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Abstract
The deep learning architectures’ activation functions play a significant role in processing the data entering the network to

provide the most appropriate output. Activation functions (AF) are created by taking into consideration aspects like

avoiding model local minima and improving training efficiency. Negative weights and vanishing gradients are frequently

taken into account by the AF suggested in the literature. Recently, a number of non-monotonic AF have increasingly

replaced previous methods for improving convolutional neural network (CNN) performance. In this study, two novel non-

linear non-monotonic activation functions, a-SechSig and a-TanhSig are proposed that can overcome the existing problems.

The negative part of a-SechSig and a-TanhSig is non-monotonic and approaches zero as the negative input decreases,

allowing the negative part to retain its sparsity while introducing negative activation values and non-zero derivative values.

In experimental evaluations, a-SechSig and a-TanhSig activation functions were tested on MNIST, KMNIST,

Svhn_Cropped, STL-10, and CIFAR-10 datasets. In addition, better results were obtained than the non-monotonic Swish,

Logish, Mish, Smish, and monotonic ReLU, SinLU, and LReLU AF known in the literature. Moreover, the best accuracy

score for the aSechSig and aTanhSig activation functions was obtained with MNIST at 0.9959 and 0.9956, respectively.

Keywords Activation function � Deep learning � aSechSig and aTanhSig activation functions

1 Introduction

Deep learning can be widely used in different problems

such as signal processing, classification, and anomaly

detection. CNN architecture, one of the types of deep

learning, consists of pooling, activation, normalization,

convolution, dropout, full connection, and output layers.

Activation function is one of the most important criteria for

better neural network performance.

Activation functions have been created by taking into

consideration properties including vanishing gradients,

enhancing training performance, and avoiding model local

minima (Kiliçarslan and Celik 2021). The introduction of

new AF for deep learning architectures has contributed to

the increased interest in artificial neural networks (Apicella

et al. 2021). In addition, due to not being selected suit-

able AF for deep learning architectures, for example,

learning may not occur, a vanishing gradient may occur, or

the training process may be slow. Among the important

features of the developed AF are non-linearity and

derivatives. Because, it is necessary to calculate how much
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the curve will change during the training and back-propa-

gation of the model. The back-propagation algorithm is a

structure that is continuously derived, and it is one of the

important features that can be derivatives in the developed

AF (Kiliçarslan and Celik 2021, 2022).

Non-linear AF have been developed as monotonic and

non-monotonic. The monotonic AF such as Sigmoid, Tanh,

and ReLU AF can be expressed. It is seen that these AF are

widely used in deep learning architectures. However, the

vanishing gradient problem is encountered in Sigmoid and

Tanh activation functions. To overcome the vanishing

gradient problem, it can be provided to the ReLU activa-

tion function, which is not easy to reach the saturated level.

Negative weights are ignored in the ReLU activation

function. Therefore, some information on the neural net-

work structure is lost and prevents the desired performance

from being achieved. Therefore, many AF with fixed and

trainable parameters have been developed in the literature

to overcome these problems (Kiliçarslan and Celik 2021;

Maas et al. 2013)–(Scardapane et al. 2019). Non-linear

non-monotonic Swish, Mish, and Logish AF have been

developed (Ramachandran et al. 2017)–(Zhu et al. 2021).

Deep learning architectures allow networks to work effi-

ciently using non-monotonic AF instead of non-linear

monotonic.

In this study, two novel non-linear non-monotonic

parametric AF are proposed. The proposed functions are

expressed as a-SechSig and a-TanhSig. The proposed AF

can overcome existing problems by taking advantage of

smooth AF such as sigmoid and tanh and piecewise AF

such as ReLU and its derivatives. The proposed AF in the

literature commonly overcome the vanishing gradient and

negative weight problems. Proposed a-SechSig and a-
TanhSig AF have a continuously differentiable structure

like Swish, Mish, and Logish in the literature. In experi-

mental evaluations, the proposed a-SechSig and a-TanhSig
AF were tested on MNIST, KMNIST, Svhn_Cropped,

STL-10 and CIFAR-10 datasets. Thus, it has been seen that

it gives better results than the non-monotonic Swish,

Logish, Mish, and Smish and monotonic ReLU, SinLU,

and LReLU AF in the literature. In addition, the proposed

AF can achieve more efficient results on big data than other

functions. Following is a summary of the article’s main

contributions:

a. Two new non-monotonic AF a-SechSig and a-TanhSig
are proposed.

b. The proposed AFs outperform the ReLU, SinLU,

Swish, Logish, Mish, and LReLU.

c. Proposed functions overcome vanishing gradient, con-

servation of negative weights.

d. Convergence speed of the proposed AF is better than

the others.

The second section of this study discusses the exami-

nation of the literature, the methodology and materials

employed in the third section, the proposed activation

function in the fourth section, the experimental findings in

the fifth section, and the conclusions drawn in the sixth

section.

2 Literature review

One of the most significant areas of research for scientists

is activation function since they increase the success rates

of deep learning systems. It is clear from the literature that

non-linear AF have been widely developed. In this section,

monotonic and non-monotonic AF are presented.

The ReLU monotonic AF has been proposed to deal

with vanishing gradient occurring in sigmoid and tanh AF

(Nair and Hinton 2010). The ReLU activation function

(Eq. 1) overcomes the problem of vanishing gradient and

causes the problem of ignoring negative weights during

training. Therefore, the LReLU (Eq. 2) is proposed to

participate in training at negative weights. (Maas et al.

2013). Moreover, the PReLU (Eq. 3) is proposed using the

trainable slope parameter instead of the fixed slope

parameter (He et al. 2015). As an alternative to the PReLU,

the ELU (Eq. 4) was proposed to solve the problems of

vanishing gradient and ignoring negative weights (Clevert

et al. 2016). The SELU (Eq. 5) has been proposed to

improve the training performance of the ELU activation

function (Klambauer et al. 2017). In addition, the PELU

(Eq. 6) activation function is developed by adding the

trainable parameter for the positive input of the ELU

activation function (Trottier et al. 2018). The RSigELU

(Eq. 7) was developed to solve the problems of vanishing

gradient and ignoring negative weights (Kiliçarslan and

Celik2021). They reported that the proposed RSigELU can

work actively in three regions positive, negative, and lin-

ear. The Sinu-sigmoidal Linear Unit (SinLU) (Eq. 8) was

inspired by the sine wave and developed to overcome the

problem found in the sigmoid activation function and to

achieve better performance (Paul et al. 2022). The a and b
given in the equations are expressed as slope parameters in

linear activation functions. x given in the equations is

expressed as input parameter.

fReLU xð Þ ¼ max x; 0ð Þ ¼ 0; x\0

x; otherwise;

�
ð1Þ

fLReLU xð Þ ¼ max x; 0:01xð Þ ¼ 0:01x; x\0

x; otherwise;

�
ð2Þ
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fPReLU x; að Þ ¼ max x; axð Þ ¼ ax; x\0

x; otherwise;

�
ð3Þ

fELU x; að Þ ¼ a ex � 1ð Þ; x\0

x; otherwise;

�
ð4Þ

fSELU x; a; bð Þ ¼ b
a ex � að Þ; x\0

x; otherwise;

�
ð5Þ

fPELU x; a; bð Þ ¼ a ex=b � 1
� �

; x\0

ax=b; otherwise;

�
ð6Þ

fRSigELU x; að Þ ¼
xþ ax 1 þ e�xð Þ�1; 1\x\1
x; 0� x� 1

a ex � 1ð Þ; otherwise;

8<
: ð7Þ

fSinLU x; a; bð Þ ¼ xþ a sin bxð Þð Þ 1

1 þ e�x
: ð8Þ

Second, a number of AF such as non-monotonic GELU

(Hendrycks and Gimpel 2020), Swish (Ramachandran et al.

2017), Mish (Misra 2020), Logish (Zhu et al. 2021), Smish

(Wang et al. 2022), Rectified Exponential Unit (REU)

(Ying et al. 2019), SupEx (Kiliçarslan et al. 2023) have

been proposed in the literature. Thanks to these proposed

activation functions, it is seen that deep learning architec-

tures perform better than monotonic activation functions.

Swish (Eq. 9), one of the AF suggested in the literature, has

been developed to achieve good performance in big data

and multidimensional deep neural networks (Ramachan-

dran et al. 2017). The Logish (Eq. 10) is proposed to

achieve better performance than swish (Zhu et al. 2021).

The Mish (Eq. 11), which works similarly to the Swish

activation function, was developed by Misra et al. (2021)

(Misra 2020). The Mish activation function may work

better than the Swish function in terms of accuracy and

generalization performance. The Swish, Mish, and Logish

AF allow negative weights to participate in the training

phase, thanks to a slight negative margin for their negative

values, rather than a strict zero limit in the ReLU. In

addition, since the Swish, Mish, Logish AF guarantee a

better gradient optimization, they allow obtaining high-

performance results in experimental evaluations. The

Smish (Eq. 12) was proposed by Wang et al. (2022). The

Smish is inspired by the Logish function. The SAAF

(Eq. 13) activation function was developed to overcome

the existing problems found in the sigmoid and ReLU

(Zhou et al. 2021).

fSwish xð Þ ¼ x
1

1 þ e�x
; ð9Þ

fLogish xð Þ ¼ x ln 1 þ 1

1 þ e�x

� �
; ð10Þ

fMish xð Þ ¼ x tanh ln 1 þ exð Þ½ �; ð11Þ

fSmish xð Þ ¼ x tanh ln 1 þ 1

1 þ e�x

� �� �
; ð12Þ

fSAAF x; a; bð Þ ¼ x
x

a
þ e�x=b

	 
�1

: ð13Þ

When the AF in the literature are examined, the death of

negative weights and vanishing gradient are commonly

concerned. While the above-mentioned AF can produce

successful results in some deep learning architectures, it is

observed that they cannot achieve good results in the

architecture we used in our study. Therefore, two novel AF

are proposed in our study and existing problems can be

overcome. In addition, it has been observed that it gives

better results in classification accuracy thanks to the pro-

posed activation functions. Behaviors of proposed and

other AF in the literature are shown in Fig. 1.

It was also a non-monotonically derivable function with

bounded bottom and unbounded top that was proposed as

an activation function for SechSig and TanhSig. Since the

curve was smooth almost everywhere, more information

could enter the neural network, improving accuracy and

generalization performance. Among the features that

should be in non-monotonic activation functions, non-lin-

earity, almost ubiquitous differentiability, nearly linear

matching, few parameters, and not very complex compu-

tation. The proposed a-SechSig and a-TanhSig AF incor-

porate the relevant features. As seen in Fig. 1b, the

proposed functions do not pass through the origin with the

change of alpha and so generate values in the negative

region. Functions that generate values in the negative

region overcome the problem of bias of network layers due

to the above-zero average value known in ReLU (Gironés

et al. 2005). In this context, all non-piecewise functions in

Fig. 1b except Sigmoid and Softplus pass through the

origin.

3 Proposed activation function

3.1 Creating functions

Activation functions are designed as a piecewise or single

equation to produce different outputs for the positive and

negative signs of the input value. Piecewise AF are gen-

erally based on RELU, and those given between Eqs. (1)

and (7) are examples of piecewise functions. Other func-

tion designs may consist of a single function such as Sig-

moid, Tanh, or may be in the form of an input value or an

algebraic combination or composition of more than one

function. The combinations of the input value and the

function are f ðxÞ ¼ x � gðxÞ and have the Swish activation

function structure. There is also the Logish function f xð Þ ¼
x � g h 1 þ r xð Þð Þð Þ which uses both compositional and
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algebraic combinations in a complex way. An example of a

more regularly defined function as f ðxÞ ¼ ðxþ g xÞð Þ � hðxÞ
is SinLU. The functions proposed in this study are

f ðxÞ ¼ ðxþ g xÞð Þ � hðxÞ. The basic states of the proposed

functions are given in Eqs. (14) and (15).

fSechSig xð Þ ¼ xþ sech xð Þð Þ 1

1 þ e�x
; ð14Þ

fTanhSig xð Þ ¼ xþ tanh xð Þð Þ 1

1 þ e�x
: ð15Þ

The basic forms and derivatives of the proposed func-

tions are given in Fig. 2.

An a parameter is used in the activation function to

obtain modified gradients that can be changed with used a
parameter. With this a parameter, modified gradients can

be obtained in the functions around the x ¼ 0 line, that is,

around the activation value axis, and in the positive region

of the input value in the second function. If we update the

form of the proposed functions as f ðxÞ ¼
ðxþ agðxþ aÞÞhðxÞ, the functions with a parameters are

given in Eqs. (16) and (17). Functions with a parameters

are used in the study to control the regional properties.

Although a is defined as the slope parameter in linear-

based activation functions, it has the effect of changing the

lower limit and the x-axis cutoff point in addition to the

slope in the proposed functions. x given in equations is

expressed as input parameter.

faSechSig x; að Þ ¼ xþ asech xþ að Þð Þ 1

1 þ e�x
; ð16Þ

faTanhSig x; að Þ ¼ xþ a tanh xþ að Þð Þ 1

1 þ e�x
: ð17Þ

Equations (18) and (19) are obtained by derivation of

proposed AF with respect to x.

dfaSechSig x; að Þ
dx

¼ e�x xþ sech xþ að Þð Þ
1 þ e�xð Þ2

þ 1 � a tanh xþ að Þsech xþ að Þ
1 þ e�x

; ð18Þ

dfaTanhSig x; að Þ
dx

¼ e�x xþ tanh xþ að Þð Þ
1 þ e�xð Þ2

þ 1 � asech2 xþ að Þ
1 þ e�x

: ð19Þ

The graphs and types of the proposed functions obtained

in the intervals a ¼ ð0; 1Þ and x ¼ ð�5; 5Þ are given in

Figs. 3 and 4, respectively. Both functions are Swish

functions for a ¼ 0.

Fig. 1 Behaviors of proposed and mostly used activation functions, (a) piecewise (b) non-piecewise functions

Fig. 2 Graphs of proposed base functions and derivatives
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3.2 Characteristics of functions

In terms of two important features desired in activation

functions, the proposed AF do not have an upper limit and

a lower limit. The absence of an upper limit prevents sat-

uration caused by slopes close to zero. Having a lower

bound creates a strong regularization effect. The proposed

functions are monotonic, increasing and decreasing to the

left and right of their lower bounds.

Let’s explain this situation on the a-SechSig function for

the value of a ¼ 0:5. According to the Rolle mean value

theorem. Given in Eqs. (20) and (21)

faSechSig �2ð Þ ¼ faSechSig �1:4738ð Þ ¼ �0:21307; a ¼ 0:5;

ð20Þ

dfaSechSig x; að Þ
dx

¼ 0; x ¼ �1:71967; x 2 �2;�1:71967½ �:

ð21Þ

Minimum value of function is

f aSechSigð�1:71967Þ ¼ �0:219976. The function decreases

monotonically by taking ð0;�0:219976� values in the range

of input values ð�1;�1:71967�. The function increases

monotonically by taking ½�0:219976;þ1Þ values in the

range of input values ½�1:71967;þ1Þ. So for a ¼ 0:5 the

function f aSechSigðxÞ is non-monotonic in the range

ð�1;þ1Þ and the value range of the function is

½�0:219976;þ1Þ. The above rules also apply to the other

values of the a parameter and the a-TanhSig function. The

approximate input value ranges and approximate value

ranges of both functions are given in Tables 1 and 2.

Fig. 3 a Shape, b first derivative

of a-SechSig activation function
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To provide back-propagation in convolutional neural

networks, the AF must be differentiable over the entire

range. The proposed a-SechSig and a-TanhSig functions

are differentiable over the entire range. They are non-linear

functions because their derivatives are not constant. Since

the proposed functions do not satisfy the conditions for odd

or even, they are neither odd nor even and asymmetric (Baş

2018; Korpinar and Baş 2019).

Tables 1 and 2 show regions of increasing monotone and

decreasing monotone. Thus, it is shown that the proposed

activation functions are non-monotonic. It is known that

state-of-the-art activation functions are non-monotonic and

are effective in optimizing the network with their modifi-

able shapes. The tables also offer a new activation function

analysis approach with the values and order they contain.

4 Materials and methods

4.1 Datasets

In the study, MNIST, Cifar-10, KMNIST, SVHN-cropped,

and STL-10 benchmark datasets were obtained from the

tensor-flow catalog web page and experimental evaluations

were carried out.

70,000 handwritten digits in the MNIST dataset range

from 0 to 9 (Lecun et al. 1998). MNIST dataset, 60,000 of

them were used for training, while 10,000 of them were

used for testing. The dataset has 10 classes, each repre-

senting 28 9 28 pixel numbers from 0 to 9.

The total number of color pictures in the CIFAR-10

collection is 60,000 (Krizhevsky et al. 2012). 10,000

Fig. 4 a Shapes, b first

derivatives of a-TanhSig
activation function
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images of the CIFAR-10 dataset were used for testing,

while 50,000 of them were used for training. The dataset

has 10 classes and represents 32 9 32-pixel color images,

each of which consists of different objects.

The Kuzushiji-MNIST (KMNIST) dataset consists of

70,000 images of Japanese Hiragama characters (Clanuwat

et al. 2023). KMNIST dataset, of which 60,000 were used

for training and 10,000 for testing. The dataset has 10

classes and each consists of a string of 28 9 28 pixel

Hiragama characters from the Japanese language.

The svhn_cropped dataset consists of 600,000 color

images of house numbers between 0 and 9 in Google Street

view images (Netzer et al. 2011). The svhn_cropped

dataset consists of 73,257 training and 26,032 test data. The

class number of the dataset is 10 and consists of 32 9 32-

pixel house door numbers obtained from real-world data.

The STL-10 dataset consists of color images inspired by

the CIFAR-10 dataset (Coates et al. 2011). The STL-10

dataset consists of 8,000 training and 5,000 test data. The

dataset has 10 classes and represents 96 9 96-pixel color

images, each of which consists of different objects. Images

were obtained from labeled samples on ImageNet.

4.2 Convolutional neural network (CNN)

Deep learning architectures are a subset of machine

learning that are investigated and feature a multi-layered

structure (LeCun et al. 2015). In deep learning, the most

widely used model is convolutional neural networks

(CNN). The CNN is a feedforward neural network

designed to recognize patterns directly from image pixels

(or other signals) by combining feature extraction and

classification (Kiliçarslan and Celik 2021; LeCun et al.

2015). Convolutional layers, pooling layers, activation

layers, dropout layers, fully connected layers, and classi-

fication layers at the output make up the CNN architecture

(Lecun et al. 1998, 2015; Kiliçarslan et al. 2021; Adem and

Kiliçarslan 2021; Adem et al. 2019; Pacal and Karaboga

2021). The CNN architecture used is shown in Fig. 5.

In Fig. 5, the CNN architecture consists of convolu-

tional, activation, pooling, dropout, normalization, flatten,

and fully connected layers (Elen 2022). In the proposed

method, three convolutional layers, two fully concatenated

layers and one output layer are used. The convolution layer

allows us to achieve significant accuracy in the CNN

architecture using a filter size of 3 9 3. The image

obtained with the filter becomes the input image of the next

layer. The proposed non-linear non-monotonic a-SechSig
and a-TanhSig AF were used as the activation layer. The

pooling layer is used to reduce the size of the resulting

feature map and lower the computational cost. The filter

size in the pooling layer was set to 2 9 2. The dropout

ratio was set to 0:4 to prevent overfitting. After the pooling

process, all layers are connected with two fully connected

layers with 512 neurons, and the model is prepared for the

classification process (Adem and Közkurt 2019). The

Softmax layer is preferred to successfully perform the

classification process (LeCun et al. 2015; Kiliçarslan et al.

2021; Adem and Kiliçarslan 2021). Adam optimizer was

used in the experiments (Gorur et al. 2022).

4.3 Transfer learning methods

Transfer learning is the practice of applying features dis-

covered while solving one problem to address new, related

problems. For instance, features that were discovered for

animal picture classification might be applied to categorize

Table 1 Non-monotonicity table of a-SechSig activation function

a- Monotonic Interval

Decreasing Increasing Range

0.0 ð�1;�1:279� ½�1:279;þ1Þ ½�0:279;þ1Þ
0.1 ð�1;�1:364� ½�1:364;þ1Þ ½�0:267;þ1Þ
0.2 ð�1;�1:451� ½�1:451;þ1Þ ½�0:255;þ1Þ
0.3 ð�1;�1:539� ½�1:539;þ1Þ ½�0:244;þ1Þ
0.4 ð�1;�1:629� ½�1:629;þ1Þ ½�0:232;þ1Þ
0.5 ð�1;�1:720� ½�1:720;þ1Þ ½�0:220;þ1Þ
0.6 ð�1;�1:811� ½�1:811;þ1Þ ½�0:208;þ1Þ
0.7 ð�1;�1:904� ½�1:904;þ1Þ ½�0:197;þ1Þ
0.8 ð�1;�1:997� ½�1:997;þ1Þ ½�0:186;þ1Þ
0.9 ð�1;�2:091� ½�2:091;þ1Þ ½�0:175;þ1Þ
1.0 ð�1;�2:186� ½�2:186;þ1Þ ½�0:164;þ1Þ

Table 2 Non-monotonicity table of a-TanhSig activation function

a- Monotonic Interval

Decreasing Increasing Range

0.0 ð�1;�1:278� ½�1:278;þ1Þ ½�0:278;þ1Þ
0.1 ð�1;�1:248� ½�1:248;þ1Þ ½�0:297;þ1Þ
0.2 ð�1;�1:237� ½�1:237;þ1Þ ½�0:313;þ1Þ
0.3 ð�1;�1:244� ½�1:244;þ1Þ ½�0:328;þ1Þ
0.4 ð�1;�1:265� ½�1:265;þ1Þ ½�0:340;þ1Þ
0.5 ð�1;�1:298� ½�1:298;þ1Þ ½�0:350;þ1Þ
0.6 ð�1;�1:341� ½�1:341;þ1Þ ½�0:356;þ1Þ
0.7 ð�1;�1:391� ½�1:341;þ1Þ ½�0:361;þ1Þ
0.8 ð�1;�1:447� ½�1:447;þ1Þ ½�0:362;þ1Þ
0.9 ð�1;�1:508� ½�1:508;þ1Þ ½�0:362;þ1Þ
1.0 ð�1;�1:573� ½�1:573;þ1Þ ½�0:359;þ1Þ
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flowers. In other words, transfer learning is the process of

learning a new activity more effectively by applying what

has already been learned about a related task. Transfer

learning is a viable alternative to starting from scratch

when we only have a few data sets to train a model on.

ResNet50 is a variation of the ResNet architecture, a

deep residual neural network. ResNet’s the main idea

behind it is that by introducing shortcut links, also known

as jump links, deep is to alleviate the gradient problem that

is absent in neural networks. These connections allow the

network to intermediate the input allows direct transmis-

sion to a deeper layer, bypassing layers.

5 Experimental results

In the experimental studies, five datasets, namely MNIST,

KMNIST, CIFAR-10, STL-10, and SVHN-Cropped, were

used to evaluate the performance of the proposed activation

functions.

The a slope parameter of the proposed AF was analyzed

with ten different values equally partitioned between 0.1

and 1. In the experiments, Sigmoid, ReLU, LReLU, Swish,

Mish, Smish, Logish and SinLU AF were used to compare

the experimental results of the proposed activation func-

tions. Experiments were performed with 50 epochs where

the model converges enough to fully train the model. Also

selection of 50 epochs minimized the deviation in mean of

result values.

5.1 Convergence speed

Gironés et.al. state that the speed of convergence should be

taken into consideration while choosing the derivative of

activation function implementation (Gironés et al. 2005).

So, the slope of the first derivative of the activation func-

tion affects the speed of the deep learning model. Deriva-

tive graphs of the activation functions used in the

experiments and the functions we proposed are shown in

Fig. 6.

To compare the convergence speeds of the proposed AF

experimentally with other AF, the validated accuracy

results for 50 epochs and 7 epochs of the experiments on

the MNIST dataset are given in Fig. 6, and the valued loss

results are given in Fig. 7.

When Figs. 6 and 7 are examined, it is observed that the

proposed activation functions provide a high initial con-

vergence rate in both accuracy and loss graphs compared to

the activation functions used in the experiments.

In terms of convergence speed and ultimate accuracy, a-
SechSig and a-TanhSig exceed Sigmoid, ReLU, LReLU,

Swish, Mish, Smish, Logish, and SinLU AF. It showcases

the quick parameter updates capabilities of a-SechSig and

a-TanhSig and forces the network to more effectively

Fig. 5 CNN Architecture Structure
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match the dataset, resulting in high accuracy and minimal

loss.

In Fig. 8, the first derivative graphs of the activation

functions used in the experiments are given. The deriva-

tives of the proposed activation functions do not converge

to zero, thus overcoming the vanishing gradient problem.

The derivative graph of the sigmoid function converges to

zero. Activation functions whose derivatives do not

converge to zero and whose slopes are high have a high

convergence speed.

5.2 Train and validation results

Classification experiments of mean scores of CNN, with

proposed a-SechSig and a-TanhSig with variating a
parameters from 0.1 to 1, presented first for MNIST in

Fig. 6 Validated accuracy via 50 epochs and zoomed to 7 epochs on MNIST with different activation functions

Fig. 7 Validated loss via 50 epochs and zoomed to 7 epochs on MNIST with different activation functions
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Table 3, then for KMNIST in Table 4, CIFAR-10 in

Table 5, STL-10 in Table 6, and SVHN-Cropped in

Table 7, respectively.

On the MNIST dataset experiments, a-SechSig received

the greatest score of 0.9925 success rate and 0.0246 error

rate with an a of 0.2 and a-TanhSig received the greatest

score of 0.9916 success rate and 0.0259 error rate with an a
of 0.5.

On the KMNIST dataset experiments, a-SechSig
received the greatest score of 0.9485 success rate and

0.2031 error rate with an a of 0.6 and a-TanhSig received

the greatest score of 0.9527 success rate and 0.1746 error

rate with an a of 0.5.

On the CIFAR-10 dataset experiments, a-SechSig
received the greatest score of 0.7088 success rate and

0.8452 error rate with an a of 0.1 and a-TanhSig received

the greatest score of 0.7105 success rate and 0.8519 error

rate with an a of 0.2.

On the STL-10 dataset experiments, a-SechSig received

the greatest score of 0.3315 success rate and 2.9525 error

rate with an a of 0.2 and a-TanhSig received the greatest

score of 0.3181 success rate and 2.8513 error rate with an a
of 0.2.

On the SVHN-Cropped dataset experiments, a-SechSig
received the greatest score of 0.9139 success rate and

0.3044 error rate with an a of 0.4 and a-TanhSig received

the greatest score of 0.9164 success rate and 0.2962 error

rate with an a of 0.2.

Since the characteristics of each data set are different in

the experiments carried out, high success rates are obtained

in different slope parameters. In the proposed a-SechSig
and a-TanhSig activation functions, it is seen that high

success rates are obtained on all datasets with values

Fig. 8 Derivative graphs of activation functions that used in the experiments

Table 3 Mean scores of the a-
SechSig and a-TanhSig on the

MNIST dataset

a Epoch Train Loss Train Acc Val. Loss Val. Acc

a-SechSig 0.10 50 0.0539 0.9837 0.0960 0.9780

0.20 50 0.0516 0.9844 0.0246 0.9925

0.30 50 0.0558 0.9830 0.0745 0.9795

0.40 50 0.0545 0.9831 0.0945 0.9765

0.50 50 0.0567 0.9830 0.0661 0.9805

0.60 50 0.0566 0.9826 0.0440 0.9859

0.70 50 0.0578 0.9821 0.1066 0.9734

0.80 50 0.0572 0.9824 0.0693 0.9765

0.90 50 0.0580 0.9821 0.1037 0.9742

1.00 50 0.0580 0.9821 0.1203 0.9715

a-TanhSig 0.10 50 0.0565 0.9828 0.0275 0.9905

0.20 50 0.0540 0.9837 0.0327 0.9892

0.30 50 0.0540 0.9836 0.0387 0.9865

0.40 50 0.0521 0.9840 0.0292 0.9900

0.50 50 0.0527 0.9838 0.0259 0.9916

0.60 50 0.0558 0.9829 0.0329 0.9888

0.70 50 0.0538 0.9837 0.0374 0.9867

0.80 50 0.0540 0.9834 0.0254 0.9915

0.90 50 0.0551 0.9828 0.0296 0.9903

1.00 50 0.0549 0.9830 0.0286 0.9905
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between 0.1 and 0.5 by weight due to the structural char-

acteristics of the proposed functions. Tables 8 and 9 pre-

sent the a-SechSig and a-TanhSig AF proposed for the

MNIST dataset, and the experimental evaluations of the

Sigmoid, ReLU, LReLU, Swish, Mish, Smish, Logish, and

SinLU activation functions. The alpha coefficient used for

LReLU was 0.01, and for SinLu alpha and beta were 1.

When Table 8 is examined, it is seen that the best

training accuracy and training error values for all datasets

are in the proposed a-SechSig and a-TanhSig activation

Table 4 Mean scores of the a-
SechSig and a-TanhSig on the

Fashion KMNIST dataset

a Epoch Train Loss Train Acc Val. Loss Val. Acc

a-SechSig 0.10 50 0.0859 0.9734 0.2098 0.9429

0.20 50 0.0878 0.9728 0.2042 0.9449

0.30 50 0.0905 0.9719 0.2105 0.9436

0.40 50 0.0882 0.9726 0.2131 0.9422

0.50 50 0.0917 0.9715 0.2129 0.9423

0.60 50 0.0894 0.9720 0.2031 0.9485

0.70 50 0.0937 0.9707 0.2271 0.9387

0.80 50 0.0955 0.9700 0.2261 0.9380

0.90 50 0.0983 0.9695 0.2297 0.9375

1.00 50 0.0991 0.9689 0.2436 0.9342

a-TanhSig 0.10 50 0.0843 0.9740 0.1989 0.9478

0.20 50 0.0849 0.9736 0.1949 0.9511

0.30 50 0.0898 0.9722 0.1942 0.9467

0.40 50 0.0906 0.9719 0.1975 0.9487

0.50 50 0.0832 0.9742 0.1746 0.9527

0.60 50 0.0874 0.9729 0.1957 0.9498

0.70 50 0.0884 0.9725 0.1952 0.9498

0.80 50 0.0911 0.9715 0.2021 0.9474

0.90 50 0.0948 0.9704 0.2368 0.9394

1.00 50 0.0887 0.9725 0.2024 0.9475

Table 5 Mean scores of the a-
SechSig and a-TanhSig on the

CIFAR-10 dataset

a Epoch Train Loss Train Acc Val. Loss Val. Acc

a-SechSig 0.10 50 0.8198 0.7123 0.8452 0.7088

0.20 50 0.8228 0.7120 0.8721 0.7025

0.30 50 0.8361 0.7071 0.9484 0.6787

0.40 50 0.8304 0.7081 1.0862 0.6451

0.50 50 0.8572 0.6985 1.1844 0.6173

0.60 50 0.8627 0.6969 1.1789 0.6179

0.70 50 0.8478 0.7033 1.3392 0.5887

0.80 50 0.8792 0.6908 1.3362 0.5790

0.90 50 0.8732 0.6942 1.4469 0.5629

1.00 50 0.8912 0.6871 1.6254 0.5292

a-TanhSig 0.10 50 0.8255 0.7099 0.8982 0.6953

0.20 50 0.8226 0.7106 0.8519 0.7105

0.30 50 0.8213 0.7111 0.8636 0.7070

0.40 50 0.8062 0.7162 0.8623 0.7101

0.50 50 0.8139 0.7139 0.8678 0.7041

0.60 50 0.8234 0.7102 0.8467 0.7058

0.70 50 0.8250 0.7096 0.9576 0.6796

0.80 50 0.9175 0.6777 1.0273 0.6494

0.90 50 0.8151 0.7128 1.0041 0.6658

1.00 50 0.8260 0.7098 1.0798 0.6453
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functions. In Table 8, it is seen that only the Mish activa-

tion function is the best training accuracy and training error

value for the CIFAR-10 dataset, but there is a small dif-

ference of 0.08 as a percentage of accuracy.

During the training of the deep learning model, the a
values of the suggested AF according to the highest

training accuracy scores are as follows:

Table 6 Mean scores of the a-
SechSig and a-TanhSig on the

STL-10 dataset

a Epoch Train Loss Train Acc Val. Loss Val. Acc

a-SechSig 0.10 50 1.2714 0.6257 3.8879 0.2729

0.20 50 1.0397 0.6743 2.9525 0.3315

0.30 50 1.2446 0.6251 2.5543 0.3264

0.40 50 1.2360 0.6336 3.1778 0.2919

0.50 50 2.3139 0.1834 3.1804 0.1036

0.60 50 3.2464 0.1461 2.9360 0.1013

0.70 50 1.1722 0.6262 3.2679 0.2997

0.80 50 1.2623 0.6123 2.7193 0.3082

0.90 50 1.2890 0.6067 3.1988 0.2960

1.00 50 1.2904 0.6022 4.8612 0.2340

a-TanhSig 0.10 50 1.4149 0.5644 2.8265 0.2890

0.20 50 1.1715 0.6437 2.8513 0.3181

0.30 50 1.3637 0.5999 2.8328 0.3039

0.40 50 1.3408 0.6030 2.9187 0.3021

0.50 50 1.2095 0.6320 3.0668 0.3016

0.60 50 1.3709 0.6157 3.1890 0.3084

0.70 50 1.3122 0.6168 3.2939 0.2990

0.80 50 1.2590 0.6300 3.4874 0.2990

0.90 50 1.6460 0.5277 4.2678 0.2441

1.00 50 1.3928 0.5920 4.0202 0.2870

Table 7 Mean scores of the a-
SechSig and a-TanhSig on the

SVHN-Cropped dataset

a Epoch Train Loss Train Acc Val. Loss Val. Acc

a-SechSig 0.10 50 0.3751 0.8851 0.3126 0.9113

0.20 50 0.3736 0.8855 0.3178 0.9107

0.30 50 0.3677 0.8874 0.3138 0.9098

0.40 50 0.3628 0.8894 0.3044 0.9139

0.50 50 0.3871 0.8812 0.3272 0.9055

0.60 50 0.3973 0.8773 0.3407 0.9020

0.70 50 0.4038 0.8757 0.3474 0.8993

0.80 50 0.4006 0.8766 0.3488 0.8978

0.90 50 0.4038 0.8761 0.3445 0.9007

1.00 50 0.3986 0.8776 0.3624 0.8960

a-TanhSig 0.10 50 0.3615 0.8898 0.3079 0.9136

0.20 50 0.3581 0.8907 0.2962 0.9164

0.30 50 0.3636 0.8886 0.3014 0.9149

0.40 50 0.3580 0.8906 0.3013 0.9156

0.50 50 0.3538 0.8919 0.2987 0.9162

0.60 50 0.3734 0.8857 0.3232 0.9064

0.70 50 0.3566 0.8911 0.2947 0.9161

0.80 50 0.3599 0.8899 0.3057 0.9137

0.90 50 0.3535 0.8921 0.3119 0.9102

1.00 50 0.3631 0.8891 0.3259 0.9073
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The a values of a-SechSig and a-TanhSig in the MNIST

dataset are a = 0.2 and a = 0.3, respectively.

The a values of a-SechSig and a-TanhSig in the

KMNIST dataset are a = 0.6 and a = 0.1, respectively.

The a values of a-SechSig and a-TanhSig in the CIFAR-

10 dataset are a = 0.2 and a = 0.4, respectively.

In the STL-10 dataset, the a values of both a-SechSig and

a-TanhSig are a = 0.2,

The a values of a-SechSig and a-TanhSig in the SHVN-

Cropped dataset are a = 0.2 and a = 0.1, respectively.

When Table 9 is examined, validation accuracy and

error values are given for all activation functions.

When Table 9 is examined, it is observed that the best

validation accuracy and validation error values in MNIST,

k-MNIST, SHVN-C datasets are obtained in the suggested

a-SechSig and a-TanhSig activation functions. In addition,

the highest score in the other CIFAR-10 and STL-10

datasets belongs to the Swish activation function. Another

striking point in these results is that the scores of the Swish

and suggested a-SechSig AF in the STL-10 dataset are very

close to each other. In addition, thanks to parameters

added, the flexibility feature of the AF has been gained.

Thus, it will continue the learning process by avoiding the

errors that may occur from the trainable parameters

obtained for each neuron. a-SechSig and a-TanhSig non-

monotonic AF inherit merits of smooth AF such as Sig-

moid and Tanh and piecewise AF such as ReLU and its

variants and avoids their deficiencies. When the AF in the

literature are examined in general, it is observed that not all

AF on all datasets give high success and consistent results.

This study hypothesizes that as the positive input increases,

the positive component approaches identity mapping rather

than using it, potentially bringing non-linearity properties

to the positive part and making it more resistant to data

distribution.

During the validation of the deep learning model, the a
values of the suggested AF according to the highest

accuracy scores are as follows:

• The a values of a-SechSig and a-TanhSig in the MNIST

dataset are a = 0.2 and a = 0.5, respectively.

• The a values of a-SechSig and a-TanhSig in the

KMNIST dataset are a = 0.6 and a = 0.5, respectively.

• The a values of a-SechSig and a-TanhSig in the CIFAR-

10 dataset are a = 0.1 and a = 0.3, respectively.

Table 8 Train loss and accuracy

of the activation functions
Methods MNIST k-MNIST CIFAR-10 STL-10 SHVN-C

Loss Acc Loss Acc Loss Acc Loss Acc Loss Acc

Sigmoid 0.0355 0.9887 0.0668 0.9789 0.7645 0.7313 1.1195 0.6036 0.3152 0.9045

ReLU 0.0210 0.9929 0.0289 0.9905 0.5599 0.8032 0.4480 0.8352 0.2067 0.9373

leakyReLU 0.0413 0.9873 0.0808 0.9739 0.8326 0.7149 0.9236 0.6710 0.4166 0.8833

Swish 0.0224 0.9926 0.0317 0.9898 0.5466 0.8062 0.4424 0.8488 0.2064 0.9380

Mish 0.0218 0.9930 0.0310 0.9899 0.5354 0.8098 0.3953 0.8616 0.2032 0.9389

Smish 0.0252 0.9916 0.0300 0.9900 0.5502 0.8052 0.5538 0.7982 0.2100 0.9358

Logish 0.0235 0.9923 0.0290 0.9906 0.5455 0.8055 0.5025 0.8162 0.2079 0.9372

sinLU 0.0273 0.9911 0.0381 0.9879 0.5905 0.7919 0.5986 0.7816 0.2119 0.9357

aSechSig 0.0224 0.9927 0.0290 0.9907 0.5428 0.8084 0.3402 0.8770 0.2029 0.9378

aTanhSig 0.0220 0.9932 0.0270 0.9908 0.5389 0.8090 0.4273 0.8472 0.2029 0.9393

Table 9 Validated loss and

accuracy of the activation

functions

Methods MNIST k-MNIST CIFAR-10 STL-10 SHVN-C

Loss Acc Loss Acc Loss Acc Loss Acc Loss Acc

Sigmoid 0.0213 0.9928 0.1937 0.9518 1.2441 0.5945 1.9183 0.4317 0.3040 0.9134

ReLU 0.0145 0.9955 0.1295 0.9722 0.5828 0.7977 1.4371 0.5334 0.2063 0.9468

leakyReLU 0.0235 0.9937 0.1861 0.9518 0.7936 0.7313 1.5582 0.5145 0.4090 0.9012

Swish 0.0167 0.9952 0.1398 0.9703 0.5667 0.8103 1.5397 0.5677 0.2146 0.9436

Mish 0.0160 0.9948 0.1297 0.9718 0.5699 0.8065 2.0084 0.5347 0.2155 0.9446

Smish 0.0173 0.9946 0.1395 0.9698 0.5721 0.8021 1.6410 0.5319 0.2272 0.9400

Logish 0.0191 0.9944 0.1291 0.9717 0.5781 0.8040 1.7381 0.5330 0.2293 0.9393

sinLU 0.0165 0.9943 0.1364 0.9687 0.6184 0.7909 1.9818 0.4895 0.2149 0.9437

aSechSig 0.0139 0.9959 0.1364 0.9723 0.5631 0.8085 1.6127 0.5676 0.2183 0.9443

aTanhSig 0.0145 0.9956 0.1200 0.9731 0.5668 0.8077 1.6331 0.5598 0.2002 0.9476
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Fig. 9 Box charts of the AF according to validation loss and accuracy
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• The a values of both a-SechSig and a-TanhSig in the

STL-10 dataset are a = 0.2 and a = 0.7, respectively.

• The a values of a-SechSig and a-TanhSig in the SHVN-

Cropped dataset are a = 0.1 and a = 0.6, respectively.

In Fig. 9, box-plot graphs of AF according to validation

accuracy and error values for MNIST, KMNIST, CIFAR-

10, STL-10, and SVHN-Cropped are shown. It is seen that

the validation error values of the proposed non-linear non-

monotonic a-SechSig and a-TanhSig AF are better with

small differences on all datasets compared to other acti-

vation functions. It also appears that the graph of the sig-

moid function is always large over all datasets. When all

validation error graphs are examined, it is seen that non-

monotonic AF work stably with the proposed AF and

produce results. When the validation accuracy graphs are

examined for all datasets, it is observed that the other

activation functions, except sigmoid, work with similar

characteristics. The validation accuracy graphs of MNIST,

KMNIST, and SVHN-Cropped values seem to produce

similar results. When the box graphs are examined, it is

seen that it gives high-performance results when the

median line is skewed to the left inside the box (Kiliçarslan

and Celik 2021, 2022). Also, the whisker lengths in the

boxplots are nearly the same size, except for the sigmoid.

The tiny whisker lengths in the box plots and the little

difference between the lowest and best performance values

observed in the present tests are indicators of the stability

of the activation functions. Experiments with ResNet50

transfer learning method with the same parameters are

given in Table 10.

When Table 10 is analyzed, it is seen that the best

verification accuracy and verification error values in

MNIST, k-MNIST, SHVN-C datasets are obtained with the

proposed aSechSig and aTanhSig activation functions in

the experiments performed with the ResNet50 model.

other. The proposed activation function parameters in the

ResNet50 model were realized using the values in Table 9.

Thus, the consistency in the results is observed.

In this study, non-linear non-monotonic aSechSig and

aTanhSig AF are proposed. The proposed activation

function is designed to improve the typical monotonic and

non-monotonic AFs in deep learning architectures in terms

of consistency and stability. When the AFs in the literature

are analyzed in general, it is seen that not all AFs give high

success and consistent results on all datasets (Kiliçarslan

and Celik 2021). In addition, the proposed AF successfully

overcomes the problems of ignoring negative weights with

gradient measurements in the literature. The experimental

results of the proposed AF on five datasets (MNIST,

KMNIST, CIFAR-10, STL-10 and SVHN-Cropped) using

both 3-layer CNN and ResNet50 model show that good

results are obtained compared to other AFs. In addition,

similar results were obtained with the swish activation

function on a few datasets.

6 Conclusions

In deep learning architectures, AF plays an important role

in processing the data entering the network to provide the

most relevant output. In deep learning architectures, con-

siderations such as avoiding model local minima and

improving training performance are taken into account

when constructing AF. Since experiments are usually per-

formed on complex data sets, non-linear AF is mostly

preferred in the literature. In addition, new AFs have been

proposed in the literature to overcome the problems of

missing gradients and ignoring negative weights. The

aSechSig and aTanhSig AF proposed in our study can

successfully overcome the existing problems. In deep

learning architectures, non-monotonic activation functions

are used instead of monotonic non-linear activation func-

tions to ensure efficient operation of deep neural networks.

Table 10 Validated loss and

accuracy of the activation

functions for ResNet50

Methods MNIST k-MNIST CIFAR-10 STL-10 SHVN-C

Loss Acc Loss Acc Loss Acc Loss Acc Loss Acc

Sigmoid 0.0349 0.9952 0.1931 0.9558 2.2598 0.5555 1.7104 0.4417 0.3141 0.9134

ReLU 0.0344 0.9956 0.1191 0.9555 0.6709 0.8090 1.4471 0.5444 0.2143 0.9447

leakyReLU 0.0367 0.9947 0.1811 0.9558 0.7305 0.8006 1.5502 0.5145 0.4191 0.9112

Swish 0.0511 0.9927 0.1398 0.9503 0.6602 0.8076 1.5477 0.5677 0.2354 0.9434

Mish 0.0370 0.9953 0.1191 0.9558 0.7075 0.8099 2.0004 0.5447 0.2044 0.9444

Smish 0.0377 0.9949 0.1391 0.9598 0.7035 0.8069 1.6410 0.5417 0.2272 0.9411

Logish 0.0318 0.9959 0.1191 0.9555 0.6859 0.8002 1.7401 0.5440 0.2293 0.9393

sinLU 0.0452 0.9923 0.1314 0.9585 0.6605 0.8005 1.7010 0.4075 0.2009 0.9437

aSechSig 0.0263 0.9977 0.1314 0.9653 0.6630 0.8105 1.6127 0.5676 0.2175 0.9443

aTanhSig 0.0262 0.9976 0.1100 0.9635 0.6061 0.8154 1.6441 0.5570 0.2112 0.9474
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When the experimental evaluation results are examined, it

is seen that the proposed non-monotonic AF is more suc-

cessful than the monotonic ReLU activation function,

which is widely used in the literature both with 3-layer

CNN and ResNet50 model. In addition, the non-linearity

and discriminability of the developed AF are among its

important features. Because during the training and back-

propagation of the model, it is necessary to calculate how

much the curve will change the input data in which

direction. In the experimental evaluations, aSechSig and

aTanhSig AF were tested on MNIST, KMNIST, SVHN-

Cropped, STL-10, and CIFAR-10 datasets. According to

the results, non-monotonic Swish, Logish, Mish, Smish,

and monotonic ReLU have higher classification scores than

SinLU and LReLU. In future studies, the proposed AF can

be tested for classification and segmentation on more

specific image and video data to test the prevalence of their

success.
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Kiliçarslan S, Közkurt C, Baş S, Elen A (2023) Detection and

classification of pneumonia using novel Superior Exponential

(SupEx) activation function in convolutional neural networks.

Expert Syst Appl 217:119503
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