2, and 3.

3.1 Feed forward neural networks

The structure ofMLP is as shown in Fig. 1. It consists of input
nodes, output nodes, andweights connecting input and output
nodes. The input layer has four weight connections between
input and hidden layer. This structure takes present and one
delayed value of external input denoted as r(k) and r(k−1),
respectively, and present value and one delayed value of plant
output denoted as yp(k) and yp(k − 1), respectively. The
input vector X(k) = [r(k), y(k), y(k − 1), r(k − 1)]. The
weight vector associated between input and the hidden layer
wi f (k) = [wi f1, wi f2 , . . . , wi fn ]. The hidden layer receives
three weight connections from input layer and sends one
weight connection to the output layer. The hidden layer vec-
tor F(k) = [F1(k), F2(k), . . . , Fn(k)]. The weight vector
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Fig. 1 FFNN structure

Fig. 2 LRNN structure

associated between hidden and the output layer wof (k) =
[wof1, wof2 , . . . , wofm ]. The output layer computes the final
output of the network by receiving signals from hidden layer.
The output of FFNN is denoted as yffnn. One hidden layer
is sufficient for most of the time-series prediction problem.
The output of the feedforward MLP is given by

yffnn(k) = f1

(
m∑
i=1

Fi (k)wi fi (k) + b f fi (k)wofi (k)

)
, (4)

where b f fi (k) denotes the output bias vector and wof (k)
denotes the associated output bias weight vector. f1 denotes
the linear activation function acting at output node. The out-

put of the induced field is given by

Fi (k) = g1

(
n∑

i=1

X(k − i)wi fi (k) + b f xi (k)wbi (k)

)
, (5)

where b f xi (k) denotes the input bias vector and wi fi (k)
denotes the associated input bias weight vector. g1 denotes
the non-linear activation function acting at hidden nodes.

3.2 Local recurrent neural networks

The structure of LRNN is as shown in Fig. 2. The LRNN is
the subset of partial recurrent neural networks. The struc-

123



A recurrent neural network-based identification of complex nonlinear dynamical systems...

Fig. 3 Proposed CRFNN structure

ture is an extension of FFNN with dynamic memory to
retain long-interval data. It consists of input layer, output
layer, and local weights that act as memory neurons. The
local weights sends the output of the hidden neuron as an
input to same hidden neuron. The input layer has three
weight connections between input and hidden layer. This
structure takes present value of external input r(k), present
value and one delayed value of plant output denoted as
yp(k) and yp(k − 1), respectively. The input vector X(k) =
[r(k), y(k), y(k−1)]. The weight connections of input layer
are given by wir (k) = [wir1(k), wir2(k), . . . , wirn (k)]. The
hidden layer receives three weight connections from input
layer and from self hidden local neurons and sends one
weight connection to the output layer. The hidden layer vec-
tor is denoted by R(k) = [R1(k), R2(k), . . . , Rm(k)]. The
weight connection between of the output layer wor (k) =
[wor1(k), wor2(k), . . . , worm (k)]. The local weight vector
also containing the adjustable weight elements is denoted by
wlr (k) = [wlr1(k), wlr2(k), . . . , wlrn (k)]. The output layer
computes the final output of the network by receiving signals
from hidden layer. The output of RNN is denoted as yrnn(k).
One hidden layer is considered in this work. The output of
the LRNN is given by

yrnn(k) = f2

(
m∑
i=1

Ri (k)wiri (k) + bori (k)wori (k)

)
, (6)

where bori (k) denotes the output bias vector and wor (k)
denotes the associated output bias weight vector. f2 denotes
the linear activation function acting at output node. The out-
put of the induced field is given by

Ri (k) = g2

( n∑
j=1

X(k − j)wir j (k) + L(k)wlr (k)

+brr j (k)wr j (k)

)
, (7)

where brr j (k) denotes the input bias vector and wr j (k)
denotes the associated input bias weight vector. L(k) denotes
the input signal vector from local hidden neurons and wlr (k)
denotes the associated local weight vector. g2 denotes the
non-linear activation function acting at hidden nodes. When
the local weights of LRNN are made zero, the LRNN struc-
ture resembles a simple FFNN.

3.3 Hybrid CRFNN structure

To combine the merits and demerits of both the static and
dynamic network, a hybrid FFNN–LRNNmodel is proposed
in this work and it is addressed as CRFNN. Figure 3 shows
the structure of CRFNN. The structure has input layer, two
hidden layers, and one output layer. The input layer sends
two weight connections to the hidden layer. The hidden layer
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receives three weight connections from input layer and local
self hidden layer and computes the output of FFNN and the
LRNN. The hidden layer sends two weight connection to the
output layer. The output layer computes the final network
output.

1. Input layer: The input layer comprises two inputs,
namely the present input r(k) and the delayed output
of the plant yp(k − 1). The input vector X(k) is X(k) =
[r(k−1), yp(k−1)]. These inputs are passed to both the
feed-forward and recurrent paths of the structure. The
input signals are passed to FNN portion of the hidden
layer (indicated by green lines in the figure) through the
feed forward weight connections wi f (k) and are passed
to RNN portion of the hidden layer (indicated by orange
lines in the figure) through the recurrent weight links
denoted as wir(k).

2. Hidden layer: The hidden layer output is computed into
two paths. In the FNN path, the output of induced field
is due to the received input signals, and in the RNN path,
the output of the induced field is due to the received input
signals from input layer and the local self hidden neurons.
Both the hidden layer outputs are acted upon by non-
linear activation function and further sent to output layer.

3. Output layer: The output layer computes the final hybrid
network output that has the characteristics of both static
and recurrent networks.

The induced field of hidden layer is computed as below

Fj (k) = f1

⎛
⎝ n∑

j=1

X(k − j)wi f j (k) + b f x j (k)wb j (k)

⎞
⎠

(8)

R j (k) = g1

( m∑
j=1

X(k − j)wi f j (k) + L(k)wlr (k)

+b f x j (k)wb j (k)

)
, (9)

where f1 and g1 indicates the non-linear tangent hyperbolic
activation function at the hidden node. The output of hybrid
CRFNN is given by

ycrfnn(k) = f

( m∑
i=1

Fj (k)wof (k)

+boh(k)wbh(k) + R j (k)wor (k)

)
, (10)

where wof (k) and wor (k) is the weight connection of FFNN
andRNNto the output layer.wbh(k) is the output layerweight

Fig. 4 Series–parallel identification configuration based on the pro-
posed model

vector and boh denotes the associated output bias vector. f
is the linear activation function used in the output layer.

3.4 Learning and identification scheme for CRFNN

The system being dynamic, output is dependent on both
present and past values of inputs and outputs. The iden-
tification scheme can be of parallel type or serial-parallel
type. Here, series–parallel identification scheme is used to
maintain the overall stability of the structure. The identifi-
cation scheme used is shown in Fig. 4. Next step will be
used to update the weights continuously. A gradient-based
back propagation algorithm is used. The update equations
are designed to follow the stability principles of Lyapunov
theorem. Hence, they also give fast convergence. Now, first
step will be to set up a cost function. Mean Square Error
(MSE) is taken as the cost function. The MSE is defined as

E(k) = 1

2
[yp(k) − ycrfnn(k)]2, (11)

where e(k) = yp(k) − ycrfnn(k) is identification error. The
MSE is computed until the identification error reaches zero.

3.5 Update equation between output layer and
hidden layer

The error is back-propagated from the output layer ycrfnn(k)
to the hidden layer of FFNN Fj (k) and RNN R j (k) by updat-
ing the weights of the output layer associated with FFNN
wof (k) and RNN wor (k) as below

∂E(k)

∂wof (k)
= ∂E(k)

∂ ycrfnn(k)
× ∂ ycrfnn(k)

∂wof (k)
(12)

∂E(k)

∂wor (k)
= ∂E(k)

∂ ycrfnn(k)
× ∂ ycrfnn(k)

∂wor (k)
. (13)
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This equation thus becomes

∂E(k)

∂wof (k)
= −e(k) × Fj (k) (14)

∂E(k)

∂wor (k)
= −e(k) × R j (k), (15)

where Fj (k) and R j (k) indicate the induced fields of
CRFNN.

3.6 Update equation between the hidden layer and
input layer

The error when back propagated further from to hidden to
input layer updates the weights such as wlr (k), wi f (k), and
wir (k). The weight update equation of hidden layer local
weights wlr (k) are calculated as below

∂E(k)

∂wlr (k)
= ∂E(k)

∂ ycrfnn(k)
× ∂ ycrfnn(k)

∂R j (k)
× ∂R j (k)

∂wlr (k)
. (16)

Further, the weights wi f (k) and wir (k) are updated as
follows:

∂E(k)

∂wir (k)
= ∂E(k)

∂ ycrfnn(k)
× ∂ ycrfnn(k)

∂R j (k)
× ∂R j (k)

∂wir (k)
(17)

∂E(k)

∂wi f (k)
= ∂E(k)

∂ ycrfnn(k)
× ∂ ycrfnn(k)

∂Fj (k)
× ∂Fj (k)

∂wi f (k)
. (18)

The weights are calculated using the update equations
from Eqs. (12)–(15) and the stochastic gradient formula is
used to derive the new weights. For example, to calculate
new local weight wlr (k)(new), the formula is as below

wlr (k)(new) = wlr (old) − ηe(k)
∂E(k)

∂wlr (k)
. (19)

Here, η denotes the learning rate and the range consid-
ered is between 0 and 1. Similarly, other tunable weights are
updated using the above formula.

3.7 Stability analysis

These proposed update weight equations guarantee stability
in the sense ofLyapunov.According to theLyapunov stability
theorem,when the Lyapunov-based error reaches aminimum
and is positive, the system remains stable irrespective of any
condition. Mathematically, it is given by

E(x) > 0 for x > 0 and E(x) = 0 for x = 0, (20)

Here, E(x) is the Lyapunov function. The rate of change of
Lyapunov error is given by

Ė =
(

∂E(k)

∂wof (k)
+ ∂E(k)

∂wor (k)
+ ∂E(k)

∂wlr (k)
+ ∂E(k)

∂wir (k)

+ ∂E(k)

∂wi f (k)

)
. (21)

When above equation is substituted with value (x − y)2

for
dwof (k)

dt ,
dwor (k)

dt
dwlr (k)

dt ,
dwi f (k)

dt , and dwir (k)
dt , it becomes

Ė = (x − y)2
(

∂E(k)

∂wof (k)
+ ∂E(k)

∂wor (k)
+ ∂E(k)

∂wlr (k)

+ ∂E(k)

∂wi f (k)
+ ∂E(k)

∂wir (k)

)
. (22)

For various ranges of x and y, the Lyapunov-based error
˙E(k) ≤ 0 . This ensures that the update equations sat-

isfy BIBO stability, and hence, the structure under test also
remains BIBO stable. In ‘Algorithm 1’: the learning proce-
dure is described as a pseudo code:

Algorithm 1 Learning procedure
1: procedure
2: α,weights ← minimum value .
3: start:
4: i ← no of iterations
5: k ← no of samples
6: loop starts:
7: Compute the hidden layer output
8: Compute the network output.
9: Calculate MSE, MAE.
10: Update trainable weights .
11: if cost function (k) = minimum then
12: AMSE(i) = Average (MSE)
13: AMAE(i) = Average (MAE)
14: goto start.
15: close;
16: else
17: goto loop starts.

4 Simulation results and discussion

In this section, the performance of the Compound Recurrent
Feed-forward Neural network is evaluated. Two examples
of real-time plant equation that is highly nonlinear and one
nonlinear benchmark problem are considered. The proposed
structure is suppliedwith external input and past output of the
plant as inputs. The proposed structure is compared against
neural models, such as Elman neural network (Elman)
Gao et al. (1996), Jordan neural network (Jordan) Jordan
(1986), Local recurrent neural network (LRNN) Kumar et al.
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(2017), and Feed-forward neural network (FFNN). Average
Mean Square Error (AMSE), Average Mean Absolute Error
(AMAE), and Relative Mean Square (RMSE) are selected as
evaluation index to measure the efficiency of the proposed
structure. Various degrees of complexity of nonlinear plant
equation is supplied and all the neural models considered
have a single hidden layer. A fixed learning rate of 0.0001 is
considered for identification.

4.1 Example 1: A nonlinear plant with order 3

To check the efficiency of the proposed structure, a real-
time nonlinear plant equation is considered in Kumpati and
Kannan (1990).

yp(k) = yp(k − 1)

1 + y2p (k − 2)
+ r3(k − 2), (23)

where yp(k) is the plant equation. The plant’s output depends
on both the present and past input–output values. The plant
equation is of order 3 and follows the following identification
structure:

yp(k) = f [yp(k − 1), yp(k − 2), r(k − 2)]. (24)

Here, f is the nonlinear function that maps the inputs and
outputs. The proposed structure is applied with an external
input r(k) = sin( 2πk100 ) as well as time-delayed plant outputs.
WhenCRFNN,FFNN,LRNN,Elman, and Jordan are chosen
as identifiers, the difference equations of the identifiers are
as below

ycrfnn(k) = f̂1[yp(k − 1), r(k − 1)] (25)

ylrnn(k) = f̂2[yp(k − 1), yp(k − 2), r(k − 1)] (26)

yffnn(k) = f̂3[yp(k − 1), yp(k − 2), r(k), r(k − 1)] (27)

yElman(k) = f̂4[yp(k − 1), yp(k − 2), r(k − 1)] (28)

yJordan(k) = f̂5[yp(k − 1), yp(k − 2), r(k − 1)], (29)

where the symbols ycrfnn(k), ylrnn(k), yffnn(k), yElman(k),
and yJordan(k) denote the output of CRFNN, LRNN, FFNN,
Elman, and Jordan, respectively. The inputsmentioned above
are applied to the models and the output is generated. Where
f̂1, f̂2, f̂3, f̂4, f̂5 are the nonlinear functions of the respec-
tive identifier. When f̂1, f̂2, f̂3, f̂4, f̂5 � f , the network is
said to follow the plant model, and the identified model is
found to be accurate. About 900 samples are provided to the
network for training and 400 samples are used for valida-
tion. The training is conducted in offline mode for about 900
time-epochs.

Fig. 5 Response from CRFNN, LRNN, and FFNN models [Example
1]

4.2 Parameter variation in testing phase [Example 1]

During the testing phase, a varied input pattern is supplied to
the network to check the effect of parameter variation on the
structure. The new input signal r(k) is given as below

r(k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sin(πk)
40 , for 0 < k ≤ 250

0.09 sin(πk)
45

− cos(2πk)
40 , for 250 < k ≤ 450

0.3 sin(2πk)
15

+ 0.1 sin(2πk)
320

+ 0.6 sin(2πk
40 , for 450 < k ≤ 00.

(30)

Figure 5 shows the response obtained from CRFNN and
other selected neural structures. This concludes that the pro-
posed identifier performs superior to other selected neural
models. The error is also found todecrease to a veryminimum
value with very less computational time. The performance of
the identifiers is evaluated against major performance param-
eters, such as Average Mean Square Error (AMSE), Average
Mean Absolute Error (AMAE), and RootMean Square Error
(RMSE). Figure 6 shows the MSE curve obtained from
CRFNN and other selected neural structures. Figure 7 shows
the MAE curve obtained from CRFNN and other selected
neural structures. From the figures, it can be seen that the
proposed CRFNNmodel is capable of extracting the dynam-
ics of the system.

4.3 Random sine wave noise injection test [Example
1]

Now, a random sine wave was added to the network as exter-
nal noise between the time interval 250 < k < 450. A sine
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Fig. 6 MSE curves obtained from CRFNN, LRNN, and FFNN models
[Example 1]

Fig. 7 MAE curves obtained from CRFNN, LRNN, and FFNNmodels
[Example 1]

wave with a value of sin( 2πk15 ) was added. The network ini-
tially fluctuated during this interval and deviated from the
plant response. However, the network still managed to track
back the plant response in a very short time. The proposed
network is found efficient in learning the input–output pat-
terns and predicting the similar unknown patterns supplied to
them. The response of the proposed CRFNN under the effect
of random noise is shown in Fig. 8. Table 1 gives the compar-
ison of proposed CRFNN with Elman, Jordan, FFNN, and
LRNN. From the table, the proposed structure is found to
have better performance indices.

4.4 Example 2: A nonlinear plant with order 4

The proposed method is further tested for identification abil-
ity by applying another nonlinear plant equation of order 3.
The plant equation is given below as in Kumpati and Kannan
(1990)

Fig. 8 Effect of random sine noise [Example 1]

yp(k) = 0.72yp(k − 1) + 0.025yp(k − 2)r(k − 1)

+0.001r2(k − 2) + 0.2r(k − 3). (31)

The plant equation takes the series–parallel identification
form as below

yp(k) = g[yp(k − 1), yp(k − 2),

(k − 1), r(k − 2), r(k − 3)], (32)

where g is the nonlinear function. To predict yp(k), both
time-delayed values of external input and that of the plant
are used. When CRFNN, LRNN, FFNN, Elman, and Jordan
are selected as neural identifiers tomap the nonlinear function
g, they are defined to take the following identification model
forms:

ycfrnn(k) = ĝ1[yp(k − 2), r(k)] (33)

ylrnn(k) = ĝ2[yp(k − 2), r(k − 1), r(k)] (34)

yffnn(k) = ĝ3[yp(k − 2), yp(k − 1), r(k − 2), r(k − 3)]
(35)

yElman(k) = ĝ4[yp(k − 2), r(k − 1), r(k)] (36)

yJordan(k) = ĝ5[yp(k − 2), r(k − 1), r(k)], (37)

where ĝ1, ĝ2, ĝ3, ĝ4, ĝ5 are the nonlinear functions to be
identified. The models are tested by supplying about 900
samples in batch mode of identification. From the results, it
can be seen that the proposed method shows the best effi-
ciency compared to other selected neural models.
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Fig. 9 Response from CRFNN, LRNN, and FFNN models [Example
2]

Fig. 10 MSEcurves obtained fromCRFNN,LRNN, and FFNNmodels
[Example 2]

4.5 Parameter variation in testing phase [Example 2]

During validation, a multi-varied input r(k) is supplied to the
network as below

r(k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sin(πk)
40 , for 0 < k ≤ 250

0.09 sin(πk)
45

− cos(2πk)
40 , for 250 < k ≤ 450

0.3 sin(2πk)
15

+ 0.1 sin(2πk)
320

+ 0.6 sin(2πk
40 , for 450 < k ≤ 900.

(38)

Figure 9 shows the response obtained from all the selected
neural structures. The error is found to decrease with time to
a very minimum value. The performances of FFNN are also

Fig. 11 MAE curves obtained from CRFNN, LRNN, and FFNN mod-
els [Example 2]

found to good as the proposed structure for this example, yet
they have a large computation time and require neurons com-
pared to the proposed structure. Figure 10 shows the MSE
curve obtained from selected neural structures. Figure 11
shows the MAE curve obtained from selected neural struc-
tures. From the figures, it can be concluded that the proposed
CRFNN model identifies better dynamics of the system.

4.6 Random sine wave noise injection test [Example
2]

A random sine wave as noise is supplied to the network
between 250 < k < 450 time interval. When a sine wave
of value, sin( 2πk15 ), was added to the network, the structure
was initially found to fluctuate and deviate from the plant’s
desired trajectory. However, the structure still recovered and
was found to track the desired plant trajectory.Thiswas due to
learning ability caused by the dynamic self-recurrent links in
their structures. Figure 12 shows the effect of random noise
on the network. Table 2 gives the comparison of proposed
CRFNN with other selected identifiers. The proposed model
is found to give better performance indices over Elman, Jor-
dan, LRNN, and FFNN.

4.7 Example 3: Mackey–Glass time-series
identification

Further, the proposed method is tested on the benchmark
nonlinear time–series prediction problem. The well-known
Mackey–Glass identification problem equation is considered
in this section. The time-series prediction is given below as
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Fig. 12 Effect of random sine noise [Example 2]

from Kumar et al. (2017)

dyp(t)

dt
= −β × yp(t) + α × yp(t − τ)

1 + y10p (t − τ)
. (39)

The series is applied with parameter values such as α = 0.2
and β = 0.1. Symbol t denotes the time-series sequence
of the prediction. When τ ≥ 17, the time-series prediction
is found to have a chaotic behavior. Hence, the value of the
sampling rate is selected as, τ = 17. The differential equation

is given by

yp(k) = −β × yp(k) + α × yp(k − τ)

1 + y10p (k − τ)
. (40)

Out of the 900 samples considered, 500 values were taken
for training, and the remaining 400 values were taken for
validation. The proposed identifier takes the series–parallel
model form as ycrfnn(k) = [yp(k), yp(k − 17)]. The prob-
lem is applied to all the selected neural structures. Figure 13
shows the response obtained for the time-series prediction
problem. The response proves that the proposed structure
can perform superior to other selected network structures.
Figure 14 shows the MSE curve obtained. Figure 15 shows
the MAE curves obtained from CRFNN, LRNN, and FFNN
models.

4.8 Random sine wave noise injection test [Example
3]

The problem was also introduced to a sudden disturbance of
sine wave with a value, sin( 2πk15 ) between the time-interval
250 < k < 450 to test its learning ability. Figure 16 shows
the effect of random noise on the network. The network is
found to work superior and more efficiently compared to
other selected neural structures. The same can be concluded
from the results ofTable 3. The number of neurons required to
follow the desired trajectory is only 4 for the proposed struc-
ture. The other selected neural structures require 6 neurons

Table 1 Performance comparison of CRFNN with other selected identifiers [Example 1]

S. no. Parameters CRFNN FFNN LRNN Elman Jordan

1 No. of input parameters 02 04 03 03 03

2 No. of hidden neurons 04 06 04 04 04

3 No. of tunable weights (excluding bias weights) 10 4 6 7 7

4 Computation time 30s 76s 50s 32s 26s

5 AMSE 0.0139 0.0336 0.0366 0.0230 0.0389

6 AMAE 0.0940 0.1994 0.1867 0.1831 0.1641

7 RMSE 0.0107 0.2930 0.1203 0.0915 0.0239

Table 2 Performance comparison of CRFNN with other selected identifiers [Example 2]

S. no. Parameters CRFNN FFNN LRNN Elman Jordan

1 No. of input parameters 02 04 03 03 03

2 No. of hidden neurons 04 06 04 04 04

3 No. of tunable weights (excluding bias weights) 10 4 6 7 7

4 Computation time 41s 67s 43s 46s 37s

5 AMSE 0.0137 0.0459 0.0324 0.0174 0.0297

6 AMAE 0.1096 0.2045 0.1968 0.1268 0.1727

7 RMSE 0.0446 0.0851 0.1221 0.999 0.1112
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Fig. 13 Response from CRFNN, LRNN, and FFNN models [Example
3]

Fig. 14 MSEcurves obtained fromCRFNN,LRNN, and FFNNmodels
[Example 3]

Fig. 15 MAE curves obtained from CRFNN, LRNN, and FFNN mod-
els [Example 3]

Fig. 16 Effect of random sine noise [Example 3]

to achieve the same. The overall performance parameters are
also achieved minimum for the proposed Compound Recur-
rent Feed forward Neural Network structure.

4.9 Discussion

In this work, we have proposed a novel recurrent neural
structure CRFNN for the identification of complex nonlin-
ear dynamic systems. The performance is evaluated on three
nonlinear real-time plant equations of varying degrees and
complexities and is compared with Feed-forward structure
(FFNN), Locally recurrent neural structure (LRNN), and the
fully connected recurrent neural structures (Elman and Jor-
dan). The results show that the proposed structure is able to
effectively identify the changing dynamics of the plant. The
AMSE and AMAE values obtained are far less than other
selected neural structures considered in this work. The struc-
ture also required only a lesser number of inputs as compared
to other structures in this work to efficiently train the tunable
parameter and reach the optimum value. This is also an indi-
cation that the proposed structure is independent of the order
of the plant. From the results of a random noise injection
test, it is evident that the proposed structure is able to recover
quickly and adjust itself to the changing dynamics of the sys-
tem. These characteristics make the structure an efficient one
for nonlinear identification.

5 Conclusion

In this paper, a Compound Recurrent Feed-forward Neural
Network (CRFNN) is proposed for the identification of the
complex nonlinear dynamical systems. The proposed struc-
ture is the hybridization of the LRNN and a single-layer
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Table 3 Performance comparison of CRFNN with other selected identifiers [Example 3]

S. no. Parameters CRFNN FFNN LRNN Elman Jordan

1 No. of input parameters 02 04 03 03 03

2 No. of hidden neurons 04 06 04 04 04

3 No. of tunable weights (excluding bias weights) 10 4 6 7 7

4 Computation time 47s 67s 43s 49s 41s

5 AMSE 0.0065 0.0324 0.0281 0.0072 0.0156

6 AMAE 0.0755 0.0852 0.1271 0.0852 0.1271

7 RMSE 0.0525 0.1778 0.1821 0.0653 0.0396

FFNN model that are combined to develop the proposed
model. With the help of three benchmark non-linear prob-
lems, the structure’s performance is evaluated and compared
with other well-known neural models. The proposed struc-
ture is found to perform super,ior since it provided the least
of the values of the error-based indicators, such as MSE,
MAE, and RMSE, require lesser number of the number of
input parameters, require lesser number of trainable weights.
Additionally, the structure is discovered to be resistant to per-
turbations and parameter changes applied to the system.

5.1 Limitations and recommendations for future
research

To make the proposed model simpler, the number of neurons
is currently fixed equal to 4; however, this option has a signif-
icant impact on the model’s overall accuracy. We may need
more neurons in some systems (to be identified) to accu-
rately define the dynamics. The development of a strategy
to optimize the number of neurons in the model (depending
on the system to be identified) is thus one topic of future
research. To enhance the overall performance of the learning
algorithm, another option may be to create new optimiza-
tion techniques inspired by nature or integrate the already
available optimization techniques with the BP method. The
starting settings of the model’s parameter can also have an
impact on how well the model performs as predicted. One
can anticipate the model to tune rapidly and give the desired
accuracy (in a short amount of training time) if the values of
these parameters are initialized correctly. The creation of an
adaptive learning rate scheme is another area of research that
will be the focus of our efforts in the future. This is because
the rate at which a model evolves depends on its learning rate
value, and evolving a model iteratively could help iterate. the
model more quickly
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