Soft Computing (2024) 28:5493-5522
https://doi.org/10.1007/s00500-023-09306-2

APPLICATION OF SOFT COMPUTING l‘)

Check for
updates

A systematic review of fuzzing

Xiaoqi Zhao' - Haipeng Qu?@® - Jianliang Xu? - Xiaohui Li? - Wenjie Lv? . Gai-Ge Wang?

Accepted: 25 September 2023 / Published online: 31 October 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract

Fuzzing is an important technique in software and security testing that involves continuously generating a large number of test
cases against target programs to discover unexpected behaviors such as bugs, crashes, and vulnerabilities. Recently, fuzzing
has advanced considerably owing to the emergence of new methods and corresponding tools. However, it still suffers from
low coverage, ineffective detection of specific vulnerabilities, and difficulty in deploying complex applications. Therefore,
to comprehensively survey the development of fuzzing techniques and analyze their advantages and existing challenges, this
paper provides a comprehensive survey of the development of fuzzing techniques, summarizes the main research issues, and
provides a categorized overview of the latest research advances and applications. The paper first introduces the background
and related work on fuzzing. Research issues are subsequently addressed and summarized, along with the latest research
developments. Furthermore, various customized fuzzing techniques in different applications are presented. Finally, the paper

discusses future research directions.

Keywords Fuzzing - Software testing - Security - Survey - Vulnerability

1 Introduction

Fuzzing, also known as fuzz testing, is a powerful software
testing technique that has gained significant attention in the
field of software and system security testing. It involves auto-
matically generating a large number of test cases and feeding
them into the target program to detect bugs, crashes, or
vulnerabilities. Today, fuzzing has emerged as a popular tech-
nique in both academia and industry. Some prominent soft-
ware companies, such as Google (Abhishek and Cris 2012;
Chrisetal. 2011; Max and Kostya 2016), Microsoft (Onefuzz
2020), Cisco and Adobe (Brad 2009), have developed their
fuzzing tools and have successfully discovered thousands of
vulnerabilities in their products. An increasing number of
fuzzing studies appear at security and software engineering-
related conferences and journals (Godefroid et al. 2008a;
Woo et al. 2013). Designed fuzzing tools (also known as
fuzzers) open sourced on GitHub and discovered many vul-
nerabilities in open-source software. Additionally, fuzzing

B3I Haipeng Qu
quhaipeng @ouc.edu.cn

School of Information and Control Engineering, Qingdao
University of Technology, Qingdao, China

College of Computer Science and Technology, Ocean
University of China, Qingdao, China

has been widely employed in various renowned competi-
tions, including the DARPA Cyber Grand Challenge (2016).

Fuzzing was proposed by Miller et al. in 1988. It was
primarily employed for testing the robustness of UNIX
programs (Miller et al. 1995). In 1999, it was extended
to encompass security testing. During this period, black-
box fuzzing was predominantly implemented, with notable
fuzzers such as PROTOS (Viide et al. 2008), SPIKE (Gode-
froid 2020), and Peach (Liang et al. 2018a). Blackbox fuzzing
generates test cases randomly, with fast testing speed. How-
ever, it lacks access to internal program information, limiting
the full exploration of deep program logic. In 2008, Gode-
froid et al. (2008c) developed SAGE, a whitebox fuzzer
that combines symbolic execution and fuzzing techniques
to generate test cases. Compared to blackbox fuzzing, white-
box fuzzing can generate test cases correlating to particular
paths by exploiting program internal information. Nonethe-
less, software complexity and solver limitations (Avgerinos
etal. 2014; Baldoni et al. 2018) present obstacles to the effec-
tiveness of fuzzing in conducting thorough testing within
a restricted time frame. Therefore, researchers have shown
considerable interest in achieving a balance between the
utilization of program internal information and testing effi-
ciency. This has driven the development of greybox fuzzing.
At the end of 2013, Zalewski (2013) released a greybox

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-023-09306-2&domain=pdf
http://orcid.org/0000-0002-1564-8980

5494

X.Zhao et al.

fuzzer American Fuzzy Lop (AFL). AFL uses instrumenta-
tion to collect path information from the target program and
uses coverage to guide test case generation during fuzzing
process, which has become known as coverage-based grey-
box fuzzing (CGF) (HonggFuzz (2015); Serebryany 2016).

Despite the successes achieved by AFL and CGF in
the field of fuzzing, there are still numerous unresolved
challenges. One of the primary challenges is the limited
comprehension of target programs, especially for complex
programs. Fully comprehending the logic and data flow of
programs is an arduous task. Consequently, this lack of com-
prehension impedes the exploration of in-depth paths within
the program, thereby restricting the improvement of code
coverage (Lou and Song 2020). Another significant challenge
arises from the restrictions of fuzzing in modeling specific
vulnerabilities. Fuzzing randomly generates test case, bug it
frequently lacks the crucial information concerning particu-
lar vulnerability features and their locations. As a result, it
struggles to accurately simulate and detect certain types of
vulnerabilities (Trickel et al 2023). Additionally, the deploy-
ment of fuzzing in complex applications, and their testing
efficiency are important current challenges (Beaman et al.
2022; Donaldson et al. 2023).

In recent years, fuzzing has shown a trend toward integra-
tion, diversification, and open source (Google: ClusterFuzz
2019; Serebryany 2017). Current research on fuzzing mainly
focuses on general fuzzing, vulnerability-oriented fuzzing,
combining fuzzing with other techniques, and fuzzing for
different applications. General fuzzing aims to improve
the process of fuzzing to explore deep program paths and
improve code coverage. For example, Skyfire (Wang et al.
2017) improves initial test case generation to increase code
coverage, AFLFast (BOhme et al. 2019) improves energy
allocation to discover more paths, FairFuzz enhances muta-
tion strategies to improve path coverage, MooFuzz (Zhao
et al. 2021) improves seed schedule for better path discov-
ery, and AFLSmart (Pham et al. 2019) focuses on the input
format of the target program to generate test cases that con-
form to the program’s format to explore deep path. General
fuzzing has better generality, but they face certain chal-
lenges in detecting specific vulnerabilities. To address this
challenge, vulnerability-oriented fuzzing focuses on partic-
ular vulnerabilities and conducts relevant fuzzing research
based on those vulnerability features. For example, Mem-
Lock (Wen et al. 2020) focuses on detecting uncontrollable
memory consumption and uncontrollable recursive bugs.
PerfFuzz (Lemieux et al. 2018) explores algorithmic com-
plexity vulnerabilities by maximizing the edge count in the
control flow graph. ConFuzz (Vinesh et al. 2020) considers
the characteristics of concurrency vulnerabilities and focuses
on detecting this type of vulnerability. Moreover, fuzzing is
combined with other security testing techniques such as taint
analysis (Bekrar et al. 2012), symbolic execution (Noller

@ Springer

et al. 2018), machine learning (Saavedra et al. 2019), and
other techniques to improve its testing performance. Fuzzing
is also currently being customized for complex applications
to uncover potential vulnerabilities and bugs within them.

This overview is motivated by two main points. Firstly,
fuzzing has gained significant attention and undergone rapid
development in recent years. It has been widely adopted
across various applications and extensively utilized by
numerous companies and competitions. This highlights the
importance and effectiveness of fuzzing in identifying vul-
nerabilities and enhancing software security. Secondly, there
is a lack of comprehensive surveys specifically focused on
fuzzing that cover recent advancements and developments.
Previous reviews (Li et al. 2018; Liang et al. 2018b; Manes
et al. 2019) have provided summaries of fuzzing achieve-
ments up until 2018. Other papers (Eisele et al. 2022; Wang
et al. 2020) offer systematic reviews of the historical devel-
opment of fuzzing but tend to concentrate on specific types of
fuzzing techniques. There is a necessity for an up-to-date and
comprehensive review that encompasses the recent advance-
ments and developments in fuzzing techniques.

This paper presents a comprehensive review of current
research on fuzzing. Firstly, an overview of the basic pro-
cess and classification of fuzzing is provided to offer readers
a holistic understanding. The paper then proceeds to intro-
duce CGF as a widely used and representative technique
in fuzzing, establishing a solid theoretical foundation and
providing technical support for subsequent research advance-
ments. Subsequently, the latest advancements in fuzzing
are categorized and discussed, exploring their applications
across various domains. Finally, the paper concludes by sum-
marizing the key findings of the reviewed research and future
directions.

In this paper, we make the following main contributions.

We provide an overview of the processes and classifi-
cations of fuzzing, give definitions of CGF and related
design details.

We discuss the research issues studied in fuzzing and
categorize and survey the latest research work.

We survey fuzzing techniques in different application
scenarios.

— We summarize the challenges and future research direc-
tions of fuzzing.

The rest of the paper is organized as shown in Fig. 1.
Background and related work are introduced in Sect. 2. Sec-
tion3 surveys recent fuzzing research advancements. This
is followed by a review of fuzzing in applications in Sect. 4.
Section 5 concludes the paper and discusses future directions.

A systematic review of fuzzing

5495

2 Background and related work

2.1 Inclusion 2.2 Process of 2.3 Classification
criteria fuzzing off i ‘ ‘ 2.4 CGF ‘ ‘ 2.5 Related work
. 2 L 2 . 2
4 \ 3.1 General fuzzing (RQ1-RQ4)
3.1.1 Initial seed selection 3.1.2 Seed selection 3.1.3 Power schedule 3.1.4 Mutation strategy
(RQI) optimization (RQ2) (RQ3) (RQ4)
¥

3.2.1 Uncontrollable memory

3.2 Vulnerability-oriented fuzzing (RQS5)

3 State-of- consumption & uncontrollable S22 THRE Gty ¢ S Memf’”’ 3.2.4 Consistency error
recursive array overflow vulnerability
the-art
fUZZing 3.2.5 Use-after-free S Algorlthmuf (?omplex1ty ST Concqn;ency 3.2.8 Side channel attack
vulnerability vulnerability

3.3 Combining fuzzing with other techniques (RQ6)

3.3.2 Parallel and

3.3.1 Symbolic execution X . 3.3.3 Instrumentation 3.3.4 Other techniques
\ J integration

¥
4 Fuzzing: 4.2 Virtual machine
different 4.1 SMT solver monitor 4.3 Kernel
applications i i
PP 4.4 Smart contract 4.5 Protocol e Macmhgife}eammg

¥

E 5 ¥

5 Conclusion and future direction

Fig.1 Paper structure diagram

2 Background and related work

In this section, we first provide the inclusion criteria for the
papers covered in this review, then provide an overview of the
fuzz testing process, discuss the classification of fuzzing, and
introduce the current classic coverage-based greybox fuzzing
(CGF), and finally discuss related work.

2.1 Inclusion criteria

We reviewed more than 100 papers, mostly significant works
published in top conferences and journals in the software
engineering and security field from 2018 to 2023. We also
included outstanding fuzzing papers published in industrial
conferences, such as Blackhat. To ensure a comprehensive
comprehension of the development of fuzzing techniques
across various applications, we have gathered a number of
classical fuzz testing papers, without any limitations on pub-
lication dates. In addition, we have collected top journals
papers covering various fuzzing applications to offer a holis-
tic perspective. To clearly define the scope, the inclusion
criteria adopted are as follows.

(1) We primarily selected recent proceedings from secu-
rity and software engineering top conferences for the
period from 2017 to 2023. The relevant papers are

shown in Table 1. The former includes IEEE Sympo-
sium on Security and Privacy (S&P), Usenix Security
Symposium (Usenix Security), Network and Distributed
System Security (NDSS), and ACM Conference on Com-
puter and Communications Security (CCS). The latter
includes International Conference on Software Engineer-
ing (ICSE), ACM SIGSOFT International Symposium
on Software Testing and Analysis (ISSTA), ACM Joint
European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering
(ESEC/FSE), and IEEE/ACM International Conference
on Automated Software Engineering (ASE).

(2) In addition to the top conference papers related to secu-
rity and software engineering, the review collects other
conferences from industry and academia. The major con-
ferences in industry are mainly Black Hat Europe. Other
conferences include not only those related to software
engineering and security, but also those related to areas
such as machine learning and programming language
design. We collect the papers related to fuzzing from that
conference to summarize fuzzing applications in differ-
ent fields. The relevant papers are shown in Table 2.

(3) We also select security and software engineering-related
journal papers mainly including Computer & Security,
Cybersecurity, Empirical Software Engineering, IEEE
Transactions on Software Engineering, and International

@ Springer

5496

X.Zhao et al.

Table 1 Security and software
engineering top conference

papers

Conference Paper Number Year
IEEE Symposium on Security and Wang et al. (2017), Gan et al. (2018), She 12 2018-2022
Privacy (S&P) et al. (2022), You et al. (2019), Peng
et al. (2018), Chen and Chen (2018),
Liang et al. (2022), Jeong et al. (2019),
Xu et al. (2020), Chen et al. (2020b),
Huang et al. (2020), Nagy and Hicks
(2019)
Usenix Security Symposium Yue et al. (2020), Blazytko et al. (2019), 10 2017-2021
(Usenix Security) Gan et al. (2020), Lyu et al. (2019),
Schumilo et al. (2021), Pailoor et al.
(2018), Schumilo et al. (2017), Chen
et al. (2020), Yun et al. (2018), Chen
et al. (2019b)
Network and Distributed System Rawat et al. (2017), Wang et al. (2021), 10 2016-2022
Security (NDSS) Zhang et al. (2022), Aschermann et al.
(2019), Schumilo et al. (2020), Kim
et al. (2020), Song et al. (2019),
Stephens et al. (2016), Wang et al.
(2020), Zhao et al. (2019)
ACM Conference on Computer Bohme et al. (2017), Chen et al. (2018), 7 2017-2019
and Communications Security He et al. (2019), Chen et al. (2019a),
(CCS) Han and Cha (2017), Corina et al.
(2017), Petsios et al. (2017)
International Conference on Wang et al. (2019), You et al. (2019), 8 2019-2021
Software Engineering (ICSE) Bugariu and Miiller (2020), Wen et al.
(2020), Wang et al. (2020), Nilizadeh
et al. (2019), Brennan et al. (2020), Luo
et al. (2021)
ACM SIGSOFT International Lyu et al. (2022), Deng et al. (2023), Xie 4 2018-2023
Symposium on Software Testing et al. (2019), Lemieux et al. (2018)
and Analysis (ISSTA)
The ACM Joint European Software ~ Li et al. (2019), Mansur et al. (2020), Li 4 2017-2020
Engineering Conference and et al. (2017), Liang et al. (2018)
Symposium on the Foundations
of Software Engineering
(ESEC/FSE)
IEEE/ACM International Lemieux and Sen (2018), Jiang et al. 3 2018-2020

Conference on Automated
Software Engineering (ASE)

(2018), Zhou et al. (2020)

Journal of Computer Science and Network Security. To
gather applications of fuzzing in various domains, we
also selected papers from artificial intelligence journals to
comprehensively and systematically summarize fuzzing
techniques. The relevant papers are shown in Table 3.

(4) We collected various fuzzing papers from the arXiv
platform, which have been cited by many journals
and conferences. TriforceAFL (Jesse (2015)), Trinity
(Jones (2010)), Syzkaller (Vyukov 2015), are open-
source kernel-related fuzzers that are widely used for
testing kernel. They are frequently utilized as benchmark
tools in numerous kernel fuzzing-related papers. Thus,
we present an overview of the primary design concepts
of these tools. The relevant papers and web sources are
shown in Table 4.

@ Springer

2.2 Process of fuzzing

The goal of fuzzing is to generate different inputs and uncover
as many exceptions as possible. Before fuzz testing, the input
format is known and a target program is obtained. Figure2
illustrates the general process of fuzzing. The workflow is
composed of four main stages, test case generation, tar-
get program execution, exception monitoring, and Handling
exceptions.

Test Case Generation Test cases can be generated using
different methods, including mutation-based and generation-
based methods. Mutation-based fuzzing involves taking
existing valid test cases or inputs and applying random muta-
tions to generate new test cases. Generation-based fuzzing

A systematic review of fuzzing

5497

Table 2 Other conference papers

Conference

Paper

Number

Year

Annual Computer Security
Applications Conference
(ACSAC)

International Symposium on
Research in Attacks, Intrusions,
and Defenses (RAID)

ACM SIGPLAN Conference on
Programming Language Design
and Implementation (PLDI)

IEEE International Conference on
Software Analysis, Evolution
and Reengineering (SANER)

International Conference on
Software Testing, Validation and
Verification (ICST)

International Symposium on
Software Reliability Engineering
(ISSRE)

International Conference on
Machine Learning (ICML)

Black Hat Europe

International Conference on
Computer Aided Verification
(CAV)

Software Verification: International
Conference

Proceedings of the ACM on
Programming Languages (POPL)

IEEE 20th International
Conference on Trust, Security
and Privacy in Computing and
Communications (TrustCom)

International Conference on
Sustainable Technologies for
Computational
Intelligence-Proceedings
(ICTSCI)

International Conference on
Security and Privacy in
Communication Systems
(SecureComm)

International Workshop on
Automation of Software Test
(AST Workshop)

USENIX Workshop on Offensive
Technologies (WOOT)

ACM/IEEE Design Automation
Conference (DAC)

Totol

Giiler et al. (2020), Jain et al. (2018), Liu et al. (2018)

Henderson et al. (2017), Nguyen et al. (2020), Chen et al. (2020a)

Winterer et al. (2020), Ye et al. (2021)

Li et al. (2021), Zhang et al. (2020)

Pham et al. (2020), Zhao et al. (2019)

Sun et al. (2020)

Odena et al. (2019)

Jack and Li (2016)
Blotsky et al. (2018)

Scott et al. (2020)
Winterer et al. (2020)

Zhang et al. (2021)

(Vinesh et al. 2020)

Gascon et al. (2015)

Tsankov et al. (2012)

Fioraldi et al. (2020)
Luo et al. (2020)

N/A

3

24

2018-2020

2017-2020

2020-2021

2020-2021

2019-2020

2020

2019

2017
2018

2020

2020

2021

2020

2015

2012

2020

2020

2012-2023

@ Springer

5498 X.Zhao et al.

involves generating test cases from scratch based on prede-
fined templates, grammars, or input specifications.

Target Program Execution Once new test cases are gen-
erated, they are sent to the target program for execution. To
facilitate monitoring and analysis during fuzzing process, the
target program is often instrumented to collect information.

Exception Monitoring During the execution of the target
program, it is continuously monitored for program behav-
iors. This monitoring is essential to identify if the program
crashes and hangs. Various techniques can be employed for
exception monitoring, such as using signals, crash analysis,
and violation detection. Related tools such as Sanitizers (The
home for Sanitizers 2019) and MEDS (Han et al. 2018) are
commonly used to detect and locate bugs.

Handling Exceptions If the target program encounters an
exception during execution, the corresponding test case that
triggered the exception is saved for further analysis. These
test cases are considered valuable as they can potentially
reveal bugs or vulnerabilities in the program.

Exception Analysis After obtaining the test cases that
triggered exceptions, testers analyze and debug target pro-
gram to obtain the cause of these exceptions. Debugging
tools, such as GDB (1988), IDA (2003), and OllyDbg (2000),
are commonly used to assist exception analysis.

2019-2022
2021-2022
2010-2022

Year
2018
2018
2021
2021
2022
2021
2019
2010
2020

Number
16

4
2
1
1
1
2
1
1
1
1
1

2.3 Classification of fuzzing

There are different classifications of fuzzing, as shown in
Fig. 3.

Fuzzing can be divided into generation-based and mutation-
based (Neystadt 2008). Inputs are generated from scratch in
generation-based fuzzing (Godefroid et al. 2008b), and it is
necessary to provide the expected input specification of target
programs. Then, fuzzers construct inputs that violate some
regulations to feed target programs according to input specifi-
cations. If there is no better input specification, fuzzing might
spend more time executing error-handling code and cannot
reveal bugs. A mutation-based fuzzing, new test cases are
derived from existing seed mutations. Generally speaking,
initial valid seeds are provided, and then the fuzzer continu-
ously uses mutation strategies (e.g., bitflip) to generate new
test cases which are provided to continuously execute the
target program. Compared with generation-based fuzzers,
mutation-based fuzzers are relatively simple. However, it is
affected by the quality of initial seeds and may be difficult to
pass program verification with complex input formats.

Fuzzing can be divided into dumb and smart fuzzing
(Neystadt 2008). The dumb fuzzing (Takanen et al. 2018;
Ganesh et al. 2009) cannot understand input formats. Inputs
are mainly generated using random mutations. Generally, a
dumb fuzzer is faster than a smart fuzzer and has a relatively
wide range of applications. For instance, AFL is a dumb
mutation-based fuzzer. It uses mutation strategies to mod-

BOhme et al. (2019), Pham et al. (2019), Zhang et al. (2022), Mangs et al. (2019)

Lin et al. (2021), Beaman et al. (2022)

Liet al. (2018)
Situ et al. (2021), Zhang et al. (2022)

Zhao et al. (2022)

Zhao et al. (2021)
Gorbunov and Rosenbloom (2010)

Lv et al. (2020)

Liang et al. (2018b)
Wang et al. (2021)
N/A

Wang et al. (2019)

Paper

International Journal of Computer Science and Network Security

IEEE Transactions on Software Engineering
Journal of Computer Science and Technology

Table 3 Journal papers

Journal

Computer & Security
Cybersecurity

IEEE Transactions on Reliability
Empirical Software Engineering
Expert System with Applications
Mathematics

IEEE Access

Journal of Intelligent Manufacturing
Totol

@ Springer

A systematic review of fuzzing 5499
Table 4 arXiv papers and web sources

arXiv/Web source Paper Number Year

arXiv Wang et al. (2020), Saavedra et al. (2019), Wang et al. (2020), Wang et al. (2020) 4 2019-2020
Web source Jones (2010), Vyukov (2015), Jesse (2015) N/A

Totol N/A 2012-2023

<

v

Testcase NO
Generator

Testcase

YES

A
Monitor

Target Program Bug

Fig.2 The workflow of fuzzing

ify seed files and can fuzz pictures, audio, video, and other
processing programs. A smart (model-based (Pham et al.
2016), grammar-based (Godefroid et al. 2008b), or protocol-
based (Banks et al. 2006)) fuzzer leverages the input model
to generate a greater proportion of valid inputs. For instance,
a grammar-based fuzzer can use an abstract syntax tree to
build an input model and then use node subtree mutation
to transform the current subtree into a new subtree, to meet
relevant requirements of grammars. However, smart fuzzers
generally require users to provide an input model. The input
model is specific and the structure is more complicated.

Fig.3 Classification of fuzzing

Fuzzing

Fuzzing can be divided into whitebox, greybox, and black-
box fuzzing (Sutton et al. 2007). A whitebox fuzzer (Gode-
froid et al. 2008c) generally has obtained the source code
of target programs. It leverages program analysis to system-
atically to reach critical locations of programs and increase
code coverage. Symbolic execution is commonly employed
in whitebox fuzzers. Since the source code of programs is
available, symbolic execution is often used to constrain paths
to generate test cases that meet specific constraints. There-
fore, whitebox fuzzers can detect deeper bugs in the program.
A blackbox fuzzer (Edwards 2001) is completely different
from the white box fuzzer, it treats the program as a “black
box,” and it cannot perceive any information of programs.
However, it can only detect bugs on the surface of the pro-
gram. A greybox fuzzer (BOhme et al. 2019) is between
whitebox and blackbox fuzzer, it uses lightweight instru-
mentation instead of program analysis to obtain program
information that is used to guide fuzzing to improve the effi-
ciency of fuzzing. Because of its simplicity, effectiveness,
and reasonable performance, greybox fuzzers have become
effective testing tools.

2.4 CGF

Inrecent years, fuzzing also derives many professional terms,
such as seed, seed queue, and mutation strategy. These con-
cepts run through the whole process of CGF, and the related
concepts are presented in Table 5.

:]—|: Mutation-based fuzzing
Generation-based fuzzing

Test case
generation

classification

— Smart fuzzing
{ Input structure]—

— Dumb fuzzing

— Whitebox fuzzing

4[Program structure]—— Greybox fuzzing

— Blackbox fuzzing

@ Springer

5500

X.Zhao et al.

Based on the principle that better coverage is beneficial to
detect more vulnerabilities, CGF uses coverage information
to guide the fuzzer to improve coverage. CGF includes two
stages: the static analysis stage and the fuzzing loop stage. In
the static analysis stage, it executes compile time or dynamic
binary instrumentation to obtain the instrumented target pro-
gram. Algorithm 1 shows the workflow of CGF in the fuzzing
loop stage. CGF uses a set of inputs provided by users as ini-
tial seeds and selects a seed to enter a continuous loop to fuzz
until timeout or program terminates.

(1) A seed is selected from a seed queue (Line 4).

(2) The energy of seed is allocated (Line 5).

(3) The selected seed is mutated to generate a test case using
mutation strategy (Line 7).

(4) The target program is executed with the generated test
case (Line 8).

(5) The lightweight instrumentation is used to obtain cover-
age information to guide fuzzers, if the test case causes
a crash, it is marked and added to the crash set (Lines
9-11).

(6) If the test case achieve new coverage, CGF adds it to the
seed set (Lines 12—14).

In this section, we use a representative fuzzer AFL to intro-
duce the relevant stages of CGF. The framework of AFL can
be shown in Fig. 4.

Algorithm 1: CGF

Input: Seed Input seeds, an instrumented target program P
Output: a seed queue Q, a crash set C

1 Q < seeds

2C <0

3 while TRUE do

4 S < ChooseNext(Q)
5 E <« AssignEnergy(S)
6

7

8

9

for i in Range(0, E) do
S" <« Mutation(S)
status < Run_Target(P,S")
if is_Crash(status) then
10 C«~CcuUys
L return

12 if is_NewCoverage(status) then
13 L Q< QuUs

return

2.4.1 Instrumentation
Instrumentation is a common technique of inserting code

fragments to trace the related information of programs with-
out breaking the program logic. There are two ways of

@ Springer

Table 5 Related concepts of CGF

Name Description

Seed queue A seed queue, also known as a seed pool,
is a seed set

Seed Seeds are the initial test cases provided by

the user, or the high-quality test cases
found during the fuzzing process. High
quality is defined as being able to result
in significant in the number of times a
new path is discovered or the number of
times an edge (branch) in the program is
executed, etc.

Seed selection Methods for selecting seeds in the seed

queue

Energy The number of test cases generated by a
seed after mutation is called energy

Power schedule Power schedule is also known as energy

allocation, a calculation that assigns
energy to seeds

The mutation strategy is a method of seed
mutations

Mutation strategy

Seed attribute, whether the seed has been
fuzzed or not

Fuzzed

Fuzz testing found interesting test cases
that cause crashes or increase code
coverage, etc.

Interesting

Seed attribute, seeds in the seed queue are
marked as favored if they cover all the
current edges and have the smallest
execution time and seed length

Favored

Shared memory between the fuzzer and
the target program is used to store and
record the program’s coverage
information during the fuzzing process

Shared memory

instrumentation, source code instrumentation and dynamic
binary instrumentation. The former is inserting the assem-
bly code in source code during the compilation process by
static analysis or writing Clang (2007) manually. These cor-
respond tothe “afl—gcc” and “afl—clang’ instrumentation
ways in AFL, respectively. The latter is mainly implemented
using binary dynamic instrumentation frameworks, such as
Pin (Luk et al. 2005), Dynamorio (2015), PaiMei (2016), and
Frida (2016).

Coverage-based greybox fuzzing techniques commonly
employ instrumentation to collect coverage information,
including edge and basic block coverage. For instance, Hong-
gFuzz (2015) utilizes basic block coverage as feedback
information, while AFL adopts edge (branch) coverage for
feedback. Before the fuzzing loop stage, it uses instrumenta-
tion to insert code fragments. AFL preserves a 64 KB shared
memory Bitmap to record edge coverage information. AFL
assigns a random number to each basic block in the program
at compile time to indicate a unique identifier for the current
basic block and uses XOR and right-shift operations on the

A systematic review of fuzzing

5501

Discard Crash set

Queue

Inputs : Static analysis stage
<> —|——>| Static analysis | strumentation |
Target program
Source
Code/Binary
Fuzzing loop stage

| pe-0

Program
exection

Feedback
information

Test case

t

Deterministic mutation

Seed

Fig.4 The framework of AFL

Fig.5 Coverage calculation

cur_location
Bitmap[cur_location
prev_location =

= Random () ;
prev_location]++;
cur_location >> 1;

current basic block and the previous basic block to mark each
edge. Each edge is used as an offset of Bitmap and the value
is the count of hits.

The specific formula for coverage calculation is as shown
in Fig. 5.

2.4.2 Seed selection and power schedule

Seed selection refers to select seeds from the seed pool for
future mutation. A perfect seed selection scheme is conducive
to speeding up path discovery and bug detection. AFL gives
priority to seeds that are unfuzzed and favored.

Power schedule aims at allocating energy to each seed
during the fuzzing process, which determines the number of
test cases generated by a seed after mutation. Reasonable
energy allocation can effectively improve the discovery of
new paths. If the energy of a seed is over-allocated, other
seed’s mutation will be affected. Conversely, if the energy
of one seed is under-allocated, it will be detrimental to path
discovery and potential bug detection. AFL has two energy
allocations based on different mutation stages.

In the deterministic stage, energy is related to seed length.
The longer the seed size, the more energy will be consumed.

In the non-deterministic stage, energy allocation depends
on the running time, the number of edges, the average size
of seed files, the number of cycles, and others.

2.4.3 Mutation strategy

The mutation strategy determines how to mutate and which
part of the seed is mutated. Mutation strategies in AFL con-
sist of two stages: deterministic stage and non-deterministic
stage. The former includes bitflip, arithmetic, interest, and
dictionary. It is applied to seeds that are selected to mutate
for the first time. The latter includes havoc and splice.

The bitflip uses different flip lengths and steps. It includes
bitflip 1/1, bitflip 2/1, bitflip 4/1, bitflip 8/8, bitflip 16/8, and
bitflip 32/8. In the bitflip, AFL has some heuristic judgments
on the file format, such as automatic detection of token and
generation of effector map.

The arithmetic performs integer addition and subtraction
mutations. It includes arith 8/8, arith 16/8, and arith 32/8,
which mean to perform addition and subtraction operators on
8, 16, and 32 bits each time, respectively, starting from the
beginning of the seed file according to the step length of each
8 bits. The big endian and little endian are also considered in
arithmetic.

The interest performs substitution using pre-define inter-
esting values. It consists of interest 8/8, interest 16/8, and
interest 32/8 in steps of 8 bits, which means that starting
from the beginning of the seed file, the interesting values of
8, 16, and 32 bits are replaced one at a time, depending on
each 8-bit step, respectively.

@ Springer

5502

X.Zhao et al.

The dictionary performs substitution using user-provided
tokens including user extras (over), user extras (insert), and
auto extras (over). The user extras (over) and user extras
(insert) indicate to replace and insert into the seed file with
the tokens provided by the user, respectively. The auto extras
(over) use automatically generated tokens in bitflip to replace
seed file.

The non-deterministic stage, in which the havoc randomly
selects a random position of seed files to mutate according
to mutation strategies in deterministic stage, and the splice
splits each of the two seed files in two and splices the head
and tail.

2.5 Related work

There are papers that systematically introduce the previous
advances in fuzzing, as shown in Table 6. Li et al. (2018) con-
ducted a comparative study that compared fuzzing with other
vulnerability discovery techniques and provided an overview
of the research achievements in 2018. Liang et al. (2018b)
categorized and reviewed relevant papers on fuzzing from
1990 to 2017, based on different classifications and appli-
cations. Manes et al. (2019) proposed a unified and general
fuzzing model to address the existing inconsistencies in the
concepts related to fuzzing and provide a standardized frame-
work for understanding and discussing fuzzing techniques.
Beaman et al. (2022) examined the latest developments in
fuzzing for vulnerability discovery, proposed a method for
classifying fuzzers, and discussed key research challenges
and potential future research directions.

Other review papers primarily focused on summariz-
ing fuzzing in specific application domains or providing
an overview of a specific type of fuzzing. Wang et al.
(2020) provided the first in-depth study of directed grey-
box fuzzing (DGF). They performed an extensive review
of 42 state-of-the-art fuzzers, meticulously categorizing the
recent advancements while also providing a comprehensive
overview of the associated challenges. Eisele et al. (2022)
reviewed embedded fuzzing and proposed a formal definition
of embedded fuzzing, and carved out the additional chal-
lenges of embedded fuzzing compared to traditional fuzzing.
Saavedra et al. (2019) and Wang et al. (2020) reviewed the
application of machine learning in fuzzing.

3 State-of-the-art fuzzing

In this section, we first summarize the research questions
(RQs) of fuzzing according to the fuzzing process and then
answer the following questions by using state-of-the-art
fuzzing.

@ Springer

Table 6 A summary of previous surveys on fuzzing

Year

Description

Name

2018

Recent advances in fuzzing are summarized and ways to improve the fuzzing process and future work are discussed

Li et al. (2018)

2018

Classification and presentation of fuzzers since 1990 and discussion of future research directions

Liang et al. (2018b)
Mangs et al. (2019)
Wang et al. (2020)

2019

A taxonomy and standardized terminology are proposed and the use of “model fuzzer” is used to explain fuzzer design choices

2020
2020
2020
2022

Recent advances in DGF are summarized

Outlining current research on the application of machine learning to fuzzing and predicting future challenges

Saavedra et al. (2019)
Wang et al. (2020)

Advances in machine learning research in fuzzing are reviewed, stages in which machine learning is applicable to fuzzing are discussed

Recent advances in fuzzing are reviewed, classification methods for fuzzing are proposed, and potential future research areas are discussed

Beaman et al. (2022)

A systematic review of fuzzing

5503

Table 7 General fuzzing D Class

Fuzzer

Initial seed selection

2 Seed selection optimization

3 Power schedule

4 Mutation strategy

Skyfire (Wang et al. 2017).

VUzzer (Rawat et al. 2017), CollAFL
(Gan et al. 2018), Cerebro (Li et al.
2019), TortoiseFuzz (Wang et al. 2020),
K-Scheduler (She et al. 2022), MooFuzz
(Zhao et al. 2021), NeuFuzz (Wang et al.
2019), MEUZZ (Chen et al. 2020a),
AFL++hier (Wang et al. 2021), AFLGO
(Bohme et al. 2017), Hawkeye (Chen
et al. 2018), TOFU (Wang et al. 2020).

AFLFast (BOhme et al. 2019), EcoFuzz
(Yue et al. 2020), RegionFuzz (Situ
et al. 2021), OTA (Li et al. 2021),
MobFuzz (Zhang et al. 2022), AFLGo
(Bohme et al. 2017), AFL++hier (Wang
et al. 2021), SLIME (Lyu et al. 2022).

FairFuzz (Lemieux and Sen 2018),
AFLTurbo (Sun et al. 2020), ProFuzzer
(You et al. 2019), Superion (Wang et al.
2019), AFLSmart (Pham et al. 2019),
GRIMOIRE (Blazytko et al. 2019), SLF
(You et al. 2019), Steelix (Li et al. 2017),
REDQUEEN (Aschermann et al. 2019),
T-Fuzz (Peng et al. 2018), Angora
(Chen and Chen 2018), Matryoshka
(Chen et al. 2019a), GreyOne (Gan et al.
2020), PATA (Liang et al. 2022), MOPT
(Lyu et al. 2019), CMFuzz (Wang et al.
2021), AMSFuzz (Zhao et al. 2022).

RQ1 How to get initial seeds?

RQ2 How to select seeds?

RQ3 How to assign energy for seeds?

RQ4 How to mutate seeds and select mutation strategies?

RQ5 How to quickly detect specific bugs?

RQ6 How to integrate other techniques to improve the per-
formance of fuzzers?

3.1 General fuzzing

General fuzzing mainly optimizes and improves the greybox
fuzzing process to improve code coverage and find more pro-
gram exceptions. Its main research challenges include how
to select the initial seed, how to select the seed from the seed
queue, how to assign energy to the seed and what mutation
strategy to adopt, based on the above research questions, the
related works are shown in Table 7.

3.1.1 Initial seed selection (RQ1)

The initial seeds are user-supplied test cases prior to fuzzers,
which is extremely important for mutation-based fuzzing.
Because the test cases are generated by mutating the existing
seeds. Ideally, a high-quality seed requires meeting the fol-

lowing conditions: (1) There is a good format that matches
target applications. (2) The initial seed size should be as small
as possible under the condition of meeting the rules so that
the efficiency of running is high. (3) The initial seeds can
generate test cases with deep bugs after mutation. (4) Good
seeds can be used many times in constant fuzzing.

Based on the above conditions, initial seeds are generally
based on the following selection criteria: (1) Some well-
formatted data sets Fuzzdata (2015). (2) The proof of concept
(POC) CVE (2016) of target applications. Well-formatted
data sets are generally available. Some target applications
provide some test cases to aid fuzzing. Specific types of
applications, such as image, audio, and video processing pro-
grams (Ju et al. 2021), have related image, video, and audio
libraries that can be selected as the initial seed set. Users can
also use online crawlers and other techniques to crawl the
required data as initial seeds after filtering, trimming, and
other processing. Generally, a POC that triggers vulnerabili-
ties in the older version of applications is a good seed, because
the vulnerability is relatively risky, even if it is repaired, there
may be risks. Nowadays, many testers have published some
POC:s of target applications on GitHub and other platforms
that provide good initial seed sets. Researchers have also
studied initial seed generation, and Wang et al. (2017) pro-

@ Springer

5504 X.Zhao et al.

Table 8 Different fuzzers with seed selection optimization

Fuzzer Seed selection strategy Technique Type Open source Year

VUzzer (Rawat et al. 2017) Prioritize seeds with Static analysis Greybox v 2017
deeper execution paths

CollAFL (Gan et al. 2018) Prioritize Instrumentation Greybox 2018
non-neighboring
branch seeds

Cerebro (Li et al. 2019) Prioritize high code Static analysis Greybox 2019
complexity seeds

TortoiseFuzz (Wang et al. 2020) Prioritize seeds that Instrumentation Greybox v 2020
reach sensitive
locations

K-Scheduler (She et al. 2022) Prioritize seeds that Graph centrality analysis Greybox v 2022
potentially accessible
CFG edge

MooFuzz (Zhao et al. 2021) Seed schedule based on Intelligent optimization Greybox 2021
various seed states

NeuFuzz (Wang et al. 2019) Prioritize seeds that Deep learning Greybox v 2019
execute vulnerable
paths

MEUZZ (Chen et al. 2020a) Prioritize high-yield Machine learning Hybrid v 2021
seeds

AFL++hier (Wang et al. 2021) Hierarchical seed Reinforcement learning Greybox fuzzer v 2021
schedule

AFLGO (Bohme et al. 2017) Prioritize seeds closer to Instrumentation Directed greybox v 2017
the target location

Hawkeye (Chen et al. 2018) Prioritize seeds that Instrumentation Directed greybox 2018
cover new branches
and have high
similarity to the
objective function and
target point.

TOFU (Wang et al. 2020) Prioritize seeds closer to Instrumentation Directed greybox 2020

the target location

posed Skyfire in the 2017 S&P conference, the main idea is to
use a large number of existing samples to learn probabilistic
context-sensitive grammars and generate highly structured
test cases as the initial seeds of AFL, perform fuzzing and
detect many vulnerabilities.

3.1.2 Seed selection optimization (RQ2)

Fuzzing generates high-quality test cases such as new cover-
age or significant features called seeds and saves them in the
seed queue, how to choose which seed to use in the next round
from the seed queue seriously affects fuzzing efficiency. The
research related to seed selection optimization is presented
in Table 8.

Seed selection optimization can drive fuzzing to evolve
in different directions. VUzzer (Rawat et al. 2017) uses
static analysis to extract control flow graphs, assigns weights
to basic blocks in the control flow graphs, computes the
weights of the seeds to quantify the depth of their exe-

@ Springer

cution paths, and prioritized the seeds with deeper execu-
tion paths. Gan et al. (2018) developed CollAFL, which
uses lightweight instrumentation to solve the hash collision
problem, and proposed untouched-neighbor-branch guided
policy, untouched-neighbor-descendant guided policy, and
memory-access guided policy three seed selection strategies
to improve code coverage and find more bugs. Cerebro (Li
et al. 2019) measures code complexity and selects seeds by
combining various attributes such as the code complexity,
the coverage, and the execution time. Wang et al. (2020) pro-
posed a fuzzer called Tortoisefuzz. Based on the observation
that not all coverage measurements are equal, Tortoisefuzz is
proposed to discover memory corruption from function calls,
basic blocks, and loops. The instrumentation is modified to
optimize the input of dangerous functions, memory read and
write in basic blocks, and loops to obtain sensitive edge
information. The obtained information is used to guide seed
optimization to find more vulnerabilities. K-Scheduler (She
et al. 2022) models the seed selection problem for fuzzing

A systematic review of fuzzing

5505

as a graph centrality analysis problem, constructing an edge
horizon graph using a control flow graph and using the Katz
centrality to compute the centrality score to approximate the
number of uncontrolled flow graph edges that are reachable
and feasible for the seed from a starting point, and preferen-
tially scheduling the uncontrolled but potentially reachable
CFG edges with seeds that have more. MooFuzz (Zhao et al.
2021) integrates vulnerability and improved coverage per-
spectives, divided the seed pool into exploration, search,
and evaluation three states and employed different many-
objective optimization schemes for seed selection for the
different states.

Deep learning, machine learning, and other techniques
have also been used to aid fuzzing for seed selection opti-
mization. NeuFuzz (Wang et al. 2019) uses neural network
models to predict whether a path is vulnerable or not, prior-
itize vulnerable path-related seeds are prioritized and seeds
are selected. MEUZZ (Chen et al. 2020a) uses the use of
supervised machine learning to select seeds based on past
knowledge learn from past seed scheduling decisions on the
same or similar procedures, to select seeds that are expected
to yield a greater yield to improve the efficiency of hybrid
fuzzing. Wang et al. (2021) proposed a multi-level coverage
measurement approach, which models the fuzzing process as
a multi-armed bandit model. They utilized the upper confi-
dence bound (UCB1) algorithm to score the seeds based on
the rarity of the seeds and the difficulty of generating new
coverage paths through seed mutations on a hierarchical tree.
The seeds with higher scores are selected.

Directed greybox fuzzing is designed to perform tests
on pre-selected or potentially vulnerable target locations,
which are mainly used in various scenarios such as vulner-
ability recovery and patch testing. Therefore, seeds are also
often selected based on target locations in directed fuzzing.
AFLGO (Bohme et al. 2017) is a directed fuzzer that dynami-
cally calculates the distance between a seed and a user-given
target location, and prioritizes seeds that are closer to the
target location. Hawkeye (Chen et al. 2018) addresses the
limitations of the fuzzer AFLGO by defining more accurate

Table 9 Various fuzzers with power schedule

distances, preferring seeds that cover new branches and have
greater similarity to the objective function and target point.
TOFU (Wang et al. 2020) is a target-oriented directed fuzzer
that performs structured mutations using knowledge of the
input structure provided by the user, based on which the dis-
tances of the basic blocks are calculated and seeds that are
more likely to reach the target location are selected.

3.1.3 Power schedule (RQ3)

Power schedule is to allocate energy to seeds. Energy deter-
mines the number of test cases generated by the seed
mutation. Proper allocation of energy to seeds not only gives
other seed mutation opportunities, it also improves the testing
efficiency. The research related to power schedule is pre-
sented in Table 9. AFLFast (BOhme et al. 2019) models the
fuzzing through Markov chain and uses transfer probabil-
ity to represent the probability of seed mutation to generate
other test paths, gives the concept of high-frequency and low-
frequency paths, and preferentially allocates more energy to
the seed executing low-frequency paths to improve the effi-
ciency of fuzzing. EcoFuzz (Yue et al. 2020) selects seeds
according to the divided states of the seed pool and models
the seed energy allocation problem as a multi-armed ban-
dit problem, using reinforcement learning to allocate energy
to seeds. RegionFuzz (Situ et al. 2021) adopts code met-
rics to evaluate vulnerable regions in the code and allocates
more energy to the seeds that reach the region to improve
vulnerability detection. OTA (Li et al. 2021) transforms the
energy allocation of the deterministic stage of AFL into a
mutation time allocation problem by using a particle swarm
optimization (PSO) algorithm to optimize the mutation time.
MobFuzz (Zhang et al. 2022) selects execution speed, mem-
ory consumption, and deep nested branches as optimization
objectives, models fuzzing as a multi-armed bandit model,
and allocates reasonable energy to seeds based on different
combinations of objectives. AFL++hier (Wang et al. 2021)
uses a multi-armed bandit model to allocate energy among
different clusters of seeds with multi-level coverage metrics.

Fuzzer Main technique/method Type Open source Year
AFLFast (BOhme et al. 2019) Markov chain Greybox v 2019
EcoFuzz (Yue et al. 2020) Multi-armed bandit Greybox v 2020
RegionFuzz (Situ et al. 2021) Code metrics Greybox 2021
OTA (Li et al. 2021) Particle swarm optimization Greybox v 2021
MobFuzz (Zhang et al. 2022) Multi-armed bandit Greybox v 2022
AFLGo (Bohme et al. 2017) Simulated annealing Directed greybox v 2017
AFL++hier (Wang et al. 2021) Multi-armed bandit Greybox v 2021
SLIME (Lyu et al. 2022) Upper confidence bounds-variance aware Greybox v 2022

@ Springer

5506

X.Zhao et al.

AFLGo (Bohme et al. 2017) uses the simulated annealing
(SA) algorithm to allocate more energy to seeds that are
closer to the user’s given target. SLIME (Lyu et al. 2022)
uses an upper confidence bounds-variance aware algorithm
to adaptively allocate energy based on the path and crash
discovery capabilities of attribute queues by estimating the
potential reward of each attribute queue.

3.1.4 Mutation strategy (RQ4)

The mutation strategy determines where the seeds are
mutated, how they are mutated, and how the mutation oper-
ator is chosen. The research related to mutation strategy is
presented in Table 10. FairFuzz (Lemieux and Sen 2018)
uses new mutation strategies to address the limitation of
low coverage of AFL. It identifies branch paths that are
less frequently executed as rare branches and a mutation
mask algorithm that allows mutations is proposed to reach
rare branches, improving code coverage. AFLTurbo (Sun
et al. 2020) employs interruptible mutation to determine
mutation time, locality-based mutation to reduced mutation
regions, and hotspot-aware fuzzing to identify metadata to
reduce mutation overhead and improve code coverage. Pro-
Fuzzer (You et al. 2019) performs byte-level mutation and
observes the results of fuzz testing to delineate input fields
and infer field types, guiding seed mutations based on differ-
ent field types to improve path discovery and vulnerability
detection.

To generate test cases that conform to the desired format,
multiple heuristic mutation strategies have been proposed
to generate valid inputs. Superion (Wang et al. 2019) adds
two mutation strategies to AFL to generate structured inputs,
including enhanced dictionary-based mutation and tree-
based mutation. Enhanced dictionary-based mutation locates
the boundaries of tokens by checking whether the bytes of
test cases are consecutive alphabet or digit and then inserting
tokens in dictionary to every boundary. Tree-based mutation
replaces the abstract syntax tree of the parsed input with a
subtree. These strategies improve the effectiveness of test
case generation while reducing the number of mutations.
AFLSmart (Pham et al. 2019) uses a high-level virtual struc-
ture to represent seed files and divided them into chunks, then
executing chunk-level smart deletion, addition, and splic-
ing operators based on virtual input structure, to generate
new valid inputs. GRIMOIRE (Blazytko et al. 2019) imple-
ments a syntax inference that is used to automatically fuzz
highly structured formats during the fuzzing process with-
out human interaction or program modification. It modifies
inputs by removing element parts of the input and marks
the element parts that are the same as the original input
in achieving coverage, to learn the structure of inputs, and
performs large-scale mutations on learned structures to gen-
erate structural inputs. SLF (You et al. 2019) performs a

@ Springer

dependency analysis to generate valid seed inputs. Based
on AFL, it flips each byte of random inputs to generate new
test cases to execute the program. The mutated consecutive
bytes affect the same comparison in constantly mutating and
are marked as identical fields of inputs. Based on the infor-
mation of input fields, the corresponding input checks are
classified, including arithmetic, index/offset, count, and ITE
(If — Then — Else) checks. A multi-goal search algorithm
is used to mutate inputs to satisfy inter-dependent checks to
generate valid seeds.

Sanity checks often appear in programs, such as checks on
magic bytes, checksums, hashes, and others. Magic bytes are
bytes that are used for comparison instructions in the inputs,
such as string equality comparison. It is difficult for fuzzing to
pass magic byte comparison. To pass the sanity check, corre-
sponding mutation strategies have been proposed. Steelix (Li
etal. 2017) is used to generate test cases to pass magic bytes.
It collects coverage information and performs lightweight
static analysis and binary instrumentation to finish compar-
isons. For certain multi-byte magic numbers, Steelix can
accurately detect single-byte matching. By fixing its corre-
sponding generated correct byte position, Steelix traverses
the front or back bytes exhaustively to generate the corre-
sponding magic byte, thereby reducing the mutation space.
REDQUEEN (Aschermann et al. 2019) uses a lightweight
tracking-based technique to generate test cases that can pass
the magic byte and checksum. Based on a simple assump-
tion that part of the inputs is directly transferred to memory or
register for comparison at runtime, a strong input-state cor-
relation exists between input and current state. REDQUEEN
first tracks and recognizes the comparison instructions dur-
ing the program execution, and then determines which part
of the input affects the change of memory and register, and
finally mutates to generate new coverage. T-Fuzz (Peng et al.
2018) uses deletion of the sanity check in target programs to
ensure that fuzzing execution when fuzzing has no new cov-
erage. The technique based on symbolic execution is used to
filter false positives and reproduce the real bug in the original
program.

Many fuzzers incorporate taint analysis techniques, which
gather data flow information and infer which bytes in the
input can influence program execution. This guidance is
used to guide seed mutations, resulting in improved test case
generation and increased code coverage. Angora (Chen and
Chen 2018) uses byte-level taint tracking, context-sensitive
branch count, search based on gradient descent, and input
length exploration instead of symbolic execution to gener-
ate high-quality input to solve path constraints and increase
branch coverage. Matryoshka (Chen et al. 2019a) identifies
the control flow dependencies and taint flow dependen-
cies between conditional statements and then uses three
strategies, including prioritizing reachability, prioritizing sat-
isfiability and jointing optimization for both reachability and

5507

A systematic review of fuzzing

pringer

As

a0c Jipueq pauLre-nnjA o[npayds A3a1ens uoneInjy (TToT T8 190 oryz) ZZndSINV
1202 JIpueq powLIE-T) A 9[npayds A39rens uoneInjy (1207 T 19 Suepy) ZznJIND
610C 2 uoneziundo wems [onIed Q[Npayds A39rens uoneinjy (610T ‘T2 3@ nA7) LdAOIN
7202 sIsATeue jure) drweuk(q sjurensuod yyed Jurajos (7207 T 19 Suer]) Vivd
0202 QOUQIOJUI JUIR], uoneuruIdlep A39ens pue uonisod uoneny (020T ‘T 19 UeD) QUQARID
Aypiqeysnes pue Kjiqeyoear
yjoq Joj uonezrundo
Sunurof ‘Aiqeysnes
Surznuond ‘Kpiqeyoear
610C Surznuond sjurensuod yred soyoueIq pajsau A[doap Sursseq (86107 'Te 19 uUayD) eYYSOANBIA
810C 2 Sunyoen jurey, sjurensuod yyed Jura[os (8107 uayD pue uay)) vIosuy
810C 2 uonNNIAXI J[OqUIAS No9yd Ajueg (8107 'T® 12 Fudg) zzng-1,
6102 2 Sunyoen jurey, wnsyoayd pue)£q d13ew) Juisseq (6102 ‘T 10 uuewIoydsy) NIANOATd
uoneIuAWNISUL
L10T Areurq pue sisk[eue onelg 309y 14q O1TeN (L10T 'Te 9 1) XIPAS
610C sisA[eue Aouopuado UuoNEBIdUIT SED 159) PI[EA (6102 T8 1@ nox) 471S
610C M QOUQIRJUI XBIUAS UoNeIAUdT 9seD 1591 parmonns A[ySIyH (6102 T8 12 oxAze[g) AYIOINTID
610C M uoneINW [QA[-JuUNnyD UONBIAUIT 3SED 159) PI[EA (610T ‘Te 10 weyqd) MewsS TV
uoneINW paseq-ad1) ‘uoneIn
6102 M paseq-AreuondIp pasueyug UONEIOUAT SBD 159) QIBME-TRWIIRID) (610¢ e 12 Suepy) uorradng
610T Surqoid odAJ, SP[eY uoneInwW JBAUI (610T ‘T 19 NOX) 19ZZNnjoiq
Surzzny areme-jodsjoy
‘uoneinu paseq-Aedo|
0202 2 ‘uonenur o[qndnirajuy PEOYIOA0 UOTRINUE 0NPAY (020 'Te 12 ung) 0N TV
810T M WYILIOS[B UOTIBAIO YSLW UORINIAL 93e10A00 9p0d Suraorduy (810 USS puUB XNAMUY) ZZnJIIe]
Ie9X 901nos uadQ anbruyoey/poyoN aAna2fqo 19zZn

A391e1s UOTBINW)IM SIOZZNJ SNOLIBA (| d]qel

5508

X.Zhao et al.

satisfiability to solve path constraints that involve deeply
nested conditional statements. Greyone (Gan et al. 2020)
uses a lightweight taint inference to guide fuzzing. During
the fuzzing process, the taint of variables in the program
is inferred by changing the bytes of inputs. A taint-guided
mutation is used to determine which bytes to mutate, which
branches to explore, where to mutate, and how to mutate, and
then using constraint conformance calculation to guide seed
selection to explore hard-to-reach branches. PATA (Liang
et al. 2022) employs dynamic taint analysis techniques to
identify the dependency between input and paths. It mutates
the input bytes that affect the dependency relationship to
resolve constraints.

A smart mutation strategy schedule can be highly fuzzing
efficient. Based on different mutation strategies that have
different effectiveness for different programs, MOPT (Lyu
et al. 2019) uses a particle swarm optimization algorithm to
perform mutation strategy schedule. It treats each mutation
operator as a particle and iteratively updates the probability
of each particle through the local optimum and the global
optimum. Then, MOPT integrates the updated probabili-
ties of all particles to obtain a new probability distribution.
CMFuzz (Wang et al. 2021) uses a context-aware mutation
method, which dynamically extracts byte stream features for
the seed file during the fuzzing process, and then uses a
multi-armed bandit algorithm to select the optimal mutation
operation. AMSFuzz (Zhao et al. 2022) models the muta-
tion operator selection problem in fuzzing as a dodging slot
machine model that adaptively selects mutation operators to
improve the efficiency of path discovery and vulnerability
detection.

3.1.5 Summary of general fuzzing

The main purpose of general fuzzing is to optimize the pro-
cess of greybox fuzzing to improve the quality of test cases,
increase code coverage, and detect more vulnerabilities. The
current research status can be summarized into four aspects:
initial seed selection, seed selection optimization, energy
allocation, and mutation strategies. Initial seed selection
involves selecting the initial seed inputs for mutation-based
fuzzing. This is achieved through methods such as crawling,
historical POCs, and grammar-based learning. Seed selection
optimization is a crucial aspect of general fuzzing. Current
research utilizes techniques such as static analysis, intelli-
gent optimization, and machine learning to evaluate seeds
based on criteria such as coverage improvement, vulnerabil-
ity triggering potential, and reaching target locations. This
evaluation helps determine the priority of seed selection,
thus improving testing efficiency. Energy allocation refers to
the quantity of generated test cases through seed mutation.
Current research employs machine learning, optimization
algorithms, and reinforcement learning techniques to allocate

@ Springer

reasonable energy based on seed evaluation results. Muta-
tion strategies involve specific methods for mutating seeds.
Current research utilizes techniques such as taint analysis,
heuristic strategies, and mutation optimization to determine
mutation positions, methods, and how to optimize mutation
strategies to generate well-formed test cases, thereby improv-
ing the quality and efficiency of mutations.

With the increasing complexity of software, general
fuzzing research demonstrates good generality and is con-
tinuously evolving and optimizing. However, it still faces
challenges in detecting specific vulnerabilities.

3.2 Vulnerability-oriented fuzzing (RQ5)

General fuzzing has shown good generality, but it lacks an
advantage in discovering specific vulnerabilities. Therefore,
vulnerability-oriented fuzzing aims to uncover specific types
of vulnerabilities. Its core idea is to analyze the behaviors
related to vulnerabilities, guide fuzzing to satisfy the cor-
responding behaviors, thereby enabling faster discovery of
vulnerabilities of that type. Based on different types of vul-
nerabilities or bugs, relevant research is presented in Table 11.

3.2.1 Uncontrollable memory consumption & uncontrolled
recursive

MemLock (Wen et al. 2020) is utilized for the detection of
uncontrollable memory consumption and uncontrolled recur-
sive bugs. By employing instrumentation techniques within
the fuzzing process, MemLock continuously gathers infor-
mation on memory consumption and recursive function calls.
Test cases that achieve new coverage and cause increased
memory consumption or a higher number of recursive calls
are selectively chosen by MemLock. Selected test cases are
then added to a seed pool and assigned a higher priority,
aiming to effectively trigger vulnerabilities.

3.2.2 Integer overflow and array overflow

TIFF (Jain et al. 2018) employs dynamic taint analysis to
identify data types associated with input offsets during the
program execution. It performs not only coverage-oriented
mutation but also bug-oriented mutation, combining input
types and bug trigger conditions, using a custom mutation
strategy to generate test cases to detect two types of memory
corruption (integer overflow and array overflow).

3.2.3 Memory vulnerability

ovAFLow (Zhang et al. 2022) utilizes static analysis to iden-
tify potential locations in the program that may lead to
memory vulnerabilities. Specifically, it focuses on memory
manipulation function parameters and memory loop vari-

A systematic review of fuzzing 5509
Table 11 Fuzzers that detect various vulnerabilities
ID Vulnerability Name Open source Year
1 Uncontrollable memory consumption and uncontrollable recursive MemLock (Wen et al. 2020) v 2020
2 Integer overflow and array overflow TIFF (Jain et al. 2018) 2018
3 Memory vulnerability ovAFLow (Zhang et al. 2022) v 2022
4 Consistency error COMEFORT (Ye et al. 2021) v 2021
5 Use-after-free UAFL (Wang et al. 2020) 2020
UAFuzz (Nguyen et al. 2020) v 2020
MDFuzz (Zhang et al. 2021) 2021
6 Algorithmic complexity vulnerability PerfFuzz (Lemieux et al. 2018) v 2018
SlowFuzz (Petsios et al. 2017) 2017
7 Concurrency vulnerability Liu et al. (Liu et al. 2018) 2018
ConFuzz (Vinesh et al. 2020) v 2020
MUZZ (Chen et al. 2020) 2020
8 Side channel attack DifFuzz (Nilizadeh et al. 2019) v 2019
Brennan et al. (2020) 2020

ables. By employing taint inference, ovAFLow establishes
the corresponding relationships between input bytes and
these identified locations. It then guides the fuzzing process
by mutating seeds to trigger memory vulnerabilities within
the program.

3.2.4 Consistency error

COMFORT (Yeetal. 2021) is used to detect consistency vul-
nerabilities in JavaScript engines. It uses a DNN-based deep
learning language model, GPT-2, to generate random JS pro-
grams, and then extracts the boundary conditions of the test
programs related to JS API from the ECMA-262 specification
to guide the generation of multiple test case programs. The
generated test case programs are sent to multiple JS engines
to detect consistency issues through inconsistency analysis.

3.2.5 Use-after-free

The triggering of use-after-free (UAF) vulnerabilities requires
the sequential execution of three specific operations: memory
allocation, free, and memory use. Currently, fuzzing tech-
niques face difficulties in detecting UAF vulnerabilities. To
address this problem, UAFL (Wang et al. 2020) is proposed
to detect UAF. It identifies operation sequences by static
typestate analysis, and not only collects the control flow
information and also collects operation sequence informa-
tion to guide generate seeds that cover operation sequences,
to detect UAF. UAFuzz (Nguyen et al. 2020) employs bug
trace flattening to extract serialized basic blocks and func-
tions related to UAF vulnerabilities from binary programs. It
prioritizes seeds that are similar to these blocks and functions
and allocates more energy to them to detect UAF vulnera-

bilities. MDFuzz (Zhang et al. 2021) uses static analysis to
identify the locations of memory allocation, deallocation, and
access as targets. It calculates the distance from each basic
block to the targets and selects seeds based on this distance,
thereby enhancing the triggering of UAF vulnerabilities.

3.2.6 Algorithmic complexity vulnerability

Algorithmic complexity vulnerabilities occur when the worst-
case time or space complexity of an application is sig-
nificantly higher than the average case for specific user-
controlled inputs. To detect algorithmic vulnerabilities, Perf-
Fuzz (Lemieux et al. 2018) first extracts control flow graphs
to collect information on each edge of the target program by
improving instrumentation. Then, PerfFuzz selects test cases
that maximize execution counts of each edge in the control
flow graph (CFQG) as the pathological input. SlowFuzz (Pet-
sios et al. 2017) is based on libFuzzer (Serebryany 2016)
and prioritizes inputs that increase total path length to detect
algorithmic vulnerabilities.

3.2.7 Concurrency vulnerability

To detect concurrency vulnerability, Liu et al. (2018) pro-
posed a heuristic framework that uses static analysis to find
sensitive concurrent operations and determines the order of
execution of sensitive operations. Each specific execution
sequence is explored to trigger a potential concurrency vul-
nerability. ConFuzz (Vinesh et al. 2020) uses static analysis
to traverse the paths in the program. Each basic block in the
path is instrumented and then assigned an id and a weight
based on the distance of basic blocks to thread functions.
During the fuzzing process, the information related to basic

@ Springer

5510

X.Zhao et al.

blocks is used to generate new test cases, cover more basic
blocks, and detect concurrency vulnerabilities with the aid of
thread sanitizer ThreadSanitizer (2019). A greybox fuzzing
framework for multi-threaded programs, MUZZ (Chen et al.
2020) used coverage instrumentation, thread context instru-
mentation, and thread scheduling instrumentation to explore
the execution state of multi-threaded programs and then pri-
oritizes those seeds that have explored new code coverage or
thread contexts to detect concurrency vulnerabilities.

3.2.8 Side channel attack

Side channel attack exploits information leakage observed
during the execution of certain operations to undermine
security measures. To detect side channel vulnerabilities,
DifFuzz (Nilizadeh et al. 2019) employs a resource-guided
heuristic algorithm to test two different versions of an appli-
cation. During the fuzzing process, DifFuzz generates test
cases that maximize differences in resource consumption
between the versions, such as time, memory, and response
size, to detect side channel attacks. Brennan et al. (2020)
proposed a fuzzing technique for detecting timing side chan-
nel vulnerabilities in Java programs caused by just-in-time
compilation.

3.2.9 Summary of vulnerability-oriented fuzzing

Vulnerability-oriented fuzzing refers to fuzz testing based
on the known features and triggering patterns of specific
vulnerabilities to improve the efficiency of detection. Based
on the above research, vulnerability-oriented fuzzing firstly
requires to model known vulnerabilities and extract the
vulnerability information to guide test cases generation to
detect the type of vulnerability. Common methods include
static analysis, dynamic analysis, deep learning, and other
techniques to analyze and extract semantic information,
contextual information, and potential locations of vulner-
abilities. Based on the obtained information, techniques
such as instrumentation and taint analysis are employed
to improve and optimize seed selection, energy allocation,
mutation strategies, and guide fuzzing in generating test cases
that better uncover the targeted vulnerabilities. Therefore,
vulnerability-oriented fuzzing is of significant importance in
detecting specific types of vulnerabilities.

3.3 Combining fuzzing with other techniques (RQ6)

To enhance the efficiency of fuzzing, various techniques such
as symbolic execution, taint analysis, parallel, and instru-
mentation are commonly integrated. Table 12 provides an
overview of related work that incorporates these techniques
into fuzzing.

@ Springer

3.3.1 Symbolic execution

Hybrid fuzzing adds symbolic execution based on traditional
fuzzing. It is one of the current popular fuzzing branches.
Driller (Stephens et al. 2016) consists of a greybox fuzzer
AFL and a symbolic execution engine Angr (Wang and
Shoshitaishvili 2017). AFL can quickly generate test cases
to fuzz target programs. Angr can solve the constraints in
the program and generate new test cases only when AFL
does not find new paths. Driller combines the advantages of
AFL and the dynamic symbolic execution Angr, it avoids
the difficulty of AFL to break through special boundaries
and the problem of dynamic symbolic execution path explo-
sion. QSYM (Yun et al. 2018) is a concolic testing engine
tailored for hybrid fuzzing. To improve performance, it does
not translate the target program into an intermediate repre-
sentation but uses a dynamic binary instrument framework,
Inter Pin (Luk et al. 2005), to add symbolic tracing to the
target program and employs pruning basic blocks and elimi-
nating extraneous constraints to increase the speed of hybrid
fuzzing. However, it only supports x86 system architectures.

Most fuzzers are mainly coverage guided that waste a lot
of time on codes without bugs and it is difficult to reach pro-
tected codes that have complex conditions. A hybrid fuzzing
framework, SAVIOR (Chen et al. 2020b), is designed based
on bug-driven principles. SAVIOR uses the UBSan Unde-
finedBehaviorSanitizer (2019) to label potential bugs for the
target program and uses static analysis to find the protected
code region. During the fuzzing process, it optimizes seed
selection according to unexplored branches, bug labels, and
difficulty degree in branch exploration. Unlike other hybrid
fuzzers, SAVIOR also adds bug-guided verification to verify
all possible vulnerabilities in the execution path to ensure that
no vulnerability is missed. DigFuzz (Zhao et al. 2019) is a
probabilistic hybrid fuzzer, which is used to address the prob-
lems of schedule between concolic execution and fuzzing. It
uses Monte Carlo path optimization to quantify the difficulty
of path and assigns those paths for concolic execution. Since
the overhead of hybrid fuzzing is huge, PANGOLIN (Huang
et al. 2020) used polyhedral path abstraction to reuse the val-
ues solved by the constraint solver based on traditional hybrid
fuzzing, which can improve the efficiency of constraint solv-
ing while using the results of reusing constraint solving to
guide mutation in fuzzing. QuickFuzz (Lin et al. 2021) quan-
tifies two factors of path solution demand and solution cost,
and adopted a priority-based path searching method to select
the missing path to execute the mixed execution, to improve
the performance of hybrid fuzzing.

A systematic review of fuzzing 5511
g?f';el:;nzt t;j:l;lznzizrjetshat integrate ID Technique Fuzzer Open source Year
1 Symbolic execution Driller (Stephens et al. 2016) v 2016
QSYM (Yun et al. 2018) v 2018

SAVIOR (Chen et al. 2020b) 2020

DigFuzz (Zhao et al. 2019) 2019

PANGOLIN (Huang et al. 2020) 2020

QuickFuzz (Lin et al. 2021) 2021

2 Parallel and integration PAFL (Liang et al. 2018) 2018
Cupid (Giiler et al. 2020) v 2020

EnFuzz (Chen et al. 2019b) v 2019

AFL++ (Fioraldi et al. 2020) v 2020

3 Instrumentation UnTracer (Nagy and Hicks 2019) v 2019
Zeror (Zhou et al. 2020) 2020

4 Taint analysis Angora (Chen and Chen 2018) v 2018
Matryoshka(Chen et al. 2019a) 2019

GreyOne (Gan et al. 2020) 2020

PATA (Liang et al. 2022) 2022

5 Machine learning NeuFuzz (Wang et al. 2019) 2019
MEUZZ(Chen et al. 2020a) v 2020

AFL++hier (Wang et al. 2021) v 2021

COMFORT (Ye et al. 2021) v 2021

6 Intelligent optimization Cerebro (Li et al. 2019) 2019
OTA(Li et al. 2021) v 2021

MobFuzz (Zhang et al. 2022) 2022

MOPT (Lyu et al. 2019) v 2019

MooFuzz (Zhao et al. 2021) 2021

7 Reinforcement learning EcoFuzz (Yue et al. 2020) v 2020
SLIME(Lyu et al. 2022) v 2022

AMSFuzz (Zhao et al. 2022) 2022

3.3.2 Parallel and integration

Parallel and integration are also often used in fuzzing to
improve the efficiency of fuzzing. PAFL (Liang et al. 2018)
extends the existing single-mode fuzzing optimization to an
industrial parallel mode using efficient guidance informa-
tion synchronization and task partitioning, allowing multiple
fuzzers to work in parallel. EnFuzz (Chen et al. 2019b) imple-
ments seed synchronization to improve the effectiveness
of different fuzzers, integrating multiple fuzzing strate-
gies to improve the performance and versatility of fuzzers.
Cupid (Giiler et al. 2020) collects and applies empirical
data from a single isolated fuzzer and automatically iden-
tifies and selects a set of fuzzers that complement each
other during collaborative execution for parallelized and dis-
tributed fuzzing. AFL++ (Fioraldi et al. 2020) integrates
recent research results based on AFL, adding customized
mutation APIs, achieving better fuzzing speed, and support-
ing customized modules.

3.3.3 Instrumentation

To reduce the overhead caused by coverage tracking, UnTra
cer (Nagy and Hicks 2019) adds interrupt instructions before
each uncovered basic block of target programs to construct
a new program. Each generated test case is sent to the new
program to execute, and if an interrupt is triggered, the cover-
age tracking will be performed subsequently, otherwise, the
test case is discarded. After coverage tracing, the previous
basic block that has not been reached before will be deter-
mined, and the triggered interrupt instruction is deleted to
avoid invalid tracing.

Reducing instrumentation overhead can improve the per-
formance of fuzzing. Zeror (Zhou et al. 2020) uses two
mechanisms to improve the performance of fuzzing, the
self-modifying tracing mechanism and the binary switch
scheduling mechanism. The former is used to maintain a
set of unvisited instrumented points in the fuzzing process,
and once an instrumented point is visited, the point would

@ Springer

5512

X.Zhao et al.

be removed, reducing the overhead caused by instrumenta-
tion. The latter provides a multi-granularity binary switch
scheduling using a Bayesian approach to switch the different
coverage granularity instrumentation to better detect vulner-
ability.

3.3.4 Other techniques

In the research of general fuzzing and vulnerability-oriented
fuzzing, fuzzing can also be combined with taint analysis,
deep learning, machine learning, intelligent optimization,
and other techniques to enhance the efficiency of fuzzing.
The techniques has been discussed in Sects. 3.1 and 3.2.

3.3.5 Summary of fuzzing integration with other
techniques

The integration of fuzzing with other techniques is one of the
important directions in current research on fuzzing. Related
techniques include symbolic execution, taint analysis, par-
allel and integration techniques, static analysis, intelligent
optimization, deep learning and machine learning. Symbolic
execution can obtain the input corresponding to a specific
path by analyzing the program, but faces aces difficulties
such as path explosion and inefficient solving. On the con-
trary, fuzzing can generate a large number of test cases to
quickly cover more program paths, but it is difficult to ensure
the efficiency of testing for specific paths. Existing research
combines symbolic execution with fuzzing to take advantage
of the strengths of each technique and improve overall testing
efficiency. Taint analysis can trace sensitive data flows from
the sources to sink, determine which inputs can influence the
program’s execution. Existing research combines taint anal-
ysis and fuzzing to determine mutation locations of seeds
to generate high-quality test cases and improve testing effi-
ciency. Parallel and integration are incorporated into fuzzing
can save testing and enhance fuzzing efficiency. Other tech-
niques, such as intelligent optimization, deep learning, and
machine learning, are also combined with fuzzing to assist in
program analysis, power schedule, test case generation, ulti-
mately improving the efficiency of vulnerability discovery.

4 Fuzzing: different applications

In this section, we discuss the research progress of fuzzing in
diverse applications, including SMT solver, virtual machine
monitor, kernel, smart contract, protocol, and machine learn-
ing model. Table 13 shows the fuzzing of different applica-
tions.

@ Springer

4.1 SMT solver

Satisfiability modulo theories (SMT) solvers such as CVC4
(2021), Z3 (2015) are core and complex components of
program analysis, which have widely been used in many
applications, such as formal verification, security analy-
sis, automated theorem proving, and symbolic execution.
SMT solvers are used to evaluate the satisfiability of SMT
instances. It is a complex system combining multiple deci-
sion procedures for various theories, such as uninterpreted
functions, linear/nonlinear arithmetic, bit vectors, arrays
strings, and others. It is difficult to find issues in the solvers
and many works start to fuzz SMT solvers by generating SMT
instances continuously. Fuzzers for SMT solver are shown in
Table 14.

Stringfuzzer (Blotsky et al. 2018) is an open-source auto-
mated test string SMT solver fuzzer. It can generate and
transform SMT instances with string or regular expression
constraints, but the satisfiability of the instances generated by
Stringfuzzer is unknown. A new string solver fuzzer, String-
SolversTests (Bugariu and Miiller 2020) is proposed which
can construct satisfiable or unsatisfiable SMT instances with
known satisfiability truth. These instances are used as inputs
to fuzz SMT string solvers, to discover soundness and per-
formance, completeness, and other bugs. YinYang (Winterer
et al. 2020) is a mutation-based fuzzer that mutates a set of
seed formulas, and then uses the mutated formulas as inputs
to fuzz SMT solvers. The tool can detect soundness bugs,
crashes, invalid model bugs, segmentation faults, and other
bugs. STOROM (Mansur et al. 2020) is a blackbox mutation
fuzzer. It first uses seed fragments to decompose formulas in
seed instances into subformulas, then recombines these sub-
formulas to generate new formulas, and finally the generated
formulas are used to create a new, satisfying SMT instances
to detect critical bugs in any SMT solver. A lightweight
opfuzzer (Winterer et al. 2020) is proposed which uses type-
aware operator mutation to generate test cases that meet the
requirements and verify the results through different tests.
BanditFuzz (Scott et al. 2020) uses reinforcement learning
to automatically isolate and arrange grammatical structures
in the input to explore the cause of errors or performance
problems in the floating-point and string solvers.

4.2 Virtual machine monitor

Virtual machine monitor (VMM), also known as a hypervi-
sor, is a core component of cloud computing and is used to
virtual CPU, memory, I/O, and devices. Due to the diverse
interfaces and complex architecture of virtual machines, as
well as different interaction states, it makes direct fuzzing is
not effective by using traditional fuzzing. Fuzzers for VMM
are shown in Table 15.

A systematic review of fuzzing

5513

Table 13 Fuzzing of different
applications

ID Application

Fuzzer

1 SMT solver

2 Virtual machine monitor

3 Kernel

4 Smart contract

5 Protocol

6 Machine learning model

Stringfuzzer (Blotsky et al. 2018),
StringSolversTests (Bugariu and Miiller
2020), YinYang (Winterer et al. 2020),
STORM (Mansur et al. 2020), opfuzzer
(Winterer et al. 2020), BanditFuzz
(Scott et al. 2020)

VDF (Henderson et al. 2017),
HYPER-CUBE (Schumilo et al. 2020),
NYX (Schumilo et al. 2021)

Trinity (Jones (2010)), Syzkaller (Vyukov
(2015)), TriforceAFL (Jesse (2015)),
IMF (Han and Cha 2017), Moonshine
(Pailoor et al. 2018), HFL (Kim et al.
2020), KAFL (Schumilo et al. 2017),
PeriScope (Song et al. 2019), DIFUZE
(Corina et al. 2017), Razzer (Jeong et al.
2019), Krace (Xu et al. 2020)

ContractFuzzer (Jiang et al. 2018), ILF
(He et al. 2019), EthPloit (Zhang et al.
2020)

AutoFuzz (Gorbunov and Rosenbloom
2010), SECFUZZ (Tsankov et al. 2012),
PULSAR (Gascon et al. 2015), AFLNet
(Pham et al. 2020), BLSTM-DCNNFuzz
(Lv et al. 2020), SeqFuzzer (Zhao et al.
2019), Peach* (Luo et al. 2020)

CAGFuzz (Zhang et al. 2022),
DeepHunter (Xie et al. 2019),
TensorFuzz (Odena et al. 2019),
TitanFuzz (Deng et al. 2023)

Virtual devices are stateful and only work properly when
properly initialized. They have specific behaviors during
normal running. To fuzz virtual device, VDF (Henderson
et al. 2017) uses the record and replay methods to detect
virtual device bugs by first collecting the initialized and
normal running behaviors of the device, then mutating and
replaying the normal running behaviors. Jack and Li (2016)
designed a framework for fuzzing virtual devices. It uses AFL
to obtain coverage information and customizes lightweight
customized BIOS to achieve portable and efficient fuzzing
testing. Schumilo et al. (2020) presented a fuzzer for hypervi-
sors, HYPER-CUBE, which can be applied to both open and
closed source hypervisors. Based on a custom operating sys-
tem, a custom bytecode interpreter is deployed which does
not use coverage-guided fuzzing but is able to achieve high
throughput, efficiency, and code coverage. NYX (Schumilo
et al. 2021) is a coverage guidance hypervisor fuzzer. It uses
instrumentation tool Inter Pin (Luk et al. 2005) to obtain
coverage information and leverages a fast snapshot reload
mechanism to obtain the virtual machine state generated by
the previous test cases. To generate better test cases, a muta-
tion engine based on bytecode programs is implemented that
users can define a specification to generate inputs for differ-

ent interfaces, and the concept of affine types is proposed to
narrow down the space for test case generation.

4.3 Kernel

Kernel is an important and complex piece of system soft-
ware for computers. Kernel security is usually a hot topic in
some community forums. Many kernel fuzzers have been
developed to test the kernel subsystem, such as file sys-
tem, memory management, and device drivers and used to
solve special problems and specific vulnerabilities in kernel.
Fuzzers for kernel are shown in Table 16.

Trinity (Jones 2012) is a Linux system call fuzzer that
uses the type information parameters provided in the Linux
system call prototype definitions to passed parameter to
the system calls drives the generation of test cases. How-
ever, Trinity does not keep track of coverage. Dmitry et al.
Vyukov (2015) took this problem into account and developed
an unsupervised coverage-guided kernel fuzzer, Syzkaller.
Syzkaller uses the gcc port of the address sanitizer to keep
track of coverage and supports other OS kernels as well.
TriforceAFL Jesse (2015) used QEMU to implement code
coverage and added serialization techniques to kernel APISs,

@ Springer

5514

X.Zhao et al.

@ Springer

Table 14 Fuzzers for testing SMT solver

Year

Open source

Tested target

Type

Main contribution

Fuzzer

2018

String SMT solver

Generation-based

Testing string logic

Stringfuzzer (Blotsky et al. 2018)

2020
2020
2020
2020
2020

String SMT solver

SMT solver

Automatic testing string SMT solver Generation-based

StringSolversTests (Bugariu and Miiller 2020)

YinYang (Winterer et al. 2020)

Mutaiton-based

Semantic fusion

SMT solver

Mutation-based blockbox

Mutation-based

Mutation-based SMT solver testing

STORM (Mansur et al. 2020)

SMT solver

Type-aware operator mutation

opfuzzer (Winterer et al. 2020)

Floating-point and string SMT solver

Mutation-based

First machine learning-based fuzzer for SMT solvers

BanditFuzz (Scott et al. 2020)

and extended AFL to support fuzzing kernels. IMF (Han
and Cha 2017) is a model-based API fuzzer that takes
API calls context into account and generates random but
well-structured seeds by inferring dependencies between
individual APIs and combining with a mutation engine.
KAFL (Schumilo et al. 2017) is a coverage-guided kernel
fuzzing tool that utilizes one new feature in Intel CPU-
provided hardware called Intel processor trace (PT). This
hardware feature allows the CPU to gather branch tracing
information to maximize code coverage within a limited
time. Moonshine (Pailoor et al. 2018) implemented a seed
distillation algorithm that uses static analysis to identify
dependencies between function calls and then grouping them
to generate seeds that ensuring code coverage.

The device drivers provide software interfaces to access
hardware. Fuzzing device drive is concerned by researchers.
Corina et al. (2017) proposed DIFUZE, an interface-aware
fuzzing tool focusing on the ioctls interface provided by
device drivers, which utilizes static analysis techniques to
generate legal input sequences and track the execution of
the driver. Song et al. (2019) presented PeriScope, a prob-
ing framework, suitable for detecting vulnerabilities that
can be exploited by peripheral devices which lack underly-
ing safeguards, in particular memory corruption bugs and
double-fetch vulnerabilities, by analyzing the interaction
between device drivers.

Aiming at kernel-specific challenges, Kim et al. (2020)
designed a hybrid kernel fuzzer, HFL. It improves hybrid
fuzzing to target the kernel’s characteristics by shifting con-
trol transfer from implicit to explicit, performing inference of
system call sequences to establish consistent system states,
and identifying the nested parameter types of system calls.
This ultimately improves the efficiency coverage of hybrid
fuzzing. Considering the problem of data race in concur-
rency, Jeong et al. (2019) designed Razzer to achieve the
efficient discovery of race in kernel using static analysis and
deterministic thread interleaving techniques. Static analysis
is used to analyze potential locations that exist data race in
the source code. Deterministic thread interleaving is used
to control thread schedule to provide accurate parallel exe-
cution information and reduce uncertainty. Xu et al. (2020)
designed a coverage-based fuzzer, KRace, which replaces
path coverage with alias coverage to achieve accurate data
race detection.

4.4 Smart contract

Smart contracts have different characteristics compared to
traditional applications, which presents a whole new chal-
lenge for the fuzzing of smart contracts. Firstly, the execution
state of smart contract programs for different test cases is
passed through the global Storage store and affects each
other. Thus, it is difficult to improve global coverage by

A systematic review of fuzzing 5515
Table 15 Fuzzers for testing VMM

Fuzzer Main contribution Tested target Open source Year
VDF (Henderson et al. 2017) Using record and replay to fuzz virtual devices Virtual device 2017
HYPER-CUBE (Schumilo et al. 2020) Using custom interpreter for testing hypervisors Hypervisor 2020
NYX (Schumilo et al. 2021) Coverage guidance hypervisor fuzzer Hypervisor v 2021

Table 16 Fuzzers for testing kernel

Fuzzer Main contribution

Tested target Open source Year

Trinity (Jones (2010))
Syzkaller (Vyukov (2015))
Triforce AFL (Jesse (2015))
IMF (Han and Cha 2017)
KAFL (Schumilo et al. 2017)

First system calls fuzzer

Moonshine (Pailoor et al. 2018) Implementation of seed distillation algorithm based on static analysis

HFL (Kim et al. 2020)
DIFUZE (Corina et al. 2017)
PeriScope (Song et al. 2019)
Razzer (Jeong et al. 2019)
Krace (Xu et al. 2020)

First hybrid kernel fuzzer

Ioctl interface-aware fuzzing

Coverage-based test case generation strategy
The AFL extension on the kernel testing
Fuzzer based on API dependency inference model

Hardware design for using Intel CPUs to guided fuzzing

Detecting race bugs through static analysis and thread interleaving

Detecting data race bugs using alias coverage

Kernel v 2010
Kernel v 2015
Kernel v 2015
Kernel v 2017
Kernel v 2017
Kernel v 2018
Kernel 2020
Device driver v 2017
Detecting vulnerabilities by analyzing interactions between device drivers Device driver v’ 2019
Kernel v 2019
Kernel v 2020

providing coverage guidance feedback for test cases of indi-
vidual functions. Secondly, the vulnerabilities may come
from different levels of the blockchain, virtual machine, and
high-level language, and there are many differences between
them, which makes it challenging to detect vulnerabilities
in smart contracts. Fuzzers for smart contract are shown in
Table 17.

ContractFuzzer (Jiang et al. 2018) is a fuzzer that detects
vulnerabilities in smart contracts. It instruments environment
virtual machine (EVM) to log the runtime information of
smart contracts and generates test cases that meet smart
contracts grammars by learning the contract application
binary interface specifications to fuzz smart contracts. Seven
test oracles are defined to detect types of Ethereum smart
contract vulnerabilities including gasless send, exception
disorder, reentrancy, timestamp dependency, block number
dependency, and dangerous delegatecall, and freezing ether
vulnerabilities. ILF (He et al. 2019) is a neural network-
based fuzzer for smart contracts, which aims at generating
better test cases and transaction sequences. It uses a symbolic
execution engine to generate a large number of transac-
tion sequences and then trains a neural network model that
captures a probabilistic fuzzing policy for generating test
cases. To solve the problems of hard constraints in execution
and ignoring blockchain properties on smart contracts, Eth-
Ploit (Zhang et al. 2020) generates transaction sequences to
fuzz smart contracts by instrumenting EVM to better simulate
blockchain behaviors and using dynamic seeding strategies
to solve hard constraints.

4.5 Protocol

A protocol is a set of agreements that both sides of a
communicating computer must mutually adhere to. The
implementation of protocols ensures that services can be
provided at a higher level. As the service has a large num-
ber of space states, it is necessary to traverse these states
using a sequence of input messages, which also poses diffi-
culties and challenges for testing protocols. There are many
security issues in protocols that can easily cause serious prob-
lems, such as information leakage, denial of service, and
others. Due to the diversity of protocols, the complexity of
the protocol state space, and the dependency of protocol state,
detecting protocol-related problems is a challenge. Fuzzers
for protocol are shown in Table 18.

AutoFuzz (Gorbunov and Rosenbloom 2010) is an auto-
mated network protocol fuzzing framework that first con-
structs a finite state automaton (FSA) to capture com-
munications between client and server to understand the
implementation of protocols, and then learning the individ-
ual message syntax. Finally, AutoFuzz uses the FSA as a
guide to fuzz the client and server protocols by modifying the
input traffic. SECFUZZ (Tsankov et al. 2012) uses a modular
fuzzing approach to fuzz stateful security protocols that han-
dle encrypted traffic, and uses a series of custom mutation
operators to generate test cases to detect security vulnera-
bilities. AFLNet (Pham et al. 2020) is a greybox fuzzer for
protocols based on AFL. It uses code coverage feedback and
state feedback to guide the fuzzing process.

@ Springer

5516

X.Zhao et al.

Table 17 Fuzzers for testing smart contract

Fuzzer Main contribution Open source Year
ContractFuzzer (Jiang et al. 2018) Defining seven detection models v 2018
ILF (He et al. 2019) Using neural network to fuzz smart contract v 2019
EthPloit (Zhang et al. 2020) Using taint analysis and instrumentation to guide test case generation 2020
;::::CL? Fuzzers for testing Fuzzer Tested target Open source Year
AutoFuzz (Gorbunov and Rosenbloom 2010) Network protocol 2010
SECFUZZ (Tsankov et al. 2012) Security protocol v 2012
PULSAR (Gascon et al. 2015) Network protocol v 2015
AFLNet (Pham et al. 2020) Network protocol v 2020
SeqFuzzer (Zhao et al. 2019) Industrial control protocol 2019
BLSTM-DCNNFuzz (Lv et al. 2020) Industrial control protocol 2020
Peach*(Luo et al. 2020) Industrial control protocol 2020

Aiming at industrial protocol, some fuzzing methods have
been proposed. Zhao et al. (2019) proposed a protocol testing
framework, SeqFuzzer, which trains sequence-to-sequence
network models to automatically learn the frame structure
of protocols to generate fake but plausible messages as test
cases, sending them to perform and monitoring irregular
industrial control system behaviors to find vulnerabilities.
Lv et al. (2020) proposed an intelligent protocol framework,
BLSTM-DCNNFuzz, which uses deep convolution gener-
ative adversarial networks to generate protocol messages to
fuzz industrial control protocols. Luo et al. (2020) added cov-
erage information to the traditional protocol fuzzer Peach,
saving valuable packets and decomposing them to construct
new high-quality test cases for future testing.

4.6 Machine learning model

With the development of artificial intelligence, more and
more machine learning models are being used in various
fields. Fuzzing techniques for machine learning models have
attracted the attention of researchers. Fuzzers for machine
learning model are shown in Table 19.

CAGFuzz (Zhang et al. 2022) is a coverage-guided adver-
sarial generative fuzzing framework that uses the coverage of
neurons as guide and trains an adversarial test case generator
to generate as many adversarial test cases as possible under
the condition of less disturbance. The generated test cases are
suitable for different deep neural networks. DeepHunter (Xie
etal. 2019) is coverage-guided fuzzing framework that com-
bines five existing testing criteria including neuron coverage,
k-multisection neuron coverage, neuron boundary coverage,
strong neuron activation coverage, and top-k neuron cov-
erage, to detect defects of deep neural networks. It uses a
seed selection based on diversity and recency, and more fine-

@ Springer

grained metamorphic mutation to generate test samples. That
has great advantages in achieving high coverage and error
detection capabilities. TensorFuzz (Odena et al. 2019) is a
coverage-guided library for neural networks which is used to
find numerical errors in the trained network, detect inconsis-
tencies between models and quantized version, and display
undesirable behavior in the character-level language model.
It leverages fast approximate nearest neighbors algorithm
to explore the activation function in neural networks as a
coverage metric, and determines whether a new coverage is
generated by detecting the similarity of activation vectors.
Luo et al. (2021) proposed a graph-based fuzzing method
which uses six different mutation strategies including graph
edges addition, graph edges removal, block nodes addition,
block nodes removal, tensor shape mutation, and parameters
mutation to generate diversified digraph structure of deep
learning models to fuzz deep learning inference engines.
Monte Carlo tree search is used to search most promising
mutation operators to generate new models. TitanFuzz (Deng
et al. 2023) tests deep learning libraries with large language
models (LLMs), which uses generative LLMs such as Codex
by providing high-quality seed programs, and then uses fill-
ing LLMs such as InCoder to mutate the seed programs to
generate high-quality seed inputs.

5 Conclusion and future direction

The development trends of fuzzing encompass automation,
intelligence, technique integration, collaboration, diverse
application domains, and open-source testing tools. Fuzzing
efficiency and ease of use have improved due to automation,
while intelligent techniques have enhanced test case gen-
eration and vulnerability discovery. Integration with other

A systematic review of fuzzing

5517

Table 19 Fuzzers for testing machine learning model

Fuzzer Main contribution

Tested target Open source Year

CAGFuzz (Zhang et al. 2022)
DeepHunter (Xie et al. 2019)
TensorFuzz (Odena et al. 2019)
Luo et al. (2021)

TitanFuzz (Deng et al. 2023)

Metamorphic mutation strategy

Coverage-guided adversarial generative fuzzing

Testing neural networks using coverage-guided fuzzing
Graph-based mutation to generate inputs

Using LLMS to generate high-quality seed programs

Deep learning system 2019
Deep neural network 2019
Neural network v 2019
Deep learning inference engine v/ 2020
Deep learning library 2023

techniques has bolstered testing effectiveness, and fuzzing
has many applications in a wide range of domains. The
availability of open-source fuzzers has stimulated active par-
ticipation from developers and researchers. These trends
underscore the significance of fuzzing as a critical technique
in software and security testing. This paper provides a com-
prehensive review of common fuzzing processes and various
types, highlighting the details of fuzzing techniques through
the example of CGF and showcasing cutting-edge research.
Furthermore, we discuss the diverse application areas of fuzz
testing.

Future research directions can focus on the following
areas.

(1) Learning-aware, smart fuzzing. Traditional approaches
often primarily hinge on fixed mutation strategies or
weighted test cases generated through grammatical anal-
ysis. However, smart fuzzing techniques will continu-
ously collect and learn execution information from the
target program. This deep understanding of program
states will guide seed generation, improve code coverage,
and enable real-time monitoring of program exceptions.
By incorporating machine learning and other intelligent
algorithms, smart fuzzing can adapt and optimize the
fuzzing process based on continuous learning, leading
to improved efficiency in vulnerability discovery.

(2) Vulnerability-aware fuzzing techniques. Despite sig-
nificant advancements in CGF, there exists potential
for improvement in identifying specific vulnerability
types. Future fuzzing research will focus on develop-
ing vulnerability-aware techniques. These techniques
will continuously capture and analyze characteristics and
patterns of known vulnerabilities to guide the fuzzing
process. By leveraging the information obtained from
previous vulnerabilities, such as input patterns or triggers,
fuzzing can be directed toward discovering similar vul-
nerabilities in different software systems. This strategy

augments the vulnerability detection rate and facilitates
targeted testing for distinct security weaknesses.

(3) Incorporating new techniques in fuzzing. New techniques
can help improve the efficiency of fuzzing and the speed
of discovery of vulnerabilities. New techniques, such as
machine learning (Godefroid et al. 2017), reinforcement
learning (Hou and Su 2022; Wang et al. 2021), intelligent
optimization (Avci and Avci 2019; Wang et al. 2014;
Wang and Tan 2019), LLMs (Deng et al. 2023; Wang
et al. 2022), and parallel (Liang et al. 2018) techniques,
are integrated into fuzzing to assist fuzzing to increase
coverage and the speed of vulnerability discovery.

(4) Fuzzing in emerging applications. While fuzzing has
been extensively applied in areas such as file fuzzing, pro-
tocol fuzzing, and kernel testing, there is a need to explore
its applicability in emerging and complex applications.
Future research will focus on developing customized
fuzzing solutions tailored to specific applications, such
as machine learning models, smart contracts, and 10T
devices (D’Angelo et al. 2023, ?). These new and com-
plex applications present unique challenges and require
specialized fuzzing techniques to uncover vulnerabilities
effectively.

(5) Works related to fuzzing. As fuzzing continues to gain
popularity, related research areas will also evolve, such as
anti-fuzzing techniques (Giiler et al. 2019), exploit gen-
eration techniques (Heelan et al. 2019; Wang et al. 2018;
You et al. 2017), evaluation methods, benchmarks, and
metrics (Bohme and Falk 2020; Ding and Goues 2021;
Li et al. 2021).

Funding This research was funded by the National Natural Science
Foundation of China Grant Number 61827810.

Data availability Not applicable.

Code availability Not applicable.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

@ Springer

5518

X.Zhao et al.

References

Abhishek A, Cris N (2012) Fuzzing for security. https://blog.chromium.
org/2012/04/fuzzing-for-security.html. Accessed on 30 March
2021

Aschermann C, Schumilo S, Blazytko T, Gawlik R, Holz T (2019)
REDQUEEN: fuzzing with input-to-state correspondence. In:
Proceedings 2019 network and distributed system security sym-
posium. https://doi.org/10.14722/ndss.2019.23371

Avci MG, Avci M (2019) An adaptive large neighborhood search
approach for multiple traveling repairman problem with prof-
its. Comput Oper Res 111:367-385. https://doi.org/10.1016/j.cor.
2019.07.012

Avgerinos T, Rebert A, Cha SK, Brumley D (2014) Enhancing symbolic
execution with veritesting. In: Proceedings of the 36th international
conference on software engineering, pp 1083—1094. https://doi.
org/10.1145/2568225.2568293

Baldoni R, CoppaE, D’elia DC, Demetrescu C, Finocchi I (2018) A sur-
vey of symbolic execution techniques. ACM Comput Surv (CSUR)
51(3):1-39

Banks G, Cova M, Felmetsger V, Almeroth K, Kemmerer R, Vigna
G (2006) SNOOZE: toward a stateful network protocol fuzzer.
In: International conference on information security, pp 343-358.
https://doi.org/10.1007/11836810_25

Beaman C, Redbourne M, Mummery JD, Hakak S (2022) Fuzzing
vulnerability discovery techniques: survey, challenges and future
directions. Comput Secur 120:1-13. https://doi.org/10.1016/j.
cose.2022.102813

Bekrar S, Bekrar C, Groz R, Mounier L (2012) A taint based approach
for smart fuzzing. In: 2012 IEEE fifth international conference on
software testing, verification and validation, pp 818-825. https://
doi.org/10.1109/icst.2012.182

Blazytko T, Aschermann C, Schlégel M, Abbasi A, Schumilo S,
Worner S, Holz T (2019) GRIMOIRE: synthesizing structure
while fuzzing. In: 28th USENIX security symposium, pp 1985—
2002

Blotsky D, Mora F, Berzish M, Zheng Y, Kabir I, Ganesh V (2018)
Stringfuzz: a fuzzer for string solvers. In: International conference
on computer aided verification, pp 45-51. https://doi.org/10.1007/
978-3-319-96142-2_6

Bohme M, Pham V, Roychoudhury A (2019) Coverage-based greybox
fuzzing as Markov chain. IEEE Trans Softw Eng 45(5):489-506.
https://doi.org/10.1109/tse.2017.2785841

Bohme M, Falk B (2020) Fuzzing: on the exponential cost of vulner-
ability discovery. In: Proceedings of the 28th ACM joint meeting
on European software engineering conference and symposium on
the foundations of software engineering, pp 713—724. https://doi.
org/10.1145/3368089.3409729

Bohme M, Pham VT, Nguyen MD, Roychoudhury A (2017) Directed
greybox fuzzing. In: Proceedings of the 2017 ACM SIGSAC con-
ference on computer and communications security, pp 2329-2344.
https://doi.org/10.1145/3133956.3134020

Brad A (2009) Adobe reader and acrobat security initiative. https:/
blogs.adobe.com/security/2009/05/adobe_reader_and_acrobat_
secur.html. Accessed on 30 March 2021

Brennan T, Saha S, Bultan T (2020) JVM fuzzing for JIT-induced
side-channel detection. In: Proceedings of the ACM/IEEE 42nd
international conference on software engineering, pp 1011-1023.
https://doi.org/10.1145/3377811.3380432

Bugariu A, Miiller P (2020) Automatically testing string solvers. In:
Proceedings of the ACM/IEEE 42nd international conference
on software engineering, pp 1459-1470. https://doi.org/10.1145/
3377811.3380398

Chen Y, Ahmadi M, Farkhani RM, Wang B, Lu L (2020) MEUZZ: smart
seed scheduling for hybrid fuzzing. In: International symposium

@ Springer

on recent advances in intrusion detection, pp 77-92. https://doi.
org/10.14722/ndss.2021.24486

Chen P, Chen H (2018) Angora: efficient fuzzing by principled search.
In: 2018 IEEE symposium on security and privacy, pp 711-725.
https://doi.org/10.1109/sp.2018.00046

Chen H, Guo S, Xue Y, Sui Y, Zhang C, Li Y, Wang H, Liu Y (2020)
MUZZ: thread-aware grey-box fuzzing for effective bug hunting
in multithreaded programs. In: 29th USENIX security symposium,
pp 2325-2342

Chen Y, Jiang Y, Ma F, Liang J, Wang M, Zhou C, Jiao X, Su
Z (2019) EnFuzz: ensemble fuzzing with seed synchronization
among diverse fuzzers. In: 28th USENIX security symposium, pp
1967-1983

Chen P, Liu J, Chen H (2019) Matryoshka: fuzzing deeply nested
branches. In: Proceedings of the 2019 ACM SIGSAC conference
on computer and communications security, pp 499-513. https://
doi.org/10.1145/3319535.3363225

Chen Y, Li P, Xu J, Guo S, Zhou R, Zhang Y, Wei T, Lu L (2020) Sav-
ior: towards bug-driven hybrid testing. In: 2020 IEEE symposium
on security and privacy, pp 1580-1596. https://doi.org/10.1109/
sp40000.2020.00002

Chen H, Xue Y, Li Y, Chen B, Xie X, Wu X, Liu Y (2018) Hawk-
eye: towards a desired directed grey-box fuzzer. In: Proceedings
of the 2018 ACM SIGSAC conference on computer and communi-
cations security, pp 2095-2108. https://doi.org/10.1145/3243734.
3243849

Chris E, Matt M, Tavis O (2011) Fuzzing at scale. https://security.
googleblog.com/2011/08/fuzzing-at-scale.html. Accessed on 30
March 2021

Cisco secure development lifecycle (2018). https://www.cisco.com/
c/en/us/about/trust-center/technology-built-in-security.html#
~processes. Accessed on 6 Aug 2023

Clang (2007). https://clang.llvm.org/. Accessed on 1 March 2021

CorinaJ,Machiry A, Salls C, Shoshitaishvili Y, Hao S, Kruegel C, Vigna
G (2017) Difuze: interface aware fuzzing for kernel drivers. In:
Proceedings of the 2017 ACM SIGSAC conference on computer
and communications security, pp 2123-2138. https://doi.org/10.
1145/3133956.3134069

CVC4 (2021). https://cvcd.github.io/. Accessed on 30 March 2021

CVE-fuzzing-poc (2016). https://github.com/geeknik/cve-fuzzing-
poc. Accessed on 30 March 2021

D’Angelo G, Farsimadan E, Ficco M, Palmieri F, Robustelli A
(2023) Privacy-preserving malware detection in android-based [oT
devices through federated Markov chains. Futur Gener Comput
Syst 148:93-105. https://doi.org/10.1016/j.future.2023.05.021

D’Angelo G, Ficco M, Robustelli A (2023) An association rules-based
approach for anomaly detection on can-bus. In: International con-
ference on computational science and its applications. Springer,
pp 174-190

Darpa cyber grand challenge. https://www.darpa.mil/program/cyber-
grand-challenge. Accessed on 6 Aug 2023

Deng Y, Xia CS, Peng H, Yang C, Zhang L (2023) Large language
models are zero-shot fuzzers: fuzzing deep-learning libraries via
large language models. In: Proceedings of the 32nd ACM SIG-
SOFT international symposium on software testing and analysis,
pp 423-435

Ding ZY, Goues CL (2021) An empirical study of oss-fuzz bugs. arXiv
preprint arXiv:2103.11518

Donaldson AF, Clayton B, Harrison R, Mohsin H, Neto D, Teliman
V, Watson H (2023) Industrial deployment of compiler fuzzing
techniques for two GPU shading languages. In: 2023 IEEE confer-
ence on software testing, verification and validation, pp 374-385.
https://doi.org/10.1109/ICST57152.2023.00042

Dynamorio. https://github.com/DynamoRIO/dynamorio. Accessed on
30 March 2021

https://blog.chromium.org/2012/04/fuzzing-for-security.html
https://blog.chromium.org/2012/04/fuzzing-for-security.html
https://doi.org/10.14722/ndss.2019.23371
https://doi.org/10.1016/j.cor.2019.07.012
https://doi.org/10.1016/j.cor.2019.07.012
https://doi.org/10.1145/2568225.2568293
https://doi.org/10.1145/2568225.2568293
https://doi.org/10.1007/11836810_25
https://doi.org/10.1016/j.cose.2022.102813
https://doi.org/10.1016/j.cose.2022.102813
https://doi.org/10.1109/icst.2012.182
https://doi.org/10.1109/icst.2012.182
https://doi.org/10.1007/978-3-319-96142-2_6
https://doi.org/10.1007/978-3-319-96142-2_6
https://doi.org/10.1109/tse.2017.2785841
https://doi.org/10.1145/3368089.3409729
https://doi.org/10.1145/3368089.3409729
https://doi.org/10.1145/3133956.3134020
https://blogs.adobe.com/security/2009/05/adobe_reader_and_acrobat_secur.html
https://blogs.adobe.com/security/2009/05/adobe_reader_and_acrobat_secur.html
https://blogs.adobe.com/security/2009/05/adobe_reader_and_acrobat_secur.html
https://doi.org/10.1145/3377811.3380432
https://doi.org/10.1145/3377811.3380398
https://doi.org/10.1145/3377811.3380398
https://doi.org/10.14722/ndss.2021.24486
https://doi.org/10.14722/ndss.2021.24486
https://doi.org/10.1109/sp.2018.00046
https://doi.org/10.1145/3319535.3363225
https://doi.org/10.1145/3319535.3363225
https://doi.org/10.1109/sp40000.2020.00002
https://doi.org/10.1109/sp40000.2020.00002
https://doi.org/10.1145/3243734.3243849
https://doi.org/10.1145/3243734.3243849
https://security.googleblog.com/2011/08/fuzzing-at-scale.html
https://security.googleblog.com/2011/08/fuzzing-at-scale.html
https://www.cisco.com/c/en/us/about/trust-center/technology-built-in-security.html#~processes
https://www.cisco.com/c/en/us/about/trust-center/technology-built-in-security.html#~processes
https://www.cisco.com/c/en/us/about/trust-center/technology-built-in-security.html#~processes
https://clang.llvm.org/
https://doi.org/10.1145/3133956.3134069
https://doi.org/10.1145/3133956.3134069
https://cvc4.github.io/
https://github.com/geeknik/cve-fuzzing-poc
https://github.com/geeknik/cve-fuzzing-poc
https://doi.org/10.1016/j.future.2023.05.021
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
http://arxiv.org/abs/2103.11518
https://doi.org/10.1109/ICST57152.2023.00042
https://github.com/DynamoRIO/dynamorio

A systematic review of fuzzing

5519

Edwards SH (2001) A framework for practical, automated black-box
testing of component-based software. Softw Test Veri Reliab
11(2):97-111. https://doi.org/10.1002/stvr.224

Eisele M, Maugeri M, Shriwas R, Huth C, Bella G (2022) Embedded
fuzzing: areview of challenges, tools, and solutions. Cybersecurity
5(1-18):18. https://doi.org/10.1186/s42400-022-00123-y

Fioraldi A, Maier D, Eififeldt H, Heuse M (2020) AFL++ : combining
incremental steps of fuzzing research. In: 14th USENIX workshop
on offensive technologies, pp 1-12

Frida. https://frida.re/. Accessed on 30 March 2021

Fuzzdata (2015). https://github.com/MozillaSecurity/fuzzdata.git.
Accessed on 30 March 2021

Ganesh V, Leek T, Rinard M (2009) Taint-based directed whitebox
fuzzing. In: 2009 IEEE 31st international conference on soft-
ware engineering, pp 474-484. https://doi.org/10.1109/icse.2009.
5070546

Gan S, Zhang C, Chen P, Zhao B, Qin X, Wu D, Chen Z (2020)
GREYONE: data flow sensitive fuzzing. In: 29th USENIX security
symposium, pp 2577-2594

Gan S, Zhang C, Qin X, Tu X, Li K, Pei Z, Chen Z (2018) Collafl:
path sensitive fuzzing. In: 2018 IEEE symposium on security and
privacy, pp 679-696. https://doi.org/10.1109/sp.2018.00040

Gascon H, Wressnegger C, Yamaguchi F, Arp D, Rieck K (2015) Pul-
sar: stateful black-box fuzzing of proprietary network protocols.
In: Security and privacy in communication networks: 11th EAI
international conference, SecureComm 2015, Dallas, TX, USA,
26-29 Oct 2015, Proceedings 11. Springer, pp 330-347. https:/
doi.org/10.1007/978-3-319-28865-9_18

GDB (1988). https://www.gnu.org/software/gdb/. Accessed on 30
March 2021

Github. https://github.com/. Accessed on 6 Aug 2023

Godefroid P (2020) Fuzzing: hack, art, and science. Commun ACM
63(2):70-76. https://doi.org/10.1145/3363824

Godefroid P, Levin MY, Molnar DA (2008) Automated whitebox fuzz
testing. Netw Distrib Secur Symp 8:151-166

Godefroid P, Kiezun A, Levin MY (2008) Grammar-based whitebox
fuzzing. In: Proceedings of the 29th ACM SIGPLAN conference
on programming language design and implementation, pp 206—
215. https://doi.org/10.1145/1375581.1375607

Godefroid P, Kiezun A, Levin MY (2008) Grammar-based whitebox
fuzzing. In: Proceedings of the 29th ACM SIGPLAN conference
on programming language design and implementation, pp 206—
215. https://doi.org/10.1145/1375581.1375607

Godefroid P, Peleg H, Singh R (2017) Learn&fuzz: machine learning for
input fuzzing. In: 2017 32nd IEEE/ACM international conference
on automated software engineering, pp 50-59. https://doi.org/10.
1109/ase.2017.8115618

google: ClusterFuzz. https://github.com/google/clusterfuzz. Accessed
on 30 March 2021

Gorbunov S, Rosenbloom A (2010) Autofuzz: automated network pro-
tocol fuzzing framework. Int J Comput Sci Netw Secur 10(8):239

Giiler E, Aschermann C, Abbasi A, Holz T (2019) AntiFuzz: impeding
fuzzing audits of binary executables. In: 28th USENIX security
symposium, pp 1931-1947

Giiler E, Gorz P, Geretto E, Jemmett A, Osterlund S, Bos H, Giuffrida C,
Holz T (2020) Cupid: automatic fuzzer selection for collaborative
fuzzing. In: Annual computer security applications conference, pp
360-372. https://doi.org/10.1145/3427228.3427266

Han H, Cha SK (2017) IMF: inferred model-based fuzzer. In: Pro-
ceedings of the 2017 ACM SIGSAC conference on computer and
communications security, pp 2345-2358 https://doi.org/10.1145/
3133956.3134103

Han W, Joe B, Lee B, Song C, Shin I (2018) Enhancing memory error
detection for large-scale applications and fuzz testing. In: Proceed-
ings 2018 network and distributed system security symposium.
https://doi.org/10.14722/ndss.2018.23312

He J, Balunovi¢ M, Ambroladze N, Tsankov P, Vechev M (2019) Learn-
ing to fuzz from symbolic execution with application to smart
contracts. In: Proceedings of the 2019 ACM SIGSAC conference
on computer and communications security, pp 531-548. https:/
doi.org/10.1145/3319535.3363230

Heelan S, Melham T, Kroening D (2019) Gollum: modular and greybox
exploit generation for heap overflows in interpreters. In: Pro-
ceedings of the 2019 ACM SIGSAC conference on computer
and communications security, pp 1-18. https://doi.org/10.1145/
3319535.3354224

Henderson A, Yin H, Jin G, Han H, Deng H (2017) VDF: targeted
evolutionary fuzz testing of virtual devices. In: International sym-
posium on research in attacks, intrusions, and defenses, pp 3-25.
https://doi.org/10.1007/978-3-319-66332-6_1

HonggFuzz (2015). https://honggfuzz.dev/. Accessed on 30 March
2021

HouL, Su'Y (2022) Swarm activity-based dynamic PSO for distribution
decision. Int] Autom Control 16(3/4):503-517. https://doi.org/10.
1504/ijaac.2022.10046277

Huang H, Yao P, WuR, Shi Q, Zhang C (2020) PANGOLIN: incremental
hybrid fuzzing with polyhedral path abstraction. In: 2020 IEEE
symposium on security and privacy, pp 1613-1627. https://doi.
org/10.1109/sp40000.2020.00063

IDA (2003). https://www.hex-rays.com/products/ida/. Accessed on 30
March 2021

Jack T, Li M (2016) When virtualization encounter AFL. In: Black Hat
Europe

Jain V, Rawat S, Giuffrida C, Bos H (2018) TIFF: using input type
inference to improve fuzzing. In: Proceedings of the 34th annual
computer security applications conference, pp 505-517. https://
doi.org/10.1145/3274694.3274746

Jeong DR, Kim K, Shivakumar B, Lee B, Shin I (2019) Razzer: find-
ing kernel race bugs through fuzzing. In: 2019 IEEE symposium
on security and privacy, pp 754-768. https://doi.org/10.1109/sp.
2019.00017

Jesse H. TriforceAFL. https:/github.com/nccgroup/Triforce AFL.
Accessed on 30 March 2021

Jiang B, Liu Y, Chan W (2018) ContractFuzzer: fuzzing smart contracts
for vulnerability detection. In: 2018 33rd IEEE/ACM interna-
tional conference on automated software engineering, pp 259-269.
https://doi.org/10.1145/3238147.3238177

Jones D. trinity. https://github.com/kernelslacker/trinity. Accessed on
30 March 2021

Ju 'Y, Dong J, Chen S (2021) Recovering surface normal and arbitrary
images: a dual regression network for photometric stereo. IEEE
Trans Image Process 30:3676-3690. https://doi.org/10.1109/TIP.
2021.3064230

Kim K, Jeong DR, Kim CH, Jang Y, Shin I, Lee B (2020) HFL: hybrid
fuzzing on the Linux kernel. In: Proceedings of the 2020 annual
network and distributed system security symposium, pp 1-17.
https://doi.org/10.14722/ndss.2020.24018

Lemieux C, Padhye R, Sen K, Song D (2018) PerfFuzz: automatically
generating pathological inputs. In: Proceedings of the 27th ACM
SIGSOFT international symposium on software testing and anal-
ysis, pp 254-265. https://doi.org/10.1145/3213846.3213874

Lemieux C, Sen K (2018) FairFuzz: a targeted mutation strategy
for increasing greybox fuzz testing coverage. In: Proceedings of
the 33rd ACM/IEEE international conference on automated soft-
ware engineering, pp 475-485. https://doi.org/10.1145/3238147.
3238176

LiJ, Zhao B, Zhang C (2018) Fuzzing: a survey. Cybersecurity 1(1):1—
13. https://doi.org/10.1186/s42400-018-0002-y

Liang H, Pei X, Jia X, Shen W, Zhang J (2018) Fuzzing: state of the
art. [IEEE Trans Reliab 67(3):1199-1218. https://doi.org/10.1109/
tr.2018.2834476

@ Springer

https://doi.org/10.1002/stvr.224
https://doi.org/10.1186/s42400-022-00123-y
https://frida.re/
https://github.com/MozillaSecurity/fuzzdata.git
https://doi.org/10.1109/icse.2009.5070546
https://doi.org/10.1109/icse.2009.5070546
https://doi.org/10.1109/sp.2018.00040
https://doi.org/10.1007/978-3-319-28865-9_18
https://doi.org/10.1007/978-3-319-28865-9_18
https://www.gnu.org/software/gdb/
https://github.com/
https://doi.org/10.1145/3363824
https://doi.org/10.1145/1375581.1375607
https://doi.org/10.1145/1375581.1375607
https://doi.org/10.1109/ase.2017.8115618
https://doi.org/10.1109/ase.2017.8115618
https://github.com/google/clusterfuzz
https://doi.org/10.1145/3427228.3427266
https://doi.org/10.1145/3133956.3134103
https://doi.org/10.1145/3133956.3134103
https://doi.org/10.14722/ndss.2018.23312
https://doi.org/10.1145/3319535.3363230
https://doi.org/10.1145/3319535.3363230
https://doi.org/10.1145/3319535.3354224
https://doi.org/10.1145/3319535.3354224
https://doi.org/10.1007/978-3-319-66332-6_1
https://honggfuzz.dev/
https://doi.org/10.1504/ijaac.2022.10046277
https://doi.org/10.1504/ijaac.2022.10046277
https://doi.org/10.1109/sp40000.2020.00063
https://doi.org/10.1109/sp40000.2020.00063
https://www.hex-rays.com/products/ida/
https://doi.org/10.1145/3274694.3274746
https://doi.org/10.1145/3274694.3274746
https://doi.org/10.1109/sp.2019.00017
https://doi.org/10.1109/sp.2019.00017
https://github.com/nccgroup/TriforceAFL
https://doi.org/10.1145/3238147.3238177
https://github.com/kernelslacker/trinity
https://doi.org/10.1109/TIP.2021.3064230
https://doi.org/10.1109/TIP.2021.3064230
https://doi.org/10.14722/ndss.2020.24018
https://doi.org/10.1145/3213846.3213874
https://doi.org/10.1145/3238147.3238176
https://doi.org/10.1145/3238147.3238176
https://doi.org/10.1186/s42400-018-0002-y
https://doi.org/10.1109/tr.2018.2834476
https://doi.org/10.1109/tr.2018.2834476

5520

X.Zhao et al.

Liang H, Pei X, Jia X, Shen W, Zhang J (2018) Fuzzing: state of the
art. IEEE Trans Reliab 67(3):1199-1218. https://doi.org/10.1145/
3457913.3457934

Liang J, Jiang Y, Chen Y, Wang M, Zhou C, Sun J (2018) PAFL:
extend fuzzing optimizations of single mode to industrial paral-
lel mode. In: Proceedings of the 2018 26th ACM joint meeting on
european software engineering conference and symposium on the
foundations of software engineering, pp 809-814. https://doi.org/
10.1145/3236024.3275525

Liang J, Wang M, Zhou C, Wu Z, Jiang Y, Liu J, Liu Z, Sun J (2022)
PATA: fuzzing with path aware taint analysis. In: 2022 IEEE sym-
posium on security and privacy, pp 1-17. https://doi.org/10.1109/
sp46214.2022.9833594

Li Y, Chen B, Chandramohan M, Lin SW, Liu Y, Tiu A (2017) Steelix:
program-state based binary fuzzing. In: Proceedings of the 2017
11thjoint meeting on foundations of software engineering, pp 627—
637. https://doi.org/10.1145/3106237.3106295

LiY,JiS, ChenY, Liang S, Lee WH, Chen Y, Lyu C, Wu C, Beyah R,
Cheng P, Lu K, Wang T (2021) UNIFUZZ: a holistic and pragmatic
metrics-driven platform for evaluating fuzzers. In: 30th USENIX
security symposium, pp 1-18

Lin P, Hong Z, Li Y, Wu L (2021) A priority based path searching
method for improving hybrid fuzzing. Comput Secur 105:1-17.
https://doi.org/10.1016/j.cose.2021.102242

Li X, Sun L, Qu H, Jang R, Yan Z (2021) OTA: an operation-
oriented time allocation strategy for greybox fuzzing. In: 28th
IEEE international conference on software analysis, evolution and
reengineering, pp 108—118. https://doi.org/10.1109/saner50967.
2021.00019

Liu C, Zou D, Luo P, Zhu BB, Jin H (2018) A heuristic framework
to detect concurrency vulnerabilities. In: Proceedings of the 34th
annual computer security applications conference, pp 529-541.
https://doi.org/10.1145/3274694.3274718

Li Y, Xue Y, Chen H, Wu X, Zhang C, Xie X, Wang H, Liu Y (2019)
Cerebro: context-aware adaptive fuzzing for effective vulnerability
detection. In: Proceedings of the 2019 27th ACM joint meeting on
European software engineering conference and symposium on the
foundations of software engineering, pp 533-544. https://doi.org/
10.1145/3338906.3338975

Lou B, Song J (2020) A study on using code coverage information
extracted from binary to guide fuzzing. Int J Comput Sci Secur
14(5):200-210

Luk CK, Cohn R, Muth R, Patil H, Klauser A, Lowney G, Wallace S,
Reddi VJ, Hazelwood K (2005) Pin: building customized program
analysis tools with dynamic instrumentation. ACM SIGPLAN Not
40(6):190-200. https://doi.org/10.1145/1065010.1065034

Luo W, Chai D, Run X, Wang J, Fang C, Chen Z (2021) Graph-based
fuzz testing for deep learning inference engines. In: Proceedings
of the 43rd international conference on software engineering, pp
288-299. https://doi.org/10.1109/ICSE43902.2021.00037

Luo Z, Zuo F, Shen Y, Jiao X, Chang W, Jiang Y (2020) ICS protocol
fuzzing: coverage guided packet crack and generation. In: 2020
57th ACM/IEEE design automation conference, pp 1-6. https://
doi.org/10.1109/DAC18072.2020.9218603

Lv W, Xiong J, Shi J, Huang Y, Qin S (2020) A deep convolution gener-
ative adversarial networks based fuzzing framework for industry
control protocols. J Intell Manuf 32:441-457. https://doi.org/10.
1007/510845-020-01584-z

LyuC,Ji S, Zhang C, Li Y, Lee WH, Song Y, Beyah R (2019) MOPT:
optimized mutation scheduling for fuzzers. In: 28th USENIX secu-
rity symposium, pp 1949-1966

Lyu C, Liang H, Ji S, Zhang X, Zhao B, Han M, Li Y, Wang Z, Wang
W, Beyah R (2022) SLIME: program-sensitive energy allocation

@ Springer

for fuzzing. In: Proceedings of the 31st ACM SIGSOFT interna-
tional symposium on software testing and analysis, pp 365-377.
https://doi.org/10.1145/3533767.3534385

Manes VJ, Han H, Han C, Cha SK, Egele M, Schwartz EJ, Woo M
(2019) The art, science, and engineering of fuzzing: a survey. IEEE
Trans Softw Eng 47(11):2312-2331. https://doi.org/10.1109/tse.
2019.2946563

Mansur MN, Christakis M, Wiistholz V, Zhang F (2020) Detecting crit-
ical bugs in SMT solvers using blackbox mutational fuzzing. In:
Proceedings of the 28th ACM joint meeting on European software
engineering conference and symposium on the foundations of soft-
ware engineering, pp 701-712. https://doi.org/10.1145/3368089.
3409763

Max M, Kostya S (2016) Guided in-process fuzzing of Chrome
components. https://security.googleblog.com/2016/08/guided-in-
process-fuzzing-of-chrome.html. Accessed on 30 March 2021

Miller BP, Koski D, Lee CP, Maganty V, Murthy R, Natarajan A, Steidl J
(1995) Fuzz Revisited: A re-examination of the reliability of UNIX
utilities and services. Comput Sci Dept, University of Wisconsin.
1-23

Nagy S, Hicks M (2019) Full-speed fuzzing: reducing fuzzing over-
head through coverage-guided tracing. In: 2019 IEEE symposium
on security and privacy, pp 787-802. https://doi.org/10.1109/sp.
2019.00069

Neystadt J (2008) Automated penetration testing with white-box
fuzzing. Microsoft, February

Nguyen MD, Bardin S, Bonichon R, Groz R, Lemerre M (2020) Binary-
level directed fuzzing for use-after-free vulnerabilities. In: 23rd
International symposium on research in attacks, intrusions and
defenses, pp 47-62

Nilizadeh S, Noller Y, Pasdreanu CS (2019) DifFuzz: Differential
fuzzing for side-channel analysis. In: Proceedings of the 41st inter-
national conference on software engineering, pp 176—187. https://
doi.org/10.1109/ICSE.2019.00034

Noller Y, Kersten R, Pasdreanu CS (2018) Badger: complexity analysis
with fuzzing and symbolic execution. In: Proceedings of the 27th
ACM SIGSOFT international symposium on software testing and
analysis, pp 322-332. https://doi.org/10.1145/3213846.3213868

Odena A, Olsson C, Andersen D, Goodfellow I (2019) TensorFuzz:
debugging neural networks with coverage-guided fuzzing. In:
International conference on machine learning, pp 4901-4911

OllyDbg (2000). http://domoticx.com/windows-debugger-ollydbg-
software/. Accessed on 30 March 2021

Onefuzz (2020). https://github.com/microsoft/onefuzz. Accessed on 23
March 2021

Pailoor S, Aday A, Jana S (2018) MoonShine: optimizing OS fuzzer
seed selection with trace distillation. In: 27th USENIX security
symposium, pp 729-743

PaiMei. https://github.com/OpenRCE/https://github.com/OpenRCE/
paimei. Accessed on 30 March 2021

Peng H, Shoshitaishvili Y, Payer M (2018) T-Fuzz: fuzzing by program
transformation. In: 2018 IEEE symposium on security and privacy,
pp 697-710. https://doi.org/10.1109/SP.2018.00056

Petsios T, Zhao J, Keromytis AD, Jana S (2017) SlowFuzz: automated
domain-independent detection of algorithmic complexity vulner-
abilities. In: Proceedings of the 2017 ACM SIGSAC conference
on computer and communications security, pp 2155-2168. https://
doi.org/10.1145/3133956.3134073

Pham VT, Boshme M, Roychoudhury A (2016) Model-based white-
box fuzzing for program binaries. In: Proceedings of the 31st
IEEE/ACM international conference on automated software engi-
neering, pp 543-553. https://doi.org/10.1145/2970276.2970316

Pham VT, Bohme M, Roychoudhury A (2020) AFLNet: a greybox
fuzzer for network protocols. In: 2020 IEEE 13th international
conference on software testing, validation and verification, pp 460—
465. https://doi.org/10.1109/icst46399.2020.00062

https://doi.org/10.1145/3457913.3457934
https://doi.org/10.1145/3457913.3457934
https://doi.org/10.1145/3236024.3275525
https://doi.org/10.1145/3236024.3275525
https://doi.org/10.1109/sp46214.2022.9833594
https://doi.org/10.1109/sp46214.2022.9833594
https://doi.org/10.1145/3106237.3106295
https://doi.org/10.1016/j.cose.2021.102242
https://doi.org/10.1109/saner50967.2021.00019
https://doi.org/10.1109/saner50967.2021.00019
https://doi.org/10.1145/3274694.3274718
https://doi.org/10.1145/3338906.3338975
https://doi.org/10.1145/3338906.3338975
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1109/ICSE43902.2021.00037
https://doi.org/10.1109/DAC18072.2020.9218603
https://doi.org/10.1109/DAC18072.2020.9218603
https://doi.org/10.1007/s10845-020-01584-z
https://doi.org/10.1007/s10845-020-01584-z
https://doi.org/10.1145/3533767.3534385
https://doi.org/10.1109/tse.2019.2946563
https://doi.org/10.1109/tse.2019.2946563
https://doi.org/10.1145/3368089.3409763
https://doi.org/10.1145/3368089.3409763
https://security.googleblog.com/2016/08/guided-in-process-fuzzing-of-chrome.html
https://security.googleblog.com/2016/08/guided-in-process-fuzzing-of-chrome.html
https://doi.org/10.1109/sp.2019.00069
https://doi.org/10.1109/sp.2019.00069
https://doi.org/10.1109/ICSE.2019.00034
https://doi.org/10.1109/ICSE.2019.00034
https://doi.org/10.1145/3213846.3213868
http://domoticx.com/windows-debugger-ollydbg-software/
http://domoticx.com/windows-debugger-ollydbg-software/
https://github.com/microsoft/onefuzz
https://github.com/OpenRCE/https://github.com/OpenRCE/paimei
https://github.com/OpenRCE/https://github.com/OpenRCE/paimei
https://doi.org/10.1109/SP.2018.00056
https://doi.org/10.1145/3133956.3134073
https://doi.org/10.1145/3133956.3134073
https://doi.org/10.1145/2970276.2970316
https://doi.org/10.1109/icst46399.2020.00062

A systematic review of fuzzing

5521

Pham VT, Bohme M, Santosa AE, Caciulescu AR, Roychoudhury A
(2019) Smart greybox fuzzing. IEEE Trans Softw Eng. https://doi.
org/10.1109/TSE.2019.2941681

Rawat S, Jain V, Kumar A, Cojocar L, Giuffrida C, Bos H (2017)
VUzzer: application-aware evolutionary fuzzing. In: 24th Annual
network and distributed system security symposium, pp 1-14.
https://doi.org/10.14722/ndss.2017.23404

Saavedra GJ, Rodhouse KN, Dunlavy DM, Kegelmeyer PW (2019) A
review of machine learning applications in fuzzing, pp 1-12. arXiv
preprint arXiv:1906.11133

Schumilo S, Aschermann C, Abbasi A, Worner S, Holz T (2020)
HYPER-CUBE: high-dimensional hypervisor fuzzing. In: 27th
Annual network and distributed system security symposium, pp
23-26. https://doi.org/10.14722/ndss.2020.23096

Schumilo S, Aschermann C, Abbasi A, Worner S, Holz T (2021) NYX:
greybox hypervisor fuzzing using fast snapshots and affine types.
In: 30th USENIX security symposium

Schumilo S, Aschermann C, Gawlik R, Schinzel S, Holz T (2017)
kAFL: hardware-assisted feedback fuzzing for OS kernels. In: 26th
USENIX security symposium, pp 167-182

ScottJ, Mora F, Ganesh V (2020) Banditfuzz: a reinforcement-learning
based performance fuzzer for SMT solvers. In: Software veri-
fication: 12th international conference, VSTTE 2020, and 13th
international workshop, pp 68-86. https://doi.org/10.1007/978-3-
030-63618-0_5

Serebryany K (2016) Continuous fuzzing with libFuzzer and Address-
Sanitizer. In: 2016 IEEE cybersecurity development, pp 157-157.
https://doi.org/10.1109/secdev.2016.043

Serebryany K (2017) OSS-Fuzz—Google’s continuous fuzzing service
for open source software. In: 26th USENIX security symposium,
pp 1-28

She D, Shah A, Jana S (2022) Effective seed scheduling for fuzzing
with graph centrality analysis. In: 2022 IEEE symposium on secu-
rity and privacy, pp 2194-2211. https://doi.org/10.1109/sp46214.
2022.9833761

Situ LY, Zuo ZQ, Guan L, Wang LZ, Li XD, Shi J, Liu P (2021)
Vulnerable region-aware greybox fuzzing. J Comput Sci Technol
36:1212-1228. https://doi.org/10.1007/s11390-021-1196-0

Song D, Hetzelt F, Das D, Spensky C, Na Y, Volckaert S, Vigna G,
Kruegel C, Seifert JP, Franz M (2019) PeriScope: an effective
probing and fuzzing framework for the hardware-OS boundary. In:
Proceedings 2019 network and distributed system security sym-
posium, pp 1-15. https://doi.org/10.14722/ndss.2019.23176

Stephens N, Grosen J, Salls C, Dutcher A, Wang R, Corbetta J,
Shoshitaishvili Y, Kruegel C, Vigna, G (2016) Driller: augmenting
fuzzing through selective symbolic execution. In: 23rd Annual net-
work and distributed system security symposium, pp 1-16. https://
doi.org/10.14722/ndss.2016.23368

Sun L, Li X, QuH, Zhang X (2020) AFLTurbo: speed up path discovery
for greybox fuzzing. In: 2020 IEEE 31st international symposium
on software reliability engineering, pp 81-91. https://doi.org/10.
1109/issre5003.2020.00017

Sutton M, Greene A, Amini P (2007) Fuzzing: brute force vulnerability
discovery. Pearson Education, London

Takanen A, Demott JD, Miller C, Kettunen A (2018) Fuzzing for
software security testing and quality assurance. Artech House,
Norwood

The home for Sanitizers (2019). https://github.com/google/sanitizers.
Accessed on 30 March 2021

ThreadSanitizer (2019). https://clang.llvm.org/docs/ThreadSanitizer.
html. Accessed on 30 March 2021

Trickel E, Pagani F, Zhu C, Dresel L, Vigna G, Kruegel C, Wang R,
Bao T, Shoshitaishvili Y, Doupé A (2023) Toss a fault to your
witcher: applying grey-box coverage-guided mutational fuzzing
to detect SQL and command injection vulnerabilities. In: 2023

IEEE symposium on security and privacy (SP), pp 2658-2675.
https://doi.org/10.1109/sp46215.2023.10179317

Tsankov P, Dashti MT, Basin D (2012) SECFUZZ.: fuzz-testing security
protocols. In: 2012 7th international workshop on automation of
software test, pp 1-7. https://doi.org/10.1109/iwast.2012.6228985

UndefinedBehaviorSanitizer. https://clang.llvm.org/docs/
UndefinedBehaviorSanitizer.html. Accessed on 30 March 2021

Viide J, Helin A, Laakso M, Pietikdinen P, Seppdnen M, Halunen K,
Puuperd R, Roning J (2008) Experiences with model inference
assisted fuzzing. In: 2nd USENIX workshop on offensive tech-
nologies, vol 2, pp 1-2

Vinesh N, Rawat S, Bos H, Giuffrida C, Sethumadhavan M (2020)
Confuzz—a concurrency fuzzer. In: 1st International confer-
ence on sustainable technologies for computational intelligence-
proceedings of ICTSCI 2019, pp 667-691. https://doi.org/10.
1007/978-981-15-0029-9_53

Vyukov D. Syzkaller. https://github.com/google/syzkaller. Accessed
on 30 March 2021

Wang, J, Chen B, Wei L, Liu Y (2019) Superion: grammar-aware grey-
box fuzzing. In: 2019 IEEE/ACM 41st international conference on
software engineering, pp 724-735. https://doi.org/10.1109/icse.
2019.00081

Wang GG, Tan Y (2019) Improving metaheuristic algorithms with
information feedback models. IEEE Trans Cybern 49(2):542-555.
https://doi.org/10.1109/TCYB.2017.2780274

Wang GG, Guo L, Gandomi AH, Hao GS, Wang H (2014) Chaotic krill
herd algorithm. Inf Sci 274:17-34. https://doi.org/10.1016/j.ins.
2014.02.123

Wang Y, Wu Z, Wei Q, Wang Q (2019) NeuFuzz: efficient fuzzing with
deep neural network. IEEE Access 7:36340-36352. https://doi.
org/10.1109/access.2019.2903291

Wang Y, Jia P, Liu L, Huang C, Liu Z (2020) A systematic review
of fuzzing based on machine learning techniques. PLoS ONE
15(8):1-20. https://doi.org/10.1371/journal.pone.0237749

Wang L, PanZ, Wang J (2021) A review of reinforcement learning based
intelligent optimization for manufacturing scheduling. Complex
Syst Model Simul 1(4):257-270. https://doi.org/10.23919/CSMS.
2021.0027

Wang X, HuC,MaR, TianD, He J (2021) CMFuzz: context-aware adap-
tive mutation for fuzzers. Empir Softw Eng 26(1):1-34. https://doi.
org/10.1007/s10664-020-09927-3

Wang F, Wang X, Sun S (2022) A reinforcement learning level-based
particle swarm optimization algorithm for large-scale optimiza-
tion. Inf Sci 602:298-312

Wang J, Chen B, Wei L, Liu Y (2017) Skyfire: data-driven seed gen-
eration for fuzzing. In: 2017 IEEE symposium on security and
privacy, pp 579-594. https://doi.org/10.1109/SP.2017.23

Wang Y, Jia X, Liu Y, Zeng K, Bao T, Wu D, Su P (2020) Not all
coverage measurements are equal: fuzzing by coverage accounting
for input prioritization. In: 27th Annual network and distributed
system security symposium, pp 1-17. https://doi.org/10.14722/
ndss.2020.24422

Wang Z, Liblit B, Reps T (2020) TOFU: target-orienter fuzzer. arXiv
preprint arXiv:2004.14375

Wang F, Shoshitaishvili Y (2017) Angr—the next generation of binary
analysis. In: 2017 IEEE cybersecurity development, pp 8-9.
https://doi.org/10.1109/SecDev.2017.14

Wang J, Song C, Yin H (2021) Reinforcement learning-based hier-
archical seed scheduling for greybox fuzzing. In: Network and
distributed system security symposium, pp 1-17. https://doi.org/
10.14722/ndss.2021.24486

Wang H, Xie X, Li Y, Wen C, Li Y, Liu Y, Qin S, Chen H, Sui Y (2020)
Typestate-guided fuzzer for discovering use-after-free vulnerabil-
ities. In: 42nd International conference on software engineering,
pp 999-1010. https://doi.org/10.1145/3377811.3380386

@ Springer

https://doi.org/10.1109/TSE.2019.2941681
https://doi.org/10.1109/TSE.2019.2941681
https://doi.org/10.14722/ndss.2017.23404
http://arxiv.org/abs/1906.11133
https://doi.org/10.14722/ndss.2020.23096
https://doi.org/10.1007/978-3-030-63618-0_5
https://doi.org/10.1007/978-3-030-63618-0_5
https://doi.org/10.1109/secdev.2016.043
https://doi.org/10.1109/sp46214.2022.9833761
https://doi.org/10.1109/sp46214.2022.9833761
https://doi.org/10.1007/s11390-021-1196-0
https://doi.org/10.14722/ndss.2019.23176
https://doi.org/10.14722/ndss.2016.23368
https://doi.org/10.14722/ndss.2016.23368
https://doi.org/10.1109/issre5003.2020.00017
https://doi.org/10.1109/issre5003.2020.00017
https://github.com/google/sanitizers
https://clang.llvm.org/docs/ThreadSanitizer.html
https://clang.llvm.org/docs/ThreadSanitizer.html
https://doi.org/10.1109/sp46215.2023.10179317
https://doi.org/10.1109/iwast.2012.6228985
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://doi.org/10.1007/978-981-15-0029-9_53
https://doi.org/10.1007/978-981-15-0029-9_53
https://github.com/google/syzkaller
https://doi.org/10.1109/icse.2019.00081
https://doi.org/10.1109/icse.2019.00081
https://doi.org/10.1109/TCYB.2017.2780274
https://doi.org/10.1016/j.ins.2014.02.123
https://doi.org/10.1016/j.ins.2014.02.123
https://doi.org/10.1109/access.2019.2903291
https://doi.org/10.1109/access.2019.2903291
https://doi.org/10.1371/journal.pone.0237749
https://doi.org/10.23919/CSMS.2021.0027
https://doi.org/10.23919/CSMS.2021.0027
https://doi.org/10.1007/s10664-020-09927-3
https://doi.org/10.1007/s10664-020-09927-3
https://doi.org/10.1109/SP.2017.23
https://doi.org/10.14722/ndss.2020.24422
https://doi.org/10.14722/ndss.2020.24422
http://arxiv.org/abs/2004.14375
https://doi.org/10.1109/SecDev.2017.14
https://doi.org/10.14722/ndss.2021.24486
https://doi.org/10.14722/ndss.2021.24486
https://doi.org/10.1145/3377811.3380386

5522

X.Zhao et al.

Wang Y, Zhang C, Xiang X, Zhao Z, Li W, Gong X, Liu B, Chen K,
Zou W (2018) Revery: From proof-of-concept to exploitable. In:
Proceedings of the 2018 ACM SIGSAC conference on computer
and communications security, pp 1914—1927. https://doi.org/10.
1145/3243734.3243847

Wang P, Zhou X, Lu K, Yue T, Liu Y (2020) Sok: the progress,
challenges, and perspectives of directed greybox fuzzing. In: Chal-
lenges, and perspectives of directed greybox fuzzing

Wen C, Wang H, Li Y, Qin S, Liu Y, Xu Z, Chen H, Xie X, Pu G,
Liu T (2020) MemLock: memory usage guided fuzzing. In: 42nd
International conference on software engineering, pp 765-777 .
https://doi.org/10.1145/3377811.3380396

Winterer D, Zhang C, Su Z (2020) On the unusual effectiveness of
type-aware operator mutations for testing SMT solvers. Proc ACM
Program Lang 4:1-25. https://doi.org/10.1145/3428261

Winterer D, Zhang C, Su Z (2020) Validating SMT solvers via semantic
fusion. In: Proceedings of the 41st ACM SIGPLAN conference on
programming language design and implementation, pp 718-730.
https://doi.org/10.1145/3385412.3385985

Woo M, Cha SK, Gottlieb S, Brumley D (2013) Scheduling black-box
mutational fuzzing. In: Proceedings of the 2013 ACM SIGSAC
conference on computer and communications security, pp 511-
522. https://doi.org/10.1145/2508859.2516736

Xie X,MaL, Juefei-Xu F, Xue M, Chen H, Liu Y, Zhao J, Li B, Yin J, See
S (2019) DeepHunter: a coverage-guided fuzz testing framework
for deep neural networks. In: Proceedings of the 28th ACM SIG-
SOFT international symposium on software testing and analysis,
pp 146-157. https://doi.org/10.1021/acs.jcim.8b00542.s002

Xu M, Kashyap S, Zhao H, Kim T (2020) Krace: data race fuzzing
for kernel file systems. In: 2020 IEEE symposium on secu-
rity and privacy, pp 1643-1660. https://doi.org/10.1109/sp40000.
2020.00078

Ye G, Tang Z, Tan SH, Huang S, Fang D, Sun X, Bian L, Wang H, Wang
Z (2021) Automated conformance testing for JavaScript engines
via deep compiler fuzzing. In: 42nd ACM SIGPLAN conference
on programming language design and implementation, pp 435-
450

You W, Liu X, Ma S, Perry D, Zhang X, Liang B (2019) SLF: fuzzing
without valid seed inputs. In: 2019 IEEE/ACM 41st international
conference on software engineering, pp 712—723. https://doi.org/
10.1109/icse.2019.00080

You W, Wang X, Ma S, Huang J, Zhang X, Wang X, Liang B (2019)
ProFuzzer: on-the-fly input type probing for better zero-day vul-
nerability discovery. In: 2019 IEEE symposium on security and
privacy, pp 769-786. https://doi.org/10.1109/sp.2019.00057

You W, Zong P, Chen K, Wang X, Liao X, Bian P, Liang B (2017) Sem-
Fuzz: semantics-based automatic generation of proof-of-concept
exploits. In: Proceedings of the 2017 ACM SIGSAC conference
on computer and communications security, pp 2139-2154. https:/
doi.org/10.1145/3133956.3134085

Yue T, Wang P, Tang Y, Wang E, Yu B, Lu K, Zhou X (2020) EcoFuzz:
adaptive energy-saving greybox fuzzing as a variant of the adver-
sarial multi-armed bandit. In: 29th USENIX security symposium,
pp 2307-2324

Yun I, Lee S, Xu M, Jang Y, Kim T (2018) QSYM: a practical concolic
execution engine tailored for hybrid fuzzing. In: 27th USENIX
security symposium, pp 745-761

@ Springer

73 (2015). https://en.wikipedia.org/wiki/Z3_Theorem_Prover.
Accessed on 30 March 2021

Zhang G, Wang PF, Yue T, Kong XD, Zhou X, Lu K (2022) ovAFLow:
detecting memory corruption bugs with fuzzing-based taint infer-
ence. J Comput Sci Technol 37(2):405-422. https://doi.org/10.
1007/s11390-021-1600-9

Zhang P, Ren B, Dong H, Dai Q (2022) CAGFuzz: coverage-guided
adversarial generative fuzzing testing for image-based deep learn-
ing systems. IEEE Trans Softw Eng 48(11):4630-4646. https://
doi.org/10.1109/TSE.2021.3124006

Zhang Q, Wang Y, Li J, Ma S (2020) Ethploit: from fuzzing to
efficient exploit generation against smart contracts. In: 2020
IEEE 27th international conference on software analysis, evo-
lution and reengineering, pp 116-126. https://doi.org/10.1109/
SANER48275.2020.9054822

Zhang G, Wang P, Yue T, Kong X, Huang S, Zhou X, Lu K (2022) Mob-
Fuzz: adaptive multi-objective optimization in gray-box fuzzing.
In: Network and distributed systems security symposium 2022, pp
1-18. https://doi.org/10.14722/ndss.2022.24314

Zhang Y, Wang Z, Yu W, Fang B (2021) Multi-level directed fuzzing
for detecting use-after-free vulnerabilities. In: 2021 IEEE 20th
international conference on trust, security and privacy in com-
puting and communications, pp 569-576. https://doi.org/10.1109/
trustcom53373.2021.00087

Zhao X, QuH, Lv W, Li S, XuJ (2021) MooFuzz: many-objective opti-
mization seed schedule for fuzzer. Mathematics 9:1-19. https://
doi.org/10.3390/math9030205

Zhao X, Qu H, Xu J, Li S, Wang GG (2022) AMSFuzz: an adaptive
mutation schedule for fuzzing. Expert Syst Appl 208:1-11. https://
doi.org/10.1016/j.eswa.2022.118162

Zhao L, Duan Y, Yin H, Xuan J (2019) Send hardest problems my way:
probabilistic path prioritization for hybrid fuzzing. In: Proceedings
2019 network and distributed system security symposium. https://
doi.org/10.14722/ndss.2019.23504

Zhao H, Li Z, Wei H, Shi J, Huang Y (2019) SeqFuzzer: an industrial
protocol fuzzing framework from a deep learning perspective. In:
2019 12th IEEE conference on software testing, validation and
verification, pp 59-67. https://doi.org/10.1109/ICST.2019.00016

Zhou C, Wang M, Liang J, LiuZ, Jiang Y (2020) Zeror: speed up fuzzing
with coverage-sensitive tracing and scheduling. In: 2020 35th
IEEE/ACM international conference on automated software engi-
neering, pp 858-870. https://doi.org/10.1145/3324884.3416572

Zlewski C. American Fuzzy Lop. http://lcamtuf.coredump.cx/afl.
Accessed on 1 March 2021

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

https://doi.org/10.1145/3243734.3243847
https://doi.org/10.1145/3243734.3243847
https://doi.org/10.1145/3377811.3380396
https://doi.org/10.1145/3428261
https://doi.org/10.1145/3385412.3385985
https://doi.org/10.1145/2508859.2516736
https://doi.org/10.1021/acs.jcim.8b00542.s002
https://doi.org/10.1109/sp40000.2020.00078
https://doi.org/10.1109/sp40000.2020.00078
https://doi.org/10.1109/icse.2019.00080
https://doi.org/10.1109/icse.2019.00080
https://doi.org/10.1109/sp.2019.00057
https://doi.org/10.1145/3133956.3134085
https://doi.org/10.1145/3133956.3134085
https://en.wikipedia.org/wiki/Z3_Theorem_Prover
https://doi.org/10.1007/s11390-021-1600-9
https://doi.org/10.1007/s11390-021-1600-9
https://doi.org/10.1109/TSE.2021.3124006
https://doi.org/10.1109/TSE.2021.3124006
https://doi.org/10.1109/SANER48275.2020.9054822
https://doi.org/10.1109/SANER48275.2020.9054822
https://doi.org/10.14722/ndss.2022.24314
https://doi.org/10.1109/trustcom53373.2021.00087
https://doi.org/10.1109/trustcom53373.2021.00087
https://doi.org/10.3390/math9030205
https://doi.org/10.3390/math9030205
https://doi.org/10.1016/j.eswa.2022.118162
https://doi.org/10.1016/j.eswa.2022.118162
https://doi.org/10.14722/ndss.2019.23504
https://doi.org/10.14722/ndss.2019.23504
https://doi.org/10.1109/ICST.2019.00016
https://doi.org/10.1145/3324884.3416572
http://lcamtuf.coredump.cx/afl

	A systematic review of fuzzing
	Abstract
	1 Introduction
	2 Background and related work
	2.1 Inclusion criteria
	2.2 Process of fuzzing
	2.3 Classification of fuzzing
	2.4 CGF
	2.4.1 Instrumentation
	2.4.2 Seed selection and power schedule
	2.4.3 Mutation strategy

	2.5 Related work

	3 State-of-the-art fuzzing
	3.1 General fuzzing
	3.1.1 Initial seed selection (RQ1)
	3.1.2 Seed selection optimization (RQ2)
	3.1.3 Power schedule (RQ3)
	3.1.4 Mutation strategy (RQ4)
	3.1.5 Summary of general fuzzing

	3.2 Vulnerability-oriented fuzzing (RQ5)
	3.2.1 Uncontrollable memory consumption & uncontrolled recursive
	3.2.2 Integer overflow and array overflow
	3.2.3 Memory vulnerability
	3.2.4 Consistency error
	3.2.5 Use-after-free
	3.2.6 Algorithmic complexity vulnerability
	3.2.7 Concurrency vulnerability
	3.2.8 Side channel attack
	3.2.9 Summary of vulnerability-oriented fuzzing

	3.3 Combining fuzzing with other techniques (RQ6)
	3.3.1 Symbolic execution
	3.3.2 Parallel and integration
	3.3.3 Instrumentation
	3.3.4 Other techniques
	3.3.5 Summary of fuzzing integration with other techniques

	4 Fuzzing: different applications
	4.1 SMT solver
	4.2 Virtual machine monitor
	4.3 Kernel
	4.4 Smart contract
	4.5 Protocol
	4.6 Machine learning model

	5 Conclusion and future direction
	References

