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Abstract
This paper is toward the establishment of relationships between L-fuzzy filters, L-fuzzy topological spaces and L-fuzzy
pre-proximity spaces in complete residuated lattices. We have demonstrated the existence of functors between the categories
of L-fuzzy filter spaces, L-fuzzy topological spaces and L-fuzzy pre-proximity spaces.
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1 Introduction

Ward and Dilworth (1939) introduced the notion of com-
plete residuated lattice as a primitive concept which is highly
useful for structure of truth value in many valued logic.
Bělohlávek (2002) proved that fuzzy relations with truth
values in complete residuated lattice are capable of mod-
eling intelligent systems with insufficient and incomplete
information. Höhle and Šostak (1999) used different alge-
braic structures (cqm, quantales, MV -algebra) of truth value
to introduce concepts of L-fuzzy topologies. Further, these
algebraic structures provided several directions of study in
mathematics as well as in logic and L-fuzzy topologies (cf.,
Fang 2010; Fang and Yue 2010; Koguep et al. 2008; Kubiak
1985; Kubiak and Šostak 1997; Chen and Zhang 2010;
Ramadan et al. 2015; Ramadan and Kim 2018; Ramadan
et al. 2022; Rodabaugh and Klement 2003; Šostak 1985,
1989; Tiwari et al. 2018; Yue 2007; Zhang 2007; Ramadan
1992; Liang and Shi 2014).

Many authors studied the relationship between fuzzy
topologies and L-filters. In 1977, Lowen (1979) developed
the idea of filters in I X where I = [0, 1] is the unit interval
of real numbers, called prefilters to discuss convergence in
fuzzy topological spaces. In 1999, Burton et al. (1999) intro-
duced the concept of generalized filters as a mapping from
2X to I . Subsequently, Höhle and Šostak (1999) developed
the notion of L-filters and stratified L-filters on a complete
quasi-monoidal lattice. Later, in Jäger (2013) developed the
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theory of stratified LM-filters which generalizes the theory
of stratified L-filters by introducing stratification mapping,
where L and M are frames (cf., Ko 2018; Koguep et al. 2008;
Ramadan 1997; Liu et al. 2017; Tonga 2011). In Ramadan
(2003), the authors introduced the concept of smooth ideal
as a mapping from I X to I which is the dual of a smooth
filter (Ramadan 1997).

In this paper, we identify L-fuzzy topologies and L-
fuzzy pre-proximities induced by L-fuzzy (prime) filters
and study categorical relations between L-fuzzy (prime)
filter spaces, L-fuzzy topological spaces and L-fuzzy pre-
proximity spaces. The study obtains functors from the
categories of L-fuzzy (prime) filter spaces, L-fuzzy topo-
logical spaces and L-fuzzy pre-proximity spaces.

2 Preliminaries

Definition 1 (Bělohlávek 2002; Hájek 1998; Höhle and
Šostak 1999; Rodabaugh and Klement 2003; Turunen 1999)
A complete residuated lattice is a pair (L,�) which satisfies
the following conditions:

(C1) (L,≤,∨,∧,⊥,�) is a complete lattice with the great-
est element � and the least element ⊥;

(C2) (L,�,�) is a commutative monoid;
(C3) x � (

∨

i∈Γ

yi ) = ∨

i∈Γ

(x � yi ), for all x ∈ L and

{yi }i∈Γ ⊆ L. The binary relation � induces another
binary operation → on L which satisfies:

(C4) x � y ≤ z iff x ≤ y → z for x, y, z ∈ L .

In this paper, we always assume that L = (L,≤,�) is a
complete residuated lattice unless otherwise specified.
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L is called idempotent if x � x = x, for x ∈ L .

Remark 1 The following lattices (L,≤,�) are complete
residuated lattices.

(1) Complete locally finite BL-algebra.
(2) Any complete Boolean algebra where the operations �

and ∧ coincide,
(3) Every left-continuous t-norm T on ([0, 1],≤, t) with

� = t .
(4) Every GL-monoid.

Some basic properties of the binary operation� and resid-
uated operation→ are collected in the following lemma, and
they can be found in many works, for instance, (Bělohlávek
2002; Hájek 1998; Höhle and Šostak 1999; Rodabaugh and
Klement 2003; Turunen 1999).

Lemma 1 Let L be a complete residuated lattice. For each
x, y, z, xi , yi , w ∈ L, i ∈ Γ , we have the following proper-
ties:

(1) x → y = ∨{z : z � x ≤ y},
(2) � → x = x,⊥ � x = ⊥, and x ≤ y iff x → y = �,
(3) If y ≤ z, then x � y ≤ x � z, x ⊕ y ≤ x ⊕ z, x → y ≤

x → z and z → x ≤ y → x,
(4) x � (

∨

i∈Γ

yi ) = ∨

i∈Γ

(x � yi ), x → (
∧

i∈Γ

yi ) = ∧

i∈Γ

(x →
yi ),

(5) (
∨

i∈Γ

xi ) → y = ∧

i∈Γ

(xi → y),

(6)
∨

i∈Γ

xi → ∨

i∈Γ

yi ≥ ∧

i∈Γ

(xi → yi ),
∧

i∈Γ

xi → ∧

i∈Γ

yi ≥
∧

i∈Γ

(xi → yi ),

(7) x → (
∨

i∈Γ

yi ) ≥ ∨

i∈Γ

(x → yi ), (
∧

i∈Γ

xi ) → y ≥
∨

i∈Γ

(xi → y),

(8) x → y ≤ (y → z) → (x → z) and x → y ≤ (z →
x) → (z → y),

(9) (x → y) � (z → w) ≤ (x � z) → (y � w).

L is said to satisfy the double negation law if for any
x ∈ L, (x → ⊥) → ⊥ = x . In the following, we use x∗
to denote x → ⊥. Furthermore, for any x, y ∈ L , we define
x ⊕ y = (x∗ � y∗)∗.

Lemma 2 If L satisfies the double negation law, then it sat-
isfies moreover:

(1) If y ≤ z, then x ⊕ y ≤ x ⊕ z,
(2) (x → y) � (z → w) ≤ (x ⊕ z) → (y ⊕ w).

(3) (x � y) � (z ⊕ w) ≤ (x � z) ⊕ (y � w),

(4) (x ⊕ z) � (y ⊕ w) ≤ (x ⊕ y) ⊕ (z � w),

(5) (
∧

i∈Γ

yi )∗ = ∨

i∈Γ

y∗
i and (

∨

i∈Γ

yi )∗ = ∧

i∈Γ

y∗
i ,

(6) x → y = y∗ → x∗ and x → y = (x � y∗)∗,
(7)

∧

i∈Γ

xi ⊕ ∧

j∈Γ

y j = ∧

i∈Γ

∧

j∈Γ

(xi ⊕ y j ).

Definition 2 (Bělohlávek 2002; Rodabaugh and Klement
2003) Let X be a set. A mapping RX : X × X → L is
called L-fuzzy relation on X . Then, R is said to be

(1) reflexive if RX (x, x) = � for all x ∈ X ,
(2) transitive if RX (x, y) � RX (y, z) ≤ RX (x, z) for all

x, y, z ∈ X .

An L-fuzzy relation on X is called an L-fuzzy pre-order if it
is reflexive and transitive.

All algebraic operation on L can be extended pointwise
to LX Goguen (1967). For f , g ∈ LX , we denote ( f →
g), ( f � g) ∈ LX as ( f → g)(x) = f (x) → g(x), ( f �
g)(x) = f (x) � g(x),

�x (y) =
{�, if y = x,

⊥, otherwise,
�∗

x (y) =
{⊥, if y = x,

�, otherwise.

Lemma 3 (Bělohlávek2002; Fang2010; Fang andYue2010)
Let X be a nonempty set, define a binary mapping S : LX ×
LX → L of f , g by

S( f , g) =
∧

x∈X
( f (x) → g(x)).

Then, for each f , g, fi , gi , h, l ∈ LX , i ∈ Γ , the follow-
ing properties hold:

(1) S( f , g) = � ⇔ f ≤ g,
(2) f ≤ g ⇒ S( f , h) ≥ S(g, h) and S(h, f ) ≤ S(h, g),
(3) S( f , g) � S(h, l) ≤ S( f � h, g � l),
(4)

∧

i∈Γ

S( fi , gi ) ≤ S(
∨

i∈Γ

fi ,
∨

i∈Γ

gi ) and
∧

i∈Γ

S( fi , gi ) ≤
S(

∧

i∈Γ

fi ,
∧

i∈Γ

gi ),

(5) S( f , g) � S(h, l) ≤ S( f ⊕ h, g ⊕ l),
(6) If L satisfies the double negation law, then S( f , g) =

S(g∗, f ∗).

Definition 3 (Adámek et al. 1990) A pair (C,U ) is said to
be a concrete category if C is a category and U : C →
Set is a faithful functor (or a forgetful functor). For each C-
object X , U (X) is the underlying set of X . Thus, all objects
in a concrete category can be taken as structured set. We
write C for (C,U ), if the concrete functor is clear. Categories
presented in this paper are concrete categories. A concrete
functor between two concrete categories (C,U ) and (D, V )

is a functor G : C → D with U = V ◦ G, which means that
G only changes the structures on the underlying sets. Hence,
in order to define a concrete functor G : C → D, we only
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consider the following two requirements. First, we assign to
each C-object X , a D-object G(X) such that V (G(X)) =
U (X). Second, we verify that if a function f : U (X) →
U (Y ) is a C-morphism X → Y , then it is also aD-morphism
G(X) → G(Y ).

Definition 4 (Höhle and Šostak 1999; Rodabaugh and Kle-
ment 2003) A mapping T : LX → L is called L-fuzzy
topology on X if it satisfies the following conditions:

(T1) T (⊥X ) = T (�X ) = �,
(T2) T ( f � g) ≥ T ( f ) � T (g) ∀ f , g ∈ LX ,

(T3) T (
∨

i∈Γ

fi ) ≥ ∧

i∈Γ

T ( fi ) for all { fi : i ∈ Γ } ⊆ LX .

The pair (X , T ) is called an L-fuzzy topological space.
An L-fuzzy topological space is called

(AL) Alexandrov if T (
∧

i∈Γ

fi ) ≥ ∧

i∈Γ

T ( fi ) ∀ { fi : i ∈
Γ } ⊆ LX ,

(SE) discrete if T (�x ) = � for all x ∈ X .

Definition 5 (Chen and Zhang 2010; Xiu and Li 2019) Let
(X , TX ) and (Y , TY ) be two L-fuzzy topological spaces and
ϕ : X → Y be a mapping. Then, DT (ϕ) defined by

DT (ϕ) = ∧

f ∈LY

(TY ( f ) → TX (ϕ←( f )))

is the degree to which the map ϕ is an LF-continuous map.
If DT (ϕ) = �, then TY ( f ) ≤ TX (ϕ←( f )) for all f ∈

LY , which is exactly the definition of LF-continuous map
between L-fuzzy topological spaces.

The category of L-fuzzy topological spaces with LF-
continuous mappings as morphisms is denoted by L-FTOP.
Write AL-FTOP for the full subcategory of L-FTOP com-
posed of objects of all Alexandrov L-fuzzy topological
spaces.

Definition 6 (Ko 2018; Rodabaugh and Klement 2003) An
L-fuzzy pre-filter on a set X is defined to be a mapping F :
LX → L satisfying:

(LF1) F(⊥X ) = ⊥,

(LF2) S( f , g) ≤ F( f ) → F(g), ∀ f , g ∈ LX , The pair
(X ,F) is called an L-fuzzy pre-filter space. An L-
fuzzy pre-filter is L-fuzzy filter if it satisfies

(LF3) F( f � g) ≥ F( f ) � F(g), ∀ f , g ∈ LX . The pair
(X ,F) is called an L-fuzzy filter space. An L-fuzzy
pre-filter space is called

(AL) Alexandrov if F(
∧

i∈Γ

fi ) ≥ ∧

i∈Γ

F( fi ) ∀ { fi : i ∈
Γ } ⊆ 2X ,

(SE) discrete if F(�x ) = � for all x ∈ X .

Definition 7 Let (X ,FX ) and (Y ,FY ) be two L-fuzzy filter
spaces and ϕ : X → Y be a mapping. Then, DF (ϕ) defined
by

DF (ϕ) = ∧

f ∈LY

(FY ( f ) → FX (ϕ←( f )))

is the degree to which the map ϕ is an LF-filter map.
If DF (ϕ) = �, then FY ( f ) ≤ FX (ϕ←( f )) for all f ∈

LY , which is exactly the definition of LF-filter map between
L-fuzzy filter spaces.

Remark 2 In addition to the above axioms, if (LF4)F(�X ) =
�, then (X ,F) is called L-fuzzy prime filter space.

The category of L-fuzzy (prime) filter spaces with LF-
filter mappings as morphisms is denoted by LF(P-LF). Write
A-LF (AP-LF) for the full subcategory of LF(P-LF) com-
posed of objects of all Alexandrov L-fuzzy (prime) filter
spaces.

3 The relationships between L-fuzzy (prime)
filter spaces and topological spaces

From the following theorems, we obtain the L-fuzzy topo-
logical spaces induced by an L-fuzzy prime filter spaces

Theorem 1 Let F be an L-fuzzy (prime) filter on X and L
satisfies the double negation law. Define T (1)

F : LX → L as
follows:

T (1)
F ( f ) = ∧

x∈X

(
f ∗(x) ⊕ ( f (x) � F( f ))

)
.

Then,

(1) (X , T (1)
F ) is an L-fuzzy topological space.

(2) If F is discrete, then so is T (1)
F .

(3) Let
∧

i∈Γ

(xi � yi ) = ∧

i∈Γ

xi � ∧

i∈Γ

yi for each xi , yi ∈ L.

If F is Alexandrov, then so is T (1)
F .

Proof (1) (1)

(T1) Since T (1)
F (⊥X ) = ∧

x∈X

(
�X (x) ⊕ (⊥X (x) �

F(⊥X ))
)

= �, T (1)
F (�X ) = ∧

x∈X

(
⊥X (x) ⊕

(�X (x) � F(�X ))
)

= �.

123

15499



A. A. Ramadan

(T2) For f , g ∈ LX ,

T (1)
F ( f ) � T (1)

F (g)

= ∧

x∈X

(
f ∗(x) ⊕ ( f (x) � F( f ))

)

� ∧

x∈X

(
g∗(x) ⊕ (g(x) � F(g))

)

≤ ∧

x∈X

[(
f ∗(x)

⊕( f (x) � F( f ))
)

�
(
g∗(x) ⊕ (g(x) � F(g))

)]

≤ ∧

x∈X

[(
f ∗(x) ⊕ g∗(x)

)

⊕
(
f (x) � F( f ) � g(x) � F(g)

)]

(by Lemma 2 (3))

≤ ∧

x∈X

[
( f � g)∗(x) ⊕ (( f � g)(x) � F( f � g))

]

= T (1)
F ( f � g).

(T3) For each family { fi : i ∈ Γ }

T (1)
F (

∨

i∈Γ

fi )

= ∧

x∈X

(
(
∨

i∈Γ

fi )∗(x) ⊕ (
∨

i∈Γ

fi (x) � F(
∨

i∈Γ

fi ))
)

≥ ∧

x∈X

(
∧

i∈Γ

f ∗
i (x) ⊕

( ∧

i∈Γ

[
fi (x) � F( fi )

]))

= ∧

x∈X
∧

i∈Γ

(
f ∗
i (x) ⊕ [ fi (x) � F( fi )]

)

= ∧

i∈Γ

∧

x∈X

(
f ∗
i (x) ⊕ ( fi (x) � F( fi ))

)

= ∧

i∈Γ

T (1)
F ( fi ).

Hence, T (1)
F is an L-fuzzy topology on X .

(2)

T (1)
F (�x ) = ∧

y∈X

(
�∗

x (y) ⊕ (�x (y) � F(�x )
)

=
(
�∗

x (x) ⊕ (�x (x) � F(�x )
)

∧ ∧

y∈X ,y �=x

(
�∗

x (y) ⊕ (�x (y) � F(�x )
)

=
(
⊥ ⊕ (� � �)

) ∧ ∧

y∈X ,y �=x

(
� ⊕ (⊥ � �)

)

= �.

(3) For each family { fi : i ∈ Γ }
∧

i∈Γ

T (1)
F ( fi )

=
∧

i∈Γ

∧

x∈X

(
f ∗
i (x) ⊕ ( fi (x) � F( fi ))

)

=
∧

x∈X

∧

i∈Γ

(
f ∗
i (x) ⊕ ( fi (x) � F( fi ))

)

=
∧

x∈X

(
(
∧

i∈Γ

f ∗
i )(x) ⊕

∧

i∈Γ

( fi (x) � F( fi ))
)

=
∧

x∈X

(
(
∧

i∈Γ

f ∗
i )(x) ⊕ (

∧

i∈Γ

fi (x) �
∧

i∈Γ

F( fi ))
)

≤
∧

x∈X

(
(
∨

i∈Γ

f ∗
i )(x) ⊕ (

∧

i∈Γ

fi (x) �
∧

i∈Γ

F( fi ))
)

≤
∧

x∈X

( ∧

i∈Γ

fi )
∗(x) ⊕ ((

∧

i∈Γ

fi )(x) � F(
∧

i∈Γ

fi ))
)

= T (1)
F (

∧

i∈Γ

fi ).

��
Theorem 2 Let (X ,FX ) and (Y ,FY ) be L-fuzzy (prime)
filter spaces and L satisfies the double negation law. Let
ϕ : X → Y be a mapping, then DF (ϕ) ≤ DT (1)

F
(ϕ).

Proof For any f ∈ LY ,

DT (1)
F

(ϕ) = ∧

f ∈LY

(
T (1)
FY

( f ) → T (1)
FX

(ϕ←( f ))
)

= ∧

f ∈LY

[ ∧

y∈Y

(
f ∗(y) ⊕ ( f (y) � FY ( f ))

)

→ ∧

x∈X

(
ϕ←( f ∗)(x) ⊕ (ϕ←( f )(x) � FX (ϕ←( f ))

)]

= ∧

f ∈LY

[ ∧

y∈Y

(
f ∗(y) ⊕ ( f (y) � FY ( f ))

)

→ ∧

x∈X

(
f ∗(ϕ(x)) ⊕ ( f (ϕ(x)) � FX (ϕ←( f ))

)]

≥ ∧

f ∈LY

∧

y∈Y

[(
f ∗(y) ⊕ ( f (y) � FY ( f ))

)

→
(
f ∗(y) ⊕ ( f (y) � FX (ϕ←( f ))

)]

≥ ∧

f ∈LY

∧

y∈Y

[(
f ∗(y) → f ∗(y)

)

�
(
( f (y) � FY ( f )) → ( f (y) � FX (ϕ←( f )))

)]

(by Lemma 1 (9))

≥ ∧

f ∈LY

(
FY ( f ) → FX (ϕ←( f ))

)
= DF (ϕ)

��
From the above theorem, if DF (ϕ) = �, then ϕ :

(X , T (1)
FX

) → (Y , T (1)
FY

) is LF-continuous mapping.
By Theorems 1 and 2, we obtain the following corollary:

Corollary 1 Υ : P-LF → L-FTOP is a functor defined by

Υ (X ,F) = (X , T (1)
F ), Υ (ϕ) = ϕ.

If we still write for the restriction of the functor Υ :
P-LF → L-FTOP to the full subcategory AP-LF, then by
Theorem 1, Υ : AP-LF → AL-FTOP forms a functor.
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Theorem 3 Let F be an L-fuzzy (prime) filter on X. Define
T (2)
F : LX → L as follows:

T (2)
F ( f ) = S

(
f , f � F( f )

)
.

Then,

(1) (X , T (2)
F ) is an L-fuzzy topological space.

(2) If F is discrete, then so is T (2)
F .

(3) Let
∧

i∈Γ

(xi � yi ) = ∧

i∈Γ

xi � ∧

i∈Γ

yi for each xi , yi ∈ L.

If F is Alexandrov, then so is T (2)
F .

Proof (1)(T1) T (2)
F (⊥X ) = S

(
⊥X ,⊥X � F(⊥X )

)
=

S(⊥X ,⊥X ) = �, T (2)
F (�X ) = S

(
�X ,�X �

F(�X )
)

= S(�X ,�X ) = �.

(T2) For f , g ∈ LX ,

T (2)
F ( f ) � T (2)

F (g)

= S
(
f , f � F( f )

)
� S

(
g, g � F(g)

)

≤ S
(
f � g,F( f ) � F(g) � ( f � g)

)

(by Lemma 3 (3))

≤ S
(
f � g,F( f � g) � ( f � g)

)

= T (2)
F ( f � g).

(T3) For each family { fi : i ∈ Γ }, we have

T (2)
F (

∨

i∈Γ

fi ) = S
( ∨

i∈Γ

fi ,
∨

i∈Γ

fi � F(
∨

i∈Γ

fi )
)

≥ S
( ∨

i∈Γ

fi ,
∨

i∈Γ

(
fi � F( fi )

))

≥ ∧

i∈Γ

S
(
fi , fi � F( fi )

)

= ∧

i∈Γ

T (2)
F ( fi ).

Hence, T (2)
F is an L-fuzzy topology on X .

(2) T (2)
F (�x ) = S

(
�x ,�x �F(�x ))

)
= S

(
�x ,�x �

�))
)

= �.

(3) For each family { fi : i ∈ Γ }, we have
∧

i∈Γ

F (2)
F ( fi ) =

∧

i∈Γ

S
(
fi , fi � F( fi ))

)

≤ S
( ∧

i∈Γ

fi ,
∧

i∈Γ

(
fi � F( fi )

))

= S
( ∧

i∈Γ

fi ,
∧

i∈Γ

fi �
∧

i∈Γ

F( fi )
)

≤ S
( ∧

i∈Γ

fi ,
∧

i∈Γ

fi � F(
∧

i∈Γ

fi ))
)

= T (2)
F (

∧

i∈Γ

fi ).

��
Theorem 4 Let (X ,FX ) and (Y ,FY ) be L-fuzzy (prime) fil-
ter spaces and ϕ : X → Y be a mapping, then DF (ϕ) ≤
DT (2)

F
(ϕ).

Proof For any f ∈ LY ,

DT (2)
F

(ϕ) = ∧

f ∈LY

(
T (2)
FY

( f ) → T (2)
FX

(ϕ←( f ))
)

= ∧

f ∈LY

[
S
(
f , f � FY ( f )

)

→ S
(
ϕ←( f ), ϕ←( f ) � FX (ϕ←( f ))

)]

= ∧

f ∈LY

[ ∧

y∈Y

(
f (y) → ( f (y) � FY ( f ))

)

→ ∧

x∈X

(
f (ϕ(x)) → ( f (ϕ(x)) � FX (ϕ←( f )))

)]

≥ ∧

f ∈LY

[ ∧

y∈Y

(
f (y) → ( f (y) � FY ( f ))

)

→ ∧

y∈X

(
f (y) → ( f (y) � FX (ϕ←( f )))

)]

= ∧

f ∈LY

∧

y∈Y

[(
f (y) → ( f (y) � FY ( f ))

)

→
(
f (y) → ( f (y) � FX (ϕ←( f )))

)]

(by Lemma 1 (8))

≥ ∧

f ∈LY

(
FY ( f ) → FX (ϕ←( f ))

)
= DF (ϕ).

��
From the above theorem,wededuce that ifϕ : (X ,FX ) →

(Y ,FY ) is an L-fuzzy filter mapping, then ϕ : (X , T (2)
FX

) →
(Y , T (2)

FY
) is LF-continuous mapping.

By Theorems 3 and 4, we obtain the following corollary:

Corollary 2 Ω : P-LF → L-FTOP is a functor defined by

Ω(X ,F) = (X , T (2)
F ), Ω(ϕ) = ϕ.

If we still write for the restriction of the functor Ω :
P-LF → L-FTOP to the full subcategory AP-LF, then by
Theorem 3, Ω : AP-LF → AL-FTOP forms a functor.

Theorem 5 Let F be an L-fuzzy prime filter on X. Define a
mapping T (3)

F : LX → L by

T (3)
F ( f ) =

{
F( f ), if f �= ⊥X

�, if f = ⊥X .

Then,

(1) (X , T (3)
F ) is an L-fuzzy topological space.

(2) If F is discrete(resp. Alexandrov ), then so is T (3)
F .

Proof (1)(T1) By dentition T (3)
F (⊥X ) = � and T (3)

F (�X ) =
F(�X ) = �.
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(T2) For any f , g ∈ LX .
Case 1 if f � g = ⊥X , then T (3)

F ( f � g) = � ≥
T (3)
F ( f ) � T (3)

F (g)
Case 2 if f � g �= ⊥X , then f �= ⊥X and g �= ⊥X .

So,

T (3)
F ( f � g) = F( f � g) ≥ F( f ) � F(g)

= T (3)
F ( f ) � T (3)

F (g).

(T3) For each family { fi : i ∈ Γ }.
Case 1 if

∨

i∈Γ

fi = ⊥X , then

F (3)
F (

∨

i∈Γ

fi )=� ≥ ∧

i∈Γ

F (3)
F ( fi ).

Case 2 if
∨

i∈Γ

fi �= ⊥X , then fi �= ⊥X for each

i ∈ Γ . So,

T (3)
I (

∨

i∈Γ

fi ) = F(
∨

i∈Γ

fi ) ≥ ∧

i∈Γ

F( fi ) = ∧

i∈Γ

F (3)
F ( fi ).

Hence, T (3)
F is an L-fuzzy topology on X .

(2) (SE) T (3)
F (�x ) = F(�x ) = �.

(AL) Case 1 if
∧

i∈Γ

fi = ⊥X , then fi = ⊥X for each

i ∈ Γ . So,

T (3)
F (

∧

i∈Γ

fi ) = � ≥
∧

i∈Γ

T (3)
F ( fi ).

Case 2 if
∧

i∈Γ

fi �= ⊥X , then fi �= ⊥X for some

i ∈ Γ . So,

∧

i∈Γ

T (3)
F ( fi )

= ∧

i∈Γ

F( fi ) ≤ F(
∧

i∈Γ

fi ) = T (3)
F (

∧

i∈Γ

fi ).

��
Theorem 6 Let (X ,FX ) and (Y ,FY ) be L-fuzzy filter spaces
such that ϕ : (X ,FX ) → (Y ,FY ) be an L-fuzzy filter map-
ping. Then, ϕ : (X , T (3)

FX
) → (Y , T (3)

FY
) is a continuous

mapping.

Proof For any f ∈ LY .
Case 1 if ϕ←( f ) = ⊥X , then T (3)

FX
(ϕ←( f )) = � ≥

T (3)
FY

( f ).
Case 2 if ϕ←( f ) �= ⊥X , then f �= ⊥Y . So,

T (3)
FX

(ϕ←( f )) = FX (ϕ←( f ))

≥ FY ( f )) = T (3)
FY

( f ).

��

By Theorems 5 and 6, we obtain the following corollary:

Corollary 3 Δ : P-LF → L-FTOP is a functor defined by

Δ(X ,F) = (X , T (3)
F ), Δ(ϕ) = ϕ.

If we still write for the restriction of the functor Δ :
P-LF → L-FTOP to the full subcategory AP-LF, then by
Theorem 5, Δ : AP-LF → AL-FTOP forms a functor.

4 The relationships between L-fuzzy
pre-proximities and L-fuzzy filters

In this section, we introduce the relationship between L-
fuzzy pre-proximity spaces and L-fuzzy filter spaces.

Definition 8 An L-fuzzy pre-proximity on X is a mapping
δ : LX × LX → L such that for all f , g, h, f1, f2, g1, g2 ∈
LX :

(P1) δ( f ,⊥X ) = ⊥.
(P2) δ( f , g) ≥ ∨

x∈X
f (x) � g(x).

(P3) S( f , g) ≤ δ( f , h) → δ(g, h) and S( f , g) ≤
δ(h, f ) → δ(h, g),

(P4) δ( f1 � f2, g1 ⊕ g2) ≤ δ( f1, g1) ⊕ δ( f2, g2).
The pair (X , δ) is called L-fuzzy pre-proximity space.
An L-fuzzy pre-proximity δ on X is called

(SE) discrete if δ(�x ,�∗
x ) = ⊥,

(AL) Alexandrov if δ( f ,
∨

i∈Γ

gi ) ≤ ∨

i∈Γ

δ( f , gi ) for all

{ fi , gi : i ∈ Γ } ⊆ LX .

Definition 9 Let (X , δX ) and (Y , δY ) be two L-fuzzy pre-
proximities and ϕ : X → Y be a mapping. Then, Dδ(ϕ)

defined by

Dδ(ϕ) = ∧

f ,g∈LY

(
δX (ϕ←( f ), ϕ←(g)) → δY ( f , g)

)

is the degree to which the map ϕ is an LF-proximity map.
If Dδ(ϕ) = �, then δX (ϕ←( f ), ϕ←(g)) ≤ δY ( f , g)

for all f , g ∈ LY which is exactly the definition of LF-
proximity map between L-fuzzy pre-proximities.

The category of L-fuzzy pre-proximity spaces with LF-
proximity mappings as morphisms is denoted by L-PROX.
Write AL-PROX for the full subcategory of L-PROX com-
posed of objects of all Alexandrov L-fuzzy pre-proximity
spaces.

In the sequel, we assume that L satisfies the double nega-
tion law.
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Theorem 7 Let L be idempotent, δ be an L-fuzzy pre-
proximity. Define a mapping Fk

δ : LX −→ L as follows:

Fk
δ ( f ) =

{
δ∗(k, f ∗), if f �= ⊥X

⊥, if f = ⊥X .

Then, Fk
δ is L-fuzzy prime filter on X. Moreover, if δ is

Alexandrov, then so is Fk
δ

Proof

(LF1) Fk
δ (⊥X ) = ⊥ and Fk

δ (�X ) = δ∗(k,⊥X ) = �.

(LF2) Let f , g ∈ LX , then

Fk
δ ( f ) → Fk

δ (g) = δ∗(k, f ∗) → δ∗(k, g∗)
= δ(k, g∗) → δ(k, f ∗)
≥ S(g∗, f ∗) = S( f , g).

(LF3) Let f , g ∈ LX such that f � g �= ⊥X , we have

Fk
δ ( f � g) = δ∗(k, ( f � g)∗) = δ∗(k, f ∗ ⊕ g∗)
= δ∗(k, f ∗) � δ∗(k, g∗) = Fk

δ ( f ) � Fk
δ (g).

(AL) Fk
δ (

∧

i∈Γ

fi ) = δ∗(k,
∨

i∈Γ

f ∗
i ) ≥ ∧

i∈Γ

δ∗(k, f ∗) =
∧

i∈Γ

Fk
δ ( fi ).

��

Now, let F(X) be the family of all L-fuzzy prime filter
and P(X) be the family of all L-fuzzy pre-proximities on X .

Theorem 8 Let L be idempotent, H : P(X) × F(X) →
F(X) be a mapping defined as follows:

H(δ,F)( f ) =
∨

g∈LX

(
δ∗(g, f ∗) � F( f )

)
.

Then, we have the following properties:

(1) H(δ,F) ∈ F(X),

(2) H(δ,Fk
δ ) = Fk

δ .

Proof

(1) (LF1) H(δ,F)(⊥X ) = ∨

g∈LX

(
δ∗(g,�X ) � F(⊥X )

)

= ⊥,H(δ,F)(�X ) = ∨

g∈LX

(
δ∗(g,⊥X )�F(�X )

)
=

�.

(LF2) Let f , g ∈ LX , then

H(δ,F)( f ) → H(δ,F)(g)

= ∨

h∈LX

(
δ∗(h, f ∗) � F( f )

)

→ ∨

k∈LX

(
δ∗(k, g∗) � F(g)

)

= ∧

h∈LX

(
δ∗(h, f ∗ � F( f ) → ∨

k∈LX

(
δ∗(k, g∗) � F(g)

)

≥ ∧

h∈LX

(
(δ∗(h, f ∗) � F( f ) →

(
δ∗(k, g∗) � F(g)

)

≥ ∧

h∈LX

(
(δ∗(h, f ∗) → δ∗(h, g∗)) � (F( f ) → F(g))

)

= ∨

h∈LX

(
(δ(h, g∗) → δ(h, f ∗)) � (F( f ) → F(g))

)

≥ S(g∗, f ∗) � S( f , g) = S( f , g) � S( f , g) = S( f , g).

(LF3) Let f , h ∈ LX , then

H(δ,F)( f � h) = ∨

g∈LX

(
δ∗(g, f ∗ ⊕ h∗) � F( f � h)

)

≥ ∨

g∈LX

(
(δ∗(g, f ∗) � δ∗(g, h∗)) � (F( f ) � F(h))

)

= ∨

g∈LX

(
δ∗(g, f ∗) � F( f )

)

� ∨

g∈LX

(
δ∗(g, h∗)) � F(h))

)

= H(δ,F)( f ) � H(δ,F)(h).

(2) Let f ∈ LX such that f �= ⊥X , then

H(δ,Fk
δ )( f ) = ∨

g∈LX

(
δ∗(g, f ∗) � Fk

δ ( f )
)

≤ � � Fk
δ ( f ) = Fk

δ ( f ).

Conversely,

H(δ,Fk
δ )( f ) = ∨

g∈LX

(
δ∗(g, f ∗) � Fk

δ ( f )
)

= ∨

g∈LX

(
δ∗(g, f ∗) � δ∗(k, f ∗)

)

≥ δ∗(k, f ∗) � δ∗(k, f ∗) = δ∗(k, f ∗)
= Fk

δ ( f ).

Hence, H(δ,Fk
δ ) = Fk

δ .

��
Theorem 9 Let F be an L-fuzzy prime filter on X such that
F(g) ≤ g(x) for each x ∈ X and g ∈ LX . Define a mapping
δF : LX × LX → L by

δF ( f , g) =
∨

x∈X

(
f (x) � F∗(g∗)

)
.

Then, δF is an L-fuzzy pre-proximity on X. Moreover, if F
is discrete (resp., Alexandrov ), then so is δF .

Proof
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(P1) Since F(�X ) = �, we have

δF ( f ,⊥X ) =
∨

x∈X
f (x) � F∗(�X ) = ⊥.

(P2) Since F(g) ≤ g(x), we have

δF ( f , g) = ∨

x∈X

(
f (x) � F∗(g∗)

)
≥ ∨

x∈X
f (x) � g(x).

(P3) Let f , g, h ∈ LX , we have

δF (h, f ) → δF (h, g) = ∨

x∈X

(
h(x) � F∗( f ∗)

)

→ ∨

y∈X

(
h(y) � F∗(g∗)

)

≥ ∨

x∈X

[(
h(x) → h(x)

)

�
(
F∗( f ∗) → F∗(g∗

)]

= F∗( f ∗) → F∗(g∗) = F(g∗) → F( f ∗)
≥ S(g∗, f ∗) = S( f , g).

Other case is similar.
(P4) For every f1, f2, g1, g2 ∈ LX , we have byLemma 2(3),

δF ( f1 � f2, g1 ⊕ g2)

= ∨

x∈X

(
( f1(x) � f2(x)) � F∗(g∗

1 � g∗
2)

)

≤ ∨

x∈X

(
f1(x) � f2(x)

)
�

(
F∗(g∗

1) ⊕ F∗(g∗
2)

)

≤ ∨

x∈X

(
f1(x) � F∗(g∗

1)
)

⊕
(
f2(x) � F∗(g∗

2)
)

≤ ∨

x∈X

(
f1(x) � F∗(g∗

1)
)

⊕ ∨

x∈X

(
f2(x) � F∗(g∗

2)
)

= δF ( f1, g1) ⊕ δF ( f2, g2).

��

Other cases are easily proven.

Theorem 10 Let (X ,FX ) and (Y ,FY ) be L-fuzzy filter
spaces and ϕ : X → Y be a mapping. Then, DF (ϕ) ≤
DδF (ϕ).

Proof For every f , g ∈ LY , we have

DδF (ϕ) = ∧

f ,g∈LY

(
δFX (ϕ←( f ), ϕ←(g)) → δFY ( f , g)

)

= ∧

f ,g∈LY

[ ∨

x∈X

(
ϕ←( f )(x) � F∗(ϕ←(g∗)

)

→ ∨

y∈Y

(
f (y) � F∗

Y (g∗)
)]

= ∧

f ,g∈LY

[ ∨

x∈X

(
f (ϕ(x)) � F∗(ϕ←(g∗)

)

→ ∨

y∈Y

(
f (y) � F∗

Y (g∗)
)]

≥ ∧

f ,g∈LY

[ ∨

y∈X

(
f (y) � F∗(ϕ←(g∗))

)

→ ∨

y∈Y

(
f (y) � F∗

Y (g)
)]

≥ ∧

f ,g∈LY

∧

y∈X

[(
f (y) � F∗(ϕ←(g∗))

)

→
(
f (y) � F∗

Y (g∗)
)]

(by Lemma 1 (9))

≥ ∧

g∈LY

(
F∗(ϕ←(g∗)) → F∗

Y (g∗)
)

= ∧

g∈LY

(
FY (g∗) → F(ϕ←(g∗))

)

= DF (ϕ).

It is clear that if ϕ : (X ,FX ) → (Y ,FY ) is L-fuzzy filter
mapping, then ϕ : (X , δFX ) → (Y , δFY ) is an LF-proximity
mapping. ��

By Theorems 9 and 10, we obtain the following corollary:

Corollary 4 Φ : P-LF → L-PROX is a functor defined by

Φ(X ,F) = (X , δF ), Φ(ϕ) = ϕ.

If we still write for the restriction of the functor Φ :
P-LF → L-PROX to the full subcategory AP-LF, then by
Theorem 9, Δ : AP-LF → AL-PROX forms a functor.

Let L-FRRbe a categorywith object (X , RX ), where RX is
a reflexive L-fuzzy relation with an order preserving map ϕ :
(X , RX ) → (Y , RY ) such that RX (x, y) ≤ RY (ϕ(x), ϕ(y))
for all x, y ∈ X .

Theorem 11 Let RX be a reflexive L-fuzzy relation. Define a
mapping F x

R : LX → L as follows:

F x
R( f ) =

∧

y∈X

(
R(x, y) → f (y)

)
, ∀ x ∈ X , f ∈ LX .

Then,

(1) F x
R is an Alexandrov L-fuzzy filter on X,
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(2) If ϕ : (X , RX ) → (Y , RY ) is an order preserving map-
ping, then ϕ : (X ,F x

RX
) → (Y ,F x

RY
) is L-fuzzy filter

map.

Proof (1)

(LF1)

F x
RX

(⊥X ) = ∧

y∈X

(
RX (x, y) → ⊥X (y)

)

≤ RX (x, x) → ⊥X (x) = � → ⊥ = ⊥.

(LF2)

F x
RX

( f ) → F x
RX

(g) = ∧

y∈X

(
RX (x, y) → f (y)

)

→ ∧

z∈X

(
RX (x, z) → g(z)

)

≥ ∧

y∈X

(
(RX (x, y) → f (y)) → (RX (x, y) → g(y))

)

≥ ∧

y∈X
( f (y) → g(y)) = S( f , g).

(AL)

F x
RX

(
∧

i∈Γ

fi ) = ∧

y∈X

(
RX (x, y) → (

∧

i∈Γ

fi )(y)
)

= ∧

y∈X

( ∧

i∈Γ

(
RX (x, y) → fi (y)

))

≥ ∧

i∈Γ

( ∧

y∈X

(
RX (x, y) → fi (y)

))

= ∧

i∈Γ

F x
RX

( fi ).

(2)

F x
RX

(ϕ←( f )) = ∧

y∈X

(
RX (x, y) → ϕ←( f )(y)

)

= ∧

y∈X

(
RX (x, y) → f (ϕ(y))

)

≥ ∧

y∈X

(
RY (ϕ(x), ϕ(y)) → f (ϕ(y))

)

≥ ∧

z∈Y

(
RY (ϕ(x), z) → f (z)

)
= Fϕ(x)

RY
( f )

.

��
By Theorem 11, we obtain the following corollary:

Corollary 5 Ψ : L-FRR → A-LF is a functor defined by

Ψ (X ,F x ) = (X , δF x ), Ψ (ϕ) = ϕ.

As an information system and an extension of Pawlak’s
rough set (Pawlak 1982, 1991), we give the following exam-
ple for L-fuzzy pre-proximities and L-fuzzy filters.

Example 1 (1) DefineF1 : LX → L as F1( f ) = ∧

x∈X
f (x).

Hence, F1 is Alexandrov L-fuzzy filter on X . Since

F1(�x ) = ∧

y∈X
�x (y) = �x (x) ∧ ∧

y �=x
�x (y) = ⊥,

F1 is not discrete. By Theorem 9, we have

δF1( f , g) = ∨
x∈X f (x) � F∗

1 (g∗
2)

= ∨

x∈X
f (x) � ∨

y∈X
g(y).

(2) Define F2 : LX → L as F2( f ) = f (x). Hence, F1 is a
discrete andAlexandrov L-fuzzyfilter on X . ByTheorem
9, we have

δF2( f , g) = ∨

x∈X
f (x) � F∗

2 (g∗) = ∨

x∈X
f (x) � g(x).

Example 2 (1) Let X = {hi | i = {1, 2, 3}} with hi=house
and Y = {e, b, w, c, i} with e=expensive, b= beautiful,
w=wooden, c= creative, i=in the green surroundings. Let
([0, 1],�,→,∗ , 0, 1) be a complete residuated lattice as

x � y = max{0, x + y − 1},
x → y = min{1 − x + y, 1}, x∗ = 1 − x .

Let R ∈ [0, 1]X×Y be a fuzzy information as follows:

R e b w c i
h1 0.7 0.6 0.5 0.9 0.2
h2 0.6 0.8 0.4 0.3 0.5
h3 0.4 0.9 0.8 0.6 0.6

Define a mapping F x
R : LY → L as follows:

F x
R( f ) =

∧

y∈Y

(
R(x, y) → f (y)

)
,

for each x ∈ X and f ∈ LY . From Theorem
11, FR is an Alexandrov L-fuzzy filter on X . For
f = (0.3, 0.5, 0.6, 0.1, 0.1), we obtain Fh1

R ( f ) = 0.2,

Fh2
R ( f ) = 0.6, and Fh3

R ( f ) = 0.5. From Theorem 9, we
obtain

δFR ( f , g) = ∨

x∈X

(
f (x) � F∗

R(g∗)
)

= ∨

x∈X

(
f (x) � ∨

y∈X
R(x, y) � g(y)

)

= ∨

x,y∈X

(
R(x, y) � f (x) � g(y)

)
.

(i) Let R = �X×X be given, then δFR ( f , g) =
∨

x,y∈X

(
f (x) � g(y)

)
. Hence, δFR is an L-fuzzy pre-

proximity on X . Moreover, δFR is Alexandrov. Since
δFR (�x ,�∗

x ) = �, δFR is not discrete.
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(ii) Let R = �X×X be given, where

�X×X (x, y) =
{�, if y = x,

⊥, otherwise.

Then, δFR ( f , g) = ∨

x∈X

(
f (x) � g(x)

)
. Hence, δFR

is an L-fuzzy pre-proximity on X . Moreover,δFR is
Alexandrov. Since δδFR

(�x ,�∗
x ) = ⊥, δFR is a dis-

crete.
(2) Define [0, 1]-fuzzypre-orders RY

X , R{b,w}
X ∈[0, 1]X×X

by

RY
X (hi , h j ) = ∧

y∈Y
(
R(hi , y) → R(h j , y))

)
,

R{b,w}
X (hi , h j ) = ∧

y∈{b,w}
(
R(hi , y) → R(h j , y)

)
.

RY
X =

⎛

⎝
1 0.4 0.7
0.7 1 0.8
0.6 0.6 1

⎞

⎠ , R{b,w}
X =

⎛

⎝
1 0.9 1
0.8 1 1
0.7 0.6 1

⎞

⎠ .

(i) For each R ∈ {RY
X , R{b,w}

X }, we obtain Alexandrov
L-fuzzy filter FR : [0, 1]X → [0, 1] as

FR( f ) =
∧

h j∈X

(
RY
X (hi , h j ) → f (h j )

)
.

By Theorem 9, we obtain Alexandrov [0, 1]-fuzzy
pre-proximity δFR : [0, 1]X × [0, 1]X → [0, 1] as

δFR ( f , g)=∨
hi ,h j∈X

(
RY
X (hi , h j ) � f (hi ) � g(h j )

)
.

(ii) For each R ∈ {RY
X , R{b,w}

X }, we obtain Alexandrov
[0, 1]-fuzzy filter FR : [0, 1]X → [0, 1] as
FR( f ) = ∧

h j∈X
(
R(h j , hi ) → f (h j )

)
.

By Theorem 9, we obtain Alexandrov [0, 1]-fuzzy
quasi-proximity δFR : [0, 1]X × [0, 1]X → [0, 1] as
δFR ( f , g) = ∨

hi∈X f (hi )

�
( ∨

h j∈X R(h j , hi ) � g(h j )
)

= ∨
hi ,h j∈X

(
R(h j , hi ) � f (hi ) � g(h j

)
.

5 Conclusion

In complete residuated lattices, this study identified some
functors from the category of L-fuzzy (prime) filter spaces
to the category of L-fuzzy topological spaces and the cate-
gory of L-fuzzy pre-proximity spaces. As a unified structure
of extension of Pawlak’s rough set (Pawlak 1982, 1991),

we presented example 2 through fuzzy information sys-
tem which confirmed the feasibility of using the proposed
approaches to solve real-world problems.
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