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Abstract
Recently, the latticized linear programming problems subjected to max–min and max-product fuzzy relational inequalities
(FRI) have been studied extensively and have been utilized in many interesting applications. In this paper, we introduce a
new generalization of the latticized optimization problems whose objective is a non-linear function defined by an arbitrary
continuous s-norm (t-conorm), and whose constraints are formed as an FRI defined by an arbitrary continuous t-norm. Firstly,
the feasible region of the problem is completely characterized and two necessary and sufficient conditions are proposed
to determine the feasibility of the problem. Also, a general method is proposed for finding the exact optimal solutions of
the non-linear model. Then, to accelerate the general method, five simplification techniques are provided that reduce the
work of computing an optimal solution. Additionally, a polynomial-time method is presented for solving general latticized
linear optimization problems subjected to the continuous FRI. Moreover, an application of the proposed non-linear model is
described where the objective function and the FRI are defined by the well-known Lukasiewicz s-norm and product t-norm,
respectively. Finally, a numerical example is provided to illustrate the proposed algorithm.

Keywords Fuzzy relational inequalities · Continuous t-norms · Continuous s-norms · Latticized linear programming ·
Non-linear optimization

1 Introduction

Resolution of fuzzy relational equations (FRE) with max–
min composition was first studied by Sanchez (1993).
Besides, Sanchez developed the application of FRE in med-
ical diagnosis in biotechnology. Nowadays, it is well known
that many of the issues associated with body knowledge can
be treated asFREproblems (Pedrycz 2013). The fundamental
result for FRE with max-product composition goes back to
Pedrycz (1985), andwas further studied in Bourke and Fisher
(1998); Loetamonphong and Fang (1999). Since then, many
researchers studied different FREs defined by various types
of t-norm operators (Ghodousian and Babalhavaeji 2018;
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Ghodousian et al. 2018; Wu et al. 2008). Moreover, some
other researchers have worked on introducing a novel con-
cept, and at times improving some of the existing theoretical
aspects and applications of fuzzy relational inequalities (FRI)
(Ghodousian 2019; Ghodousian and Parvari 2017; Ghodou-
sian and Khorram 2012; Guo and Xia 2006; Guo et al. 2013;
Li and Yang 2012; Yang et al. 2016a).

Generally, there are three important difficulties related to
the optimization problems subject to FRE or FRI regions.
First, to completely determine FREs and FRIs, we must ini-
tially find all the minimal solutions, and, the finding of all
the minimal solutions is an NP-hard problem (Markovskii
2005). Second, a feasible region formed as FRE or FRI is
often a non-convex set determined by one maximum solu-
tion and a finite number of minimal solutions (Ghodousian
and Babalhavaeji 2018; Ghodousian et al. 2018; Ghodou-
sian 2019; Ghodousian and Khorram 2012). Third, FREs
and FRIs as feasible regions lead to optimization prob-
lems with highly non-linear constraints. Due to the above
mentioned difficulties, the optimization problem subject to
FRE and FRI is one of the most interesting and on-going
research topics among similar problems (Ghodousian and
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Babalhavaeji 2018; Ghodousian 2019; Ghodousian and Par-
vari 2017; Ghodousian and Khorram 2012; Guo and Xia
2006; Guo et al. 2013; Yang et al. 2016a; Liu et al. 2016).

The linear optimization problem subjected to various ver-
sions of FRI is widely available in the literature (Ghodousian
2019; Ghodousian and Khorram 2012; Guo and Xia 2006;
Guo et al. 2013; Li and Yang 2012; Yang et al. 2016a;
Matusiewicz and Drewniak 2013; Yang 2014; Yang et al.
2016b, 2015a). Guo et al. (2013) studied the linear pro-
gramming problem with max–min FRI constraint. Li and
Yang (2012) introduced the so-called addition-min FRI to
characterize a peer-to-peer file-sharing system. Based on the
concept of the pseudo-minimal index, Yang (2014) devel-
oped a pseudo-minimal-index algorithm tominimize a linear
objective function with addition-min FRI constraint, defined
as ai1 ∧ x1 + ai2 ∧ x2 + · · · + ain ∧ xn ≥ bi , for i =
1, ...,m, where ai j is (i, j)th entry of the coefficient matrix
A, x j is the j th component of the unknown vector x , bi
is the i th component of the right hand side vector b and
a ∧ b = min{a, b} (Yang 2014). To improve the results
presented in Yang (2014), Yang et al. (2016b) proposed the
min-max programming subject to addition-min fuzzy rela-
tional inequalities. They also studied the multi-level linear
programming problem with the addition-min FRI constraint
(Yang et al. 2015a). Drewniak and Matusiewicz were inter-
ested in max-* fuzzy relation equations and inequalities with
the increasing operation * continuous on the second argu-
ment (Matusiewicz and Drewniak 2013). Ghodousian and
Khorram (2012) studied the linear optimization with con-
straints formed by X(A, D, b1, b2) = {x ∈ [0, 1]n : Aϕx ≤
b1, Dϕx ≥ b2} where ϕ represents an operator with convex
solutions (e.g., non-decreasing or non-increasing operator),
A and D are fuzzy matrices, b1 and b2 are fuzzy vectors and
x is unknown vector. They showed that the feasible region
can be expressed as the union of a finite number of convex
sets.

Recently, many interesting forms of generalizations of the
linear programming applied to the system of fuzzy relations
have been introduced and developed based on composite
operations used inFREorFRI, fuzzy relations used in thedef-
inition of the constraints, somedevelopments on the objective
function of the problems and other ideas (Ghodousian and
Babalhavaeji 2018; Ghodousian et al. 2018; Wu et al. 2008;
Liu et al. 2016;Dempe andRuziyeva 2012;Dubey et al. 2012;
Freson et al. 2013; Li and Liu 2014). For example, Wu et al.
represented an efficientmethod to optimize a linear fractional
programming problem under FRE with max-Archimedean t-
norm composition (Wu et al. 2008). Dempe and Ruziyeva
generalized the fuzzy linear optimization problem by con-
sidering fuzzy coefficients (Dempe and Ruziyeva 2012). In
addition, Dubey et al. studied linear programming problems
involving interval uncertainty modeled using an intuitionis-
tic fuzzy set (Dubey et al. 2012). The linear optimization

of bipolar FRE was also the focus of the study carried out
by some researchers where FRE was defined with max–min
composition (Freson et al. 2013) andmax-Lukasiewicz com-
position (Ghodousian andBabalhavaeji 2018; Liu et al. 2016;
Li and Liu 2014; Cornejo et al. 2022). For example, in Li
and Liu (2014), the authors introduced a linear optimization
problem subjected to a system of bipolar FRE defined as
X(A+, A−, b) = {x ∈ [0, 1]m : x ◦ A+ ∨ x̃ ◦ A− = b},
where A+ and A− are fuzzy matrices, and x̃i = 1 − xi , for
each component of x̃ = (x̃i )1×m and the notations "∨" and
"◦" denote max operation and the max-Lukasiewicz com-
position, respectively. They translated the original problem
into a 0−1 integer linear problemwhich is then solved using
well-developed techniques. In a separate, the foregoing bipo-
lar linear optimization problem was solved by an analytical
method based on the resolution and some structural proper-
ties of the feasible region (using a necessary condition for
characterizing an optimal solution and a simplification pro-
cess for reducing the problem) (Liu et al. 2016).

The optimization problems with general nonlinear objec-
tive functions and FRE or FRI constraints were studied
in Ghodousian and Babalhavaeji (2018), Ghodousian et al.
(2018), Ghodousian and Parvari (2017), Lu and Fang (2001).
In general, some heuristic algorithms were applied to deal
with this kind of problem. However, some fuzzy relation
nonlinear optimization problems such as geometric program-
ming problems (Yang et al. 2015b) could be solved by some
specific method. Yang et al. (2015b) studied the single-
variable termsemi-latticizedgeometric programming subject
to max-product fuzzy relation equations. The proposed prob-
lem was devised from the peer-to-peer network system and
the target was to minimize the biggest dissatisfaction degrees
of the terminals in such system.

Latticized optimization problem was introduced in Wang
et al. (1991), where the conservative path method was pro-
posed to find out all the minimal solutions of the max–min
FRI. Subsequently, the optimal solutions were selected from
the minimal solutions by pairwise comparison. The latti-
cized linear programming problem subjected to max–min
FRI was also investigated in the works (Li and Fang 2009;
Li and Wang 2013). Li and Fang (2009) obtained an opti-
mal solution to the latticized linear programming problem.
Besides they studied some variants of the problem. In Li
and Wang (2013), based on the concept of semi-tensor prod-
uct, a matrix approach was applied to handle the latticized
linear programming problem subjected to max–min FRI.
Also, Yang et al. (2016a) introduced the latticized program-
ming problem defined by minimizing objective function
f (x) = x1 ∨ x2 ∨ · · · ∨ xn subject to the feasible region
X(A, b) = {x ∈ [0, 1]n : A ◦ x ≥ b}, where "◦" denotes
fuzzymax-product composition. They, also, presented a solu-
tion matrix approach for solving the problem.
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In this paper, we investigate a non-linear generalization of
the latticized linear programming problems that are formu-
lated in the problem below:

min ϕ(...(ϕ(ϕ(x1, x2), x3)..., xn)
Aψx ≥ b
x ∈ [0, 1]n

(1)

where ϕ : [0, 1]2 → [0, 1] is an arbitrary continuous s-norm.
I = {1, 2, ...,m} and J = {1, 2, ..., n}. A = (ai j )m×n is a
fuzzy matrix such that 0 ≤ ai j ≤ 1 (∀i ∈ I and ∀ j ∈ J )
and b = [b1, b2, ..., bm] ∈ [0, 1]m is a fuzzy vector. Also,
Aψx ≥ b denotes fuzzy max-ψ composition where ψ :
[0, 1]2 → [0, 1] is an arbitrary continuous t-norm. So, if ai
(i ∈ I ) denotes the i th rowofmatrix A, then the i th constraint
of the problem (1) can be expressed as aiψx ≥ bi , where
aiψx = maxnj=1{ψ(ai j , x j )}.

Especially, ifϕ is considered as themaximums-norm, then
the objective function of the problem (1) is transformed into
max{x1, x2, ..., xn}. In this case, if Aψx ≥ b is defined by the
max-product composition, then the problem (1) is reduced to
the model studied in Yang et al. (2016a). Also, in Sect. 4, an
application of the problem (1) is describedwhere ϕ andψ are
defined by the Lukasiewicz s-norm and the product t-norm,
respectively.

The rest of the paper is organized as follows. Section2
discusses basic results on the feasible solutions set of prob-
lem (1) where ϕ represents an arbitrary continuous t-norm.
In Sect. 3, an algorithm is presented to find the exact opti-
mal solutions to the problem. The general latticized linear
programming problems are described in Sect. 4, where a
polynomial-time method is presented without finding all the
minimal solutions of the feasible region. Section5 introduces
five techniques to reduce the size of the main problem dur-
ing the process of finding an optimal solution. Based on the
techniques, a procedure for finding an optimal solution is
summarized as well. Finally, Sect. 6 presents an illustrative
example that demonstrates the effectiveness of the proposed
method. Moreover, we show the application background of a
special case of the non-linear latticized optimization problem
in which the objective function is defined by the Lukasiewicz
s-norm and the constraints are formed as an FRI defined by
the max-product composition.

2 Feasible solution set of the problem (1)

In Ghodousian and Khorram (2012), the authors discussed
some properties of FRIs defined by operators with (closed)
convex solutions. In this section, some relevant results are
studied about the solutions to a system of max-ψ-continuous
FRIs introduced in the problem (1). For the sake of simplic-
ity, let S(A, b) denote the feasible region of the problem

(1), that is, S(A, b) = {x ∈ [0, 1]n : Aψx ≥ b}. Also,
for each constraint aiψx ≥ bi (i ∈ I ), let Si (A, b) =
{x ∈ [0, 1]n : aiψx ≥ bi }. So, Si (A, b) denotes the feasi-
ble solution set of the i th constraint, and therefore, we have
S(A, b) = ⋂

i∈I Si (A, b).

Definition 2.1 For each i ∈ I and each j ∈ J , let �i j =
{x j ∈ [0, 1] : ψ(ai j , x j ) ≥ bi }. Moreover, if �i j 
= ∅, we
define x(ai j , bi ) = inf �i j and x(ai j , bi ) = sup�i j .

Remark 2.1 From the least-upper-bound property of R, it
is clear that x(ai j , bi ), and x(ai j , bi ) exist, if �i j 
= ∅.
Moreover, since ψ is a t-norm, its monotonicity property
implies that �i j is indeed a connected subset of [0, 1].
Additionally, by the continuity of ψ , we must have �i j =[
x(ai j , bi ), x(ai j , bi )

]
.

Lemma 2.1 For each i ∈ I and j ∈ J , �i j 
= ∅ iff ai j ≥ bi .
Moreover, if �i j 
= ∅, then �i j = [

x(ai j , bi ), 1
]
.

Proof Let �i j 
= ∅ and x ′ ∈ �i j , i.e., ψ(ai j , x ′) ≥ bi .
From the identity law and monotonicity of ψ , we have bi ≤
ψ(ai j , x ′) ≤ ψ(ai j , 1) = ai j which means bi ≤ ai j and
1 ∈ �i j . Conversely, if ai j ≥ bi , then, bi ≤ ai j = ψ(ai j , 1)
that implies 1 ∈ �i j , i.e., �i j 
= ∅. So, �i j 
= ∅ iff ai j ≥ bi .
By the above argument, we can also conclude that �i j 
= ∅
iff 1 ∈ �i j . This fact together with Remark 2.1 result in
�i j = [

x(ai j , bi ), 1
]
, if �i j 
= ∅. �

Lemma 2.1 results in the following important corollaries
that provide two equivalent necessary and sufficient condi-
tions for the feasibility of set Si (A, b), (i ∈ I ).

Corollary 2.1 Let i ∈ I . Then, Si (A, b) 
= ∅ iff there exists
at least one j ∈ J such that �i j 
= ∅.
Proof Let x ′ ∈ Si (A, b). By contradiction, suppose that
�i j = ∅ for each j ∈ J . So, from Lemma 2.1, we have
ai j < bi , ∀ j ∈ J . Hence,

aiψx ′ = n
max
j=1

{ψ(ai j , x
′
j )} ≤ n

max
j=1

{ψ(ai j , 1)} = n
max
j=1

{ai j } < bi

that contradicts x ′ ∈ Si (A, b). Conversely, suppose that
�i j0 
= ∅ (equivalently, ai j0 ≥ bi ) for some j0 ∈ J .
Also, let 1 be an n-dimensional vector with each component
equal to one. So, we have aiψ1 = maxnj=1{ψ(ai j , 1)} ≥
ψ(ai j0 , 1) = ai j0 ≥ bi , that means, 1 ∈ Si (A, b). �
Corollary 2.2 Let i ∈ I . Then, Si (A, b) 
= ∅ iff 1 ∈ Si (A, b),
where 1 is an n-dimensional vector with each component
equal to one.

Proof If 1 ∈ Si (A, b), then obviously Si (A, b) 
= ∅. Con-
versely, suppose that Si (A, b) 
= ∅. Corollary 2.1 implies
�i j0 
= ∅ (equivalently, ai j0 ≥ bi ) for some j0 ∈ J . So,
similar to the proof of Corollary 2.1, we have aiψ1 ≥
ψ(ai j0 , 1) = ai j0 ≥ bi , that means, 1 ∈ Si (A, b). �
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Remark 2.2 Since S(A, b) = ⋂
i∈I Si (A, b), Corollary 2.2

implies that S(A, b) 
= ∅ iff 1 ∈ S(A, b). Therefore, if prob-
lem (1) is feasible, then vector 1 is the unique maximum
solution of the feasible region.

Corollary 2.3 below provides a necessary and sufficient
condition for a vector x ∈ [0, 1]n to be a feasible solution to
the constraint aiψx ≥ bi (i ∈ I ).

Corollary 2.3 Suppose that Si (A, b) 
= ∅ for some i ∈ I and
x ′ ∈ [0, 1]n. Then, x ′ ∈ Si (A, b) iff there exists at least one
j0 ∈ J such that x ′

j0
∈ �i j0 .

Proof Let x ′ ∈ Si (A, b). So,aiψx ′ = maxnj=1{ψ(ai j , x ′
j )} ≥

bi . Hence, there exist some j0 ∈ J such that ψ(ai j0 , x
′
j0
) ≥

bi , i.e., x ′
j0

∈ �i j0 . Conversely, suppose that x ′
j0

∈ �i j0

for some j0 ∈ J . Thus, ψ(ai j0 , x
′
j0
) ≥ bi , and therefore,

aiψx ′ ≥ ψ(ai j0 , x
′
j0
) ≥ bi which implies x ′ ∈ Si (A, b). �

Remark 2.3 Let x ∈ S(A, b). So, from the equality S(A, b) =
⋂

i∈I Si (A, b), we have x ∈ Si (A, b), ∀i ∈ I . Thus, Corol-
lary 2.1 implies that for each i ∈ I there exists at least one
j ∈ J such that �i j 
= ∅. Conversely, suppose that for each
i ∈ I there exists at least one j ∈ J such that �i j 
= ∅.
So, Corollary 2.1 implies that Si (A, b) 
= ∅, ∀i ∈ I , and
then, by Corollary 2.2 we have 1 ∈ Si (A, b), ∀i ∈ I . Hence,
1 ∈ S(A, b) that means S(A, b) 
= ∅.
Definition 2.2 Let i ∈ I and Si (A, b) 
= ∅. So, we define
J (i) = { j ∈ J : �i j 
= ∅}. Also, for each j ∈ J (i), define
x(i, j) ∈ [0, 1]n such that x(i, j)k = x(ai j , bi ) for k = j ,
and x(i, j)k = 0 otherwise.

Lemma 2.2 Suppose that Si (A, b) 
= ∅ and j0 ∈ J (i). Then,
x(i, j0) is a minimal solution of Si (A, b).

Proof From Definition 2.2 and Corollary 2.3, x(i, j0) ∈
Si (A, b). Suppose that x ′ ∈ Si (A, b), x ′ ≤ x(i, j0) and
x ′ 
= x(i, j0). So, x ′

j = 0, ∀ j ∈ J − { j0}, and x ′
j0

<

x(ai j0 , bi ). However, in this case we will have aiψx ′ =
maxnj=1{ψ(ai j , x ′

j )} = ψ(ai j0 , x
′
j0
) < bi (see Lemma 2.1)

that contradicts x ′ ∈ Si (A, b). �
Corollary 2.4 Let x ′ ∈ Si (A, b). There exists some j0 ∈ J (i)
such that x(i, j0) ≤ x ′.

Proof From Corollary 2.3, x ′
j0

∈ �i j0 for some j0 ∈ J (i).
Hence, x(ai j0 , bi ) ≤ x ′

j0
≤ 1. Now, the result follows from

the definition of x(i, j0) (Definition 2.2). �
Theorem 2.1 Suppose that i ∈ I and Si (A, b) 
= ∅. Then,
Si (A, b) = ⋃

j∈J (i)

[
x(i, j), 1

]
.

Proof Let x ′ ∈ Si (A, b). From Corollary 2.4, x(i, j0) ≤ x ′
for some j0 ∈ J (i). Therefore, x ′ ∈ [

x(i, j0), 1
]
. Con-

versely, let x ′ ∈ [
x(i, j0), 1

]
for some j0 ∈ J (i). Thus,

x ′
j0

∈ �i j0 that implies x ′ ∈ Si (A, b) from Corollary 2.3. �

Definition 2.3 Suppose that S(A, b) 
= ∅. Let e : I →
⋃

i∈I J (i) be a function from I to
⋃

i∈I J (i) such that
e(i) ∈ J (i), ∀i ∈ I , and let E denote the set of all the func-
tions e. Sometimes, for the sake of convenience, each e ∈ E
is presented as an m-dimensional vector e = [ j1, j2, ..., jm]
in which jk = e(k), k = 1, 2, ...,m.

Definition 2.4 Suppose that S(A, b) 
= ∅ and e ∈ E . We
define x(e) ∈ [0, 1]n whose components are defined as
x(e) j = maxi∈I {x(i, e(i)) j }, ∀ j ∈ J .

Remark 2.4 Let I ( j) = {i ∈ I : �i j 
= ∅}, ∀ j ∈ J . Also,
for each e ∈ E we define I j (e) = {i ∈ I ( j) : e(i) = j}. So,
according to Definitions 2.3 and 2.4, each solution x(e) can
be equivalently obtained as follows:

x(e) j =
⎧
⎨

⎩

max
i∈I j (e)

{x(ai j , bi )} I j (e) 
= ∅
0 I j (e) = ∅

,∀ j ∈ J . (2)

Theorem 2.2 Suppose that S(A, b) 
= ∅. Then, S(A, b) =
⋃

e∈E [x(e), 1].
Proof From Theorem 2.1 and the equality S(A, b) =
⋂

i∈I Si (A, b),wehave S(A, b) = ⋂
i∈I

⋃
j∈J (i)[x(i, j), 1],

or equivalently S(A, b) = ⋃
e∈E

⋂
i∈I [x(i, e(i)), 1]. There-

fore, S(A, b) = ⋃
e∈E [maxi∈I {x(i, e(i))}, 1]. Now, the

result follows from the definition of x(e). �
Based on Theorem 2.2, the feasible region of the problem

(1) is completely determined by the union of a finite number
of closed convex sets [x(e), 1], (e ∈ E).

3 A general method for the resolution of the
problem (1)

In contrast to vectors x(i, j) ( j ∈ J (i)), that are the min-
imal solutions of Si (A, b) (Theorem 2.1), all the vectors
x(e) (e ∈ E) may not be necessarily the minimal solutions
of S(A, b) (Theorem 2.2). In other words, there may exist
e1, e2 ∈ E such that x(e1) ≤ x(e2). However, the following
lemma shows that each minimal solution of S(A, b) can be
written in the form of x(e) for some e ∈ E .

Lemma 3.1 Let S(A, b)denote the set of all theminimal solu-
tions of S(A, b) and SE (A, b) = {x(e) : e ∈ E}. Then,
S(A, b) ⊆ SE (A, b).

Proof Suppose that x ∈ S(A, b). From Theorem 2.2, there
exists some e ∈ E such that x ∈ [x(e), 1]. Since x(e) ≤ x ,
and x is a minimal solution, then we must have x = x(e),
that is, x ∈ SE (A, b). �

Based on Lemma 3.1, Theorem 2.2 can be strengthened
as follows.
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Corollary 3.1 Suppose that S(A, b) 
= ∅. Then, S(A, b) =
⋃

x∈S(A,b)[x, 1].
Proof According to Lemma 3.1, for each x(e) ∈ SE (A, b)
there exists some minimal solution x ∈ S(A, b) such that
x ≤ x(e), and therefore [x(e), 1] ⊆ [x, 1]. Now, the result
follows from Theorem 2.2. �

It is found inTheorem2.2 that solvingmax−ψ fuzzy rela-
tional inequalities is equivalent to finding out all the minimal
solutions of the feasible region. Theorem 3.1 below shows
that the minimal solutions of S(A, b) also play a significant
role in solving the problem (1).

Theorem 3.1 If S(A, b) 
= ∅, then there exists a solution
x∗ ∈ S(A, b) such that x∗ is an optimal solution of the prob-
lem (1).

Proof Suppose that f (x) = ϕ(...(ϕ(ϕ(x1, x2), x3)..., xn),
where ϕ is an arbitrary continuous s-norm. Also, suppose
that minimal solution x∗ minimizes f (x) among all min-
imal solutions, i.e., f (x∗) ≤ f (x), ∀x ∈ S(A, b). From
Corollary 3.1, for an arbitrary feasible solution x ′ ∈ S(A, b),
there exists some x ′ ∈ S(A, b) such that x ′ ∈ [x ′, 1] (i.e.,
x ′ ≤ x ′). So, the monotonicity law of s-norms implies that
ϕ(x ′

1, x
′
2) ≤ ϕ(x ′

1, x
′
2). By applying the same argument,

ϕ(ϕ(x ′
1, x

′
2), x

′
3) ≤ ϕ(ϕ(x ′

1, x
′
2), x

′
3), and if we continue in

this way, then (in n−1 steps) we obtain f (x ′) ≤ f (x ′). But,
since f (x∗) ≤ f (x ′), we have f (x∗) ≤ f (x ′). Since x ′ was
an arbitrary feasible solution, the result follows. �

Now, we summarize the preceding discussion as an algo-
rithm.

Algorithm 3.1 (General method)
Given problem (1):

1. Compute �i j for each i ∈ I and j ∈ J (Lemma 2.1).
2. If there exists some i ∈ I such that �i j = ∅, ∀ j ∈ J ,

then stop; S(A, b) is empty (Remark 2.3).
3. Compute J (i), ∀i ∈ I (Definition 2.2).
4. Compute solutions x(e) ∈ SE (A, b), ∀e ∈ E (Definitions

2.3 and 2.4).
5. Find minimal solutions by pairwise comparison between

vectors x(e) (Lemma 3.1).
6. Select the optimal solution x∗ from the set S(A, b)

(Lemma 3.1 and Theorem 3.1).

If the constraints of problem (1) are replaced with Aψx ≤ b,
it can be easily shown that the feasible region of the problem
will be in the form of [0,Y], where 0 is the zero vector and
Y is the unique maximum solution. Moreover, the constraint
Aψx = b can be equivalently expressed as Aψx ≤ b and
Aψx ≥ b, and therefore the feasible region is then attained
by

⋃
e∈E [x(e), 1] ∩ [0,Y] = ⋃

e∈E [x(e),Y] (see Theorem

2.2). However, since according to Theorem 3.1, the optimal
solution will be one of the solutions of S(A, b), Algorithm
3.1 can also be used to solve problems with the constraints
Aψx = b.

In the general method, Step 3 is a major disadvantage
of the algorithm. As mentioned before, SE (A, b) often con-
tains many solutions x(e) that are not minimal. Moreover,
the cardinality of SE (A, b), denoted by |SE (A, b)|, grows
exponentially with the size of the sets J (i), ∀i ∈ I . More
precisely, we have |SE (A, b)| = ∏

i∈I |J (i)|, where |J (i)|
denotes the cardinality of the set J (i). To accelerate the algo-
rithm, we can initially remove some e ∈ E that generate
non-minimal solutions x(e). For this purpose, five simplifi-
cation techniques will be described in Sect. 5. Furthermore,
in some special cases, we can find a fast optimal solution to
problem (1) by an efficient algorithm that is of polynomial
complexity in the size of the problem. These special cases
will be studied in the next section.

4 Special cases with fast optimal solutions

In this section, an algorithm is presented for solving some
special cases of problem (1) without finding all the solutions
x(e) ∈ SE (A, b). It is shown that the computational com-
plexity of the algorithm is O(mn).

Definition 4.1 Define x(i) = min j∈J (i){x(ai j , bi )} and
J (i) = { j ∈ J (i) : x(ai j , bi ) = x(i)}, ∀i ∈ I . Also, similar
to Definition 2.3, let E = {e ∈ E : e : I → ⋃

i∈I J (i)}.
By Definition 4.1, it is clear that J (i) ⊆ J (i) and E ⊆ E .

Also, for each e ∈ E we have e(i) ∈ J (i), ∀i ∈ I .

Remark 4.1 Consider a fixed i ∈ I . For each e ∈ E and
e′ ∈ E , we have e(i) ∈ J (i) and e′(i) ∈ J (i). Therefore,
from Definition 4.1, x(aie′(i), bi ) = x(i) ≤ x(aie(i), bi ),
∀i ∈ I .

Theorem 4.1 Let e′ ∈ E ande ∈ E.Then,max j∈J {x(e′) j } ≤
max j∈J {x(e) j }.
Proof From Remark 2.4, max j∈J {x(e) j } = max j∈J maxi∈I
{x(ai j , bi )} that is equal to maxi∈I {x(aie(i), bi )}. Also,
from Remark 4.1, we have maxi∈I {x(aie(i), bi )} ≥ maxi∈I
{x(aie′(i), bi )}. Consequently, max j∈J {x(e) j } ≥ maxi∈I
{x(aie′(i), bi )} (*). But, maxi∈I {x(aie′(i), bi )} = max j∈J

maxi∈I j (e′){x(ai j , bi )} = max j∈J {x(e′) j } (**). Now, the
result follows from (*) and (**). �
Corollary 4.1 For each e1, e2 ∈ E, max j∈J {x(e1) j } =
max j∈J {x(e2) j }.
Proof Since, E ⊆ E , then we also have e1, e2 ∈ E .
So, by considering e1 ∈ E and e2 ∈ E , Theorem 4.1
implies that max j∈J {x(e1) j } ≤ max j∈J {x(e2) j }. By the
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same argument, max j∈J {x(e2) j } ≤ max j∈J {x(e1) j }. Hence
max j∈J {x(e1) j } = max j∈J {x(e2) j }. �

Theorem 4.2 Consider problem (1) where ψ is an arbi-
trary continuous t-norm and ϕ is the maximum s-norm. If
S(A, b) 
= ∅, then all the solutions x(e) generated by e ∈ E
are the optimal solutions to the problem with the same objec-
tive function value.

Proof By assuming thatϕ is themaximum s-norm, the objec-
tive function f (x) = ϕ(...(ϕ(ϕ(x1, x2), x3)..., xn) is reduced
to f (x) = max j∈J {x j }. From Theorem 3.1, for each opti-
mal solution x∗ we must have x∗ ∈ S(A, b). On the other
hand, Lemma 3.1 implies that x∗ ∈ SE (A, b). Now, the result
follows from Theorem 4.1 and Corollary 4.1. �

Theorem 4.2 proposes an efficient polynomial-time algo-
rithm for solving the special cases of problem (1) where ϕ is
the maximum s-norm. Algorithm 4.1 below shows the steps
of this algorithm followed by the complete description of its
complexity.

Algorithm 4.1 (Polynomial-time algorithm for ϕ =
maximum)

Given problem (1), where ϕ is the maximum s-norm:

1. Compute �i j for each i ∈ I and j ∈ J (Lemma 2.1).
2. If there exists some i ∈ I such that �i j = ∅, ∀ j ∈ J ,

then stop; S(A, b) is empty (Remark 2.3).
3. Compute J (i), ∀i ∈ I (Definition 4.1).
4. Select an arbitrary e ∈ E .
5. Obtain the optimal solution x∗ by computing x(e) (The-

orem 4.2).

In Step 1, computing �i j costs mn operations. In Step 2,
checking the feasibility of the problem costs mn pairwise
comparisons. In Step 3, computing the index sets costs 2mn
operations, and finally each of Steps 4 and 5 costs mn oper-
ations. Therefore, it costs 6mn operations to carry out all the
steps of the algorithm, that is, the computational complexity
is obtained as O(mn).

5 Simplification techniques

In this section, five simplification techniques are presented
to accelerate the resolution of the problem. Throughout this
section, x∗ denotes an optimal solution for problem (1) and
f (x) denotes the objective function of problem (1); that is,
f (x) = ϕ(...(ϕ(ϕ(x1, x2), x3)..., xn).

Lemma 5.1 Suppose that J (i0) = { j0} for some i0 ∈ I and
j0 ∈ J . Also, Suppose that x(ai0 j0 , bi0) ≥ x(ai j0 , bi ), ∀i ∈
I ( j0). Then, x(e) j0 = x(ai0 j0 , bi0), ∀e ∈ E.

Proof Since for any e ∈ E , we have e(i0) ∈ J (i0) and by the
assumption, J (i0) is a singleton set, then e(i0) = j0, ∀e ∈ E .
Therefore, i0 ∈ I j0(e), ∀e ∈ E . Now, since I j0(e) 
= ∅, from
relation (2) we obtain x(e) j0 = maxi∈I j0 (e){x(ai j0 , bi )}. The
latter equality together with I j0(e) ⊆ I ( j0) (see Remark 2.4)
and the assumption x(ai0 j0 , bi0) ≥ x(ai j0 , bi ), ∀i ∈ I ( j0),
result in x(e) j0 = x(ai0 j0 , bi0). �

By Theorem 3.1 and Lemma 3.1, we know that x∗ ∈
SE (A, b). Hence, under the assumptions of Lemma 5.1, we
can set x∗

j0
= x(ai0 j0 , bi0). Therefore, since the j0th vari-

able of the optimal solution is known, we can remove this
variable from the problem by deleting its corresponding
coefficients, i.e., the j0th column of A. On the other hand,
x∗
j0

= x(ai0 j0 , bi0) means x∗
j0

∈ �i0 j0 = [
x(ai0 j0 , bi0), 1

]

that togetherwith Corollary 2.4 imply x∗ ∈ Si0(A, b). There-
fore, by assignment x∗

j0
= x(ai0 j0 , bi0), the i0th constraint of

the problem is always satisfied. Hence, we can remove this
constraint from the problem by deleting the i0th row of A and
bi0 .Moreover, let i ′ ∈ I ( j0) and i ′ 
= i0. Since x(ai0 j0 , bi0) ≥
x(ai j0 , bi ), ∀i ∈ I ( j0), then x(ai0 j0 , bi0) ≥ x(ai ′ j0 , bi ′) that
means x∗

j0
∈ �i ′ j0 = [

x(ai ′ j0 , bi ′), 1
]
. Therefore, Corollary

2.4 implies x∗ ∈ Si ′(A, b), i.e., x∗ also satisfies the i ′th con-
straint of the problem. Hence, we can remove this constraint
from the problem by deleting the i ′th row of A and bi ′ . The
above discussions are summarized in the following corollary.

Corollary 5.1 (First simplification technique). If there exist
i0 ∈ I and j0 ∈ J such that J (i0) = { j0} and x(ai0 j0 , bi0) ≥
x(ai j0 , bi ), ∀i ∈ I ( j0), then set x∗

j0
= x(ai0 j0 , bi0) and delete

the j0th column of A. Moreover, for each i ∈ I ( j0), delete
the i th row of A and component bi .

Definition 5.1 Let A′ψx ≥ b′ be a system resulted from
Aψx ≥ b by deleting the i th constraint aiψx = maxnj=1{ψ(ai j , x j )} ≥ bi . So, this constraint is called redundant if
S(A′, b′) = S(A, b), that is, each feasible solution to the
system A′ψx ≥ b′ also satisfies the constraint aiψx ≥ bi .

It is to be noted that from Theorem 2.2 we can find a sim-
pler condition for the identification of a redundant constraint.
Indeed, a constraint of Aψx ≥ b is redundant if each feasible
solution x(e) ∈ SE (A′, b′) also satisfies that constraint.

Lemma 5.2 Suppose that i1, i2 ∈ I such that J (i1) ⊆ J (i2)
and x(ai2 j , bi2) ≤ x(ai1 j , bi1), ∀ j ∈ J (i1). Then, i2th con-
straint is redundant.

Proof Let A′ψx ≥ b′ be a system resulted from Aψx ≥ b
by deleting the i2th constraint maxnj=1{ψ(ai2 j , x j )} ≥ bi2 .
In the new system A′ψx ≥ b′, consider an arbitrary e ∈ E
and suppose that e(i1) = j . Therefore, i1 ∈ I j (e) that
means I j (e) 
= ∅. Moreover, by Theorem 2.2, x(e) is a
feasible solution to A′ψx ≥ b′. On the other side, since
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j ∈ J (i1) and J (i1) ⊆ J (i2), then j ∈ J (i2) for the system
Aψx ≥ b. Now, due to the fact that I j (e) 
= ∅, by relation (2)
we obtain x(e) j = maxi∈I j (e){x(ai j , bi )} ≥ x(ai1 j , bi1) ≥
x(ai2 j , bi2), where the last inequality is resulted from the
assumption of the lemma. Therefore, x(e) j ≥ x(ai2 j , bi2),
whichmeans, x(e) j ∈ �i2 j = [

x(ai0 j0 , bi0), 1
]
.Now,Corol-

lary 2.4 implies x(e) ∈ Si2(A, b), that is, x(e) also satisfies
the i2th constraint of the primal system. �
Corollary 5.2 (Second simplification technique). If there
exist i1, i2 ∈ I such that J (i1) ⊆ J (i2) and x(ai2 j , bi2) ≤
x(ai1 j , bi1), ∀ j ∈ J (i1), then delete the i2th row of A and
bi2 .

Proof According to the assumptions and Lemma 5.2, i2th
row is a redundant constraint, and therefore it can be deleted
from the problem. �

Let x j1 and x j2 be two arbitrary variables of vector x .
Since each s-norm ϕ is both commutative and associative,
then the objective function of problem (1) can be equivalently
rewritten as follows:

f (x) = ϕ(...(ϕ(ϕ(x j1 , x j2), xk)..., xn). (3)

Lemma 5.3 Suppose that j1, j2 ∈ J such that I ( j2) ⊆ I ( j1)
and x(ai j1 , bi ) ≤ x(ai j2 , bi ), ∀i ∈ I ( j2). Then, x∗

j2
= 0.

Proof To prove the lemma, it is sufficient to show that a
solution x(e) with x(e) j2 > 0 cannot be an optimal solution.
It is to be noted that x(e) j2 > 0 implies I j2(e) 
= ∅, that is,
there exists at least one i ∈ I such that e(i) = j2. Based on
this vector e, define e′ ∈ E as follows:

e′(i) =
{
j1 e(i) = j2
e(i) e(i) 
= j2

,∀i ∈ I . (4)

According to (3), we have x(e′)k = x(e)k , ∀k ∈ J −{ j1, j2},
and x(e′) j2 = 0 < x(e) j2 . From the assumption of the
lemma and the fact that I j2(e) ⊆ I ( j2) (see Remark 2.4),
we have maxi∈I j2 (e){x(ai j1 , bi )} ≤ maxi∈I j2 (e){x(ai j2 , bi )}.
Now, from the latter inequality and relation (2), we obtain:

x(e′) j1 = max
i∈I j1 (e′)

{x(ai j1 , bi )}
= max{ max

i∈I j1 (e)
{x(ai j1 , bi )}, max

i∈I j2 (e)
{x(ai j1 , bi )}}

≤ max{x(e) j1 ,max
i∈I j2

(e){x(ai j2 , bi )}}
= max{x(e) j1 , x(e) j2}
≤ ϕ(x(e) j1, x(e) j2). (5)

where the last inequality is resulted from the fact that
max{x, y} ≤ ϕ(x, y) for any s-norm ϕ. Consequently, from

(5) we have:

x(e′) j1 ≤ ϕ(x(e) j1 , x(e) j2). (6)

Thus, by the equalities x(e′) j2 = 0 and ϕ(0, x(e′) j1) =
x(e′) j1 (resulted from the identity law of s-norms), it follows
that ϕ(x(e′) j1, x(e′) j2) = ϕ(x(e′) j1 , 0) = x(e′) j1 which
together with (6) imply:

ϕ(x(e′) j1, x(e′) j2) ≤ ϕ(x(e) j1 , x(e) j2). (7)

Now, since x(e′)k = x(e)k (∀k ∈ J − { j1, j2}), from (3)
and (7) and the monotonicity property of s-norms, we obtain
f (x(e′)) ≤ f (x(e)); that is, x(e) is not an optimal solution.

�
Corollary 5.3 (Third simplification technique). If there exist
j1, j2 ∈ J such that I ( j2) ⊆ I ( j1) and x(ai j1 , bi ) ≤
x(ai j2 , bi ), ∀i ∈ I ( j2), then set x∗

j2
= 0 and delete the j2th

column of A.

Proof From the assumptions and Lemma 5.3, x∗
j2

= 0 and
then we can consequently delete the j2th column of A. �
Lemma 5.4 Suppose that x0 is an arbitrary feasible solution
to problem (1) with the objective value f (x0). Also, suppose
x(ai0 j0 , bi0) ≥ f (x0) for some i0 ∈ I and j0 ∈ J (i0). Then,
for each e ∈ E such that e(i0) = j0, the corresponding
solution x(e) is not an optimal solution.

Proof Let e ∈ E such that e(i0) = j0 and suppose that x(e)
is generated by relation (2). Define x ′ ∈ [0, 1]n such that
x ′
j0

= x(ai0 j0 , bi0) and x
′
j = 0, ∀ j ∈ J −{ j0}. So, according

to relation (2), we have x ′
j ≤ x(e) j , ∀ j ∈ J . Hence, based

on the monotonicity law of s-norms, f (x ′) ≤ f (x(e)). On
the other hand, from the identity law of s-norms, we obtain:

f (x ′) = ϕ(...ϕ(...(ϕ(ϕ(0, 0), 0)..., x(ai0 j0 , bi0), ..., 0)

= x(ai0 j0 , bi0) ≥ f (x0)

that is, f (x ′) ≥ f (x0). Consequently, the inequalities
f (x ′) ≥ f (x0) and f (x ′) ≤ f (x(e)) imply f (x(e)) ≥
f (x0), where x0 is a feasible solution to the problem. This
completes the proof. �
Corollary 5.4 (Fourth simplification technique). Let x0 be
an arbitrary initial feasible solution of the problem. If
x(ai0 j0 , bi0) ≥ f (x0) for some i0 ∈ I and j0 ∈ J (i0), then
delete j0 from J (i0).

Proof FromLemma 5.4, for each e ∈ E such that e(i0) = j0,
the corresponding solution x(e) is not an optimal solution.
So, we can delete such points by removing j0 from J (i0). �
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Remark 5.1 In Corollary 5.4, by deleting j0 from J (i0),
the cardinality of SE (A, b) is reduced from

∏
i∈I |J (i)| to

|J (i0)−1|.∏i∈I−{i0} |J (i)|. Moreover, according to Lemma
2.1 and Definition 2.2, the deletion of j0 from J (i0) can be
equivalently accomplished by assigning an arbitrary value
from [0, bi0) to ai0 j0 , e.g., ai0 j0 = 0, or by setting �i0 j0 = ∅.
Remark 5.2 As a general method in Corollary 5.4, we can
consider x0 = x(e0) as an initial feasible solution where
x(e0) is obtained by relation (2) for any arbitrary e0 ∈ E as
defined in Definition 4.1.

Lemma 5.5 Suppose that I ( j0) = ∅ for some j0 ∈ J . Then,
x(e) j = 0, ∀x(e) ∈ SE (A, b).

Proof Since I j0(e) ⊆ I ( j0) (see Remark 2.4), ∀e ∈ E , then
we have I j0(e) = ∅, ∀e ∈ E . Now, the result directly follows
from relation (2). �
Corollary 5.5 (Fifth simplification technique). If there exist
j0 ∈ J such that I ( j0) = ∅, then set x∗

j0
= 0 and delete the

j0th column of A.

Proof From the assumptions and Lemma 5.5, x∗
j0

= 0 and
then we can consequently delete the j0th column of A. �

Now, we summarize the preceding discussion as an algo-
rithm.

Algorithm 5.1 (Accelerated method)
Given problem (1):

1. Compute �i j for each i ∈ I and j ∈ J (Lemma 2.1).
2. If there exists some i ∈ I such that �i j = ∅, ∀ j ∈ J ,

then stop; S(A, b) is empty (Remark 2.3).
3. Compute J (i), ∀i ∈ I (Definition 2.2).
4. Apply the simplification techniques (Corollaries 5.1-5.5)

to determine the values of decision variables as many as
possible. Denote the remaining problem by A′ψx ≥ b′.

5. Compute solutions x(e) ∈ SE (A′, b′), ∀e ∈ E (Defini-
tions 2.3 and 2.4).

6. Find minimal solutions by pairwise comparison between
vectors x(e) (Lemma 3.1).

7. Select the optimal solution x∗ from the set S(A′, b′)
(Lemma 3 and Theorem 4).

Steps 5 and 6 provide all the minimal solutions of the fea-
sible region that is equivalent to the complete resolution of
the feasible solution set (Theorem2.2).However, as it iswell-
known in FRE (FRI) theory, the complete resolution of FREs
(FRIs) has a high computational complexity in the sense that
each minimal solution corresponds to an irredundant cover-
ing (in terms of the covering problem). Therefore, although
the above algorithm accelerates the resolution of the problem
by taking advantage of the five simplification techniques and
discarding some non-minimal solutions, it should be noted

that the number of minimal solutions may also grow expo-
nentially in terms of the problem size. Consequently, finding
other simplification rules or providing some methods (such
as appropriate branch-and-bound techniques) that can reach
the optimal solution by examining a smaller number of min-
imal (candidate) solutions is always in demand.

6 Numerical example and application

Consider a type of wireless communication management
models in which the information is transmitted by the elec-
tromagnetic wave (Yang et al. 2016a). The electromagnetic
wave is emitted from some fixed emission base stations
(EBSs), A1, A2, ..., An . The j th EBS will emit electromag-
netic waves with radiation intensity x j > 0, j = 1, 2, ..., n.
The sum of the intensities is restricted by the maximum
allowable emissions limits for EBSs, so that,

∑n
j=1 x j can-

not exceed L units. On the other hand, the communication
quality level is determined by the intensity of electromag-
netic radiation. To satisfy the requirement of communication
quality level, m testing points, B1, B2..., Bm are selected
to test the intensity of electromagnetic radiation. In the
cell phone network, places with higher population density
are considered as the testing points. Let Bi denote the i th
testing point and ri j denote the intensity of electromag-
netic radiation emitted from A j . So, ri j ∈ [0, x j ] where
i ∈ I = {1, ...,m}, and j ∈ J = {1, ..., n}. Since ri j is
related to the distance between Bi and A j , there exists a
positive real number ki j such that ri j = ki j x j . Therefore,
the intensity of electromagnetic radiation at Bi is attained by
maxnj=1{ri j } = maxnj=1{ki j x j }. Suppose the least require-
ment of communication quality level at Bi is Li , ∀i ∈ I .
So, we have maxnj=1{ki j x j } ≥ Li , ∀i ∈ I . By normalizing
the variables and parameters into the unit interval [0, 1], we
get maxnj=1{ai j x j } ≥ bi , where ai j ∈ [0, 1] (∀i ∈ I and
∀ j ∈ J ), bi ∈ [0, 1] (∀i ∈ I ) and

∑n
j=1 x j ≤ 1. Although

high radiation intensity ensures good communication qual-
ity, it harms human health at the same time. For this reason,
the objective function is f (x) = min{∑n

j=1 x j , 1}. Hence,
the wireless communication EBS model is reduced into the
problem (1) in which ϕ andψ are defined by the Lukasiewicz
s-norm and the product t-norm, respectively.

Example 6.1 Consider the optimization problem (1) in which
the feasible region has been randomly generated by the fol-
lowing A and b.

A =

⎡

⎢
⎢
⎢
⎢
⎣

0.8147 0.0975 0.1598 0.4899 0.0557 0.1598 0.1789
0.0084 0.1723 0.0456 0.0217 0.0456 0.0456 0.0318
0.2473 0.3468 0.0473 0.9157 0.2491 0.3022 0.3473
0.1134 0.0575 0.2094 0.7922 0.9339 0.8554 0.0094
0.9323 0.9998 0.2847 0.1594 0.1787 0.0711 0.0847

⎤

⎥
⎥
⎥
⎥
⎦
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bT = [0.1598, 0.0456, 0.3473, 0.0094, 0.2601]

Also, ϕ is the Lukasiewicz s-norm and ψ is the product t-
norm, i.e., ϕ(x, y) = min{x + y, 1} and ψ(x, y) = xy. The
steps of Algorithm 5.1 are as follows:

Step 1. Based on Lemma 2.1, it is easily verified that closed
intervals �i j are obtained as follows:

�i j =

⎧
⎪⎨

⎪⎩

∅ ai j < bi
[bi/ai j , 1] ai j ≥ bi > 0

[0, 1] ai j ≥ bi = 0

These intervals are summarized in matrix � = (�i j )5×7,
where �i j = [x(ai j , bi ), 1]:

� =

⎡

⎢
⎢
⎢
⎢
⎣

[0.1961, 1] ∅ {1} [0.3262, 1] ∅ {1} [0.8932, 1]
∅ [0.2646, 1] {1} ∅ {1} {1} ∅
∅ ∅ ∅ [0.3793, 1] ∅ ∅ {1}

[0.0829, 1] [0.1635, 1] [0.0449, 1] [0.0119, 1] [0.0101, 1] [0.0110, 1] {1}
[0.2790, 1] [0.2601, 1] [0.9136, 1] ∅ ∅ ∅ ∅

⎤

⎥
⎥
⎥
⎥
⎦

Step 2. From Remark 2.3, the necessary and sufficient condi-
tion holds for the feasibility of the problem. More precisely,
we have

Aψ1 = [0.8147, 0.9058, 0.9157, 0.9339, 0.9323]T ≥ bT

that means 1 ∈ S(A, b) (see Remark 2.2).
Step 3. By Definition 2.2, J (1) = {1, 3, 4, 6, 7}, J (2) =
{2, 3, 5, 6}, J (3) = {4, 7}, J (4) = {1, ..., 7}, and J (5) =
{1, 2, 3}.
Also, for example, the minimal solutions of S3(A, b) are
attained as x(1, 4) = [0, 0, 0, 0.3793, 0, 0, 0] and x(1, 7) =
[0, 0, 0, 0, 0, 0, 1] (Definition 2.2). Thus, by Theorem 2.1,
S3(A, b) = [x(1, 4), 1] ∪ [x(1, 7), 1].

In this example, we have |E | = ∏5
i=1 |J (i)| = 840.

Therefore, according to Definitions 2.3 and 2.4, the num-
ber of all vectors x(e) (e ∈ E) is equal to 840. However,
each feasible solution x(e) (e ∈ E) is not a minimal
solution for the problem. For example, by selecting e′ =
[1, 2, 7, 6, 3], the corresponding solution is obtained as
x(e′) = [0.1961, 0.2646, 0.9136, 0, 0, 0.011, 1]. Although
x(e′) is feasible, but it is not aminimal solution.To see this, let
e′′ = [7, 2, 7, 2, 2]. Then, x(e′′) = [0, 0.2646, 0, 0, 0, 0, 1].
Obviously, x(e′′) ≤ x(e′) which shows that x(e′) is not a
minimal solution.

ByDefinition 4.1, x(1) = 0.1961, x(2) = 0.2646, x(3) =
0.3793, x(4) = 0.0101, and x(5) = 0.2601. Also, J (1) =
{1}, J (2) = {2}, J (3) = {4}, J (4) = {5}, and J (5) =
{2}. So, E includes only one element e0 = [1, 2, 4, 5, 2]
whose corresponding solution is obtained by relation (2)

as x(e0) = [0.1961, 0.2646, 0, 0.3793, 0.0101, 0, 0]. If the
objective function is defined by the maximum s-norm, then
from Theorem 4.2, x(e0) is the unique optimal solution (the
uniqueness is resulted from |E | = 1). However, in this exam-
ple where ϕ is the Lukasiewicz s-norm, we may consider
x(e0) as an initial feasible solution with the objective value
f (x(e0)) = 0.8501 (see Remark 5.2).

Step 4. By considering columns 4 and 7 of matrix A (and
the corresponding columns in matrix �), it follows that
{1, 3, 4} = I (7) ⊆ I (4) = {1, 3, 4}, 0.3262 = x(a14, b1) ≤
x(a17, b1) = 0.8932, and0.3793 = x(a34, b3) ≤ x(a37, b3) =
1, that is, x(ai4, bi ) ≤ x(ai7, bi ), ∀i ∈ I (7). So, by apply-
ing the third simplification technique (Corollary 5.3), we set
x∗
7 = 0 and delete column 7 in matrices A and�. After dele-
tion, the reduced matrices A′ = (a′

i j )5×6 and� ′ = (� ′
i j )5×6

are obtained as follows:

A′ =

⎡

⎢
⎢
⎢
⎢
⎣

0.8147 0.0975 0.1598 0.4899 0.0557 0.1598
0.0084 0.1723 0.0456 0.0217 0.0456 0.0456
0.2473 0.3468 0.0473 0.9157 0.2491 0.3022
0.1134 0.0575 0.2094 0.7922 0.9339 0.8554
0.9323 0.9998 0.2847 0.1594 0.1787 0.0711

⎤

⎥
⎥
⎥
⎥
⎦

� ′ =

⎡

⎢
⎢
⎢
⎢
⎣

[0.1961, 1] ∅ {1} [0.3262, 1] ∅ {1}
∅ [0.2646, 1] {1} ∅ {1} {1}
∅ ∅ ∅ [0.3793, 1] ∅ ∅

[0.0829, 1] [0.1635, 1] [0.0449, 1] [0.0119, 1] [0.0101, 1] [0.0110, 1]
[0.2790, 1] [0.2601, 1] [0.9136, 1] ∅ ∅ ∅

⎤

⎥
⎥
⎥
⎥
⎦
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The reducedmatrices A′ and� are equivalent to five inequal-
ities (constraints) with six variables. As is clear from the
matrix � ′, by deleting column 7, the set J (3) = {4, 7} is
reduced to J (3) = {4}, that is, a singleton set. Also, I (4) =
{1, 3, 4} and we have 0.3793 = x(a34, b3) ≥ x(a14, b1) =
0.3262, and 0.3793 = x(a34, b3) ≥ x(a44, b4) = 0.0119,
i.e., x(a34, b3) ≥ x(ai4, bi ), ∀i ∈ I (4). Therefore, by apply-
ing the first simplification technique (Corollary 5.1), we set
x∗
4 = x(a34, b3) = 0.3793, and delete column 4 and rows 1,
3, and 4 of matrices A′ and � ′, and b1, b3, and b4. Hence,
the new reduced matrices A′ and � ′ become

A′ =
[
0.0084 0.1723 0.0456 0.0456 0.0456
0.9323 0.9998 0.2847 0.1787 0.0711

]

� ′ =
[ ∅ [0.2646, 1] {1} {1} {1}
[0.2790, 1] [0.2601, 1] [0.9136, 1] ∅ ∅

]

It is to be noted that the first and second rows of the matrices
A′ and � ′ correspond to the second and fifth rows of the
primal matrices A and �, respectively. Also, the columns
4 and 5 in the reduced matrices correspond to the columns
5 and 6 in the primal matrices, respectively. In the current
matrix � ′ = (� ′

i j )2×5, we have x(a′
13, b

′
1) = x(a′

14, b
′
1) =

x(a′
15, b

′
1) = 1 ≥ 0.8501 = f (x(e0)) and x(a′

23, b
′
2) =

0.9136 ≥ 0.8501 = f (x(e0)), where x(e0) is the initial
feasible solution obtained at Step 6. Hence, by applying the
fourth simplification technique (Corollary 5.4), we set a′

13 =
a′
14 = a′

15 = a′
23 = 0 and � ′

13 = � ′
14 = � ′

15 = � ′
23 = ∅

(see Remark 5.1). The new matrices A′ and � ′ are attained
as follows:

A′ =
[
0.0084 0.1723 0 0 0
0.9323 0.9998 0 0.1787 0.0711

]

� ′ =
[ ∅ [0.2646, 1] ∅ ∅ ∅
[0.2790, 1] [0.2601, 1] ∅ ∅ ∅

]

Since {2} = J (1) ⊆ J (2) = {1, 2} and 0.2601 =
x(a′

22, b
′
2) ≤ x(a′

12, b
′
1) = 0.2646, i.e., x(a′

2 j , b
′
2) ≤

x(a′
1 j , b

′
1), ∀ j ∈ J (1), then the second row of the matri-

ces A′ and � ′ (i.e., the fifth row in A and �) and b′
2 (i.e., b5

in themain problem) are deleted by the second simplification
technique (Corollary 5.2). So, we have the following reduced
matrices:

A′ = [0.0084, 0.1723, 0, 0, 0]
� ′ = [∅, [0.2646, 1],∅,∅,∅]

Finally, since in the matrices A′ = (a′
i j )1×5 and � ′ =

(� ′
i j )1×5 we have I (1) = I (3) = I (4) = I (5) = ∅, then

we can delete columns 1, 3, 4, and 5 by the fifth simplifica-
tion technique (Corollary 5.5) to obtain the following new
reduced matrices:

A′ = [0.1723]1×1

� ′ = [[0.2646, 1]]1×1

As mentioned before, the columns 4 and 5 of the matrix A′
correspond to the columns 5 and 6 of the main matrix A,
respectively. So, by the fifth simplification technique, we set
x∗
1 = x∗

3 = x∗
5 = x∗

6 = 0.
Step 5. 6. 7. After applying the simplification techniques, the
problem is reduced to A′ψx ≥ b′ where A′ is a 1 × 1
matrix with one entry corresponding to the entry (2, 2) in
A. In the matrix A′, the set E includes only one element
e = [1] with corresponding solution x(e) = [0.2646]
that is the unique element of SE (A′, b′). Therefore, x(e) =
0.2646 is clearly the unique optimal solution to the problem
A′ψx ≥ b′. Hence, x∗

2 = 0.2646, and finally the opti-
mal solution of the primal problem is obtained as x∗ =
[x∗

1 , x
∗
2 , x

∗
3 , x

∗
4 , x

∗
5 , x

∗
6 , x

∗
7 ] = [0, 0.2646, 0, 0.3793, 0, 0, 0]

with the objective value of f (x∗) = 0.64393.

7 Conclusion

In this paper, we introduced a generalization of the latti-
cized optimization problem. The proposed model consists
of a non-linear objective function defined by any continuous
s-norm and a set of constraints in the form of a system of
fuzzy relational inequalities defined by an arbitrary continu-
ous t-norm. Feasible solution sets for such continuous FRIs
were completely resolved. Moreover, two necessary and suf-
ficient conditions were presented to determine the feasibility
of the problem. Based on the theoretical results, an algo-
rithm was presented for finding the exact optimal solutions
of the proposed non-linear optimization model. In contrast
to FRI optimization problems with the linear objective func-
tions, analytical results revealed that the maximum solution
does not contain useful information for obtaining an optimal
solution. Theorem 3.1 indicated that an optimal solution is
one of the minimal solutions of the continuous FRI. How-
ever, finding all the minimal solutions is usually NP-hard
work. To avoid this NP-hard problem, an alternative strat-
egy was adopted in this paper; five simplification techniques
were developed to pre-assign values to asmany decision vari-
ables as possible. Consequently, problem size was quickly
reduced. In addition, we discussed a special case of the non-
linear model in which the objective function was defined by
the Lukasiewicz s-norm, and the feasible region was formed
as a continuous FRI with max-product composition. This
model was used in a type of wireless communication man-
agement problem. Furthermore, a polynomial-time method
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was presented for solving the latticized linear programming
problems subjected to FRI defined by an arbitrary continuous
t-norm. These problems unified several interesting properties
of the latticized linear programming problems with max–
min and max-product type (used by Yang et. al.) through
the framework of the max−ϕ composition with ϕ as a con-
tinuous t-norm. As future works, we aim at developing the
current model defined by different t-norms and s-norms to
other applications.
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