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Abstract
Invasive ductal carcinoma (IDC) is a common form of breast cancer that affects women. In traditional medical practice,

physicians have to manually test and classify areas which are suspected to be cancerous. However, the literature strongly

indicates that the manual segmentation process performed by medical practitioners is neither time efficient nor accurate, as

it relies on their subjective judgment. This paper introduces a model called residual attention neural network breast cancer

classification (RANN-BCC) to help medical practitioners in the cancer diagnostic process. RANN-BCC utilizes residual

neural network (ResNet) as an expert-supportive method to aid medical practitioners in cancer diagnosis. The imple-

mentation of RANN-BCC can support the classification of whole slide imaging (WSI) into non-IDC and IDC without prior

information about the presence of a cancerous lesion. The classification results demonstrate that the RANN-BCC model

has achieved 92.45% accuracy, 0.98 recall, 0.91 precision, and 0.94 F-score which has outperformed other models such as

CNN, AlexNet, Residual Neural Network 34 (ResNet34), and Feed-Forward Neural Network. The developed RANN-BCC

model aims to help medical experts to classify IDC and non-IDC of breast cancer by learning the feature content of medical

images.
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1 Introduction

In 2021, the National Center for Health Statistics estimated

that approximately 1,898,160 new cases of malignancy

breast cancer would be diagnosed in the same year, with

approximately 608,570 cancer death projected to occur in

the United States. In Malaysia, about 1 in 19 women will

be diagnosed with breast cancer. According to the World

Health Organization (WHO), breast cancer became the

most commonly diagnosed cancer in 2021, accounting for

12% of new cancer cases worldwide each year (Siegel and

Miller 2021). Among the various forms of breast cancer,

invasive ductal carcinoma (IDC) is common, representing

approximately 80% of breast cancer incidence upon diag-

nosis (Makki 2015). Early determination is crucial during

the diagnosis of breast cancer because breast cancer

survival is highly influenced by the diagnosis stage of the

malignancy. Early determination enables medical experts

to provide appropriate treatment to the patients, thereby

reducing mortality (Youlden et al. 2012; Wang 2017). An

informative diagnosis of the various cancer classification is

essential to aid medical professionals in selecting legiti-

mate treatments. Technological advancements in screening

tests to identify early-stage cancer cells were recommended

(Wang 2017).

Mammography is the standard screening test for

detecting breast cancer, but its effectiveness is limited for

patients under 40 years old and those with high-density

breast tissue. It is also less sensitive to tumors smaller than

1 mm, and may not provide conclusive evidence of breast

cancer (Onega et al. 2016). Another screening test is called

contrast-enhanced (CE) digital mammography which can

deliver higher accuracy in diagnosis compared with other

screening tests in high-density breasts region cases, but its

availability is limited due to the high cost and the elevated

levels of radiation involved in the procedure (Lewis et al.

2017). Another method for detecting breast cancer is the
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use of magnetic resonance imaging (MRI) in conjunction

with mammography. MRI is a medical imaging tool that

can detect small-sized tumors that are difficult to visualize

with mammography. However, MRI has its drawbacks.

They are high cost, low specificity, injection of contrast

agent, and the chance of over-diagnosis (Hua et al. 2015).

In addition, a biopsy test is considered the definitive way

for a confirmative and comprehensive diagnosis of breast

cancer. Invasive breast cancer detection such as invasive

microscopic examination is employed to identify breast

cancer in a microscopic setting. Whole slide imaging

(WSI) is another commonly used imaging modality in the

microscopic field for investigating breast cancer. WSI

provides high-resolution histopathology images that aid in

visualizing cellular features and tissue structures (Cruz-

Roa et al. 2014).

Currently, many medical practitioners still rely on

manual identification of invasive ductal carcinoma (IDC)

in the breast. However, this approach is time-consuming

and operator dependent as it involves scanning a large area

to identify IDCs. Moreover, prior knowledge of the

abnormality presence is required by medical practitioners

for manual delineation of breast cancer mass. The dis-

crepancy in differentiated diagnosis opinions among med-

ical experts and radiologists requires a dual reading

procedure (Yap and Yap 2016). Another approach is the

semi-automatic detection and classification of breast cancer

abnormalities (Sim et al. 2014; Ting et al. 2017). However,

it is challenging to apply common image processing tech-

niques to locate various types of mammograms in medical

images, as malignant lesions can appear at different loca-

tions and have different intensity distributions.

Recently, the use of machine learning has shown

immense potential in addressing a wide range of tasks and

challenges faced by the healthcare industry. Genetic pro-

gramming, a subset of machine learning, is a method for

automatically generating computer programs or mathe-

matical models to solve complex problems without the

need for explicit programming by humans. The uniqueness

of genetic programming is the ability to evolve programs or

mathematical models, allowing it to handle a wide range of

problems. Recently, D’Angelo et al. (2023) introduced the

use of genetic programming to develop a classifier for

diabetic foot (DF). The authors proposed an explainable

genetic programming classifier (X-GPC), which aims to

produce a model that can provide a human-readable

explanation of the diabetic foot ulcer (DFU) diagnosis.

Asides from the genetic programming, the author also

mentioned about evolutionary algorithms, a class of opti-

mization algorithms inspired by the process of natural

selection and evolution in biological systems. This type of

algorithm used to find the optimal or near-optimal solution

to complex problems such as the data in the biomedical

field (D’Angelo and Palmieri 2020).

Deep learning, a subset of machine learning, has

emerged as a groundbreaking approach that can mimic the

workings of the human brain’s neural networks. This

technique enables an end to end learning, where the model

learns all the steps between the initial input phase and the

final output result. It automatically learns and extracts

patterns and representations from complex medical data.

One of the most significant applications of deep learning in

the healthcare industry is medical imaging analysis. Tra-

ditional diagnostic methods often rely on human expertise

to interpret information in the images and are subject to

human error. Algorithms of deep learning, on the other

hand, can automatically learn to interpret that information,

enabling faster and more efficient diagnoses (Araújo et al.

2017).

Hence, this paper aims to apply deep learning methods

for non-IDC and IDC classification. Deep learning models

are well suited for processing medical imaging due to the

availability of a large number of sample images for train-

ing. The proposed model, residual attention neural network

breast cancer classification (RANN-BCC), aims to assist

medical practitioners in investigating medical images of

breast cancer quickly and effectively. RANN-BCC utilizes

a residual neural network (ResNet) as a supportive tool to

classify breast cancer lesions, thereby reducing the time

required for breast cancer diagnosis.

To evaluate the performance of the RANN-BCC model,

a classification was conducted using a dataset of non-IDC

and IDC images, and the results were compared with other

deep learning models. The paper is organized as follows. A

review of related work is shown in Sect. 2. The structure of

the RANN-BCC model is explained in Sect. 3. The results

and discussion of the RANN-BCC and other deep learning

models are presented and discussed in Sect. 4. Finally, the

study is summarized in Sect. 5.

2 Related works

2.1 Whole slide images

Whole slide imaging (WSI) is a technology that produces

digital images by scanning and digitization of entire glass

(histology) slides. WSI is considered as a digital file that is

comparable to the glass slides under a microscope. WSI is

increasingly being used by pathology departments, scien-

tists, and pathologists for educational, clinical, and research

activities (Hanna et al. 2020). A trained and experienced

histopathologist can make accurate diagnoses of biopsy

specimens based on WSI data. However, with the different

dimensions of WSIs and the increasing number of cancer
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cases, the analysis of WSIs will be time-consuming and

even difficult if there is a lack of histopathologists (Khened

et al. 2021). Figure 1 shows the typical workflow of digital

pathology research, where several image analysis tech-

niques are used to perform segmentation, detection, and

classification.

In the past, most of the research methods involved his-

tological primitives’ segmentation and handcrafted feature

extraction that describe the arrangement and appearance of

these primitives to distinguish malignant from benign

areas. Petushi et al. (2006) introduced the tissue micro-

texture classification to segmentate nuclei and extract two

features which are spatial position and surface density of

nuclei. Dundar et al. (2011) presented a computerized

classification of intraductal breast lesions that can distin-

guish between actionable subtypes and ductal hyperplasia.

Niwas et al. performed the breast lesions classification

using log-Gabor complex wavelet bases which could

evaluate the color texture features of the segmented

nucleus. Those previous methods involved manual hand-

crafted features to extract the feature contents of patches

divided from WSI. Those methods not only involved

numerous preprocessing steps but also the classification

accuracy was dependent on the accuracy of the previous

step. In recent years, deep learning had provided a state-of-

the-art result in various image analyses. Deep learning does

not require the use of a handcrafted feature, instead, it will

automatically learn the feature content of patches divided

from WSI. With the rapid adoption of deep learning in

imaging, the wider accessibility of WSIs now attracts the

application of deep learning.

2.2 Deep learning in image classification

The deep learning model was useful in the development of

medical research and currently received a lot of attention

due to its superiors’ classification of a large set of training

data. These deep learning models showed outstanding

capability in mimicking humans, including in the field of

medical imaging (Tan et al. 2017; Ting and Sim 2017).

Among different types of deep learning models, con-

volutional neural network (CNN) is commonly used in

classifying the image. CNN consists of several layers of

neural computer connections that can greatly improve the

field of computer vision with minimal systematic pro-

cessing. The architecture of CNN consists of several parts

such as the convolutional layer, pooling layer, and fully

connected layer. A convolutional layer will learn the fea-

ture representation of the image by detecting line, edge,

and other pattern forms. For computing different feature

maps, several kernels will be applied to the image and get

the convoluted features. Those features will then be passed

to the pooling layer which is used to reduce the computa-

tional burden by decreasing the feature map resolution.

After that, those features will be flattened and fed into the

fully connected layer to classify them into various classes.

CNN can learn a hierarchical representation of a model,

from low-level to high-level functions, and extract the most

important functions of a specific model (Krizhevsky et al.

2012). Since deep CNN architectures usually involve

numerous layers in a neural network, with potentially

millions of weight parameters to be estimated, a large

number of samples are required to form the model and set

the parameters. This suggests that deep learning models are

suitable for handling medical imaging since a large number

of medical sample images are available to perform training.

Recently, the deep learning-based system was suggested by

a researcher on the application such as lung cancer (Hua

et al. 2015; Kumar et al. 2015), breast cancer classification

(Wang et al. 2016; Ting et al. 2019), cognitive classifica-

tion (Toa et al. 2021), Alzheimer’s disease (AD) (Ji et al.

2019; Suk et al. 2014), and even pain quantification

(Elsayed et al. 2020). Moreover, recent studies mention

that deeply learned features can provide a more effective

feature-learning technique for image classification as

compared to handcrafted features (Toa et al. 2021; Arevalo

et al. 2016). Cruz-Roa et al. provided automatic detection

of IDC in WSI using CNN. The authors mentioned that the

use of the deep learning method yielded a better result in

the detection of IDC as compared to an approach using

Fig. 1 The workflow of pathology research for segmentation, detection, and classification (Janowczyk and Madabhushi 2016)
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handcrafted features (Cruz-Roa et al. 2014). Janowczyk

and Madabhushi performed the analysis on the digital

pathology image. The authors used the deep learning

method to produce results superior to the handcrafted

feature-based classification approach (Janowczyk and

Madabhushi 2016).

3 Materials and methods

3.1 Materials

Invasive ductal carcinoma (IDC) is a common subtype of

breast cancer. The applied digital databases are made

publicly available and were collected in a previous study

(Cruz-Roa et al. 2014; Janowczyk and Madabhushi 2016).

Figure 2 shows the non-invasive ductal carcinoma (non-

IDC) and invasive ductal carcinoma (IDC) in whole slide

imaging (WSI). The dataset consisted of 162 WSI breast

cancer specimens scanned at 409. From these WSI,

277,524 patches of size (50 9 50) were extracted and

converted into Portable Network Graphics (PNG) format

with 198,738 non-IDC (0) patches and 78,786 IDC (1)

patches. The filename of each patch includes the x-and

y-coordinates of the cropped patch location and its cate-

gory (0 or 1).

3.2 Methods

To achieve the aim of identifying and classifying breast

cancerous lesions, we designed a sophisticated neural

network architecture named residual attention neural net-

work breast cancer classification (RANN-BCC). It consists

of six different building blocks. These six building blocks

have utilized many deep learning conceptions such as

residual learning, attention mechanism, convolution, and

deconvolution. Figure 3 is the overall design of the archi-

tecture. The subsections below will explain each building

block individually.

3.2.1 Block 1: feature extractor

This block includes a residual neural network 34

(ResNet34) to map significant features of breast cancer

images to feature maps (He et al. 2016). ResNet34 is an

architecture that is used to solve vanishing gradient prob-

lems when constructing more layers. Figure 4 shows the

ResNet34 architecture. The parameter used is shown in

Table 1.

From Fig. 4, the residual connections shown between

layers are important in solving many deep learning prob-

lems because they allow gradients to flow directly through

the network without going through non-linear activation

functions, which solves common neural network training

issues such as vanishing gradients. In other words, as

shown in Fig. 5, the residual connections link the previous

layer output to the new layer.

As aforementioned, each inputted image to this building

block will result in the creation of 512 maps. Each of which

carries some important features that would help the clas-

sifier in identifying the cancerous tumor. Figure 6

demonstrates what the feature maps could look like.

3.2.2 Block 2: self-attention block

The input to this building block is the features extracted

from the input image using a Residual Network (He et al.

2016), where the average pooling and classification layers

(last two layers) of a ResNet34 (He et al. 2016) will be

removed to obtain features of shape k � k � d, where k is

spatial size and d is number of dimensions. We then apply

an adaptive average pooling layer. We denote the gener-

ated features as F.

Self-attention was proposed by (Vaswani et al. 2017),

and it was later implemented as an attention mechanism

(Bahdanau et al. 2015) on its input. It is mainly utilized in

our system to extract relationships from the images. The

definition of the attention components and mathematical

formulation will be presented here. The self-attention

mechanism projects its input using three projections into a

key (K), query (Q), and value (V). It then performs a dot-

product operation to find the similarity between the query

and the key, and then generates attention weights which

signify the importance of each query with all the keys. It

then multiplies these attention weights with the projected

Fig. 2 Examples of non-IDC and IDC in whole slide imaging (WSI)
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value and sums the vectors to get a representation of each

query contextualized with all its important values.

Q ¼ Wq
bQ;K ¼ WK

bK ;V ¼ Wv
bV: ð1Þ

The self-attention is defined as a function of the simi-

larity between the Q and the K, normalized with the soft-

max function to generate probability values that sum to

one, and it is mathematically defined as shown in Eq. 2:

A ¼ Attention Q;K;Vð Þ ¼ softmax QKT
� �

V : ð2Þ

The self-attention mechanism output described in Eq. 2

is then fed to a final linear layer as shown in Eq. 3:

O ¼ WoAþ bo: ð3Þ

To improve the attention performance, it will be mod-

eled as a ‘‘multi-head’’ and then concatenate the outputs of

each head, as in Eqs. 4 and 5:

Fig. 3 An overview of the

residual attention neural

network breast cancer

classification (RANN-BCC)

architecture

Fig. 4 The ResNet34 architecture

Table 1 Parameters of

ResNet34
Layer name Output size ResNet34-layer

conv1 350 9 350 9 64 7 9 7, 64, stride 2, padding 3

pool1 175 9 175 9 64 3 9 3, max pool, stride 2, padding 1

conv2_x 175 9 175 9 64 3 � 3; 64

3 � 3; 64

� �

� 3

conv3_x 88 9 88 9 128 3 � 3; 128

3 � 3; 128

� �

� 4

conv4_x 44 9 44 9 256 3 � 3; 256

3 � 3; 256

� �

� 6

conv5_x 22 9 22 9 512 3 � 3; 512

3 � 3; 512

� �

� 3

Fig. 5 Residual learning building block (He et al. 2016)
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Ai ¼ Attention Q;K;Vð Þ ¼ softmax
QKT

ffiffiffiffiffi

dk
p

� �

V; ð4Þ

O ¼ Concatenate Ai; . . .Ahð ÞWo þ bo; ð5Þ

where O is the output, h is the number of heads and dk is

each head dimensionality, which is computed as d_model/

number of heads.

In the system, as shown in Eq. 6, the input to the self-

attention block is the features extracted from the feature

extractor block, denoted as F. The Q, K, and V are pro-

jected using three separate linear layers, followed by the

attention mechanism:

S ¼ Attention WqFF;WkFF;WvFF
� �

: ð6Þ

It is important to mention here that due to how the self-

attention mechanism operates, applying self-attention to

the visual features is equivalent to exploring visual rela-

tionships between the visual elements. Figure 7 shows the

architecture of the self-attention block.

3.2.3 Block 3: cross-attention block

The only difference between this block and the self-atten-

tion block is that the Q is a projection of the model’s input,

and the K and V are projections of different features. Here,

the input will query the other features rather than querying

itself. In our system, the query is the output (OÞ of the self-

attention layer, and the keys and values are the features

extracted from the feature extractor building block. Then,

the first cross-attention layer output will be fed as K and

V to a second cross-attention layer, where the Q are fea-

tures extracted from the first CNN. The purpose of adding

this block is to cross-reference and confirm the weights that

project the importance of the features resulting from per-

forming the self-attention on the output of the feature

extractor building block.

Note that block 1 and block 2 include a residual (He

et al. 2016) and layer normalization (Ba et al. 2016) layer

at the output. At the end of each block, a positional-wise

feed-forward network composed of two linear layers with a

ReLU activation function in between is included to add

non-linearity to our network, also with residual and layer

normalization layers at the output. The input to the second

layer self-attention is the output of the first layer cross-

attention and the input to the second layer cross-attention is

the output of the second layer self-attention, and so on.

3.2.4 Block 4: collector

This block and the next were partly inspired by squeeze-

and-excitation networks (SENet) (Hu et al. 2020) which

was originally designed for image recognition. The col-

lector-building block was mainly added to our system to

filter the feature maps before going into the classification

stage. Adding this block into our classification system, it

provides us with an effective and learnable approach to

replace image processing filtering techniques. It is impor-

tant to note that SENets modifies the equal weighting of the

feature maps by adding a content-aware mechanism that

adaptively weights each channel. This is different from

what CNN does which is to weight all the feature maps

Fig. 6 A demonstration of the

feature maps created by the

feature extractor building block

Fig. 7 Architecture of self-attention block
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equally. Figure 8 shows the inner architecture of the col-

lector and the compressor building blocks. The only reason

this block is separated here from the next is to emphasize

the different two objectives namely filtering and dimension

reduction.

3.2.5 Block 5: compressor

This building block is mainly added to our classification

system to reduce the dimensionality with maintaining the

important features that have been extracted in the previous

building blocks. This dimension reduction step is planned

to enhance the efficiency and accuracy of the classifier

building block. Figure 8 shows the architecture of blocks 4

and 5 combined. They can be considered as one block, the

only reason we divided them into two here is to highlight

the two objectives that they both are designed to filter the

feature maps and reduce their dimensions before entering

the classifier.

3.2.6 Block 6: classifier

As aforementioned, our system consists of six building

blocks where block 4 and block 5 can be combined. The

output of the compressor building block (block 5) is then

fed to the classifier building block. This output is then run

through a classification layer with two output classes: (0)

non-IDC and (1) IDC. We implement the cross-entropy

loss to optimize our network. The cross-entropy loss is

given as shown in Eq. 7:

CE ¼ � 1

n

X
n

j¼1

X
c

i¼1

yilogbyi; ð7Þ

where yi is the class label which is either 0 or 1, byi is the

predicted probability of the class, c is the number of classes

(2 in our case) and finally n is the number of samples in the

batch. The complete network is optimized with the Adam

optimizer (Kingma and Ba 2015) with a batch size of 15.

We set an initial learning rate of 2e–4 and it is then reduced

by a factor of 0.8 every 3 epochs. The model is trained for

25 epochs with early stopping, which is a state-of-the-art

approach for monitoring the training model performance

and stopping training once the model performance begins

to degrade. The first layer is an adaptive average pooling,

followed by a convolutional layer, and finally, a sigmoid is

applied to facilitate the classification process. Figure 9

shows the architecture of the classifier building block.

4 Results and discussion

The experiment results from our proposed residual atten-

tion neural network breast cancer classification (RANN-

BCC) model are provided. The results will be compared

with existing methods used in the classification of non-

invasive ductal carcinoma (non-IDC) and invasive ductal

carcinoma (IDC). The first method is the convolutional

neural network (CNN). Cruz-Roa et al. proposed the use of

CNN to perform the automatic detection of IDC (Cruz-Roa

et al. 2014). The model adopts 3 layers of CNN architec-

ture which employs 16 feature maps for the first layer, 32

feature maps for the second layer, and 7200 features flat-

tened for a fully connected layer. A kernel size of 8 9 8

was used in the convolutional layer and 2 9 2 was used in

the pooling layer. The second method is the AlexNet net-

work used by Janowczyk and Madabhushi on digital

Fig. 8 Combined architecture of the collector and the compressor

building block Fig. 9 The architecture of the classification building block
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pathology image classification (Janowczyk and Madab-

hushi 2016). The AlexNet model consists of 3 convolu-

tional layers and 1 fully connected layer. The 1st and 2nd

convolutional layers consist of 32 feature maps, the 3rd

convolutional layer consists of 64 feature maps, and the

fully connected layer consists of 1024 flattened features. A

kernel size of 5 9 5 was used in the convolutional layer

and 3 9 3 was used in the pooling layer. Moreover, to

make the result more significant, other baseline models

such as feed-forward neural network and ResNet34 will be

compared with our model. Feed-forward neural network is

a type of artificial neural network where features were

performed in a single direction, starting from input nodes,

moving through the hidden nodes, and towards output

nodes. This neural network consists of 4 layers with 2500

input dimensions, 100 hidden dimensions, and 2 output

dimensions. The residual neural network 34 (ResNet34)

model is an architecture that has 34 layers deep. The model

introduced the use of the residual network to solve the

problem of vanishing gradient when constructing more

layers. ResNet34 model consists of 6 layers with 64 fea-

tures maps in 1st and 2nd layers, 128 features maps in 3rd

layers, 256 features maps in 4th layers, 512 features maps

in 5th layers, and 25,088 flattened features in the fully

connected layer.

All the deep learning models will be compared using 4

classification metrics which are accuracy, recall, precision,

and F-score as shown in Eqs. 8–11.

Accuracy ¼ TP þ TN

TP þ FN þ TN þ FP
� 100%; ð8Þ

Recall ¼ TP

TP þ FN
; ð9Þ

Precision ¼ TP

TPþ FP
; ð10Þ

F � score ¼ 2 � Precision � Recall

Precision þ Recall
; ð11Þ

where TP is a true positive in which the model correctly

predicts the IDC class, TN is a true negative in which the

model correctly predicts the non-IDC class, FN is a false

negative in which the model incorrectly predicts the actual

IDC class, and FP is false positive in which the model

incorrectly predicts the non-IDC class. Tables 2, 3, 4, 5

show the result of classification metrics for deep learning

models.

For the model accuracy in classification, as shown in

Table 2, the RANN-BCC model can obtain the highest

accuracy of 92.45%. It is then followed by AlexNet

(90.28%), CNN (89.56%), ResNet34 (79.49%), and feed-

forward neural network (71.18%). The accuracy of Res-

net34 is lower than that of CNN and AlexNet. Through the

introduction of other mechanisms, such as self-attention,

cross-attention, collector, and compressor combined with

ResNet34, the RANN-BCC model is designed, and its

accuracy can achieve 92.45%. This shows that by intro-

ducing the use of other mechanisms, we have improved the

accuracy from 79.4 to 92.45%, an increment of 13.05%.

In the recall metric, as shown in Table 3, all models

have high accuracy within an error margin of 0.05. This

indicates that all models have a low rate of incorrect pre-

dictions of the actual IDC class. For the precision metric,

RANN-BCC has achieved the highest value of 0.91, fol-

lowed by CNN and AlexNet with a value of 0.87,

ResNet34 with a value of 0.76, and feed-forward neural

network with a value of 0.71. It shows that RANN-BCC

has a lower rate of incorrect predictions of actual non-IDC

class as compared to other models. Apart from that, the

feed-forward neural network has the lowest value of pre-

cision, indicating that the model has the highest rate of

incorrect prediction of actual non-IDC class. For ResNet34,

although it has the highest recall of 1, it has a lower pre-

cision of 0.76, indicating a low rate of incorrect predictions

for actual IDC class but a high rate of incorrect predictions

for actual non-IDC class. Thus, the model is biased toward

the actual IDC class.

As for the F-score, as shown in Table 5, it is used to

calculate the harmonic mean between precision and recall.

Since RANN-BCC has high precision and recall rate, it is

undoubtedly having the highest value of 0.94, followed by

CNN and AlexNet with the same values of 0.92, ResNet34

with a value of 0.86, and feed-forward neural network with

a value of 0.81. The RANN-BCC with the highest F-score

value indicates that the model has low false positives and

low false negatives. Based on the result of classification

metrics for all deep learning models, RANN-BCC shows

the best performance since the model is able to achieve

Table 2 Result of our model

compared to other models in

terms of accuracy

Model Accuracy (%)

Convolutional neural network (CNN) (Cruz-Roa et al. 2014) 89.56

AlexNet (Janowczyk and Madabhushi 2016) 90.28

Feed-forward neural network 71.18

Residual neural network 34 (ResNet34) 79.49

Residual attention neural network breast cancer classification (RANN-BCC) 92.45
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higher accuracy, recall, precision, and F-score when clas-

sifying the IDC and non-IDC class of breast cancer.

To show that RANN-BCC has a good generalization

capability, we have plotted the curve for the loss function

and receiver operating characteristic (ROC). The loss

function is a method to evaluate how well the model per-

forms on the dataset. Figure 10 shows the plotted graph for

the validation loss and training loss of the RANN-BCC

model. From the graph, we can see that the training line

(blue) and the validation line (orange) are close to each

other in exponential decay. This shows that the model has

good generalization capability and it is not overfitting to

the breast cancer dataset.

The next one is the ROC, which is a useful method to

measure how well the model can distinguish between the

IDC class and the non-IDC class. The area under the curve

(AUC) is a measurement tool used to measure the area

underneath the ROC curve with a score from 0 to 1. The

higher the AUC score, the better the model is at predicting

the IDC class and non-IDC class. Figure 11 shows the

plotted curve for the ROC curve of the RANN-BCC model.

We can see that there are 2 types of curves which are

Table 3 Result of our model

compared to other models in

terms of recall

Model Recall

Convolutional neural network (CNN) (Cruz-Roa et al. 2014) 0.98

AlexNet (Janowczyk and Madabhushi 2016) 0.98

Feed-forward neural network 0.95

Residual neural network 34 (ResNet34) 1

Residual attention neural network breast cancer classification (RANN-BCC) 0.98

Table 4 Result of our model

compared to other models in

terms of precision

Model Precision

Convolutional neural network (CNN) (Cruz-Roa et al. 2014) 0.87

AlexNet (Janowczyk and Madabhushi 2016) 0.87

Feed-forward neural network 0.71

Residual neural network 34 (ResNet34) 0.76

Residual attention neural network breast cancer classification (RANN-BCC) 0.91

Table 5 Result of our model

compared to other models in

terms of F-score

Model F-score

Convolutional neural network (CNN) (Cruz-Roa et al. 2014) 0.92

AlexNet (Janowczyk and Madabhushi 2016) 0.92

Feed-forward neural network 0.81

Residual neural network 34 (ResNet34) 0.86

Residual attention neural network breast cancer classification (RANN-BCC) 0.94

Fig. 10 Loss graph of training and validation process Fig. 11 Receiver operating characteristic (ROC) curve
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micro-average and macro-average. Micro-average is a

summation of the TP, FP, and FN of the model, while

macro-average takes the average of the precision and recall

of the model. From the curve, we can see that the AUC

score of the micro-average and the macro-average is equal

to 0.98 and 0.99, respectively, which is approximately 1.

This indicates that the RANN-BCC model has a good

generalization capability to distinguish between the IDC

class and the non-IDC class.

5 Conclusion

In this paper, we introduced and designed the residual

attention neural network breast cancer classification

(RANN-BCC) model to classify the given breast cancer

dataset into invasive ductal carcinoma (IDC) and non-in-

vasive ductal carcinoma (non-IDC). We demonstrated that

our model had outperformed other deep learning models

and showed the significance of each block of the RANN-

BCC model. We found that the accuracy could be

improved from 79.49 to 92.45% through the implementa-

tion of Residual Neural Network 34 (ResNet34) integrated

with self-attention, cross-attention, collector, and com-

pressor. We believe this integrative developed deep

learning approach will not only help medical practitioners

to classify IDC and non-IDC of breast cancer by learning

the feature content of medical images but also will con-

tribute to the field of computer-aided diagnostics by

inspiring more similar and effective deep learning

approaches.
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Ganesan S, Shih N, Tomaszewski J, Madabhushi A (2014)

Automatic detection of invasive ductal carcinoma in whole slide

images with convolutional neural networks. Med Imaging Digit

Pathol 9041(216):904103. https://doi.org/10.1117/12.2043872

D’Angelo G, Palmieri F (2020) Discovering genomic patterns in

SARS-CoV-2 variants. Int J Intell Syst 35(11):1680–1698.

https://doi.org/10.1002/int.22268

D’Angelo G, Della-Morte D, Pastore D, Donadel G, De Stefano A,

Palmieri F (2023) Identifying patterns in multiple biomarkers to

diagnose diabetic foot using an explainable genetic program-

ming-based approach. Future Gener Comput Syst 140:138–150.

https://doi.org/10.1016/j.future.2022.10.019

Dundar MM, Badve S, Bilgin G, Raykar V, Jain R, Sertel O, Gurcan

MN (2011) Computerized classification of intraductal breast

lesions using histopathological images. IEEE Trans Biomed Eng

58(7):1977–1984. https://doi.org/10.1109/TBME.2011.2110648

Elsayed M, Sim KS, Tan SC (2020) A novel approach to objectively

quantify the subjective perception of pain through electroen-

cephalogram signal analysis. IEEE Access 8:199920–199930.

https://doi.org/10.1109/access.2020.3032153

Hanna MG, Parwani A, Sirintrapun SJ (2020) Whole slide imaging:

technology and applications. Adv Anat Pathol 27(4):251–259.

https://doi.org/10.1097/PAP.0000000000000273

He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image

recognition. IEEE Conf Comput vis Pattern Recognit (CVPR)

2016:770–778. https://doi.org/10.1109/CVPR.2016.90

Hu J, Shen L, Albanie S, Sun G, Wu E (2020) Squeeze-and-excitation

networks. IEEE Trans Pattern Anal Mach Intell

42(8):2011–2023. https://doi.org/10.1109/TPAMI.2019.2913372

Hua KL, Hsu CH, Hidayati SC, Cheng WH, Chen YJ (2015a)

Computer-aided classification of lung nodules on computed

tomography images via deep learning technique. Onco Targets

Ther 8:2015–2022. https://doi.org/10.2147/OTT.S80733

Janowczyk A, Madabhushi A (2016) Deep learning for digital

pathology image analysis: a comprehensive tutorial with selected

use cases. J Pathol Inform 7(1):29. https://doi.org/10.4103/2153-

3539.186902

Ji H, Liu Z, Yan WQ, Klette R (2019) Early diagnosis of alzheimer’s

disease using deep learning. In: Proceedings of the 2nd

International Conference on Control and Computer Vision,

pp. 87–91. https://doi.org/10.1145/3341016.3341024

Khened M, Kori A, Rajkumar H, Krishnamurthi G, Srinivasan B

(2021) A generalized deep learning framework for whole-slide

image segmentation and analysis. Sci Rep 11(1):11579. https://

doi.org/10.1038/s41598-021-90444-8

Kingma DP, Ba JL (2015) Adam: a method for stochastic optimiza-

tion. In: 3rd International Conference on Learning Representa-

tions, ICLR 2015 - Conference Track Proceedings, pp. 1–15

Krizhevsky A, Sutskever I, Hinton G (2012) ImageNet Classification

with Deep Convolutional Neural Networks. Neural Information

Processing Systems. https://doi.org/10.1145/3065386

Kumar D, Wong A, Clausi DA (2015) Lung nodule classification

using deep features in CT images. In: Proceedings -2015 12th

9034 C. K. Toa et al.

123

https://www.kaggle.com/paultimothymooney/breast-histopathology-images
https://www.kaggle.com/paultimothymooney/breast-histopathology-images
https://doi.org/10.1371/journal.pone.0177544
https://doi.org/10.1016/j.cmpb.2015.12.014
https://doi.org/10.1016/j.cmpb.2015.12.014
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1607.06450
https://doi.org/10.1117/12.2043872
https://doi.org/10.1002/int.22268
https://doi.org/10.1016/j.future.2022.10.019
https://doi.org/10.1109/TBME.2011.2110648
https://doi.org/10.1109/access.2020.3032153
https://doi.org/10.1097/PAP.0000000000000273
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/TPAMI.2019.2913372
https://doi.org/10.2147/OTT.S80733
https://doi.org/10.4103/2153-3539.186902
https://doi.org/10.4103/2153-3539.186902
https://doi.org/10.1145/3341016.3341024
https://doi.org/10.1038/s41598-021-90444-8
https://doi.org/10.1038/s41598-021-90444-8
https://doi.org/10.1145/3065386


Conference on Computer and Robot Vision, CRV 2015,

pp. 133–138. https://doi.org/10.1109/CRV.2015.25

Lewis TC, Pizzitola VJ, Giurescu ME, Eversman WG, Lorans R,

Robinson KA, Patel BK (2017) Contrast-enhanced digital

mammography: a single-institution experience of the first 208

cases. Breast J 23(1):67–76. https://doi.org/10.1111/tbj.12681

Makki J (2015) Diversity of breast carcinoma: histological subtypes

and clinical relevance. Clin Med Insights Pathol 8:23–31. https://

doi.org/10.4137/CPath.S31563

Onega T, Goldman LE, Walker RL, Miglioretti DL, Buist DS, Taplin

S, Geller BM, Hill DA, Smith-Bindman R (2016) Facility

mammography volume in relation to breast cancer screening

outcomes. J Med Screen 23(1):31–37. https://doi.org/10.1177/

0969141315595254

Petushi S, Garcia FU, Haber MM, Katsinis C, Tozeren A (2006)

Large-scale computations on histology images reveal grade-

differentiating parameters for breast cancer. BMC Med Imaging

6:14. https://doi.org/10.1186/1471-2342-6-14

Siegel RL, Miller KD (2021) Cancer statistics, 2021. CA Cancer J

Clin 71(1):7–33. https://doi.org/10.3322/caac.21654

Sim KS, Chia FK, Nia ME, Tso CP, Chong AK, Abbas SF, Chong SS

(2014) Breast cancer detection from MR images through an

auto-probing discrete Fourier transform system. Comput Biol

Med 49:46–59. https://doi.org/10.1016/j.compbiomed.2014.03.

003

Suk H-I, Lee S-W, Shen D, Initiative ADN (2014) Hierarchical

feature representation and multimodal fusion with deep learning

for AD/MCI diagnosis. Neuroimage 101:569–582. https://doi.

org/10.1016/j.neuroimage.2014.06.077

Tan YJ, Sim KS, Ting FF (2017) Breast cancer detection using

convolutional neural networks for mammogram imaging system.

In: 2017 International Conference on Robotics, Automation and

Sciences (ICORAS), pp. 1–5. https://doi.org/10.1109/ICORAS.

2017.8308076

Ting FF, Sim KS (2017) Self-regulated multilayer perceptron neural

network for breast cancer classification. In: 2017 International

Conference on Robotics, Automation and Sciences (ICORAS),

pp. 1–5. https://doi.org/10.1109/ICORAS.2017.8308074

Ting FF, Sim KS, Chong SS (2017) Auto-probing breast cancer mass

segmentation for early detection. In: 2017 International Confer-

ence on Robotics, Automation and Sciences (ICORAS), pp. 1–5.

https://doi.org/10.1109/ICORAS.2017.8308077

Ting FF, Tan YJ, Sim KS (2019) Convolutional neural network

improvement for breast cancer classification. Expert Syst Appl

120:103–115. https://doi.org/10.1016/j.eswa.2018.11.008

Toa CK, Sim KS, Tan SC (2021) Electroencephalogram-based

attention level classification using convolution attention memory

neural network. IEEE Access 9:58870–58881. https://doi.org/10.

1109/access.2021.3072731

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN,

Kaiser Ł, Polosukhin I (2017) Attention is all you need. In:

Advances in Neural Information Processing Systems,

2017-Decem(Nips), pp. 5999–6009

Wang L (2017) Early diagnosis of breast cancer. Sensors (switZer-

land) 17(7):1572. https://doi.org/10.3390/s17071572

Wang D, Khosla A, Gargeya R, Irshad H, Beck A (2016) Deep

learning for identifying metastatic breast cancer. ArXiv, abs/

1606.0

Yap MH, Yap CH (2016) Breast ultrasound lesions classification: a

performance evaluation between manual delineation and com-

puter segmentation. Proc SPIE. https://doi.org/10.1117/12.

2208797

Youlden DR, Cramb SM, Dunn NAM, Muller JM, Pyke CM, Baade

PD (2012) The descriptive epidemiology of female breast

cancer: an international comparison of screening, incidence,

survival and mortality. Cancer Epidemiol 36(3):237–248. https://

doi.org/10.1016/j.canep.2012.02.007

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

Deep residual learning with attention mechanism 9035

123

https://doi.org/10.1109/CRV.2015.25
https://doi.org/10.1111/tbj.12681
https://doi.org/10.4137/CPath.S31563
https://doi.org/10.4137/CPath.S31563
https://doi.org/10.1177/0969141315595254
https://doi.org/10.1177/0969141315595254
https://doi.org/10.1186/1471-2342-6-14
https://doi.org/10.3322/caac.21654
https://doi.org/10.1016/j.compbiomed.2014.03.003
https://doi.org/10.1016/j.compbiomed.2014.03.003
https://doi.org/10.1016/j.neuroimage.2014.06.077
https://doi.org/10.1016/j.neuroimage.2014.06.077
https://doi.org/10.1109/ICORAS.2017.8308076
https://doi.org/10.1109/ICORAS.2017.8308076
https://doi.org/10.1109/ICORAS.2017.8308074
https://doi.org/10.1109/ICORAS.2017.8308077
https://doi.org/10.1016/j.eswa.2018.11.008
https://doi.org/10.1109/access.2021.3072731
https://doi.org/10.1109/access.2021.3072731
https://doi.org/10.3390/s17071572
https://doi.org/10.1117/12.2208797
https://doi.org/10.1117/12.2208797
https://doi.org/10.1016/j.canep.2012.02.007
https://doi.org/10.1016/j.canep.2012.02.007

	Deep residual learning with attention mechanism for breast cancer classification
	Abstract
	Introduction
	Related works
	Whole slide images
	Deep learning in image classification

	Materials and methods
	Materials
	Methods
	Block 1: feature extractor
	Block 2: self-attention block
	Block 3: cross-attention block
	Block 4: collector
	Block 5: compressor
	Block 6: classifier


	Results and discussion
	Conclusion
	Code availability
	References




