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Abstract
In recent years, the resource-constrained project scheduling problem and its variants have attracted wide attention from the

perspective of theory and practice. In many projects, the amounts of the work content for the activities are specified, while

the activities are executed in different modes of discrete duration and resource consumption per time. This paper focuses on

this specific generalization of the resource-constrained project scheduling problem, known as the discrete time/resource

trade-off problem (DTRTP). An efficient mathematical model for the DTRTP with renewable resource types is presented.

Since this problem is NP-hard, a hybrid heuristic/meta-heuristic algorithm is proposed to solve the deterministic model in

large sizes. Then, a critical chain project management approach is employed to handle the uncertainty of activities’ work

contents. Finally, several numerical examples based on the previous studies and generated examples are presented to

demonstrate the performance of the proposed procedure. The proposed hybrid algorithm for deterministic cases is sta-

tistically compared with an existing exact optimization tool. The simulation-based statistical analyses showed that the

proposed hybrid meta-heuristic algorithm could find global optimums for small-sized cases in shorter run times. While the

exact solver cannot solve medium- and large-sized problems, the proposed nested algorithm reaches high-quality local

solutions in suitable run times. Also, the simulations indicated that the proposed project scheduling can face uncertainty, at

least in 77% of the cases.

Keywords Project scheduling � Discrete time/resource trade-off problem � Resource uncertainty � Critical chain project

management

1 Introduction

A baseline schedule is a prepared and authorized

timetable forecast for a project and is employed to examine

the project performance and report schedule variances.

Establishing an efficient baseline schedule for a project is

one of the key issues in the project management processes.

A critical goal is to finish the project in the minimum

possible time due to precedence relationships and resource

constraints. This problem in the literature is called the

resource-constrained project scheduling problem (RCPSP).

Usually, the RCPSP is referred to specify a feasible base-

line schedule containing determining the starting time of

each activity subject to finish-to-start precedence relations

and renewable resource constraints to minimize the total

project execution time, known as project makespan. The

main shortcoming of the standard RCPSP is that the

activities perform in a single mode with fixed activity

durations and work contents. Work content is the amount

of work resources required to complete an activity and is

measured by a combination of needed resources in the

timeframe (e.g., man-hours). Therefore, several variants of

the problem are presented to overcome the deficiencies. In

this paper, a specific RCPSP class, which can be widely

used in real projects, is studied. The problem assumes that

the activities’ durations are unknown discrete, and the

required work contents are specified but with uncertainty.

Indeed, the activities can be executed in several modes due

to the precedence relations and resource constraints under

uncertainty.
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Handbook of project scheduling (Demeulemeester and

Herroelen 2002) introduced a comprehensive classification

of RCPSP models with solution methods, so it is unnec-

essary to repeat this here. Hartmann and Briskorn (2010)

surveyed various extensions of the basic RCPSP, especially

multi-project and multi-objective modeling. Artigues et al.

(2013) also referred to some models, algorithms, and

applications of the RCPSP. Azaron and Tavakkoli-

Moghaddam (2006) developed a mathematical model for

allocating resources in a dynamic PERT environment.

Their multi-objective model determined the optimal

amounts of resources that should be allocated to the

activities. A goal programming technique is used to handle

the discrete time approximation of the main problem.

Azaron and Tavakkoli-Moghaddam (2007) modeled a

time–cost trade-off problem (TCTP) by a multi-objective

model when the durations of the activities are presented

with exponential distributions. They used an interactive

approach to solve such a hard problem. Yaghoubi et al.

(2011) presented a finite-state continuous-time Markov

model to allocating resources in the dynamic PERT rep-

resented as a queuing network system. The activity dura-

tions are considered as random variables with exponential

distributions. The model controls the allocated resources to

the servers optimally.

An extended version of the RCPSP is a multi-mode

RCPSP (MRCPSP), in which different execution modes for

each activity are defined; therefore, it is closer to real

problems than RCPSP (Bastani and Yakhchali 2013). For

each mode m, the duration of any activity j is dmj , which

needs Rm
jk units of resource k. In the MRCPSP, the solution

should also specify the execution modes chosen for each

activity. Blazewicz et al. (1983) stated that the RCPSP and

MRCPSP are NP-hard problems. Therefore, finding an

optimal solution for large-scale problems is not applicable

at a suitable time. We refer the reader to review some

solution approaches include heuristics (Heilmann 2001;

Kolisch 1996a, 1996b, 2015; Sheng et al. 2019), meta-

heuristics (Bouleimen and Lecocq 2003; Dalvand and

Yakhchali 2018; Damak et al. 2009; Fahmy et al. 2014;

Mendes et al. 2009; Mobini et al. 2009; Nonobe and

Ibaraki 2002; Poppenborg and Knust 2016), hybrid meth-

ods (Debels et al. 2006; Myszkowski et al. 2015; Valls

et al. 2008), and exact methods (de Azevedo et al. 2021;

Demeulemeester and Herroelen 1992; Mingozi et al. 1998;

Nonobe and Ibaraki 2002; Sprecher et al. 1997; Zhu et al.

2006).

In some practical cases (e.g., R&D projects and some

teamwork projects), the activities can be performed in

several modes, corresponding to several resource require-

ments per time, by different activity durations. In this

problem, instead of assigning a fixed duration and fixed

required resource units per time for any activity, a specified

amount of work is required for each resource. The

resources are assumed to be renewable with a pre-specified

level of availability per time. Therefore, several multipli-

cations of duration (e.g., days) and resource necessities

(e.g., units/day) can be identified. In this case, only the

multiplication of duration and required resource units will

be fixed (work content), and the activity duration is usually

presumed to be a discrete value. This kind of RCPSP with a

single renewable resource type is identified as the discrete

time/resource trade-off problem (DTRTP), which was first

presented by De Reyck et al. (1998). It can be derived that

the DTRTP is a sub-problem of the MRCPSP with

numerous non-predefined execution modes in a discrete

form, which has increased the problem complexity (Ara-

mesh et al. 2021).

Unlike the RCPSP and the MRCPSP, there does not

appear to be vast literature on the DTRTP. Nevertheless, a

considerable number of researchers have worked on the

aforementioned deterministic DTRTP (in which a fixed

content of work units for each of activities is predeter-

mined), mostly to find a baseline schedule with minimum

makespan (such as De Reyck et al. 1998; Demeulemeester

and Herroelen 2000; Ranjbar et al. 2009; Ranjbar and

Kianfar 2007).

Demeulemeester and Herroelen (2000) showed that

DTRTP intensely is an NP-hard problem. Thus, similar to

the RCPSP, there is not an efficient algorithm for medium

and large-scale instances, and meta-heuristic algorithms are

usually proposed. Ranjbar and Kianfar (2007) solved the

DTRTP using the genetic algorithm (GA) with a specific

crossover operator, which employed a resource utilization

ratio. They also incorporated a local search method into

their proposed GA. Long and Ohsato (2008) developed a

fuzzy critical chain project scheduling. They proposed a

DTRTP model under uncertainty and solved it in the

deterministic state by integrating common heuristic priority

rules and GA. Ranjbar et al. (2009) employed a scatter

search algorithm to solve the DTRTP considering a path

relinking method for large-scale projects. Ranjbar and

Kianfar (2010) also proposed a local search incorporated

with the genetic algorithm for a DTRTP with flexible work

profiles. Van Peteghem and Vanhoucke (2015) studied the

effect of learning in a DTRTP and measured the error made

by disregarding learning effects during schedule genera-

tion. Tian et al. (2017) investigated the stochastic DTRTP

problem with stochastic work content for each activity.

They used a branch-and-bound procedure to obtain all of

the optimum baseline schedules, and afterward, they used

simulation runs to calculate some of the project charac-

teristics. Fernandez-Viagas and Framinan (2014) consid-

ered the scheduling of the tasks in a project and assigning

the staff with specified skills to the tasks, where the project
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was scheduled as a DTRTP. Van Den Eeckhout et al.

(2019) integrated the personnel staffing problem with the

DTRTP to determine the optimal personnel budget, which

minimizes the total cost and employed an iterated local

search solving procedure. In the other research, Van Den

Eeckhout et al. (2020) studied a staff scheduling problem

to minimize the staffing costs, in which the duty demand

originates from a project scheduling problem in DTRTP

mode. They proposed a decomposed branch-and-price

procedure to solve the integrated problem. Zhang and

Zhong (2018) investigated the robust optimization in

RCPSP with discrete time/resource trade-offs. In their

formulation, resource and activity duration are uncertain,

and a priority-based heuristic and a resource assignment

heuristic are used. Hu et al. (2021) proposed three time-

resource-cost trade-off models under uncertain activities’

duration, material allocation time, and project staff apply-

ing chance-constrained and chance maximization princi-

ples. The main aim is to minimize the project completion

time and the total cost, and a genetic algorithm is employed

to solve the models. Tian et al. (2022) proposed a robust

schedule for the DTRTP under predefined due dates facing

the uncertainty of the work resources. They employed a

differential evolution algorithm and time buffers into the

robust model. Çataltuğ et al. (2022) developed DTRTP

models to optimize the time, cost, and quality of the pro-

jects. Borgonjon and Maenhout (2022) investigated task

scheduling with various discrete time-resource-quality

trade-offs and projected a two-step heuristic method. Tur-

koglu et al. (2023) proposed a mathematical multi-objec-

tive model for the trade-off problems in small-scale

construction projects utilizing a distance-based procedure.

We refer the readers to Hartmann and Briskorn (2022) to

review the variations of RCPSP and DTRTP concepts,

models, and approaches.

In the existing literature, studies on the DTRTP are rare,

and the available papers do not pay much attention to the

work content uncertainty. On the other hand, CCPM con-

cepts, which can significantly improve scheduling perfor-

mance, are not investigated in the DTRTP applications.

Also, present solving methods concentrate on the exact or

heuristic algorithms, and are not applicable in large-scaled

problems. Available DTRTP studies do not have much

examination on the project tracking and rescheduling pro-

cedures. In this paper, a mathematical model for DTRTP

under uncertain work contents is presented. Because of the

NP-hardness of this problem, a hybrid meta-heuristic

algorithm is proposed to solve the deterministic model for

large-scale projects. Then, to make the model more real-

istic, the uncertain activities’ work contents are considered

with probability distributions, and a CCPM approach is

employed to handle the uncertainty.

The main research contributions of this paper are listed

as follows:

• A new DTRTP under uncertainty is presented.

• Safe and tight estimations of work content are inves-

tigated to generate project schedules with deferent level

of uncertainty.

• Stochastic activities’ work contents resulting in uncer-

tain durations in the model are considered.

• A new chance-constrained mathematical formulation is

presented to model the problem in deterministic and

stochastic modes.

• A triple nested algorithm, including a genetic algo-

rithm, simulated annealing, and a priority rules-based

scheme, is proposed to generate project schedules for

large-scale problems.

• A CCPM procedure is introduced for scheduling and

controlling the project under uncertainty.

• Several numerical cases are presented to show the

efficiency and applicability of the proposed

methodology.

• Several simulation-based statistical analyses are

employed to analyze the quality and robustness of the

solution procedure for uncertain environments.

The next parts of this paper are structured as follows:

Section 2 presents the model for the DTRTP in a deter-

ministic model and resource uncertainty handling. CCPM

concepts are discussed in Sect. 3. Section 4 illustrates the

proposed methodology steps to solve the presented DTRTP

model under uncertainty with the critical chain approach.

Some numerical examples and evaluation results are rep-

resented in Sect. 5. The last section is dedicated to overall

conclusions and some future research suggestions.

2 Problem description

In this section, the described project scheduling problem is

formulated in deterministic and uncertain modes. In the

first step, a mathematical model is presented for DTRTP

with deterministic work contents. The second step dedi-

cates to the mathematical formulation of work resources

uncertainty.

2.1 Mathematical formulation
of the deterministic DTRTP

As stated in Sect. 1, the DTRTP refers to scheduling

problems with a fixed multiplication of duration and

resource requirements, in which the duration of the activ-

ities is usually considered to be discrete. In other words,

instead of assuming a constant value for the duration as

well as resource requirements per time for any activity, a
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specified amount of work is required for it considering each

of renewable resources where each has a fixed quantity of

availability per time. Therefore, several combinations of

duration and resource requirements (i.e., units per time) is

specified for each activity.

Here is a mathematical optimization model presented

for a simple DTRTP, which is based on the model proposed

by Long and Ohsato (2008), and then it will be customized

for our research case.

The assumptions of the model are as follows:

• An activity-on-node (AON) network is used to provide

a more appropriate representation of activity relation-

ships, which is not a limiting assumption.

• Dummy activities 1 and n represent the project start and

finish, respectively.

• With preserving the problem generality, the precedence

relations are assumed to be finish-to-start (FS) without

any lags.

• Each activity requires one or more resources to be

executed.

• Each of the activities can be completed in different non-

predetermined modes, which refers to a DTRTP’s main

assumption.

• Regarding the standard DTRTP, the activity’s duration

is represented by an integer variable.

• Resources used throughout the project are labor and

referred to as ‘‘workforces’’.

• All the resources are available throughout the project

execution, and the resource un-availability is not

studied.

• Activity preemption is not allowed.

• The assigned activity duration cannot be changed

during its execution. Indeed, the baseline schedule is

determined; however, the durations and the dates can be

changed by rescheduling.

• All of the needed resources for an activity should start

their works simultaneously.

• The work contents of all activities are uncertain and

presented with a probability distribution in the next

section.

The stated DTRTP model is formulated along these

lines:

Notations

Indices

j Index of activity (j ¼ 1; . . .;N).

r Index of workforce or resource (r ¼ 1; :::;R).

t Index of time (t ¼ 1; :::; T).

Parameters

N Number of activities.

R Number of workforces/resources.

½dlðjÞ; duðjÞ� Lower and upper bound for the duration of

activity j.

PðjÞ Set of direct predecessors of activity j.

WRðj; rÞ Work content of resource r needed to exe-

cute activity j.

ARðr; tÞ Available units of resource r at day t.

Auxiliary variables, and functional relations

ESðjÞ;LSðjÞ Earliest start and latest start calculated

through CPM for activity j, (LSðjÞ calcu-

lated by a backward pass from Tu).

RRðr; tÞ Required resource r at day t.

SetðtÞ Set of in-progress activities at day t, which

SðjÞ� t�FðjÞ.
Tu Project duration upper bound which can be

determined as Tu ¼
P

j¼1;...;N du jð Þ.
T Project makespan under constraints.

Decision variables

SðjÞ Scheduled start time for activityj.

FðjÞ Scheduled finish time for activityj.

d�ðjÞ Scheduled duration for activity j.

Mathematical model

Min T ¼ max
j¼1;...;N

ðF jð ÞÞ ð1Þ

s.t.

dl jð Þ� d� jð Þ� du jð Þ j ¼ 1; . . .;N ð2Þ
F ið Þ� S jð Þ j ¼ 1; . . .;N and 8i 2 PðjÞ ð3Þ
RR r; tð Þ�AR r; tð Þ r ¼ 1; . . .;R and t ¼ 1; . . .; Tu ð4Þ

RR r; tð Þ ¼
X

j2SetðtÞ

WRðj; rÞ
d�ðjÞ r ¼ 1; . . .;R and t ¼ 1; . . .; Tu

ð5Þ
F jð Þ ¼ S jð Þ þ d� jð Þ j ¼ 1; . . .;N ð6Þ
ES jð Þ� S jð Þ� LS jð Þ j ¼ 1; . . .;N ð7Þ
S jð Þ 2 0; 1; 2; . . .f g j ¼ 1; . . .;N ð8Þ
F jð Þ; d� jð Þ 2 1; 2; . . .f g j ¼ 1; . . .;N ð9Þ

The total project makespan (T) is minimized by objec-

tive function (1). Constraint (2) guarantees that an activity

duration does not exceed its upper and lower bounds. This

range can be determined using historical data, expert

judgment, standard documents, etc. Constraint (3) ensures

that the precedence relationships are not violated. Con-

straints (4) and (5) are resource constraints. Constraints (6)

and (7) demonstrate the relationship between the assigned
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start and finish times, the earliest and latest start of each

activity. Constraints (8) and (9) are restrictions on the types

of variables. In the above model, ‘‘as soon as possible’’

scheduling approach is used.

2.2 Modeling the work content uncertainty

In real projects, the parameters are affected by errors in

estimation and unexpected external issues. These causes

can make the project longer and more expensive than

expected or even make it infeasible. Therefore, the

stochastic class of the RCPSP (called SRCPSP) can be

more applicable. SRCPSP mainly referred to non-structural

uncertainty into the basic deterministic model. In the lit-

erature, it is assumed that the project uncertainty is origi-

nated from the duration of activities, resource usage,

resource availability, etc. (Herroelen and Leus 2005).

However, most papers in the SRCPSP have focused on

stochastic activity durations; this study focuses on resource

uncertainty.

It seems that estimating the required work content is

more applicable than duration estimation for each activity

because the estimated duration is directly related to the

amounts of assigned resources and cannot be evaluated

independently. On the other hand, deterministic workload

estimation cannot be precise, so a probability distribution

for each work estimation is used. The probability distri-

butions can be any of probability distributions, for exam-

ple, triangular, Gaussian, beta. For example, the required

work amount of resource r for activity j can be represented

by a Gaussian (normal) distribution as

WR j; rð Þ�Normal l; rð Þ or a triangular distribution as

WR j; rð Þ�Triangular a; b; cð Þ, which can be estimated

from historical data, expert judgment, or standards.

In mathematical formulation for the DTRTP stated in

Sect. 2.1, the required work content for each activity

(WRðj; rÞ) is replaced by a probability distribution, which

converts the deterministic model to a stochastic optimiza-

tion model. In this situation, a chance-constrained approach

is used to ensure that the probability of meeting resource

constraints exceeds a specific confidence level. Conse-

quently, Constraints (4) and (5) are merged and rewritten as

a single-chance constraint. Constraint (10) presents the new

chance constraint for replacing with Constraints (4) and

(5).

Pr
X

j2Set tð Þ

WR j; rð Þ
d� jð Þ �AR r; tð Þ

0

@

1

A� q

r ¼ 1; . . .;R and t ¼ 1; . . .; Tu

ð10Þ

In Constraint (10), q refers to the confidence level,

where q 2 ½0; 1�. The chance constraint guarantees that the

probability of sufficiency of resources due to daily usage is

upper than the confidence level.

In this situation, while dealing with uncertainty is vital,

a consistent and applicable schedule must also be achieved.

Indeed, a stable schedule with specified start and finish

times should be provided to the project workforces for

implementation. This paper proposes a step-by-step

method to provide an applicable schedule under the work

estimation uncertainty. The proposed approach is based on

a well-known and efficient scheduling method, named

CCPM (see Sect. 3). The introduced methodology results

in two types of durations for each activity, which are

related to levels of uncertainty. The first mode is an

uncertain or risky estimate for the activity’s duration, and

the second one is a safe estimate for it. The difference

between the two duration modes can be considered as an

uncertainty measure in the activity’s duration estimate.

This uncertainty measure is used in a CCPM approach to

make a feasible schedule under a controlled risk. The two

duration modes are employed in a buffer sizing method to

reduce the work estimation risk. Section 3 reviews the

CCPM basics, while Sect. 4 introduces the proposed

methodology using the CCPM approach for facing

uncertainty.

3 Critical chain project management

Critical chain project management (CCPM), which is

known as the utilization of the theory of constraints (TOC)

in project management, was first introduced by Goldratt

(1997). He believed that high confidence in activity esti-

mations is the most important cause of project delays. In

the former common methods (i.e., CPM) task durations are

estimated with a large amount of safety time (usually with

more than 90% confidence). Nevertheless, there are many

overruns in projects planned by the CPM. Goldratt (1997)

stated three main reasons:

1. Activities late starting, what Goldratt called ‘‘Student

Syndrome’’;

2. Work expanding to fill the time available entitled

‘‘Parkinson’s Law’’;

3. Activities late finishing caused by ‘‘Murphy’s Law’’ or

‘‘Multitasking’’.

The CCPM method proposes to build the project

schedule based on 50% confidence level in duration esti-

mations. These removed safeties are placed at the sched-

uled project ending as a buffer called Project Buffer (see

Fig. 1). Note that the project buffer size is not necessarily

equal to the removed safeties summation, and some buffer

sizing techniques are introduced in the literature. There are

some other types of buffers, including feeding buffers and
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resource buffers and the researchers refer to related pub-

lications. The CCPM method corrects the mentality that

there is lots of time available. Therefore, the project

employees work on activities with higher performance.

There are numerous publications on the CCPM since its

introduction, such as introductory and critical studies,

duration estimation, buffer sizing, project monitoring, and

some other improvements. We refer the researchers to

Ghaffari and Emsley (2015) for further studies in the

CCPM literature, approaches, contributions, and suggested

areas for future research.

4 Methodology

It is assumed that the amounts of required work content for

activities are uncertain values and presented with proba-

bility distributions. Since using the random variables in the

mathematical model, make it complicated to solve and

apply in practice, a multi-step methodology is proposed. To

face the uncertainty, CCPM concepts are employed to

create a feasible tight schedule in low-confidence mode.

Considering the DTRTP is NP-hard, a nested meta-

heuristic algorithm is introduced for large-sized cases. A

genetic algorithm acts as the main body of the solving

procedure to generate the activity durations and find the

best schedule for the specified set of durations. A simulated

annealing meta-heuristic is applied to calculate the fitness

of the generated solutions as an inner algorithm by creating

various priorities of activities. To establish the feasible

schedules due to the resource constraints and precedence

relations, a heuristic rules-based algorithm is used too.

Then, safe estimates for work contents and activity dura-

tions are calculated based on random variables’ statistical

concepts. In the last step, a project buffer is sized and

inserted into the schedule to face uncertainty.

4.1 Step 1: determining mean estimates
for work content

In the first step, random variable WR j; rð Þ is estimated by a

probability distribution, which can be derived from his-

torical data or expert judgment. Then, refer to the CCPM

concept, the random variable WR j; rð Þ should be converted

to a 50% confidence point (mean estimate) by its cumu-

lative distribution function. Therefore, the median point is

found, which its cumulative probability is equal to 50%.

This point refers to an uncertain estimation of the work

content to complete the activity. Figure 2 demonstrates a

sample for random variable WR j; rð Þ, which is related to a

normal distribution and its median (M) used for work

content mean estimation.

Consider WRm j; rð Þ as the mean estimate for work

content of resource r for executing activity j (point M in

Fig. 2). Hence:

Pr WR j; rð Þ�WRm j; rð Þð Þ ¼ 50%
j ¼ 1; . . .;N and r ¼ 1; . . .;R

ð11Þ

Then:

Fig. 1 CCPM versus traditional CPM schedules

Fig. 2 Sample variable WR j; rð Þ and its related mean estimate
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Pr
X

j2Set tð Þ

WR j; rð Þ
d� jð Þ �

X

j2Set tð Þ
WRm j; rð Þ
d� jð Þ

0

@

1

A ¼ 50%

j ¼ 1; . . .;N and r ¼ 1; . . .;R and t ¼ 1; . . .; Tu

ð12Þ

If WRm j; rð Þ is used as the work parameter to find a

feasible solution for the mathematical model, the following

inequality is modified:

X

j2Set tð Þ
WRm j; rð Þ

d� jð Þ �AR r; tð Þ

r ¼ 1; . . .;R t ¼ 1; . . .; Tu

ð13Þ

From Eq. (12) and inequality (13), it is concluded that:

Pr
X

j2Set tð Þ
WR j; rð Þ
d� jð Þ �AR r; tð Þ

� �

� 50%

r ¼ 1; . . .;R and t ¼ 1; . . .; Tu
ð14Þ

That is equal to the chance constraint (10) with a con-

fidence level of 50%. This confidence level guarantees

meeting resource constraints at least 50%. Therefore, using

mean estimates for work contents can ensure the chance

constraints with a confidence level of 50%. Consequently,

the mathematical model with work mean estimates is

solved to have a baseline schedule in a low-confidence

level mode.

4.2 Step 2: solving the deterministic DTRTP
model in the low-confidence level mode

In the second step, it is necessary to solve the DTRTP by

work mean estimates to determine optimum durations,

assigned start and finish times in low-confidence level

mode. The schedule obtained from this step acts as the

project baseline for executive project managers. As shown

by Demeulemeester and Herroelen (2000), the DTRTP is

strongly NP-hard, and there is no efficient algorithm for

medium and large-scale instances. So usually, meta-

heuristic algorithms are used. Therefore, a hybrid meta-

heuristic algorithm is introduced to solve the proposed

deterministic model as follows.

4.2.1 Step 2.1: main algorithm: genetic algorithm

To solve the deterministic model, a population-based

evolutionary algorithm is used. Hence, a genetic algorithm

(GA) is proposed, which generates the activity durations

and then finds the best schedule for the specified set of

durations (that belongs to a standard single-mode RCPSP)

by the algorithm proposed in Step 2.2. Therefore, in each

iteration of the main GA, a set of durations is generated,

then a sub-algorithm is used to find the corresponding

schedule and its fitness function value.

In the proposed GA, a simple string of durations is used

to represent the chromosome. Thus, the position of each

gene refers to the corresponding activity index. A sample

of the mentioned chromosome representation for a project

with five activities is shown in Fig. 3. For example, the

duration of activity 1 equals 8 days.

To generate the first population, for each chromosome, a

random set of durations, which satisfies the activities’

upper and lower bounds, is generated. A roulette-wheel

selection operator, which uses the ratio of fitness function

values as the selection probability of the individuals is used

for reproductions. The inner algorithm in Step 2.2 calcu-

lates each fitness function value. Besides, a simple single-

point crossover operator is used to generate the next pop-

ulations as Fig. 4. To mutate some random-selected genes,

the corresponding duration is changed to a new random-

generated duration in its allowed bound. Algorithm 1

represents the GA steps as the main procedure for solving

the problem. The overall form of the algorithm pseudo-

codes presented in this paper is derived from Kamanda-

nipour et al. (2020).

8 4 10 5 14

Duration of 
activity 1

Duration of 
activity 3

Duration of 
activity 5

Fig. 3 Sample of the chromosome representation

8 4 10 5 14
5 2 9 7 12

8 4 10
5 2 9

7 12
5 14

Parent 1:

Parent 2:

Offspring 1:

Offspring 2:

Fig. 4 Sample of the single-point crossover operator
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4.2.2 Step 2.2: sub-algorithm: simulated annealing

Each time that algorithm in Step 2.1 generates a set of

durations, a sub-algorithm is called to find the best

schedule under the resource constraints. The sub-algorithm

solves an RCPSP and then sends back the project make-

span (as the fitness function value to evaluate the corre-

sponding duration string) and the activities’ start times to

the calling algorithm. A simulated annealing (SA) algo-

rithm is used to find the best schedule that determines the

assigned start/finish times and the resource allocations. To

find the optimal schedule, a well-known priority heuristic

rules-based algorithm is used. Therefore, a string of

activity priorities is generated, which represents the activ-

ities’ order in being scheduled and getting the available

resources. First, a repairing rule modifies the priority list so

as it can be feasible according to precedence relationships.

Then, the activities are scheduled as soon as possible for

resource constraints by the serial schedule generation

scheme introduced by Kelley (1963). In the SA process,

three random-selected operators, including swap, invert,

and insert, create new neighbors. The swap operator ran-

domly selects two priorities on the string and interchange

them. The invert operator reverses the priorities from the

end to the start of the string. In the insert operator, a ran-

dom priority is selected to be inserted in a new place.

Figure 5 represents the three SA’s operators graphically.

The proposed SA algorithm for generating the optimal

schedule is presented in Algorithm 2. The serial schedule

generation scheme embedded in Algorithm 2 is used to find

the optimal schedule and calculate the corresponding pro-

ject makespan, which is described in Algorithm 3.

3 1 4 5 2

Swap

3 5 4 1 2

3 1 4 5 2

Invert

2 5 4 1 3

3 1 4 5 2

Insert

3 5 1 4 2

Fig. 5 Three neighbor creation

operators in SA
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An example project network is represented in Fig. 6 to

illustrate the algorithm (sample project introduced by

Demeulemeester and Herroelen (2002)). Assume the

resource availability for each time unit is 5 and a priority

list generated by GA iterations is\ 1,2,6,5,7,4,8,3,9[ .

A simple procedure is used to repair the priority list to

have a feasible solution considering the precedence rela-

tionships. Therefore, the repaired priority list can be

achieved as\ 1,2,6,5,7,4,8,3,9[ . Then, a serial schedul-

ing scheme consecutively adds the activities from the list to

the schedule until the list is empty. In each iteration, the

first unselected activity in the priority list is a candidate to

be added to the schedule at the first possible starting time

under precedence and resource constraints. Consequently,

the feasible schedule of the example project by employing

the serial scheduling scheme is demonstrated in Fig. 7.

4.3 Step 3: determining the safe estimates
for work content

To determine safe estimates for activities’ durations, safe

estimates for the work content should be acquire by the

probability distribution related to WR j; rð Þ used in Step 1.

Random variable WR j; rð Þ is converted to a point with a

high level of confidence (safe estimate) by its cumulative

distribution function. Therefore, the point that its cumula-

tive probability is equal to 90% is selected. Figure 8

demonstrates a sample for random variable WR j; rð Þ,
which is presented by a normal distribution. In this figure, S

is the point where the cumulative probability distribution is

equal to 90%, and it refers to a safe estimate for required

work content WR j; rð Þ.

4.4 Step 4: calculating the durations safe
estimates

The durations mean estimates are obtained in Step 2. Now,

to calculate the duration of safe estimates, an assumption is

needed as follows. The project planner declared the

schedule obtained from Step 2 to the project execution

team as the project baseline. It is expected that the activi-

ties’ durations may be extended because of a low-confi-

dence level in estimations. Thus, it is assumed that the

resource units allocated per time (WR j; rð Þ/d�ðjÞ) is a

constant value unless there is a new managerial decision. In

other words, if an activity duration is extended, no more or

fewer resource units will be allocated to the activity.

Consequently, Eq. (15) holds for each work and the dura-

tions safe estimates calculated.

WRm j; rð Þ
dmðjÞ ¼ WRs j; rð Þ

dsðj; rÞ 8j; r ð15Þ

where WRm j; rð Þ is the mean estimate for work content of

resource r for executing activity j from Step 1, WRs j; rð Þ is

the safe estimate for work content of resource r for exe-

cuting activity j from Step 3, dmðjÞ is the duration mean

estimate for activity j from Step 2 (d�ðjÞ), and dsðj; rÞ is the

safe duration for resource r to perform activity j if exten-

ded. Hence, the duration safe estimate for activity j is as

follows:

dsðjÞ ¼ max
r

ðds j; rð ÞÞ 8j ð16Þ

Equation (16) states that activity j can be completed

when all the resources have finished their work on the

activity.

4.5 Step 5: sizing the buffers to handle
uncertainty

To face uncertainty and preserve the project finish time, the

project buffer is located after the main critical chain. There

are many buffer sizing methods in literature with various

advantages and disadvantages. First, a buffer sizing method

introduced by Goldratt (1997) named the cut-and-paste

method (C&PM) is used, which takes 50% of the total

safeties hidden in the activities which are on the critical

chain as the project buffer. Another well-known method is

the root square error method (RSEM or SSQ) introduced by

Newbold (1998). C&PM estimates buffer sizes exces-

sively, but an RSEM has more reliable performance, par-

ticularly in large-scale projects (Herroelen and Leus 2001).

Although there are some improvements in the RSEM, such

as the research by Tukel et al. (2006), who considered

some modifying factors, for example, resource constraints
Fig. 6 Example of a project network (Demeulemeester and Herroelen

2002)
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and precedence relationship complexity, called the adap-

tive procedure with a density method (APD).

In this paper, the RSEM is used to size the project

buffer, because of its simplicity and relative efficiency. In

the RSEM, the size of the buffers is set as follows:

where BufferSize is the size of the project buffer, dsðjÞ and

dmðjÞ are the duration safe and mean estimates for activity

j, respectively, and n is the number of chain’s activities.

For sizing the project buffer, the activities on the critical

chain are considered in Eq. (17), while someone can set the

activities on the feeding chain into the equation for sizing a

feeding buffer too. It is better to round the calculated buffer

size into the nearest integer number.

4.6 Applying the proposed method in practice

In many real cases, the durations of the activities depend on

the renewable resource assignments. Indeed, the activities

can be executed in several duration modes, corresponding

to different resource assignments per time. Hence, in this

case, estimating the amount of work contents is more

applicable than duration estimation. On the other hand, the

work content determination is affected by uncertainty,

which can be presented by random variables based on the

historical data or expert judgments. In this study, a step-by-

step procedure is proposed to generate an initial baseline

under uncertainty. Due to the uncertainty hidden in the

estimation or implementation processes, a CCPM-based

scheduling policy using project buffer is suggested to

maintain the project deadline against the execution and

estimation risks. Since the initial baseline is a risky

schedule with a 50% confidence, some scheduling policy is

proposed to face the work underestimation due to the

uncertainty:

1- Extend the activities which need more work to be

accomplished, with a fixed rate of resource units per

time.

2- Consuming the project buffer in the case of delays in

the activities on the critical chain to preserve the

project finish time.

A suitable project scheduling process should be appli-

cable in replanning and control processes. Therefore, our

methodology can be extended to the project execution

processes as well. In our proposed methodology for

managing the projects, the execution and monitoring are

the same as CCPM guidelines. The main schedule control

procedure in CCPM is buffer management, which refers to

evaluate the buffer consumption or buffer penetration

(Tenera 2008). When a particular activity exceeded its

baseline schedule, the project buffer may be consumed. If

the activity is on the critical chain, the project buffer is

Fig. 7 Schedule obtained for the example project (Demeulemeester

and Herroelen 2002)

Fig. 8 Sample variable WR j; rð Þ, and its related safe estimate

BufferSize ¼ 2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ds 1ð Þ � dm 1ð Þ

2

� �2

þ ds 2ð Þ � dm 2ð Þ
2

� �2

þ . . .þ ds nð Þ � dm nð Þ
2

� �2
s2

4

3

5

¼
Xn

i¼1

ðds jð Þ � dm jð ÞÞ2

 !1
2

2

4

3

5 ð17Þ
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consumed in the same amount. Otherwise, if the duration

extension is large enough to affect the current critical

chain, the project buffer is consumed. Conversely, if

activities are completed earlier than scheduled, the project

buffer may be replenished.

For illustrating the policy, consider an activity on the

critical chain of a sample project. Assume that the activity

needs a particular type of engineer, which its required work

estimated as Nð32; 5Þ man-hours. Suppose that the avail-

ability of the engineer is at most 8 h per day (one person).

Consequently, the optimization model (based on the mean

estimate of 32 man-hours) generated a baseline, in which

the activity’s duration is equal to 4 days. Now, if during the

project execution, it is specified that 16 more man-hours

are required (48 man-hours), it is suggested to extend the

activity for 2 more days (16/8 = 2). On the other hand, the

project buffer is consumed (shortened) as 2 days.

To measure the risk of executing the project, it is sug-

gested to compare the percentage of work accomplished on

the critical chain and the rate of the consumed buffer. It is

suitable that performing the critical chain’s work and the

buffer consumption have an equal rate. If the project buffer

is consumed faster than the critical chain accomplished

work, the project has the risk of finishing delays (Izmailov

et al. 2016). If the remaining buffer is very short or the

buffer consumption rate is much faster than the work

performing, a rescheduling may be required.

5 Numerical example and results

5.1 Solving the deterministic model

To evaluate the solving method for the deterministic model

(described in Sect. 4, Step 2), first the proposed algorithm

is evaluated with the problem introduced by Long and

Ohsato (2008). Then, some examples are generated ran-

domly and the results found by the hybrid meta-heuristic

algorithm are compared with the output of optimization

software, which can find the optimal solution. All the

computations for this section are run on a PC with core i5

Intel CPU and 4 GB of RAM.

To use the proposed hybrid meta-heuristic algorithm for

solving the deterministic model, MATLAB R2016a soft-

ware is used as a multi-purpose programming language

developed by MathWorks. The parameters used in the

algorithms are set by trial-and-error and tuned statistically.

The hybrid algorithm’s parameters, including the GA and

SA parameters, are set as shown in Table 1.

The sample project data considered by Long and Ohsato

(2008) are shown in Table 2 (columns 1 to 5). The sample

project has 20 activities with one type of resource. The

precedence network for the sample project is demonstrated

in Fig. 9. The availability of the resource is 45 workers per

day (AR r; tð Þ ¼ 45). The outputs of the optimization model

from the proposed procedure and results reported by Long

and Ohsato (2008) are in the next columns.

As stated in Table 2, the proposed model reached a

better solution compared to the solution of Long and

Ohsato (2008) in a faster running time (although their PC’s

specifications defer with ours). The results demonstrate that

the proposed hybrid meta-heuristic algorithm has desirable

performance in solving the deterministic model in terms of

the optimal solution quality and solving speed. Figure 10

depicts the convergence trend for solving the sample pro-

ject with the proposed algorithm via iterations.

Due to the NP-hardness of the problem, the proposed

meta-heuristic algorithm is evaluated with the results of an

optimization tool, which can find the global optimum

solution. There are several exact optimization procedures

(e.g., Branch-and-Bound (B&B)) presented to find possible

global optimum solutions for a problem (Haddad et al.

2012). Lingo 11.0 is employed as a common optimization

software to find global solutions for small-sized examples.

The Lingo global solver tool (which is based on a branch-

and-bound framework) is used to reach better solutions.

The generated examples are in six different sizes of activity

numbers (projects with 5 to 30 activities). To generate test

examples, the duration of lower bounds should be big

enough due to available resources. In other words, when

the necessary work content for a task is divided by its

duration, the required resource at each day should satisfy

the resource availability. Therefore, if it is assumed that the

available resource at day t is a uniform fixed value

(AR r; tð Þ ¼ AR rð Þ) and the duration lower bounds for the

generated example activities passes Eq. (18), it is hoped

that the generated example project is feasible.

dl jð Þ ¼ dmax
r

WR j; rð Þ
AR rð Þ

� �

e 8j ð18Þ

Then, since the duration upper bound (du jð Þ) should be

any larger integer number compared to dl jð Þ, an optional

formulation is used to generate the example project as

follows:

du jð Þ ¼ aj:d
l jð Þ þ bj

� �
8j; aj � 1 and bj � 0: ð19Þ

Note that aj and bj are assumed to be arbitrary numbers.

To generate the sample projects, it is assumed that aj ¼ 4

and bj ¼ 0. For showing an instance, a sample 15-activities

project with 2 types of resources is introduced, whose data

are shown in Table 3. Total availability of resources 1 and

2 are assumed to be uniform values and at any day are 6

and 10 man-days (AR 1; tð Þ ¼ 6 and AR 2; tð Þ ¼ 10). Other

examples are created by add or remove some activities

similarly.

17878 K. Kamandanipour et al.

123



Each of the generated examples runs five times, and the

best solution is considered. Table 4 presents the results of

solving the examples in different sizes. The generated

example projects in six sizes are solved by the Lingo global

solver tool and the proposed hybrid meta-heuristic algo-

rithm. The best objective values (i.e., project makespan)

and the running time to achieve the best solutions for the

two algorithms are presented in the table. The elapsed time

for 100 iterations (i.e., total solver run time), and the time

to first achieve the best solution are reported.

As shown in Table 4, the Lingo global solver tool

reaches the global optimum solutions in the first two

examples, while the proposed hybrid meta-heuristic

algorithm finds the same global optima, but in shorter run

times. When the Lingo solver is used for the examples with

larger sizes, no optimum point is found in a reasonable

time, while the proposed algorithm solves the larger

problems in very desirable running times. The solver run

time for 100 iterations increases when the project sizes

grow. Therefore, the results indicate that the proposed

meta-heuristic algorithm has a desirable performance in

solving the deterministic DTRTPs.

Table 1 Parameters setting for a

hybrid meta-heuristic algorithm
Genetic algorithm Simulated annealing

Parameter Value Parameter Value

Max number of generation iterations 100 Max number of main iterations 40

Population size 15 Max number of inner iterations 5

Crossover rate 0.2 Initial temperature 10

Mutation rate 0.1 Temperature cooling rate 0.98

Table 2 Sample project data

Activity number

(1)
dlðjÞ(2) duðjÞ(3) Predecessors

(4)

WRðj; rÞ(man-days)

(5)

Long and Ohsato (2008) The proposed algorithm

d�ðjÞ(days)

(6)

SðjÞ(day)

(7)

d�ðjÞ(days)

(8)

SðjÞ(day)

(9)

1 4 6 – 150 4 0 4 0

2 4 6 1 140 5 8 4 8

3 4 5 1 160 4 4 4 4

4 3 5 3 60 3 17 3 12

5 2 4 3 30 4 13 2 18

6 6 9 3 90 9 8 9 8

7 6 10 2 90 7 13 9 12

8 5 8 2 40 6 13 8 12

9 3 5 4 50 3 44 3 15

10 7 10 6,7 120 8 20 9 22

11 5 8 6,7 100 5 28 7 30

12 3 6 6,7 50 3 28 5 21

13 8 10 8 200 8 20 10 20

14 4 7 5,10 100 5 31 6 31

15 3 8 12,13 60 3 33 7 30

16 5 8 12,13 180 8 36 7 37

17 3 4 9 60 3 47 4 18

18 13 15 11,14,15 240 14 36 13 37

19 5 6 16 150 5 50 6 44

20 7 8 17,18,19 180 7 55 7 50

Optimal objective value (project makespan) 62 days 57 days

Running time 90 s 66 s

A discrete time/resource trade-off problem with a critical chain method under uncertainty: a hybrid… 17879

123



5.2 Dealing with uncertainty

In this section, uncertain work contents are investigated

using a CCPM approach. First, a new uncertain sample

project is created based on the numerical example of Long

and Ohsato (2008). All of the mentioned numerical

example data are preserved but their deterministic required

work (WRðj; rÞ) is used as the mean parameters (lWRðj;rÞ)

for the normal distributions assigned to the required work

of each activity. Then, the optional value of rWRðj;rÞ is used

as the standard deviation for each of the normal distribu-

tions. Since the mean parameter in a normal distribution is

equal to its median and the cumulative probability at this

point is equal to 50% (see Fig. 2), the deterministic sample

results in Table 2 (i.e., columns 5, 8, and 9) can be used as

the project scheduling in low-confidence level mode. Then,

safe estimates are derived by using Steps 4 and 5 (see

Sect. 4). The results in determining the low-confidence and

safe estimates for the sample project schedule are shown in

Table 5.

As stated before, the project baseline plan is established

in the low-confidence mode. Hence, the baseline data (SðjÞ
and dmðjÞ) reliable with only a 50% confidence level.

Figure 11 demonstrates the baseline Gantt chart for the

example project. As it seems in the figure, there are several

critical chains in the project plan. As defined by Rand

1

2

3

4

5

6

7

8

10

9

12

11

13

14

15

16

17

18

19

20

Fig. 9 Sample project

precedence network (Long and

Ohsato 2008)

Fig. 10 Convergence trend to reach the optimal solution for the

sample project

Table 3 Sample project data

with 15 activities
Activity number Predecessors (finish to start) WRðj; 1Þ WRðj; 2Þ dl jð Þ du jð Þ

1 – 16 17 2 8

2 – 25 36 4 16

3 – 15 14 2 8

4 – 30 16 4 16

5 1,2,4 16 14 2 8

6 2,3,4 16 22 3 12

7 4 20 11 3 12

8 5 15 12 2 8

9 5 31 33 4 16

10 6,7 15 22 3 12

11 7 32 30 4 16

12 8,10 15 28 3 12

13 9,10,11 25 16 4 16

14 12,13 37 11 5 20

15 14 24 12 3 12
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(2000), the critical chain is the longest sequence of

dependent steps: in other words, the constraints. The con-

straints are the precedence relations and resource conflicts.

When the critical path considers only the precedence

relationship between tasks, the CCPM takes account of the

resource restrictions. If several critical chains exist, the one

with the highest uncertainty is selected (in this case: total

chain variance caused by normal distributions) because of

its hidden risk. The selected critical chain, which has the

greatest uncertainty, has the biggest buffer size. Therefore,

the selected critical chain is the largest chain of activities

and the project buffer (PB). In our case, there are many

critical chains with different levels of uncertainty. The

selected critical chain in our example, which has the largest

project buffer, is the chain 1-3-2-4-9-5-13-15-16-19-20.

The project baseline schedule with the project buffer is

demonstrated in Fig. 11. The activities on the selected

critical chain are distinguished by red color.

The selected critical chain has a project buffer with a

length of 6.9 * 7 days and the total project duration is

Project Duration ¼ T þ PB ¼ 57 þ 7 ¼ 64 days.

5.3 Sensitivity analysis

To evaluate the performance of the model in different

levels of uncertainty, a sensitivity analysis is presented.

The effect of changing the standard deviations of the

activities (in Table 5) as a source of uncertainty on the

project buffer size is tested (assuming the other parameters

remain unchanged). All of the standard deviations of the

activities have increased or decreased proportionally, as

depicted in Table 6. As it seems, by increasing the standard

deviations of the activities, the project buffer size is

increased to better face uncertainty, while the tighter

standard deviations need smaller project buffer size,

because of less uncertainty. Note that the activities’ start

times in the test cases are the same as the main example

because the mean required work and the other parameters

for the problems are the same.

5.4 Simulation-based statistical analysis

To evaluate the proposed scheduling method to face

uncertainty, a Monte–Carlo simulation approach is

employed, which is a computerized mathematical algo-

rithm based on iterated random sampling to achieve

experimental results. It generates possible results by

changing the problem parameters iteratively. On our

problem, in each simulation iteration, a set of random

numbers for activities’ required works (WRðj; rÞ) is gen-

erated based on their probability distributions. Then, the

DTRTP model is solved by the generated WRðj; rÞ s, and

the project makespan is calculated in that iteration.

Accordingly, a sample of possible project makespan is

generated regarding the work uncertainties. The simulation

process is coded by MATLAB R2016a software too. In the

last step, a probability distribution is fitted to the simulated

project makespan for statistical analysis. Input Analyzer 14

(Rockwell 2012), a software by Rockwell Automation

Incorporation, is employed for fitting distributions to the

project makespan. The project scheduling is simulated for

200 iterations, and the simulated project makespan is pre-

sented in Table 7.

In the next step, the simulated results are used for dis-

tribution fitting. The results show that project makespans

follow a Weibull distribution

(54:5 þ WEIBðb ¼ 7:93; a ¼ 2:15ÞÞ: The statistical indi-

cators include the sum-squared error (about 0.0034), and

Table 4 Evaluation of the proposed meta-heuristic algorithm in solving some examples in different sizes

Example

number

No. of

activities

Lingo global solver tool (B&B

based)

Proposed meta-heuristic algorithm

Objective value

(days)

Run time

(s)

Objective value

(days)

Time to achieve the

optimum (s)

Run time for 100

iterations (s)

1 5 19 (global opt.) 981 19 0.4 43

2 10 36 (global opt.) 19,241 36 12 101

3 15 – – 62 92 162

4 20 – – 79 118 253

5 25 – – 99 65 334

6 30 – – 126 4.4 441

7 60 – – 252 21 1792

8 120 – – 504 71 6653

9 500 1889 257 26,520
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the p value (about 0.7) shows a suitable performance for

the fitted distribution. The distribution fitting results are

represented in Fig. 12.

From Sect. 5.2, the total project makespan (including

the project buffer) was calculated as 64 days. Using the

cumulative distribution, this is the point that 77% of the

simulated project makespan are smaller than or equal to it.

Indeed, it can be concluded that the proposed project

schedule can face uncertainty in 77% of the cases. How-

ever, it can be argued that this probability is a minimum

statistical value, and it will be improved in the project

execution due to bettering the mental and managerial

Table 5 Low-confidence

estimate and safe estimate for

the sample project

Activity number WRðj; rÞ Low-confidence estimate Safe estimate ds jð Þ � dmðjÞ

lWRðj;rÞ rWRðj;rÞ SðjÞ WRm j; rð Þ dmðjÞ WRs j; rð Þ dsðjÞ

1 150 35 0 150 4 195 6 2

2 140 30 8 140 4 179 6 2

3 160 38 4 160 4 209 6 2

4 60 33 12 60 3 103 6 3

5 30 14 18 30 2 48 4 2

6 90 17 8 90 9 112 12 3

7 90 16 12 90 9 111 12 3

8 40 5 12 40 8 47 10 2

9 50 4 15 50 3 56 4 1

10 120 41 22 120 9 173 13 4

11 100 6 30 100 7 108 8 1

12 50 9 21 50 5 62 7 2

13 200 43 20 200 10 256 13 3

14 100 12 31 100 6 116 7 1

15 60 9 30 60 7 72 9 2

16 180 25 37 180 7 213 9 2

17 60 3 18 60 4 64 5 1

18 240 29 37 240 13 278 16 3

19 150 11 44 150 6 165 7 1

20 180 23 50 180 7 210 9 2

Fig. 11 Sample project Gantt chart with the project buffer

Table 6 Sensitivity analysis for rResðj;rÞ (level of uncertainty)

Sensitivity Analysis for rResðj;rÞ

Analysis number % Of changes

(for all of the activities)

Project buffer size

1 50 8.7

2 25 7.4

3 0 6.9

4 - 25 5.0

5 - 50 4.1

17882 K. Kamandanipour et al.

123



attitudes against the student syndrome, Parkinson’s Law,

and multitasking by CCPM concepts.

6 Conclusion

While the DTRTP is significantly applicable in projects

based on the work resources, studies in the field are rare. In

most DTRTP studies, the amounts of work contents are

assumed to be specified values, which may not be realistic

in application due to the uncertainty of the projects. Also,

many available mathematical formulations and solution

procedures for the problem are inefficient in large-scale

projects. Replanning and control processes during the

execution phases of a project scheduled as a DTRTP are

neglected in many investigations. This paper introduces a

new process to create an optimal schedule for a DTRTP

with uncertain amounts of work for activities. In the

DTRTP model, which we considered in the paper, the

required work contents for each of the activities were

specified by probability distributions. Then, several com-

binations of duration and resource requirements can be

determined. In the first step, a hybrid meta-heuristic algo-

rithm (i.e., GA, SA, priority heuristic rules-based

algorithm) was proposed to solve a mathematical model in

deterministic mode. Several numerical examples in deter-

ministic modes showed the excellence of the proposed

meta-heuristic algorithm in solving such DTRTP models.

A CCPM approach was introduced in the next step to face

uncertainty. We used a project buffer at the end of the

project schedule to reduce the risk of delays in project

finishing. When the uncertainty increased, the project

buffer size would be increased to control the uncertainty. A

numerical case is presented to show the application of the

proposed algorithm. Several numerical examples in dif-

ferent sizes are generated to evaluate the solution

methodology. The numerical analyses showed that the

proposed hybrid meta-heuristic algorithm could find global

optimums for small-size cases in shorter CPU run times

compared to an exact solving method. While the exact

solver is unable to solve medium-size and large-size

problems, the proposed nested algorithm reaches high-

quality local solutions in suitable run times. The sensitivity

analyses indicated that the proposed method adjusts the

project buffer in accordance with the level of uncertainty,

and the simulation-based statistical analyses revealed that

the proposed project scheduling could face uncertainty, at

least in 77% of the cases.

Table 7 Simulation results

including project makespan for

200 iterations

58 64 62 63 59 62 69 58 60 62 66 60 63 67 61 59 62 63 57 58

60 57 64 69 57 64 59 59 61 63 60 59 65 58 63 60 61 66 59 61

57 57 63 62 67 63 58 62 61 61 56 62 60 63 66 65 66 56 58 58

64 59 60 55 61 61 65 58 65 62 64 67 63 62 61 62 60 56 64 59

56 55 65 59 61 65 58 64 61 68 59 67 63 67 60 63 58 59 62 65

64 62 55 58 68 61 61 65 61 59 63 60 66 60 57 68 60 66 55 60

63 58 57 58 65 63 56 67 61 61 61 57 57 64 61 60 60 72 70 60

69 61 59 62 57 60 60 60 60 63 62 58 65 61 62 62 64 68 69 63

55 59 60 70 63 63 58 61 66 63 61 67 63 60 62 57 64 68 57 66

61 57 63 61 63 60 62 60 59 58 61 61 63 62 61 60 59 66 61 60

Mean values = 61.5, Standard deviation = 3.41

Fig. 12 Distribution fitting

results for project makespan
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One of the future research directions can be the

stochastic DTRTP model in a multi-skill mode. In this

paper, only the project buffer is used, and some other

CCPM concepts and tools are not considered. Hence, using

the other types of buffers, such as feeding buffers, resource

buffers, and other methods of buffer sizing, can be

employed in future works. Also, the fuzzy, fuzzy-random,

and random-fuzzy numbers can be considered instead of

the probability density functions used in this paper.
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