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Abstract
This study proposes a hybrid multi-objective meta-heuristics and possibilistic intuitionistic fuzzy c-means (PIFCM)

algorithms for cluster analysis. The PIFCM algorithms combine Atanassov’s intuitionistic fuzzy sets (IFSs) with possi-

bilistic fuzzy c-means (PFCM) algorithms. In this study, three metaheuristic algorithms are used to improve the clustering

results, specifically a genetic algorithm (GA), a particle swarm optimization (PSO) algorithm, and a gradient evolution

(GE) algorithm. Therefore, three clustering algorithms are proposed, including multi-objective GA-based PIFCM

(MOGA–PIFCM), multi-objective PSO-based PIFCM (MOPSO–PIFCM), and multi-objective GE-based PIFCM (MOGE–

PIFCM). Their performance results are compared with those of other clustering algorithms, such as intuitionistic fuzzy c-

means (IFCM) algorithm, possibilistic intuitionistic fuzzy c-means (PIFCM) algorithm, single-objective GA–PIFCM

algorithm, single-objective PSO–PIFCM algorithm, and single-objective GE–PIFCM algorithm using 15 benchmark

datasets. Adjusted Rand Index and accuracy measures are employed as performance indices for comparison. Experiment

results shows that the MOGE–PIFCM obtains better solutions than the other clustering algorithms in terms of all per-

formance validation indices.

Keywords Cluster analysis � Meta-heuristics � Genetic algorithm � Particle swarm optimization algorithm �
Gradient evolution algorithm � Intuitionistic fuzzy sets � Possibilistic fuzzy c-means algorithm � Multiple objectives

Abbreviations
FCM Fuzzy c-means

IFS Intuitionistic fuzzy sets

IFCM Intuitionistic fuzzy c-means

PFCM Possibilistic fuzzy c-means

PIFCM Possibilistic intuitionistic fuzzy c-means

GA Genetic algorithm

PSO Particle swarm optimization

GE Gradient evolution

MOGA–

PIFCM

Multi-objective genetic algorithm-based

PIFCM

MOPSO–

PIFCM

Multi-objective particle swarm optimiza-

tion-based PIFCM

MOGE–

PIFCM

Multi-objective gradient evolution-based

PIFCM

p Global cluster compactness

Sep Fuzzy separation

ARI Adjusted Rand Index

1 Introduction

Clustering analysis can be used to explore the structure of

data to understand the characteristics of that data for many

practical issues. Therefore, clustering analysis has been

applied in many different fields such as customer seg-

mentation in marketing (Kuo et al. 2002), bill of material

clustering in manufacturing industries (Agard and Penz

2009), and characteristic clustering in various fields
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(Kahali et al. 2019; Kannan et al. 2017; Milligan and Sokol

1980). Many different clustering algorithms have been

proposed to date, including the K-means algorithm (Mac-

Queen 1967), the fuzzy c-means (FCM) algorithm (Bezdek

1981; Dunn 1973), the fuzzy K-prototype algorithm (Ji

et al. 2012), and so on. Each algorithm has its own pros and

cons, making each appropriate for application in certain

cases.

The FCM algorithm is one of the most popular cluster

analysis methods. In most databases, an uncertainty com-

monly exists. To deal with uncertainty and hesitation,

fuzzy sets and intuitionistic fuzzy sets (IFS) were proposed

by Zadeh (1965) and Atanassov (1986), respectively. IFS

deal with the uncertainty and hesitation which commonly

occur in human thinking. Thus, the intuitionistic fuzzy c-

means (IFCM) algorithm was proposed and extended for

clustering interval-valued datasets (Xu and Wu 2010). The

IFCM algorithm has been proven to achieve better per-

formance than the FCM algorithm (Chaira 2011; Lin

2014).

In addition, the possibilistic fuzzy c-means (PFCM)

algorithm is also an improvement of the FCM algorithm,

which simultaneously calculates memberships and possi-

bilities (Pal et al. 2005). The PFCM algorithm overcomes

the problems of noise and coincident clusters. The algo-

rithm is interesting and provides a good solution. However,

the PFCM algorithm still has a drawback of sensitivity to

the initialization. Moreover, the PFCM classifies the

unlabeled dataset according to feature vectors without take

into account the qualitative information. Therefore, it may

lead to an incorrect assignment of membership (typicality)

values to their clusters during the clustering process

(Verma and Agrawal 2015).

Motivated by the contributions of the IFS, and the

potential of the PFCM algorithm, this study proposes a

possibilistic intuitionistic fuzzy c-means (PIFCM) algo-

rithm, which combines both IFS and possibility concepts,

to address the improper assignment of membership and

typicality values to their clusters.

To improve clustering results and overcome the draw-

back of initialization sensitivity, multi-objective fuzzy

clustering algorithms, which combine meta-heuristic

algorithms and the proposed PIFCM algorithm, are also

developed to consider multi-objective functions simulta-

neously. Numerous multi-objective fuzzy clustering algo-

rithms have been proposed. Nguyen and Kuo (2019)

combined Non-Dominated Sorting Particle Swarm Opti-

mization to fuzzy clustering for categorical data in which

global cluster compactness and fuzzy separation are the

two objective functions. Kuo et al. (2022) proposed a

framework of sequential clustering and classification that

combined deep learning technique and multi-objective

sine–cosine algorithm to explore the structure of data.

Belhor et al. (2023) combined the Strength Pareto Evolu-

tionary Algorithm (SPEA2) and Non-dominated Sorting

Genetic Algorithm (NSGA-II) with k-means clustering and

applied it to the routing and scheduling of home health

care. Besides, multiple multi-objective fuzzy clustering

algorithm have been developed and applied for image

segmentation (Singh et al. 2022; Singh and Muchahari

2023; Zhao et al. 2022a, 2022b).

In this study, three metaheuristic algorithms are

employed, i.e., genetic algorithm (GA), particle swarm

optimization (PSO) algorithm, and gradient evolution (GE)

algorithm. GA is a heuristic search algorithm inspired by

the theory of evolutionary genetics. Generally, GA is used

to generate high-quality solutions to optimization and

search problems by mutation, crossover and selection

processes. Similarly, PSO algorithms are also an evolu-

tionary method that try to look for an optimal solution by

moving all the particles in a population around a search

space. At every move, the position and velocity of the

particles are updated. The best-known position of each step

is found. The particles will move toward the best solutions.

Correspondingly, GE is a new meta-heuristic optimization

algorithm inspired by the gradient-based search technique.

GE algorithm consists of three operators, namely vector

updating, jumping, and refreshing, which are updated

based on a gradient theorem. GE provides a promising

result compared with those of other meta-heuristic methods

such as PSO or differential evolution (Kuo and Zulvia

2015).

The proposed algorithms integrate several meta-heuris-

tic approaches with the PIFCM algorithm. Herein, three

meta-heuristic algorithms, i.e., GA, PSO, and GE are

employed. First, the PIFCM algorithm is implemented.

Thereafter, the clustering result (the cluster centroids) is

used as the initial population of the meta-heuristic algo-

rithms. Moreover, multi-objective optimization, which uses

global cluster compactness (p), and 2) fuzzy separation

(Sep) as two objective functions, is applied to balance the

clustering result. Thus, these combinations form three

multi-objective evolutionary methods with the PIFCM

algorithms, i.e., multi-objective genetic algorithm-based

PIFCM (MOGA–PIFCM), multi-objective particle swarm

optimization-based PIFCM (MOPSO–PIFCM), and multi-

objective gradient evolution-based PIFCM (MOGE–

PIFCM). The proposed algorithms are expected to improve

the quality of clustering performance.

The remainder of this paper is organized as follows.

Section 2 presents the related literature survey. Section 3

describes the proposed clustering algorithm, while the

model evaluation results are illustrated in Sect. 4. Finally,

concluding remakes are made in Sect. 5.
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2 Literature review

This section provides some concepts related to data clus-

tering, which include several clustering algorithms. More-

over, some metaheuristic approaches for both single-

objective optimization and multi-objective optimization are

also reviewed.

2.1 Fuzzy c-means algorithm

Fuzzy sets are like sets whose elements have degrees of

membership, and were proposed to deal with vagueness

and uncertainty (Zadeh 1965). The fuzzy set theory allows

one piece of data to belong to two or more clusters. This

represents the similarity of a point shared with each cluster

with a membership function whose values are between zero

and one (Dunn 1973; Tan 2006; Zadeh 1965).

FCM is one of the most popular clustering algorithms.

The FCM algorithm was developed by Dunn (1973) to

detect well-separated clusters, and was improved by Bez-

dek (1981) to solve the clustering problem. The algorithm

can be described as follows. Given a dataset of n data

instancces X ¼ fx1; x2; . . .; xng and c clusters

V ¼ fv1; v2; . . .; vcg, the FCM algorithm partitions X into c

fuzzy clusters, forming a fuzzy partition in data instances.

A fuzzy partition can be conveniently represented as a

matrix U = ½uij�n�c whose elements uij 2 ½0; 1� are the

membership degree of data instances xi in clustervj. The

sum of uij for a data instance xi on c clusters should be

equal 1. These two constraints are presented in the fol-

lowing equations:

0� uij � 1i ¼ 1; 2; . . .; nj ¼ 1; 2; . . .; c; ð1Þ
Xc

j¼1

uij ¼ 1i ¼ 1; 2; . . .n: ð2Þ

The FCM minimizes the distance-based objective

function which is defined as follows:

J ¼
Xn

i¼1

Xc

j¼1

uij
� �m � dij

2ðxi; vjÞ; ð3Þ

where m is a weighting exponent ðm 2 ½1;þ1Þ that con-

trol the influence of membership degree, dijðxi; vjÞ is the

Euclidean distance between xi and cluster centervj. Sup-

pose that the given dataset contains p attributes. A data

instance xi and a cluster center vj are presented as xi ¼
x1i; x2i; . . .; xpi
� �

and vj ¼ v1j; v2j; . . .; vpj
� �

; respectively.

The distance dijðxi; vjÞ is calculated as follows:

dijðxi; vjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xp

a¼1

ðxia � vjaÞ2;

s

ð4Þ

where xia is the ath attribute value of data instance xi, and

vja is the ath attribute value of cluster center vj,

a ¼ 1; 2; . . .; p:

To minimize J, membership uij and the centers of cluster

vj are updated as:

uij
ðtþ1Þ ¼ 1

Pc
k¼1

dijðxi;vjÞ
dijðxi;vkÞ

� � 2
m�1

and ð5Þ

vj ¼
Pn

i¼1 uij
� �m

xiPn
i¼1 uij
� �m j ¼ 1; 2; . . .; c: ð6Þ

This iteration will stop when Jðtþ1Þ � J tð Þ		 		� e, where e
is a termination condition, whereas t is the iteration step.

The FCM algorithm does, however, have some draw-

backs, i.e., its sensitivity to the initialization, and its sen-

sitivity to noise and outlier data.

2.2 Intuitionistic fuzzy c-means algorithm

This section describes intuitionistic fuzzy theory and the

intuitionistic fuzzy c-means (IFCM) algorithm.

2.2.1 Intuitionistic fuzzy theory

Intuitionistic fuzzy set (IFS) theory was proposed by Ata-

nassov (1986) to handle uncertainty. Intuitionistic fuzzy

sets extend Zadeh’s fuzzy sets and consider both mem-

bership and non-membership.

An IFS, A, in a fixed set, E, is an objective of the

expression. The model of intuitionistic fuzzy sets is defined

by Atanassov (1989) as:

A ¼ x; uA xð Þ; vAðxÞjx 2 Ef g; ð7Þ

where the function uA xð Þ ! 0; 1½ � denotes the membership;

and vAðxÞ ! 0; 1½ � denotes the non-membership degree of

the element in set A.

When uA xð Þ þ vA xð Þ ¼ 1 for every x 2 E, then the IFS

becomes a fuzzy set. For all IFS, Atanassov also considers

a hesitation degree, pA xð Þ. Therefore, the IFS function is

defined as:

pA xð Þ ¼ 1 � uA xð Þ � vA xð Þ; 0� pA xð Þ� 1: ð8Þ

With regard to intuitionistic fuzzy sets, Yager proposed

an intuitionistic fuzzy generator by defining the comple-

ment of an intuitionistic fuzzy set (Burillo and Bustince

1996). Hence, an intuitionistic fuzzy complement with

Yager-generating functions can be written as:

N xð Þ ¼ 1 � xað Þ1=a; a[ 0 where N 0ð Þ ¼ 1 and
N 1ð Þ ¼ 0;

ð9Þ
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where a is the parameter in Yager-generating functions, for

each value of parameter a [ (0,!).

With the help of Yager’s intuitionistic fuzzy compli-

ment, the intuitionistic fuzzy set becomes:

A ¼ x; uA xð Þ; 1 � uA xð Það Þ1=ajx 2 E
n o

ð10Þ

and the hesitation degree is:

pA xð Þ ¼ 1 � uA xð Þ � 1 � uA xð Það Þ1=a: ð11Þ

2.2.2 Intuitionistic fuzzy c-means algorithm

To integrate intuitionistic fuzzy theory into a conventional

FCM algorithm, the intuitionistic fuzzy membership values

are obtained as:

uij
� ¼ uij þ pij; ð12Þ

where uij
�ðuijÞ denotes the intuitionistic (conventional)

fuzzy membership degree of the data point i in cluster j.

The cluster center of the IFCM is updated as:

vj
� ¼

Pn
i¼1 uij

�� �
xiPn

i¼1 uij�
� � j ¼ 1; 2; . . .; c: ð13Þ

Using Eq. (13), the cluster center and the degree of

membership matrix are updated simultaneously. The IFCM

optimizes the objective function by continuously updating

the membership functions and centers of clusters until

stopping criteria e is satisfied.

The IFCM algorithm can deal with uncertainty and

vagueness; however, it cannot solve the problems of clus-

tering noise and outlier data.

2.3 Possibilistic fuzzy c-means algorithm

Possibilistic fuzzy c-means (PFCM) is an improvement of

FCM which calculates memberships and possibilities

simultaneously (Pal et al. 2005). PFCM can overcome the

sensitivity to noise and outlier data of the FCM algorithm.

Moreover, the drawback of coincident cluster problems is

also solved in the PFCM algorithm. PFCM has a parameter

which controls the influence of outliers on centroids.

Therefore, the clustering results are expected to be more

compact. PFCM introduces the typicality of data xi with

respect to cluster vj, notated by tij. The objective function

of PFCM is defined in the following equation as:

J ¼
Xn

i¼1

Xc

j¼1

aumij þ btgij

� �
dijðxi; vjÞ2: ð14Þ

Here, tij and vj are calculated based on Eqs. (15) and

(16), respectively, as follows:

tij ¼
1

1 þ b
cj
d xi; vj

 �2

� � 1
ðg�1Þ

and ð15Þ

vj ¼
Pn

i¼1 aumij þ btgij

� �
xi

Pn
i¼1 aumij þ btgij

� � : ð16Þ

The sum of all of a cluster center’s tij vlaues should be 1:

0� tij � 1i ¼ 1; 2; . . .; nj ¼ 1; 2; . . .; c; ð17Þ
Xn

i¼1

tij ¼ 1j ¼ 1; 2; . . .c; ð18Þ

where a and b are parameters defining the relative impor-

tance of fuzzy membership and typicality values. If a[ b,

then the centroids have a higher influence than the mem-

bership values. Therefore, to reduce the effect of the out-

liers, the value of b should be higher than a. g is a real

number that governs the influence of typicality values, and

g[1. In addition, cj[0 is defined as:

cj ¼ K

Pn
i¼1u

m
ij � dijðxi; vjÞ2

Pn
i¼1u

m
ij

; ð19Þ

where K[ 0, and the most common is K = 1.

The PFCM algorithm has been applied in many areas.

Verma and Agrawal (2015) proposed an algorithm inte-

grating Atanassov’s IFS and the PFCM algorithm, used in

the segmentation of human brain images. Emary et al.

combined a cuckoo search algorithm with the PFCM

algorithm for retinal vessel segmentation (Emary et al.

2014). Ji et al. (Ji et al. 2011) proposed a modified PFCM

algorithm which employed the novel adaptive method to

deal with intensity inhomogeneities and noise for

brain magnetic resonance (MR) image segmentation.

Similarly, Aparajeeta et al. also extended the PFCM

algorithm for MR image segmentation with a bias field (Ji

et al. 2011). Sarkar et al. developed a Rough Possibilistic

Type-2 Fuzzy C-Means clustering to cluster MR images

with overlapping areas (Sarkar et al. 2016). Recently,

Memon et al. combined PFCM with kernel function and

local information for image segmentation (Memon et al.

2019). Chen et al. (2021) improved the PFCM performance

by considering weight component to assign membership

and typicality. Wu and Zhang (2022) proposed an iterative

weighted PFCM that not only adopted the principle of

maximum entropy construct a new objective function and

redesigned the weight coefficient but also determined the

optimal number of clusters. Wu and Peng (2023) combined

PFCM with type-2 fuzzy set to enhance the initilization and

noise sensitivity of the original PFCM. Besides, the PFCM

is also integrated with instance-level infomation, i.e.,
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labeled patterns, to become semi-supervised clustering

(Antoine et al. 2022).

The PFCM algorithm can achieve good performance in

many real-world applications. However, the combination

of evolutionary methods with conventional clustering

algorithms always provides better performance. Thus, the

next sub-section will review some meta-heuristic algo-

rithms that are used in the proposed methods.

2.4 Multi-objective optimization algorithm

Multi-objective optimization deals with more than one

objective function. In many real-world cases, several

objectives must be optimized simultaneously. In consid-

ering multi-objective optimization, it is difficult to compare

one solution with another. Therefore, a domination term is

applied. Suppose that there are two solutions, x1 and x2.

Solution x1 dominates x2 if x1 has a better objective value

for at least one of the objective functions and is not worse

with respect to the remaining objective functions. A non-

dominated solution which has no solution can be found that

dominates it. These non-dominated solutions are recorded

in Pareto optimal solutions. The goal of multi-objective

optimization is to find the entire Pareto front. The non-

dominated and Pareto optimality are shown in Fig. 1. The

two objectives F1 and F2 are minimized simultaneously.

Solutions X1, X2, X3, X4, X5, and X6 are not dominated

by any other solution. Therefore, the set represents the

Pareto optimal set.

2.4.1 Multi-objective genetic algorithm

Genetic algorithm (GA) is an optimization technique that

simulates the phenomenon of natural selection, described

by Charles Darwin. The basic theory of GA was proposed

by Holland (1975). In GA, the characteristics of the pop-

ulation are expressed using genotypes, and are called

chromosomes. Each chromosome represents a potential

solution to a problem. GA has three main steps: (1)

selection, (2) crossover, and (3) mutation.

Deb et al. (2002) proposed a fast and elitist multi-ob-

jective GA (NSGA-II) which not only contains non-dom-

inated sorting, but also uses elitism to accelerate

convergence. NSGA-II uses the fast non-dominated sorting

process to compare each solution. The parent and offspring

are merged and compared to find all non-dominated solu-

tions. If identical non-dominated fronts are produced, then

values are compared to pick a better solution as the next

parent using crowding distance.

The non-dominated sorting process for selecting elitist

offspring is illustrated in Fig. 2.

2.4.2 Multi-objective particle swarm optimization
algorithm

PSO is a heuristic technique proposed by Eberhart and

Kennedy (1995). In the PSO algorithm, potential solutions

are called particles, and each particle corresponds to a fit-

ness value. Each particle has its velocity and position, and

these are corrected by individual and group search

experience.

In PSO, particles’ velocities are dynamically adjusted

according to their historical behaviors, and the function is

evaluated with the new coordinate for every iteration.

For multi-objective applications, Li (2003) proposed the

non-dominated sorting particle swarm optimizer (NSPSO).

The NSPSO compares all personal best solutions of all

particles and their offspring in the population to find all

dominant solutions. If two first non-dominated fronts are

produced, then values are compared to pick a better solu-

tion as the next particle using crowding distance.

2.4.3 Multi-objective gradient evolution algorithm

The gradient evolution (GE) algorithm was proposed by

Kuo and Zulvia (2015). It was developed from the New-

ton–Raphson algorithm. The GE algorithm consists of

three operators, namely vector updating, jumping, and

refreshing. Vector updating is the main operator in the GE

algorithm, and is responsible for exploitation. The function

used in vector updating was inspired by the updating rule in

the Newton–Raphson algorithm. Vector updating is con-

tinued by vector jumping, which performs wider

exploration.

The vector updating rule controls the vector movement

to reach a better position. It consists of two parts. The first

part is a gradient-based updating rule, and the second part

is the acceleration factor. To expand the exploration, a

random number rg is added to the updating rule. The

updating rule by GradientMove is:

Fig. 1 Non-domination and Pareto optimality
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Gradient Move ¼ rg �
Dxtij

2

� 
�

xWij � xBij
xWij � 2xtij þ xBij

 !
; 8j

¼ 1; . . .;D;

ð20Þ

Dxtij ¼
xtij � xBij

			
			þ xWij � xtij

			
			

2

0

@

1

A; 8j ¼ 1; . . .;D; ð21Þ

where XB
i is a neighbor of vector i that has better fitness,

and XW
i is a neighbor of vector i that has worse fitness.

The acceleration factor Acc is also embedded to accel-

erate the convergence of each vector. The Acc, defined in

Eq. (22), is also multiplied by a random number ra*N (0,

1). This ensures that each vector has a different step size:

Acc ¼ ra � yj � xtij

� �
; 8j ¼ 1; . . .;D; ð22Þ

where Y is the best vector.

Finally, vector updating is written as:

utij ¼ xtij � GradientMove þ Acc; ð23Þ

utij ¼ xtij � rg �
Dxtij

2

� 
�

xWij � xBij
xWij � 2xtij þ xBij

 !
þ ra

� yj � xtij

� �
; 8j

¼ 1; . . .;D; ð24Þ

where Ut
i is the vector transition.

Because this process involves better and worse vectors,

it requires an additional procedure for best and worst

vectors. If Xt
i is the best vector Bt, then xBij is replaced with

bj, as defined in Eq. (25):

bj ¼ xtij � Dxtij; 8j ¼ 1; . . .;D and ð25Þ

Dxtij ¼
cþ xWij � xtij

			
			

2

0
@

1
A; 8j ¼ 1; . . .;D: ð26Þ

Similarly, if the worst vector is Wt, then xWij is replaced

with wj, as defined in Eq. (27):

wj ¼ xtij þ Dxtij; 8j ¼ 1; . . .;D and ð27Þ

Dxtij ¼
xtij � xBij

			
			þ c

2

0
@

1
A; 8j ¼ 1; . . .;D; ð28Þ

where c is a pre-defined parameter, and is defined as the

initial step size. Therefore, it is a static or dynamic number,

which decreases as the number of iterations increases.

Vector jumping can avoid local optima. The GE algo-

rithm sets a jumping rate Jr to determine whether a vector

jumps or not. Vector jumping is defined as the following

equation:

utij ¼ �utij þ rm � utij � xtkj

� �
; 8j ¼ 1; . . .;D; ð29Þ

where xtkj is any random neighbor vector, 8i 6¼ k, and rm is

a random number within [0,1].

Vector refreshing is performed on a vector which is

stuck in a position. The GE also records the updating his-

tory of vector i, which is rotated by si 2 0; 1½ �. If si is less

than the refreshing rate, vector i must be regenerated, and

the newly generated vector, si, is set to one. si is reduced by

the following equation:

si ¼ si � e � si; ð30Þ

where e is the reduction rate.

Fig. 2 The non-dominated

sorting process for selecting

elitist offspring
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Kuo and Zulvia (2020) proposed a GE-based K-means

algorithm which considers two objectives. It tries to min-

imize dissimilarity within the cluster, and maximize cluster

separateness.

3 Methodology

This section introduces the proposed multi-objective clus-

tering algorithms and the possibilistic intuitionistic fuzzy c-

means (PIFCM) algorithm.

3.1 Objective functions

The proposed methods consider two objective functions:

(1) global cluster compactness (p), and (2) fuzzy separation

(Sep) (Yang et al. 2015), which will be optimized simul-

taneously. Given the information of n data points and c

clusters, the global compactness p of a solution represented

by the cluster centers is defined as:

p ¼
Xc

j¼1

Pn
i¼1u

m
ij dijðxi;vjÞPn
j¼1uij

: ð31Þ

In Eq. (31), the term
Pn

i¼1u
m
ij dijðxi;vjÞ and

Pn
j¼1uij are

represented for the variation rj and the fuzzy cardinality nj

of the jth cluster, respectively (Mukhopadhyay et al. 2009).

Herein, uij is the membership degree of data instance xi to

cluster j, and dijðxi;vjÞ is the distance between xi and cluster

center vj, which is defined in Sect. 2.1. For each cluster, the

cluster compactness is the ratio of rj=nj. Thus, the global

compactness is calculated as a summation of cluster com-

pactness for all clusters. A good partition is indicated by a

low global cluster compactness.

To calculate the fuzzy separation, the cluster center vj is

considered as the center of a fuzzy set that contains the

remaining cluster centers vk in which vkj1� k� c; k 6¼ jf g:
The membership degree of each cluster center vk to vj; j 6
¼ k is calculated as follows:

ljk ¼
Xc

l¼1;l 6¼k

dkjðvk; vjÞ
dklðvk; vlÞ

�  1
m�1

 !�1

; j 6¼ k: ð32Þ

Subsequently, the fuzzy separation Sep is a distance-

based measure between the cluster centers which is defined

by the product of membership degree and distance of each

cluster center vk to vj:

Sep ¼
Xc

j¼1

Xc

k¼1;j6¼k

lmjkdjkðvj; vkÞ: ð33Þ

To obtain compact clusters, the measure p must be as

small as possible or minimized. Conversely, to obtain well-

separated clusters, Sep should be as large as possible or

maximized.

3.2 Possibilistic intuitionistic fuzzy c-means
algorithm

This study proposes the PIFCM algorithm which integrates

the advantages of the FCM, possibilistic c-means (PCM)

algorithms, and the IFS. Thereafter, the PIFCM is com-

bined to the multi-objective meta-heuristic algorithms to

improve the clustering results. The steps of PIFCM are

described below.

Step 1: Initialize the parameters. Set T ¼ 0. Set up

number of clusters c, membership degree m, possibilistic g,

cj, tolerance e, Yager index a, and possibilistic parameters

aandb, and generate initial membership functions U and t.

Step 2: Calculate hesitation degree pij by Eq. (11), and

uij
� by Eq. (12).

Step 3: Calculate vj
� by Eq. (16), where uij is replaced

by uij
�.

Step 4: Calculate JðTÞ by Eq. (14).

Step 5: Update tij
�ðTþ1Þ by Eq. (15).

Step 6: Update uij
�ðTþ1Þ by Eq. (5).

Step 7: Update vj
�ðTþ1Þ by Eq. (16).

Step 8: Calculate JðTþ1Þ by Eq. (14).

Step 9: Compare JðTÞ and JðTþ1Þ. If JðTþ1Þ � J Tð Þ		 		� e,
then stop; otherwise, increase T by one and return to Step 5.

3.3 Multi-objective meta-heuristic algorithm-
based PIFCM algorithm

PIFCM is probably not robust because the dimension

dataset is large. Thus, to improve the accuracy, this study

proposes meta-heuristic algorithm-based PIFCM algo-

rithm. The main idea is to provide the meta-heuristic

algorithm with a set of better initial centroids so that it can

obtain good clustering results. Moreover, this study con-

siders two objective functions as the cluster validity mea-

surements to provide a better clustering result.

3.3.1 Multi-objective genetic algorithm-based PIFCM
algorithm

This sub-section describes MOGA–PIFCM. As in GA, the

MOGA–PIFCM procedure includes population initializa-

tion, fitness computation, selection, crossover, mutation,

and termination criteria. In this study, the MOGA–PIFCM

uses the clustering result of PIFCM to generate the initial

chromosomes. Herein, each chromosome represents a set

of alternative centroids. Figure 3 illustrates the solution

representation. It shows that a chromosome consists of D
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� K bits, where D represents the number of attributes, and

K represents the number of centroids.

The selection strategy process is based on the roulette

wheel method (Zhao et al. 1996). Selection of parents is in

accordance with the probability distribution of the fitness

values. The selected chromosomes are put into the mating

pool for further genetic operations. This study uses the

method introduced by Krishna and Murty (1999). The

probability of roulette wheel selection is defined as the

following equation:

Pi ¼
f iPN
j¼1 f j

; ð34Þ

where the Pi is the selection probability of chromosome i

1� i�Nð Þ, f i and f j are the fitness of chromosome i and

chromosome j 1� j�Nð Þ, respectively.

The well-known rank-based evaluation function is used

to evaluate the fitness functions (Gan et al. 2009):

f i ¼ bð1 � bÞri�1; ð35Þ

where the ri is the rank of chromosome i, and b 2 0; 1½ � is a

parameter which is the selective pressure of the algorithm.

In the crossover procedure, this study generates two new

chromosomes using the following function (Michielssen

et al. 1992):

Xnew ¼ aX þ 1 � að ÞYand ð36Þ
Ynew ¼ bX þ ð1 � bÞX; ð37Þ

where Xnew and Ynew are the genes of offspring after the

crossover process, a and b is a random number between 0

and 1, and X and Y are the genes of parents which are

selected from all of the chromosomes.

In the mutation procedure, this study applies a function

to change the genes of chromosomes. The function is

represented as follows (Sumathi et al. 2008):

Xnew ¼ X þ s� r � a; and ð38Þ

a ¼ 2�uk; ð39Þ

where Xnew is the genes of offspring after the mutation

process, s 2 f�1; 1g is uniform at random, r is mutation

range and the standard is 10%, u is a random number

between 0 and 1, and k 2 4; 5; . . .:20f g is mutation

precision.

The MOGA–PIFCM procedure can be described as

follows:

Step 1:Set up parameters of GA including population

size, crossover rate, mutation rate and cluster number.

Step 2: Initialization: Initial chromosomes are derived

from PIFCM.

Step 3: Compute the two objective values as fitness

functions.

Step 4: Apply non-dominated sorting to rank the current

chromosomes.

Step 5: Use roulette wheel selection to select

N chromosomes.

Step 6: Randomly select two chromosomes to be parent

chromosomes, and check the probability of crossover to

decide whether the crossover process must be applied.

Step 7: Check the probability of mutation to determine

whether mutation should take place.

Step 8: Compute the two objective values as fitness

functions.

Step 9: Implement non-dominated sorting for offspring

and parent chromosomes.

Step 10: Select good chromosomes using crowding

distance.

Step 11: Stop if the termination criterion is satisfied;

otherwise, return to Step 5.

Step 12: Select the optimal solution from the set of non-

dominated solutions.

3.3.2 Multi-objective particle swarm optimization-based
PIFCM algorithm

Van der Merwe and Engelbrecht (2003) proposed two

methods using a PSO algorithm for cluster analysis. The

first method is the PSO clustering algorithm (PSOC), and

the second method is the PSO-based K-means clustering

algorithm (PSOKC). In this study, MOPSO–PIFCM is a

hybrid of PSOC which combines the multi-objective opti-

mization algorithm and PIFCM.

In this study, MOPSO–PIFCM uses the clustering result

of PIFCM to set the initial particles, and uses inertia weight

to control the influence of the previous velocity. The

solution representation of each particle is the same as that

used in the GA.

For inertia weight, this study equilibrates the global

search ability and local search ability. When the inertia

weight is large, PSO tends to exploitation, and is similar to

global search methods. When inertia weight is smaller,

PSO tends to exploration, and can find the best value in the

local area. This is also similar to local search methods.

Initially, a large inertia weight is used to ferform an

overall search. Then, it is reduced as the number of itera-

tions increases to achieve convergence (Shi and Eberhart

1998). The inertia weight is as follows (Li et al. 2011):Fig. 3 Solution representation
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wt ¼
tmax � t

tmax
� wmax � wmin

 �

þ wmin; ð40Þ

where wt is the inertia weight of the number of iterations t,

tmax is the maximum of number of iterations t, wmax is the

maximum inertia weight, and wmin is the minimum inertia

weight.

In this study, the MOPSO–PIFCM uses position and

velocity adjustment to obtain the optimal solution. The

velocity and position of a particle are updated as follows:

vtþ1
i ¼ wt � vti þ c1 � r1 � pBesti � xti


 �
þ c2 � r2

� gBest � xti

 �

and ð41Þ

xtþ1
i ¼ xti þ vtþ1

i ; ð42Þ

where r1 and r2 are two random numbers uniformly dis-

tributed between 0 and 1, and c1 and archive as a repository

for non-dominated solutions and choosing members of the

archive to direct further search. The elite archive accepts a

new position of a particle if it is non-dominated by all the

stored solutions. All dominated members of the archive are

deleted.

The selection of pBest simply replaces the previous best

experience with the current position if the former does not

dominate the latter. This is implemented using the archive

members that dominate the fewest particles in the current

iteration as the gBest (Mostaghim and Teich 2003).

The MOPSO–PIFCM procedure is as follows:

Step 1:Set up parameters including population size,

maximum velocity, inertia weight, two learning factors,

and cluster number c.

Step 2: Set up the initial particles, from PIFCM.

Step 3: Compute the two objective values as fitness

functions.

Step 4: Implement non-dominated sorting.

Step 5: Find pBest and gBest.

Step 6: Calculate inertia weight.

Step 7: Update the position and velocity of each particle

by Eqs. (41) and (42).

Step 8: Compute the two objective values as fitness

functions.

Step 9: Implement non-dominated sorting including

new particles and pBest.

Step 10: Generate elitist particles.

Step 11: Stop if the termination criterion is satisfied;

otherwise, return to Step 5.

Step 12: Select the optimal solution.

3.3.3 Multi-objective gradient evolution-based PIFCM
algorithm

In this study, the proposed MOGE–PIFCM improves the

conventional GE algorithm and combines PIFCM. The

improvements of the GE algorithm include the modifica-

tion of vector updating to be applied to multi-objective

problems, and the crowding distance to manage the

diversity of the solutions in the archive. Similarly, this

study also considers two objective functions as the cluster

validity measurements.

PIFCM is responsible for providing a good initial

solution for MOGE–PIFCM. The solution representation of

each vector is the same as that used in GA. To deal with

more than one objective, an archive management strategy

is applied, which uses a crowding distance concept to

maintain a good spread of solutions.

The MOGE–PIFCM procedure is as follows:

Step 1:Set up parameters including population size,

jumping rate, refreshing rate, and cluster number c.

Step 2: Set up the initial vectors, from PIFCM.

Step 3: Compute the two objective values as fitness

functions.

Step 4: Perform non-dominated sorting.

Step 5: Find the best vector and worst vector, and record

the best vector.

Step 6: Calculate the vector updating by Eq. (24).

Step 7: Calculate the vector jumping by Eq. (29).

Step 8: Calculate the vector refreshing.

Step 9: Compute the two objective values as fitness

functions.

Step 10: Implement non-dominated sorting including

new vectors and old vectors.

Step 11: Generate elitist vectors.

Step 12: Stop if the termination criterion is satisfied;

otherwise, return to Step 5.

Step 13: Select the optimal solution.

3.4 Selecting the optimal solution

In multi-objective optimization problems, the solution in

the Pareto front usually contains multiple options which do

not dominate each other. The final solution is usually

picked up randomly from the set of non-dominated solu-

tions, since these solutions are considered equal. This study

adopts a method for selecting the optimal solution from

Pareto non-inferior solutions, proposed by Wang et al.

(2017). The performance-price ratio is used as a reference

to construct the average variability with adjacent non-in-

ferior solutions corresponding to the objective function

values.

The average variability is the average value of the slopes

of the lines connecting any point except endpoints with two

adjacent points. Let k1
ðmÞ and k2

ðmÞ be the average vari-

ability of the two objective values f 1
ðmÞ and f 2

ðmÞ of Pareto

non-inferior solution xðmÞ, respectively. The average vari-

ability is defined as:
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k1
ðmÞ ¼ 1

2

f 2
ðmÞ � f 2

ðm�1Þ

f 1
ðmÞ � f 1

ðm�1Þ þ
f 2

ðmþ1Þ � f 2
ðmÞ

f 1
ðmþ1Þ � f 1

ðmÞ

 !
;m

¼ 2; 3. . .ðM � 1Þand ð43Þ

k2
ðmÞ ¼ 1

2

f 1
ðmÞ � f 1

ðm�1Þ

f 2
ðmÞ � f 2

ðm�1Þ þ
f 1

ðmþ1Þ � f 1
ðmÞ

f 2
ðmþ1Þ � f 2

ðmÞ

 !
;m

¼ 2; 3. . . M � 1ð Þ: ð44Þ

The average variability of the endpoints in the Pareto

front is defined as:

k1
ð1Þ ¼ f 2

ð2Þ � f 2
ð1Þ

f 1
ð2Þ � f 1

ð1Þ ; ð45Þ

k2
ð1Þ ¼ f 1

ð2Þ � f 1
ð1Þ

f 2
ð2Þ � f 2

ð1Þ ; ð46Þ

k1
ðMÞ ¼ f 2

ðMÞ � f 2
ðM�1Þ

f 1
ðMÞ � f 1

ðM�1Þ ; and ð47Þ

k2
ðMÞ ¼ f 1

ðMÞ � f 1
ðM�1Þ

f 2
ðMÞ � f 2

ðM�1Þ : ð48Þ

Then, the sensitivity ratio, which is similar to the per-

formance-price, ratio is obtained, and a quantitative

method is developed to evaluate Pareto non-inferior solu-

tions. The sensitivity ratio reflects the sensitivity degree of

average variability in the objective function values. The

sensitivity ratio is defined as:

d1
ðmÞ ¼ k1

ðmÞ

f 1
ðmÞ ;m ¼ 1; 2. . .M and ð49Þ

d2
ðmÞ ¼ k2

ðmÞ

f 2
ðmÞ ;m ¼ 1; 2. . .M: ð50Þ

For comparison, the sensitivity ratio must be non-di-

mensionalized. It is defined as:

e1
ðmÞ ¼ d1

ðmÞ
PM

i¼1d1
ðiÞ ;m ¼ 1; 2. . .M and ð51Þ

e2
ðmÞ ¼ d2

ðmÞ
PM

i¼1d2
ðiÞ ;m ¼ 1; 2. . .M: ð52Þ

Finally, the solution corresponding to ðDeÞmin is the

unbiased and good solution which is simultaneously most

suitable for f 1
ðmÞ and f 2

ðmÞ. The ðDeÞmin is defined as:

ðDeÞmin ¼ min De1;De2. . .DeM
� �

and ð53Þ

DeðmÞ ¼ e1
ðmÞ � e2

ðmÞ		 		;m ¼ 1; 2. . .M: ð54Þ

4 Experimental results

This section presents the results of experiments conducted

in this study to evaluate the performance of the proposed

clustering algorithms. Fifteen datasets from the UCI

machine learning repository were used to test the functions

of the proposed algorithms.

4.1 Datasets

This research used fifteen datasets including Ukm, Wine,

Wbc, Tae, Vehicle, Pima, Iris, Breast, Liver, Banknote,

Audit, Fertility, Seed, Haberman, and Vertebral to validate

the clustering performance. In addition, the Wbc, Wine,

and Pima datasets have outliers. Of these three datasets,

Wbc has 239 noise points (35%), Wine has 10 noise points

(5.6%), and Pima has 268 noise points (34.9%). Table 1

shows the details of each dataset.

4.2 Performance measurement

To compare clustering results, this study used two clus-

tering validation indices as the performance measurement.

The first index is the clustering accuracy, which depends on

the correct cluster (Graves and Pedrycz, 2010).

The second index is the Adjusted Rand Index (ARI)

which is a popular measure for comparing clustering

results (Hubert and Arabie 1985; Rand 1971; Vinh et al.

2010). Given a set of n objects S, suppose

U = {u1; u2; . . .; uc} and V = {v1; v2; . . .; vc} represent two

different partitions of the objects in S. Let nij be the count

Table 1 The parameters of datasets

Dataset # of instances # of attributes # of clusters

Ukm 403 5 4

Wine 178 13 3

Wbc 683 9 2

Tae 151 5 3

Vehicle 846 18 4

Pima 768 8 2

Iris 150 4 3

Breast 106 9 6

Liver 345 6 2

Banknote 1372 4 2

Audit 772 17 2

Fertility 100 9 2

Seed 210 7 3

Haberman 306 3 2

Vertebral 310 6 3
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in both the predicted cluster ui and the correct cluster vj.

The notations are described in the contingency

table (Table 2).

The ARI is computed as follows:

ARI ¼

P
ij

nij

2

� 
�
P

i

ai

2

� P
j

bj

2

� � ��
n

2

� 

1
2

P
i

ai

2

� 
þ
P

j

bj

2

� � �
�
P

i

ai

2

� P
j

bj

2

� � ��
n

2

�  :

ð55Þ

The two selected validation indices belong to the group

of the external indices. The external validation indices

measure the similarity between the clustering result

obtained by the proposed algorithms and the true class

labels. ARI and accuracy are not an exception. However,

the ARI are calculated based on the pair-counting measures

in the contingency table, while the accuracy is computed

by the sum of all the objects of one-to-one mapping

between the obtained clusters and true labels. ARI and

accuracy have been used simultaneously for clustering

evaluation in many studies (Cao et al. 2017, 2013; Chen

et al. 2016; Chen and Huang 2019).

4.3 Parameter settings

The parameters should be pre-determined before the

computational experiment is conducted because different

parameters will influence the experiment results. First, the

level of each parameter was determined based on previous

studies. Thereafter, this study used the Taguchi method to

determine the parameters for the PIFCM algorithm and the

multi-objective meta-heuristic algorithms (Kackar 1985;

Taguchi 1986). Every algorithm was run 30 times, and the

number of iterations was set as 100. The other parameters

were determined using Taguchi methods for each dataset.

The a in the Yager-generating function was set as 2 (Lin

2014) to calculate the hesitation degree. Four parameters

must be determined for the PIFCM algorithm, namely the

relative importance of the fuzzy membership a, relative

importance of typicality values b, influence of membership

grades m and influence of typicality values g. The relative

importance of fuzzy membership and typicality values

were constrained to a ? b = 1. Thus, b = 1-a and the rel-

ative importance of fuzzy membership were set as 0.2, 0.5,

and 0.8. Table 3 shows the three different levels of factors

for the PIFCM algorithms.

In GA, the population size, crossover rate, and mutation

rate must be determined. According to previous work, this

study determined three different levels of factors

(Michielssen et al. 1992).

Four parameters must be determined for the PSO algo-

rithm, namely the number of particles (n), learning factor 1

(c1), learning factor 2 (c2), and inertia weight (W). The

values for c1 and c2 were 0.5 and 1.495, and 2 (Jiang et al.

2014; Kuo et al. 2012). The maximum inertia weight was

set as 0.9, and reduced until it reached 0.4, according to a

previous study (Shi 2001).

For the GE algorithm, the number of vectors, jumping

rate and refreshing rate must be determined. Table 4

summarizes all the parameters se tup for multi-objective-

based clustering algorithms. The parameters of the pro-

posed algorithms were determined by Taguchi method. The

L9(33) orthogonal array was used to analyze the parameters

in this study.

The Taguchi method using the Minitab 17 package can

show the best combination of parameters for the proposed

algorithms. Tables 5 and 6 show the best combination of

parameters for each dataset.

4.4 Computational results

Since each algorithm is a heuristic, each run will give a

different result. Therefore, running the algorithm multiple

times will yield a better chance of finding a good result.

The average result is adopted after multiple runs. In this

study, each algorithm was run 30 times for each dataset,

and the average accuracy and the ARI as the performance

measurement were then calculated. Three proposed multi-

objective algorithms were compared with other existing

algorithms. Table 7 shows the results in terms of accuracy

for each dataset, while Table 8 shows the results in terms of

ARI.

According to the results, the three proposed multi-ob-

jective algorithms based on PIFCM exhibited better per-

formances than those of the other clustering algorithms on

Table 2 Contingency table
U
V

u1 u2 …uc Sum

v1

v2

…
vc

n11 n12 … n1c

n21 n22 … n2c

… … …
nc1 nc2 …ncc

a1

a2

…
ac

Sum b1 b2 …bc n

Table 3 Parameters setup for the PIFCM algorithm

Factors Level 1 Level 2 Level 3

a 0.2 0.5 0.8

m 1.05 1.1 2

g 0.6 2 7
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most of the tested datasets. For instance, the three proposed

multi-objective algorithms obtained better results on 12

(Ukm, Wine, Wbc, Tae, Vehicle, Pima, Liver, Audit,

Fertility, Seed, Haberman, and Vertebral) of the 15 tested

datasets in terms of all performance validation indices.

For outlier datasets, the MOGE–PIFCM achieved better

results for the Wine and Pima datasets, while the MOPSO–

PIFCM and MOGA–PIFCM achieved better results for the

Wbc dataset, with respect to accuracy comparison. Com-

pared with the MOGE–PIFCM and IFCM performances

with outlier datasets, the MOGE–PIFCM always achieved

better results than the IFCM. This is reasonable, since

hybridizing evolutionary methods (GA, PSO, and GE) with

PIFCM can remove the drawback caused by initialization

of PIFCM, and enhance the clusteirng result. Of the three

algorithms, i.e., MOGE, MOGA, and MOPSO, the com-

bination of MOGE with PIFCM achieved the best results

due to its advantage of vector jumping, which can handle

outliers. Therefore, the MOGE–PIFCM algorithm can

address the outlier problem.

Because GA was originally proposed for binary coding,

and was later modified for continuous coding certain

objectives (p or Sep) often easily dominate the results.

Therefore, GA is affected by continuous code, which

causes it to generate unstable results.

Next, the performances of multi-objective-based PIFCM

and single-objective-based PIFCM algorithms were com-

pared. MOGA–PIFCM and GA–PIFCM were compared

first. The accuracy values of the all the tested datasets

showed that there is no significant difference between these

GA-based algorithms. Because GA was originally pro-

posed for binary coding and was later modified for con-

tinuous coding, the GA–PIFCM algorithm with single

objective (p or Sep) often easily dominates the results.Thus

MOGA–PIFCM algorithm is affected by continuous cod-

ing, which causes it to generate unstable results.

In the comparison between the MOPSO–PIFCM and

PSO–PIFCM algorithms, the MOPSO–PIFCM produced

better results in eleven datasets (Ukm, Wbc, Tae, Vehicle,

Iris, Breast, Liver, Audit, Fertility, Seed, and Vertebral) in

terms of accuracy. Compared with GE–PIFCM, the

MOGE–PIFCM achieves better results in ten datasets in

terms of accuracy (Ukm, Wine, Wbc, Tae, Vehicle, Pima,

Breast, Banknote, Audit, and Fertility). For the five

remaining datasets, there was not much difffence between

MOGE and GE-based PIFCM algorithms. It can be con-

cluded that the clustering results of both MOPSO–PIFCM

and MOGE–PIFCM algorithms are better than those of

single objective PSO–PIFCM and GE–PIFCM, respec-

tively. The multi-objective-based algorithms achieve this

because they can balance the cluster compactness and

fuzzy seperation to enhance the clustering result. More-

over, employing the proposed technique to select the

optimal solution in the Pareto front contributes to

improving the obtained results. In addition, it can be rec-

ognized that the MOGE–PIFCM algorithm is the best in

terms of accuracy with a dominant result in seven datasets

(Ukm, Wbc, Wine, Tae, Vehicle, Pima, and Audit).

Table 4 Parameters setup for all

metaheuristic-based PIFCM

clustering algorithms

Method Factors Level 1 Level 2 Level 3

MOGA–PIFCM Population size (Ns) 50 80 100

Crossover rate (pc) 0.85 0.9 0.95

Mutation rate (pm) 0.001 0.01 0.1

MOPSO–PIFCM Number of particles (Np) 50 80 100

c1 0.5 1.495 2

c2 0.5 1.495 2

MOGE–PIFCM Number of vectors (Nv) 50 80 100

Jumping rate (Jr) 0.85 0.9 0.95

Refreshing rate (Rr) 0.7 0.75 0.8

Table 5 The parameters of PIFCM for all datasets

a b m g

Ukm 0.5 0.5 1.1 7

Wine 0.8 0.2 1.1 7

Wbc 0.8 0.2 2 2

Tae 0.2 0.8 2 7

Vehicle 0.5 0.5 1.05 2

Pima 0.8 0.2 1.05 7

Iris 0.8 0.2 2 2

Breast 0.5 0.5 1.1 2

Liver 0.8 0.2 1.05 7

Banknote 0.2 0.8 2 2

Audit 0.8 0.2 2 2

Fertility 0.8 0.2 2 2

Seed 0.8 0.2 2 1.1

Haberman 0.8 0.2 2 2

Vertebral 0.5 0.5 2 2
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The experiment results also show that the comparison

results in terms of ARI are similar to those of comparison in

terms of accuracy. The three proposed multi-objective-

based PIFCM algorithms had the highest ARI value for

seven datasets. The MOGE–PIFCM was also the best

clustering algorithm in this experiment, achieving the best

results for nine of the fifteen datasets.

Next, computational times were compared, as shown in

Table 9. According to the comparison, the meta-heuristic-

based PIFCM algorithms require more time than the IFCM

and PIFCM algorithms. This is reasonable because the

meta-heuristic-based PIFCM algorithms use the clustering

result of PIFCM to generate the initial clusters. However,

the computational time required by the meta-heuristic-

based PIFCM algorithms is acceptable since the compu-

tational time of most datasets is less than two minutes.

Only one dataset, Vehicle, which contains 846 instances

and 18 attributes, requires more comptation time. In

Table 6 The parameters of

meta-heuristic-based PIFCM

algorithms for all datasets

MOGA–PIFCM MOPSO–PIFCM MOGE–PIFCM

Ns pc pm Ns c1 c2 Nv Jr Rr

Ukm 80 0.85 0.01 100 1.495 2 100 0.95 0.75

Wine 50 0.9 0.01 50 2 2 100 0.85 0.8

Wbc 100 0.85 0.1 100 0.5 0.5 100 0.85 0.8

Tae 50 0.85 0.001 100 0.5 0.5 100 0.9 0.7

Vehicle 50 0.9 0.001 100 0.5 2 100 0.95 0.75

Pima 100 0.95 0.01 100 0.5 2 100 0.85 0.8

Iris 100 0.85 0.001 100 0.5 2 50 0.95 0.8

Breast 100 0.95 0.01 50 1.495 1.5 100 0.9 0.7

Liver 100 0.85 0.1 100 2 1.5 100 0.85 0.8

Banknote 80 0.9 0.1 100 0.5 1.5 100 0.9 0.7

Audit 80 0.85 0.001 100 0.5 2 100 0.85 0.8

Fertility 100 0.85 0.001 100 0.5 2 100 0.85 0.8

Seed 100 0.85 0.01 100 0.5 2 100 0.9 0.8

Haberman 100 0.85 0.001 100 0.5 2 100 0.85 0.8

Vertebral 100 0.85 0.01 100 0.5 2 100 0.85 0.8

Table 7 The computation results in terms of accuracy

IFCM PIFCM GA–

PIFCM

(p)

GA–

PIFCM

(Sep)

PSO–

PIFCM

(p)

PSO–

PIFCM

(Sep)

GE–

PIFCM

(p)

GEPIFCM

(Sep)

MOGA–

PIFCM (p,

Sep)

MOPSO–

PIFCM (p,

Sep)

MOGE–

PIFCM (p,

Sep)

Ukm 0.498 0.507 0.470 0.506 0.454 0.401 0.473 0.439 0.503 0.491 0.513

Wine 0.955 0.955 0.955 0.955 0.955 0.840 0.957 0.959 0.955 0.889 0.962

Wbc 0.956 0.974 0.973 0.974 0.969 0.966 0.972 0.966 0.974 0.974 0.974

Tae 0.497 0.472 0.404 0.427 0.442 0.473 0.452 0.432 0.409 0.512 0.515

Vehicle 0.368 0.378 0.384 0.384 0.376 0.377 0.384 0.381 0.384 0.384 0.384

Pima 0.667 0.667 0.665 0.666 0.668 0.655 0.666 0.663 0.667 0.651 0.682

Iris 0.893 0.920 0.920 0.914 0.901 0.886 0.920 0.902 0.919 0.915 0.916

Breast 0.500 0.489 0.567 0.614 0.553 0.562 0.573 0.438 0.595 0.595 0.591

Liver 0.513 0.539 0.539 0.542 0.521 0.565 0.525 0.558 0.541 0.574 0.555

Banknote 0.607 0.675 0.818 0.609 0.669 0.639 0.640 0.643 0.792 0.649 0.657

Audit 0.687 0.720 0.746 0.775 0.765 0.695 0.757 0.757 0.775 0.773 0.781

Fertility 0.510 0.533 0.552 0.553 0.516 0.517 0.531 0.532 0.554 0.526 0.533

Seed 0.891 0.898 0.899 0.899 0.891 0.830 0.894 0.873 0.899 0.892 0.885

Haberman 0.520 0.524 0.523 0.522 0.518 0.523 0.517 0.524 0.524 0.518 0.516

Vertebral 0.474 0.561 0.642 0.625 0.640 0.516 0.640 0.552 0.637 0.643 0.632

The bold values show the best accuracy
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addition, because the GE algorithm has more complex

updating rules, it requires more time. Thus, the MOGE–

PIFCM requires the greatest anount of time of all the

compared algorithms. To reduce the required

computational time, it may be feasible to conduct feature

selection. In addition, from the current computational

result, it seems that most meta-heuristics can improve

Table 8 The computation results in terms of ARI

IFCM PIFCM GA–

PIFCM

(p)

GA–

PIFCM

(Sep)

PSO–

PIFCM

(p)

PSO–

PIFCM

(Sep)

GE–

PIFCM

(p)

GE–

PIFCM

(Sep)

MOGA–

PIFCM (p,

Sep)

MOPSO–

PIFCM (p,

Sep)

MOGE–

PIFCM p,

Sep)

Ukm 0.193 0.194 0.190 0.182 0.191 0.086 0.193 0.154 0.188 0.185 0.194

Wine 0.867 0.867 0.867 0.867 0.868 0.585 0.873 0.876 0.867 0.757 0.886

Wbc 0.830 0.897 0.894 0.897 0.881 0.867 0.890 0.869 0.897 0.899 0.897

Tae 0.050 0.054 0.013 0.029 0.036 0.072 0.042 0.050 0.016 0.080 0.081

Vehicle 0.079 0.082 0.090 0.090 0.087 0.072 0.090 0.087 0.090 0.090 0.090

Pima 0.101 0.101 0.100 0.100 0.102 0.026 0.104 0.038 0.101 0.050 0.105

Iris 0.729 0.786 0.786 0.773 0.751 0.714 0.786 0.749 0.783 0.777 0.778

Breast 0.295 0.308 0.423 0.481 0.413 0.376 0.417 0.245 0.468 0.446 0.451

Liver –

0.005

–

0.005

–

0.005

– 0.005 – 0.002 – 0.007 0.002 – 0.010 – 0.005 0.008 – 0.006

Banknote 0.045 0.155 0.416 0.055 0.165 0.078 0.119 0.082 0.360 0.136 0.126

Audit 0.130 0.224 0.251 0.299 0.311 0.144 0.285 0.261 0.299 0.295 0.313

Fertility –

0.006

0.000 –

0.002

0.009 – 0.004 – 0.005 –

0.002

– 0.001 0.010 – 0.005 – 0.003

Seed 0.705 0.725 0.726 0.726 0.707 0.590 0.715 0.673 0.727 0.711 0.696

Haberman –

0.001

0.001 –

0.001

– 0.001 – 0.002 – 0.001 –

0.002

– 0.001 0.002 – 0.002 – 0.002

Vertebral 0.206 0.205 0.297 0.285 0.290 0.231 0.289 0.227 0.286 0.300 0.302

The bold values show the best ARI

Table 9 The computational time (in second)

IFCM PIFCM GA–

PIFCM

(p)

G–

PIFCM

(Sep)

PSO–

PIFCM

(p)

PSO–

PIFCM

(Sep)

G–

PIFCM

(p)

GE–

PIFCM

(Sep)

MOGA–

PIFCM (p,

Sep)

MOPSO–

PIFCM (p,

Sep)

MOGE–

PIFCM

(p, Sep)

Ukm 0.21 0.53 66 65 82 82 72 85 66 82 92

Wine 0.14 0.38 58 58 29 29 51 61 59 29 66

Wbc 0.25 0.70 106 106 105 106 94 111 107 106 119

Tae 0.06 0.15 23 22 22 22 19 23 23 22 24

Vehicle 1.13 3.31 249 247 494 494 434 517 249 494 552

Pima 0.25 0.71 108 108 108 107 96 113 110 108 122

Iris 0.05 0.12 19 19 19 19 8 10 20 19 11

Breast 0.24 0.45 53 52 26 26 46 55 53 26 58

Liver 0.09 0.25 38 38 38 38 33 40 39 38 42

Banknote 0.28 0.72 90 90 112 112 95 116 90 112 109

Audit 0.43 1.63 144 145 181 181 163 190 145 179 212

Fertility 0.08 0.10 35 35 35 35 31 37 35 35 39

Seed 0.03 0.01 13 14 14 14 12 14 14 15 14

Haberman 0.11 0.11 46 46 46 46 40 48 46 46 51

Vertebral 0.04 0.06 18 18 18 18 15 19 18 18 19
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clustering performance. Thus, choosing an easier meta-

heuristic is a viable alternative.

4.5 Statistical hypothesis

In this study, to prove whether the proposed clustering

algorithms are significantly superior to other clustering

algorithms or not, a statistical hypothesis was conducted.

The t test was, and the significance level a was set at 0.05.

All statistical hypotheses were implemented on Minitab 17.

The procedure of the statistic test is as follows. First, the

two-sides test, in which the null hypothesis is ‘‘A = B’’, is

conducted. If there is no evidence to reject the null

hypothesis in the first test, the testing procedure is termi-

nated. Then, it can be concluded that there is no significant

difference between the two compared algorithms. If the

null hypothesis in the first test is rejected, the second test is

performed to determine whether ‘‘A\B’’ or ‘‘A[B’’.

This procedure is implemented for all the tested datasets.

Table 10 shows the comparison results of single objec-

tives and multiple objectives for all datasets. The sym-

bol ? means that the proposed algorithm performs better.

Similarly, the symbol = means that there is no significant

difference between the two compared algorithms, while the

symbol – signifies that the proposed algorithm performs

worse.

According to Table 10, the MOGA–PIFCM is signifi-

cantly better than GA-PIFCM(p) for seven datasets, and

there is no difference between MOGA–PIFCM and GA–

PIFCM(p) for eight datasets. Compared with GA–

PIFCM(Sep), MOGA–PIFCM obtains better results for

three datasets, and worse results for three datasets, while

there is no difference for the remaining datasets. Thus, it

can be concluded that MOGA–PIFCM has better perfor-

mance than GA–PIFCM(p). However, there is no signifi-

cant difference between MOGA–PIFCM and GA–

PIFCM(Sep).

The proposed MOPSO–PIFCM yields better results for

seven datasets compared with PSO–PIFCM(p), and ten

datasets compared with PSO–PIFCM(Sep). There are two

datasets for which MOPSO–PIFCM obtains worse results

comparedg with PSO–PIFCM(p). For the remaining data-

sets, there is no difference between MOPSO–PIFCM and

other algorithms. Thus, it can be concluded that MOPSO–

PIFCM has a better performance than the single-objective

PSO algorithm.

Compared with GE–PIFCM(p), MOGE–PIFCM has

better performance for six datasets, and only one dataset

yields a worse result. For the remaining datasets, there is no

difference between MOGE–PIFCM and GE–PIFCM(p)

perormance. GE–PIFCM(Sep) achieves better results for

ten datasets, equal results for three datasets, and worse

results for two datasets. This is sufficent evidence that

Table 10 The comparison results of single objective and multiple objectives

MOGA–PIFCM

vs.GA–PIFCM (p)

MOGA–PIFCM

vs.GA–PIFCM

(Sep)

MOPSO–PIFCM

vs. PSO–PIFCM (p)

MOPSO–PIFCM vs.

PSO–PIFCM (Sep)

MOGE–PIFCM

vs. GE–PIFCM

(p)

MOGE–PIFCM vs.

GE–PIFCM (Sep)

Ukm ? = ? ? ? ?

Wine = = – ? ? =

Wbc ? = = ? = ?

Tae = – ? ? ? ?

Vehicle ? = ? ? = ?

Pima ? ? – = ? ?

Iris = ? ? ? – ?

Breast ? – ? ? ? ?

Liver ? – ? ? ? –

Banknote = ? = = = =

Audit ? = = ? = ?

Fertility = = = = = =

Seed = = ? = = ?

Haberman = = = = = –

Vertebral = = = ? = ?
P

? 7 3 7 10 6 10
P

= 8 9 6 5 8 3
P

– 0 3 2 0 1 2
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MOGE–PIFCM is better than a single-objective GE algo-

rithm. The three proposed multi-objective algorithms,

therefore, all demonstrate better performance than the other

compared algorithms.

5 Conclusions

This study proposed a PIFCM algorithm, which combines

IFS and PFCM algorithms. Meta-heuristic algorithms were

employed to improve clustering performance and avoid

local optimal solutions of the PIFCM algorithm. Three

multi-objective meta-heuristic algorithms, namely MOGA,

MOPSO, and MOGE, were integrated with the PIFCM

algorithm. For multi-objective optimization problems,

selecting an optimal solution in the Pareto front is also

important. Thus, this study also employed a new technique

to select the clustering result for the three proposed multi-

objective-based algorithms. The clustering performance of

the proposed algorithms was verified using fifteen datasets

from the UCI machine learning repository. To implement

the proposed algorithms, parameters were determined by

Taguchi method. This study applied the Taguchi method to

find the optimal combination of parameters for each algo-

rithm on each tested dataset. To evaluate the clustering

results, accuracy and ARI were selected as two cluster

validation indices. In addition, the results of the proposed

multi-objective meta-heuristic-based PIFCM algorithms

were compared with those of a conventional IFCM algo-

rithm, a PIFCM algorithm, and its single-objective clus-

tering algorithms. The experiment results showed that the

proposed multi-objective-based PIFCM algorithms

achieved better performance than the single-objective-

based PIFCM algorithms in terms of both accuracy and

ARI. In addition, a comparison between the three proposed

multi-objective algorithms was made. The clustering result

of the MOGE–PIFCM algorithm was better than those of

the MOGA–PIFCM and MOPSO–PIFCM algorithms in

most of the tested datasets.

However, in this study, the parameter a in the Yager-

generating functions was applied based on previous stud-

ies. In the future research, this parameter will be optimized

by the meta-heuristic algorithms to improve the accuracy

of the clustering results. In addition, all problems in this

study were continuous. Thus, future work will extend the

results of this study for binary and discrete problems, since

many real problems involve discrete and binary variables.

Finally, the proposed algorithms will also be tested for high

dimensional data in the future research.
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