
Soft Computing (2023) 27:17711–17727
https://doi.org/10.1007/s00500-023-09049-0

OPTIMIZAT ION

Self-adaptive polynomial mutation in NSGA-II

Jose L. Carles-Bou1 · Severino F. Galán2

Accepted: 20 July 2023 / Published online: 21 August 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
Evolutionary multi-objective optimization is a field that has experienced a rapid growth in the last two decades. Although an
important number of newmulti-objective evolutionary algorithms have been designed and implemented by the scientific com-
munity, the popular Non-Dominated Sorting Genetic Algorithm (NSGA-II) remains as a widely used baseline for algorithm
performance comparison purposes and applied to different engineering problems. Since every evolutionary algorithm needs
several parameters to be set up in order to operate, parameter control constitutes a crucial task for obtaining an effective and
efficient performance in its execution. However, despite the advancements in parameter control for evolutionary algorithms,
NSGA-II has been mainly used in the literature with fine-tuned static parameters. This paper introduces a novel and compu-
tationally lightweight self-adaptation mechanism for controlling the distribution index parameter of the polynomial mutation
operator usually employed by NSGA-II in particular and by multi-objective evolutionary algorithms in general. Additionally,
the classical NSGA-II using polynomial mutation with a static distribution index is compared with this new version utilizing
a self-adapted parameter. The experiments carried out over twenty-five benchmark problems show that the proposed modified
NSGA-II with a self-adaptive mutator outperforms its static counterpart in more than 75% of the problems using three quality
metrics (hypervolume, generalized spread, and modified inverted generational distance).

Keywords Multi-objective evolutionary algorithm · NSGA-II · Polynomial mutation · Distribution index self-adaptation

1 Introduction

Optimization problems are ubiquitous in nature (Kochender-
fer and Wheeler 2019; Mohamed et al. 2022; Garg 2019;
Kundu and Garg 2022a, b). A high number of real-world
optimization problems are multi-objective, where the objec-
tives being optimized are usually in conflict with each
other. In this kind of optimization problems, rather than
getting a unique optimal solution, there are usually several
of them, maybe infinite, known as the Pareto set. Between
other meta-heuristic approaches,Multi-Objective Evolution-
ary Algorithms (MOEAs) have the ability to effectively
approximate this set as it has been reported in the scientific
literature for more than three decades.

B Jose L. Carles-Bou
jcarles5@alumno.uned.es, carles@ieee.org

Severino F. Galán
seve@dia.uned.es

1 Escuela Internacional de Doctorado EIDUNED, Universidad
Nacional de Educación a Distancia UNED, Madrid, Spain

2 Department of Artificial Intelligence, UNED, Madrid, Spain

TheNon-DominatedSortingGeneticAlgorithm II (NSGA-
II) was proposed by Deb et al. (2000) as an exploration tool
that employs a genetic algorithm to solve multi-objective
optimization problems (MOPs). NSGA-II is still nowadays
oneof themost used and citedMOEAsand it has been applied
to a broadvariety of optimization problems since its inception
in fields like economics, engineering or logistics. TheNSGA-
II algorithm creates a random population, selects individuals,
and applies genetic operations on them, ranking and sorting
individuals based on their non-domination level, and making
use of a crowding distance operation to keep the evolving
population diverse while aiming to generate a set of optimal
solutions.

The fine-tuning of the parameters of an evolutionary algo-
rithm is a key aspect that directly impacts on both its efficacy
and its efficiency and it is usually a hard and time-consuming
manual task done specifically for the particular problem
being solved. Therefore, parameter tuning and control in evo-
lutionary algorithms has been a relevant research topic since
their inception.

In the literature, when NSGA-II is used as a baseline algo-
rithm in benchmarks or even when it is applied to solve

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-023-09049-0&domain=pdf
https://orcid.org/0000-0003-3159-3411
https://orcid.org/0000-0003-3767-7480

17712 J. L. Carles-Bou, S. F. Galán

some specific engineering problem, its parameters are usu-
ally configuredwith static values.Normally, simulatedbinary
crossover (SBX) and polynomial mutation (PLM) are carried
out with fixed probabilities and distribution indices (Sharma
et al. 2023; Liu et al. 2023; Wang et al. 2023; Ozcelikkan
et al. 2022). However, Deb et al. (2007) a method for self-
adapting the SBX crossover operator in order to improve the
algorithm performance. Furthermore, Hamdan demonstrated
in (Hamdan 2012) that the fixed distribution index broadly
utilized inPLMdoes not always provide the best performance
results. Consequently, these two relevant works show that it
is not always fair to use NSGA-II for comparative evaluation
purposes when its parameters are kept static.

Thisworkproposes a novel and computationally lightweight
mechanism that self-adapts one of the parameters of the PLM
operator, its distribution index ηm , used in the regular NSGA-
II producing an increased efficacy over the results observed
in its traditional counterpart.We compare the performance of
this new algorithm variant to that of plain NSGA-II utilizing
the static configuration widely found in the literature over
a set of twenty-five benchmark problems from different test
suites (DTLZ, WFG, ZDT, and other key problems), which
experimentally confirm that this novel technique provides
better results in almost every presented problem for several
quality indicators such as hypervolume, generalized spread,
and modified inverse generational distance.

Themainmotivation and contributionsmade by this paper
could be summarized as follows:

• Verify that the static parameterization of the regular PLM
used inNSGA-II not always present the best performance
results.

• Introduce a new NSGA-II variant including a self-
adaptive polynomial mutation operator which improves
the observed efficacy over the regular NSGA-II with
static PLM implementations. The results are measured
with different metrics (hypervolume, generalized spread,
and modified inverse generational distance) trying to
cover different aspects of the solutions provided by the
algorithms.

• Use a quite large of known benchmark problems coming
from families like DTLZ, WFG and ZDT to evaluate the
performance of the proposed algorithm.

• Propose a strict statistical test methodology to validate
the new algorithm optimizing the selected problems.

The rest of this paper is structured as follows. Section2
introduces several concepts on evolutionary multi-objective
optimization and reviews related work. Section3 describes
the novelNSGA-II variant. Experimental results and analysis
are presented in Sect. 4. Finally, Sect. 5 concludes the paper
and suggests some future research directions.

2 Background and related work

In the present section, we initially cover some important con-
cepts used in multi-objective optimization. Then, we review
the latest work on: (i) parameter control techniques in evolu-
tionary algorithms and (ii) quality metrics for measuring and
comparing the performance of MOEAs.

2.1 Multi-objective optimization concepts

An MOP is defined as the simultaneous optimization of sev-
eral objective functions over a tuple of decision variables.
Without loss of generality, if minimization is considered for
all the objectives, this can be formally expressed as follows:

minimize ȳ = f (x̄) = (f1(x̄), f2(x̄), ..., fm(x̄)) (1)

where x̄ = 〈x1, x2, ..., xn〉 ∈ X ⊆ R
n is called a deci-

sion vector, X is an n-dimensional decision space, ȳ =
〈y1, y2, ..., ym〉 ∈ Y ⊆ R

m with m ≥ 2 is an objective vec-
tor, Y represents an m-dimensional objective space, n is the
number of decision variables, m is the number of objective
functions, and fi corresponds to the i th objective function.

The set of decision vectors whose objectives cannot be
improved in any direction without the degradation of another
direction is called the Pareto optimal set. The concept of
Pareto optimality can be defined as follows. Given a multi-
objective minimization problem and two decision vectors
ā, b̄ ∈ X , then ā is said to dominate b̄ (written as ā ≺ b̄)
if and only if ā is no worse than b̄ in every objective and ā is
strictly better than b̄ in at least one objective:

∀i ∈ {1, 2, ...,m} : fi (ā) ≤ fi (b̄)

and ∃ j ∈ {1, 2, ...,m} : f j (ā) < f j (b̄)
(2)

If neither ā dominates b̄ nor b̄ dominates ā, ā and b̄ are
said to be non-comparable, also stated as ā ∼ b̄. All the
decision vectors which are not dominated by any other in
a given set are called non-dominated regarding the set. The
non-dominated vectors in the entire search space are called
Pareto optimal solutions and form thePareto optimal solution
set or just the Pareto set:

PS := {x̄ ∈ X : � x̄ ′ ∈ X , x̄ ′ ≺ x̄} (3)

and the projection of the Pareto set in the objective space is
known as the Pareto front:

PF := {(f1(x̄), f2(x̄), ..., fm(x̄)) : x̄ ∈ PS} (4)

If we relax the domination condition, we can say that ā
weakly dominates b̄, or ā b̄, if ā is no worse than b̄ in every

123

Self-adaptive polynomial mutation... 17713

objective:

∀i ∈ {1, 2, ...,m} : fi (ā) ≤ fi (b̄) (5)

We can also consider the concept of strict domination, saying
that ā strictly dominates b̄, or ā ≺≺ b̄, if ā is better than b̄ in
every objective:

∀i ∈ {1, 2, ...,m} : fi (ā) < fi (b̄) (6)

The set of objective vectors A ⊂ R
m is called an approx-

imation set if any of the elements in A does not dominate
any other vector in the set (Hansen and Jaszkiewicz 1998).
Usually, the ultimate objective when solving MOPs is not to
find the real PF but a good approximation to it (Riquelme
et al. 2015). Several tools to evaluate the quality of these
non-dominated sets are explained in Sect. 2.3.

Even though the terms “solution” and “objective vector”
have been used interchangeably (Nebro et al. 2008; Lopez
et al. 2016; Ishibuchi et al. 2018), we prefer to keep the term
solution for a vector in the decision space and the term objec-
tive vector for a solution projected into the objective space
in order to avoid misunderstandings (Tanabe and Ishibuchi
2020).

2.2 Parameter tuning and control

Once the general scheme of an evolutionary algorithm is
established, the researcher has to set the population size,
choose the genetic operators for parent selection, crossover,
mutation and survivor selection, and fix their probabilities.
These specific parameters, or configuration, determine the
behavior of the algorithm, guide its search and impact directly
on the efficacy and efficiency achieved by the algorithm
(Huang et al. 2022). It has been experimentally demonstrated
that the use of different selection and variation operators as
well as the setting of their parameters have an influence on
the performance of evolutionary algorithms (Storn and Price
1997; Hamdan 2012; Deb et al. 2007). It is also true that the
parameters might need distinct values at different stages of
the execution process in order to adapt the exploration and
exploitation intensities to the landscape it is dealing with
(Back 1992).

In the course of evolutionary algorithms history, differ-
ent approaches to addressing the necessity of parameter
dynamism have been suggested. The first one, and probably
themost extended in the literature, is the utilization of a static
and promising configuration (known as parameter tuning).
Researchers use a well-known set of operators and parame-
ter values that provide good results for the problem at hand
or get them adjusted after some trial-and-error search. But
as the number of combinations of tested parameters can be
really huge for manual adjustment, several automated tools

have been developed. One of the most important tools used
nowadays is irace, where an iterated execution of the F-race
algorithm (Birattari et al. 2010; López-Ibánez et al. 2016) is
implemented relieving the researcher of the tedious and time
consuming task of repetitive manual parameter adjustment.
Another interesting alternative is employing meta-heuristic
techniques, like the Meta-GA used by Grefenstette (Grefen-
stette 1986), in which an external evolutionary algorithm
adjusts the algorithm parameters.

Starting just when evolutionary algorithms were created
(Jong 1975; Grefenstette 1986), but specially in the last thirty
years, a lot of effort has been invested inmethods for dynami-
cally controlling the parameters during execution (parameter
control). In 1995, Angeline (Angeline 1995) presented a tax-
onomy of these techniques differentiating the type of control
based on its level of application (over the full population, the
individuals, or their genes). Smith and Fogarty (Smith and
Fogarty 1997) proposed a new classification scheme trying to
differentiate what is being adapted (parameters or operators),
the scope of the adaptation (if it is applied to the full popu-
lation, individual or gene level) and the tools being applied
to make the adaptation. Hinterding, Michalewicz and Eiben
(Hinterding et al. 1997; Eiben et al. 1999) introduced a new
classificationmethod based on the type of adaptation and dis-
tinguished between deterministic, adaptive and self-adaptive
methods. Note that this is still the most widely used taxon-
omy and the basis, with few and slight variations, of recent
work (Zhang et al. 2012; Parpinelli et al. 2019; Doerr and
Doerr 2020):

• Eiben et al. define deterministic control as the adjustment
of a parameter using a deterministic rule that does not get
any feedback from the search (Eiben et al. 1999).Usually,
it utilizes a rule based on the number of evaluations of the
fitness function or on the number of generations passed
so far. This kind of methods are very common due to
the simplicity of implementation (Mezura-Montes and
Palomeque-Ortiz 2009; Hassanat et al. 2019).

• Adaptive control uses some characteristic or feedback
from the search process to adjust the value of the param-
eters. Among the adaptive methods, very well-known
and simple strategies like the 1/5 Rechenberg’s suc-
cess rule (Rechenberg 1971) can be found. Alternatively,
more complex methods are based on learning principles
brought from fields like reinforcement learning or deep
learning (Eiben et al. 2007; Auger et al. 2019).

• Self-adaptive control is close to the underlying idea of
evolutionary optimization as the parameters are encoded
into the chromosomes and evolve with the rest of vari-
ables by applying genetic operations. Thus, the best
parameters generate high-quality solutionswhich survive
in future generations (Smith and Fogarty 1996; Deb et al.
2007; Bosman et al. 2017; Rajabi and Witt 2020).

123

17714 J. L. Carles-Bou, S. F. Galán

Due to the vast amount of publications on parameter con-
trol in evolutionary algorithms, several exhaustive reviews
have been made available to researchers and practitioners
(Eiben et al. 1999; Karafotias et al. 2015; Aleti and Moser
2016), and recent reviews can be found in (Parpinelli et al.
2019), (Huang et al. 2020), (Lacerda et al. 2021) (also cov-
ering swarm inspired algorithms), and (Huang et al. 2022)
(focused on differential evolution). In addition, an interesting
theoretical approach is developed in (Doerr and Doerr 2020).
Finally, a complete compendiumon parameter control and its
application is offered in (Papa 2021) and an interesting com-
pilation about parameter setting is included in (Lobo et al.
2007).

NSGA-II, proposed by Deb et al. (2000), is a well known,
competent, and extensively used genetic algorithm for solv-
ing MOPs that attains near-optimal, diverse, and uniformly
distributed solution sets (Tan et al. 2009; Rahimi et al. 2022).
Even though NSGA-II is a mature algorithm, it is still being
utilized as a baseline to test new algorithms performance
(Ishibuchi et al. 2003; Zhao et al. 2019; Long et al. 2022;
Sharma et al. 2023). Its population size, crossover and muta-
tion operators and probabilities, selection pressure, and even
the distribution indices used by the original SBX and PLM
operators have to be set in advance.

Although thenumber of publications about self-adaptation
in MOEAs is relatively low compared to single-objective
algorithms (Aleti and Moser 2016), several authors have
shown that self-adaptation can improve the applicability of
MOEAs to online decision support in real-world problems
(Zeng et al. 2010). Deb et al. (2007) proposed a self-
adaptive method for adapting the distribution index under
SBX crossover, SA-SBX, used typically in NSGA-II due
to the fact that a fixed index does not always produce
the best performance results, specially when dealing with
multi-modal problems. This parameter, ηc, defines the shape
of the probability distribution function which governs the
spread of offspring solutions given the parents. The method,
applied both to mono and multi-objective problems, pro-
ducedpromising results. In 2010,Zeng et al. (2010) improved
Deb’s idea of a self-adapting distribution index in the binary
crossover operator by using the diversity of the offspring
solutions to dynamically control the parameter.

Despite the fact that several studies have focused on the
mutation operator by adapting the mutation rate (Back and
Schutz 1996;Yang andUyar 2006), by changing themutation
probability distribution function like in evolution strategies
and evolutionary programming (Lee and Yao 2004; Tinós
and Yang 2007), or even by changing the mutation operator
itself during the evolution (Korejo et al. 2009), very few stud-
ied the idea of changing the probability distribution index in
PLM, ηm , as Deb did in SA-SBX for crossover. Furthermore,
Hamdan (Hamdan 2012, 2014) demonstrated that different

values for ηm from the ones found in the literature provided
better performance results.

Following the ideas of Deb, Zeng, and Hamdan, this
work investigates whether or not self-adapting the muta-
tion distribution index of the typical PLM operator used in
NSGA-II could actually outperform the classical static con-
figuration. In this regard, Sect. 3 proposes a novel and simple
self-adaptive mutation operator which, as shown in Sect. 4,
outperforms a static configuration when applied to several
benchmark problems.

2.3 Quality indicators

Trying to compare the outputs of two multi-objective opti-
mizers is not trivial as we are comparing two sets of
non-dominated vectors or approximation sets. Several per-
formance metrics, or quality indicators, are defined over an
approximation set (unary metrics) or between two approxi-
mation sets (binary metrics) producing a scalar value utilized
to compare the quality of the output of different algorithms
when solving MOPs (Zitzler et al. 2003; Riquelme et al.
2015).

Ideally, the obtained non-dominated solutions of an
approximation set should be as close as possible to the Pareto
front,well-distributed, andwidely spread (Okabe et al. 2003).
Therefore, it is common to find the metrics capturing the
quality of approximation sets grouped as cardinality, accu-
racy, and diversity metrics:

• Cardinality metrics utilize the number of non-dominated
vectors in an approximation set, since algorithms produc-
ing larger approximation sets are usually preferred.

• Accuracy metrics (or convergence metrics) measure the
distance between the approximation set and the theoreti-
cal optimal front or a reference set if the real Pareto front
is unknown (Okabe et al. 2003). Several methods for cal-
culating this distance have been proposed, like the ones
defined later in this section for theGD, IGD, and IGD+
indicators.

• Diversity metrics try to capture how well the objective
vectors in the approximation set are distributed (the rel-
ative distance between them) and spread (the range of
values covered by these vectors) (Riquelme et al. 2015).

• Convergence-diversity metricsmap both the proximity of
the objective vectors to the PF and the diversity of these
vectors to a scalar value (Jiang et al. 2014).

Over the last few decades, a large number of papers have
been published studying a vast list of available indicators.We
remark some of themost cited surveys authored by Riquelme
et al. (2015) studying fifty-four indicators, Li andYao (Li and
Yao 2019) covering one hundred indicators, and Audet et al.
(2020) describing fifty-seven metrics. The papers published

123

Self-adaptive polynomial mutation... 17715

by Hansen and Jaszkiewicz (Hansen and Jaszkiewicz 1998)
and Zitzler et al. (2003) are relevant for analyzing the theo-
retical aspects of these quality indicators in a formal way.

Choosing the right indicator, or a set of them, to assess
the performance of an MOEA turns out to be as difficult
as developing the MOEA itself. Several authors (Knowles
2002; Knowles and Corne 2002; Okabe et al. 2003; Jiang
et al. 2014; Wang et al. 2016) have criticized the usually
misleading and sometimes inconsistent results provided by
these metrics, and help in the selection of the right one. Fol-
lowing the information provided by these authors, we have
finally chosen three metrics from the myriad of them in order
to evaluate our newalgorithm: the hypervolume indicator, the
generalized spread measure and the modified inverted gen-
erational distance.

2.3.1 Hypervolume

The hypervolume indicator (HV) was introduced by Zitzler
and Thiele in 1999 (Zitzler and Thiele 1999), and it is one of
the most studied and used metrics due to some of its math-
ematical characteristics. HV captures in one single value
the convergence and diversity of an approximation set, and
it is a strictly monotonic metric with regards to the Pareto
dominance concept (Knowles and Corne 2002; Bader and
Zitzler 2011). Larger values of HV indicate that the vectors
in the approximation set are closer to the true PF and evenly
distributed over it (Jiang et al. 2014).

HV calculates the hypervolume that is dominated by the
objective vectors in the approximation set S bounded by a ref-
erence point r̄ (see Fig. 1, where HV measures the shaded
green area). Although the selection of the reference point to
calculate HV is critical (Auger et al. 2009; Ishibuchi et al.
2018), it is accepted that a point slightlyworse in every objec-
tive than every point in S is enough to cover all the vectors
in the approximation set. HV is calculated as follows:

Fig. 1 Hypervolume covering the shaded green area in a bi-objective
minimization problem

HV (S, r̄) = �

(S⋃
i=1

vi

)
(7)

where� denotes the Lebesgue measure and vi represents the
box defined by vector i and reference point r̄ . Larger values
of HV indicate better approximation sets.

2.3.2 Generalized spread

The spread metric (�), introduced by Deb et al. (2000), is
another commonly used indicator in bi-objective MOEAs
that tries tomeasure howuniformly the objective vectors in an
approximation set are distributed over the Pareto front. Zhou
et al. (2006) extended this indicator tom-objective problems
in the generalized spread metric (�∗) which is formulated
as follows:

�∗(S, P) =
∑m

i=1 d(ei , S) + ∑
x̄∈P ‖d(x̄, S) − d̄‖∑m

i=1 d(ei , S) + d̄(‖P‖ − m)
, (8)

where ei is the i-th extreme objective vector in the Pareto
front P with the maximum value for the i-th objective func-
tion and

d(x̄, P) = min
y∈P,y �=x

‖x̄ − ȳ‖2, (9)

d̄ = 1

P

∑
x̄∈P

d(x̄, S) (10)

The� and�∗ metrics, unlike HV , require a knownPareto
front. We can observe in Fig. 2: (i) an example of a well dis-
tributed and well spread set of vectors in the left-hand graph,
(ii) an example of a well spread but not well distributed set in
the second graph, (iii) a well distributed but not well spread
set of vectors in the third graph, and (iv) a not well spread and
not well distributed set in the right-hand graph. Lower val-
ues for spread and generalized spread metrics indicate better
distributed and spread vectors.

2.3.3 Modified inverted generational distance

The generational distance metric (GD), proposed by Veld-
huizen in 1998 (Veldhuizen and Lamont 1998), averages the
distance from each objective vector in the approximation
set to the nearest vector in the known PF (see the left-hand
graph in Fig. 3). Conversely, the inverted generational dis-
tance (IGD) (Bosman and Thierens 2003; Coello and Sierra
2004) calculates the average distance from each vector in the
reference or known PF to its nearest point in the approxi-
mation front (see the central graph in Fig. 3). The modified

123

17716 J. L. Carles-Bou, S. F. Galán

Fig. 2 Examples of spread and distribution of vectors over the Pareto front

Fig. 3 GD, IGD and IGD+ calculation for an approximation set

inverted generational distance metric (IGD+) was intro-
duced by Ishibuchi et al. (2015) (see the right-hand graph
in Fig. 3). These three metrics are formulated in a similar
way but provide different results:

GD(A, Z) = 1

|A|
∑
ā∈A

min
z̄∈Z d̂(ā, z̄) (11)

IGD(A, Z) = 1

|Z |
∑
z̄∈Z

min
ā∈A

d̂(ā, z̄) (12)

IGD+(A, Z) = 1

|Z |
∑
z̄∈Z

min
ā∈A

d̂+(ā, z̄) (13)

where the distance d̂ in GD and IGD is calculated as
the Euclidean distance d(ā, z̄) =

√ ∑m
i=1(ai − zi)2 and

d̂+(ā, z̄) =
√ ∑m

i=1(max{ai − zi , 0})2 in IGD+. Ishibuchi
et al. (2015) found that this latter distance calculation in
IGD+ assures that the indicator is always better for an
approximation set that is dominating another (Pareto com-
patibility), thus providing more accurate results than IGD
in some circumstances where this property does not hold.
Lower values for this metric indicate a better set of solu-
tions in terms of both convergence and diversity (Tanabe and
Ishibuchi 2020).

3 From static to self-adaptive polynomial
mutation in NSGA-II

In this section, we first review the NSGA-II algorithm, which
is widely used to perform the benchmarking of MOEAs.
Next,we focus on themutationphase ofNSGA-II and explain
the regular and the novel self-adaptive PLMoperators in turn.

3.1 NSGA-II

The general pseudo-code for the non-dominated sorting
genetic elitist algorithm (NSGA-II) is shown in Algorithm 1,
and a graphical representation of how it works is displayed
in Fig. 4. The main loop works as follows:

1. Parents are selected, usually with binary tournament, uti-
lizing a comparison based on non-domination ranking and
crowding distance of parents. The non-domination rank
segments the individuals in different fronts: F1 is the set
(or front) of non-dominated individuals in the population,

123

Self-adaptive polynomial mutation... 17717

F2 is the set of non-dominated individuals in the popula-
tion after excluding F1, and so on. The crowding distance,
which is a density estimator of solutions surrounding a
particular one, is used to break the ties when solutions
have the same rank.

2. Genetic operators are applied to generate an offspring
population that is joined to theoriginal one (normallySBX
is utilized for performing the recombination of selected
parents and PLM for mutating their descendants).

3. Each individual of this new extended population, which
is commonly twice the size of the original population, is
evaluated to set its non-domination rank and crowding
distance.

4. A sorting of the new extended population based on indi-
vidual non-domination rank and crowding distance is
performed.

5. A reduction to select the first half of the extended popu-
lation is made.

6. The loop is repeated from 1 until the end condition is
reached.

Algorithm 1 NSGA-II with traditional PLM
Input: populationSize = size of evolving population

offspringSize = size of descendant population
pc = crossover probability
pm = mutation probability
ηm = static mutation distribution index

1: pPopu ← initializePopulation(populationSi ze)
2: pPopu ← evaluateRankAndCrowdingDistance(pPopu)

3: while !endCondition do
4: qPopu ← []
5: while sizeof(qPopu) < offspringSize do
6: parents ← selectParents(pPopu)

7: child1, child2 ← crossover(pc, parents)
8: child1 ← mutate(pm , child1, ηm)

9: child2 ← mutate(pm , child2, ηm)

10: qPopu.add(child1); qPopu.add(child2)
11: end while
12: r Popu ← pPopu ∪ qPopu
13: r Popu ← evaluateRankAndCrowdingDistance(r Popu)

14: pPopu ← nonDominationSortAndReduce(r Popu)

15: end while

The use of non-domination rank and crowding distance
comparisons in the selection of parents and in the ordering
of the extended population assures that dominating individ-
uals in less crowded regions are selected. Furthermore, the
elitism is guaranteed by mixing the old population with the
calculated offspring before performing the ordering of the
extended population and selecting its best individuals. We
refer the reader to the original paper (Deb et al. 2000) in
order to get full details of the proposed algorithm.

3.2 Static polynomial mutation

The polynomial mutation operator over a decision vector
applies a polynomial probability distribution function to gen-
erate a new decision vector starting from the current one. The
pseudo-code is shown in Algorithm 2, where a perturbation
following this distribution is applied with probability pm to
each variable of decision vector x̄ .

Algorithm 2 PLM mutation of decision vector x̄
Input: x̄ = decision vector, pm = mutation probability,

ηm = mutation distribution index
Output: x̄ = mutated decision vector
1: for each x ∈ x̄ do
2: if U (0, 1) < pm then
3: � xl and xu are the lower and upper bounds of decision vari-

able x

4: δ1 = x−xl

xu−xl
, δ2 = xu−x

xu−xl

5: r ← U (0, 1)
6: if r ≤ 0.5 then

7: δq = [2r + (1 − 2r)(1 − δ1)
ηm+1] 1

ηm+1 − 1
8: else
9: δq = 1 − [2(1 − r) + 2(r − 0.5)(1 − δ2)

ηm+1] 1
ηm+1

10: end if
11: xm = xc + δq (xu − xl)
12: if xm < xl then
13: xm = xl

14: end if
15: if xm > xu then
16: xm = xu

17: end if
18: x ← xm
19: end if
20: end for

Note that the distribution function depends on the muta-
tion distribution index ηm . Figure5 shows an example of the
impact of this parameter on the shape of the probability dis-
tribution function for a point centered at x = 3, where the
probability of generating a closer point to the original value
is larger when higher ηm values are used. Smaller values for
that index tend to produce points located far from the original
one.

3.3 Novel self-adaptive polynomial mutation

Following the findings of Hamdan (Hamdan 2012) men-
tioned in Sect. 2.2,we have verified that using different values
for ηm has actually a direct impact on the performance of the
algorithm. For example, Fig. 6 shows the output of an exper-
iment over an instance of a ZDT2 problem where the HV
indicator captured and averaged over 30 runs is depicted for
different values of ηm . We have observed that this behavior
takes place in other problems as well.

123

17718 J. L. Carles-Bou, S. F. Galán

Fig. 4 NSGA-II procedure, where {F1, ...,F5} represent the sub-populations sorted by non-domination ranking. F1 is the set (or front) of non-
dominated individuals in the population, F2 is the set of non-dominated individuals in the population after excluding F1, and so on

Fig. 5 PLM distribution
function centered at x = 3 for
different ηm values

Fig. 6 HV performance over ZDT2 problem for different ηm values

The underlying idea of self-adaptive polynomial mutation
follows the procedure utilized in evolutionary programming

and evolution strategies, where the strategy parameters are
stored in the genome of the population individuals and
evolve with the rest of variables during the execution of
the algorithm. Thus, we need to extend the representation
of each individual from a decision vector 〈x1, x2, ..., xn〉 to
a new one including its specific mutation distribution index
〈x1, x2, ..., xn, ηm〉. The initialization of individuals in the
population (first generation) is performed by obtaining xi
and ηm values randomly chosen between their boundaries.

According to the new parameter self-adaptation strategy,
we have slightlymodified the original PLMalgorithmby sep-
arating it in two parts: one responsible for the updating of the
distribution index stored in the genome and a second one for
updating the decision vector according to this mutated index.
Thus, the new proposed scheme appears in Algorithm 3.

In Algorithm 3, it is important to note that the distribu-
tion index update of the selected parents is performed in line
7 before applying the mutation to the generated children in
lines 9 and 10 that will use the specific ηm found in each child

123

Self-adaptive polynomial mutation... 17719

Algorithm 3 NSGA-II with self-adaptive PLM
Input: populationSize = size of evolving population

offspringSize = size of descendant population
pc = crossover probability
pm = mutation probability
ηlm , ηum = lower and upper bounds for ηm

1: pPopu ← initializePopulation(populationSi ze, ηlm , ηum)

2: pPopu ← evaluateRankAndCrowdingDistance(pPopu)

3: while !endCondition do
4: qPopu ← []
5: while sizeof(qPopu) < offspringSize do
6: parents ← selectParents(pPopu)

7: updateDistributionIndex(parents, ηlm , ηum)

8: child1, child2 ← crossover(pc, parents)
9: child1 ← mutate(pm , child1, child1.ηm)

10: child2 ← mutate(pm , child2, child2.ηm)

11: qPopu.add(child1); qPopu.add(child2)
12: end while
13: r Popu ← pPopu ∪ qPopu
14: r Popu ← evaluateRankAndCrowdingDistance(r Popu)

15: pPopu ← nonDominationSortAndReduce(r Popu)

16: end while

chromosome. The details of this updating procedure of the
selected parents are included in Algorithm 4. Specifically,
we average the indices of the selected parents (crossover
phase) and apply a Gaussian perturbation to the averaged
index (mutation phase). The resulting value is repaired before
updating all the selected parents with it in order to avoid get-
ting new ηm values outside of their bounds.

Algorithm 4 PLM Distribution Index update
Input: parents = selected solutions

ηlm , ηum = lower and upper bounds for ηm
Output: parents = vectors with updated distribution indices
1: function updateDistributionIndex(parents, ηlm , ηum)
2: mut Par ← 0
3: for each parent ∈ parents do
4: mut Par ← mut Par + parent .mut Par
5: end for
6: mut Par ← mut Par/sizeof(parents)
7: mut Par ← mut Par + N (0, 1)
8: mut Par ← repair(mutpar , ηlm , ηum)

9: for each parent ∈ parents do
10: parent .mut Par ← mut Par
11: end for
12: end function

The main differences between the original proposal in
Algorithm 1 and the novel one in Algorithm 3 are, on the
one hand, the parameter updating mechanism applied in line
7 ofAlgorithm3, and on the other hand, the use of the updated
distribution index in lines 9 and 10. The additional compu-
tational cost incurred when performing these two operations
is linear with the number of parents due to the loops in the
distribution index updating function (lines 3-5 and 9-11 of
Algorithm 4).

4 Experimental evaluation

This section compares how the new self-adaptedmutator per-
forms with respect to the regular PLM used in NSGA-II in
terms of efficacy by using the three selected quality indica-
tors explained in Sect. 2.3. A diverse set of problems with
different features is employed to evaluate the consistency of
the results obtained after several independent executions.

4.1 Test problems

In order to analyze the performance of the new PLM imple-
mentation, we execute the algorithms over well-established
sets of problems found in many studies in the field. We have
used a significant number of problems, twenty-five, with dif-
ferent features: shape and continuity of the PF, number of
decision variables (n) and objectives (m), and modality. This
allows us to check the validity of our proposal and to deter-
mine whether it has any deficiencies depending on one or
more of these characteristics.

The diverse set of functions that we have used in the exper-
iments consists of the following families:

1. The scalable family of three-objective problem collection
DTLZ 1-7 from Deb et al. (2002).

2. Bi-objective unconstrained problems from the Walking
Fish Group (WFG) test suite from Huband et al. (2005).

3. Bi-objective and unconstrained ZDT 1-4 and 6 problems
from Zitzler et al. (1999).

4. Other bi-objective and unconstrained problems like Kur-
sawe (1991), Schaffer (1985), Srinivas (1994), andTanaka
et al. (1995).

Table 1 shows themain features of the twenty-five selected
problems. For each problem, we include the number of deci-
sion variables and objectives, whether the objective functions
are separable or not, and its modality (uni-modal, multi-
modal, or deceptive1). We also include the PF shape or
geometry indicating the cases in which the PF is convex,
non-convex or linear, whether the PF is connected or dis-
connected, and whether it has degenerated parts (PF with a
dimension smaller than m − 1).

4.2 Algorithm execution

We have selected jMetal,2 a Java framework for developing
multi-objective optimization algorithms created by Durillo

1 A deceptive search space is characterized by the fact that most of it
tends to guide the search towards areas which are far from the global
optimum, thus leading to a suboptimal local optimum.
2 https://jmetal.github.io/jMetal/.

123

https://jmetal.github.io/jMetal/

17720 J. L. Carles-Bou, S. F. Galán

Table 1 Features of the tested
problems: number of decision
variables and objectives,
separable (S) or non-separable
(NS), uni-modal (U),
multi-modal (M), deceptive
multi-modal (D) and PF
geometry

Problem n m Separability Modality Shape

DTLZ1 7 3 S M Linear, connected

DTLZ2 12 3 S U Convex, non-convex, connected

DTLZ3 12 3 S M Convex, non-convex, connected

DTLZ4 12 3 S U Non-convex, connected, biased

DTLZ5 12 3 S U Linear, degenerate

DTLZ6 12 3 S U Linear, degenerate

DTLZ7 22 3 S M Disconnected

WFG1 6 2 S U Convex, non-convex, connected

WFG2 6 2 NS U Convex, disconnected

WFG3 6 2 NS U Linear, degenerate

WFG4 6 2 S M Non-convex, connected

WFG5 6 2 S D Non-convex, connected

WFG6 6 2 NS U Non-convex, connected

WFG7 6 2 S U Non-convex, connected, biased

WFG8 6 2 NS U Non-convex, connected, biased

WFG9 6 2 NS D Non-convex, connected, biased

ZDT1 30 2 S U Convex, connected

ZDT2 30 2 S U Non-convex, connected

ZDT3 30 2 S M Disconnected

ZDT4 10 2 S M Convex, connected

ZDT6 10 2 S M Non-convex, connected

Kursawe 2 3 NS M Disconnected, degenerate, convex, non-convex

Schaffer 2 2 NS U Disconnected, convex, non-convex

Srinivas 2 2 NS U Convex, connected

Tanaka 2 2 NS U Disconnected, convex, non-convex

Fig. 7 Statistical test methodology

and Nebro at the Universidad de Málaga (2011), as the envi-
ronment to perform our experimentation. This framework
provides a large library of tested algorithms and facilitates
the development of new ones. The hardware platform used to
run the experiments was an Intel Core i5 with 8GB of RAM
running Windows 11 operating system.

The baseline NSGA-II was parameterized using the
default values suggested by jMetal. These default values are
the most commonly found in the relevant literature. Specifi-
cally, we used the following parameter values:

• Population size was set to 300 individuals.

• The maximum number of evaluations was set to 25000.
• SBX was selected as the crossover operator.
• Crossover probability pc = 0.9.
• Crossover distribution index, ηc = 20.
• Regular PLM was used as the mutation operator.
• Mutation probability, pm = 1/n.
• Static mutation distribution index, ηm = 20.

As far as the modified NSGA-II using the new mutation
operator is concerned, it was configured exactly as the regular
NSGA-II with the traditional PLMoperator but, on this occa-
sion, with a self-adaptive distribution index for the mutation
process. The lower and upper boundaries for ηm were set to
1 and 100 respectively.

4.3 Results

Tables 2 through 4 include the experimental results for each
quality indicator (HV , IGD+, and �∗) when both algo-
rithms are applied to the twenty-five problems in Table 1. A
summary of these results is displayed in Table 5.

123

Self-adaptive polynomial mutation... 17721

Table 2 Hypervolume results obtained in experiments (significance level α = 0.01)

NSGA-II + PLM NSGA-II + SA-PLM Test Statistical
Problem HV mean(variance) HV mean(variance) result test p-value

DTLZ1 7.59439e−01(3.41000e−02) 7.89361e−01(4.53831e−03) + Wilcoxon 1.73e−06

DTLZ2 4.13529e−01(2.86745e−03) 4.17602e−01(2.15274e−03) + Student 5.86e−08

DTLZ3 0.00000e+00(0.00000e+00) 1.96749e−01(1.21227e−01) + Wilcoxon 3.35e−03

DTLZ4 4.13958e−01(2.17084e−03) 4.15810e−01(2.17415e−03) + Student 1.64e−03

DTLZ5 9.51122e−02(8.74617e−05) 9.52667e−02(4.95633e−05) + Student 1.23e−11

DTLZ6 0.00000e+00(0.00000e+00) 9.62387e−02(4.28614e−05) + Wilcoxon 1.73e−06

DTLZ7 3.00091e−01(1.86355e−03) 3.12930e−01(1.26271e−03) + Student 5.62e−38

WFG1 4.97375e−01(6.43569e−02) 6.28866e−01(2.16320e−02) + Wilcoxon 1.73e−06

WFG2 5.63116e−01(1.48591e−03) 5.64961e−01(1.25583e−04) + Welch 1.81e−07

WFG3 4.96341e−01(8.75053e−04) 4.96995e−01(3.08140e−04) + Welch 4.50e−04

WFG4 2.21115e−01(1.85144e−04) 2.21198e−01(1.60946e−04) = Student 6.98e−02

WFG5 2.01125e−01(3.98137e−03) 1.98224e−01(6.72931e−05) − Wilcoxon 1.24e−05

WFG6 2.03611e−01(6.92356e−03) 2.07126e−01(6.81412e−03) + Wilcoxon 9.27e−03

WFG7 2.12706e−01(1.69775e−04) 2.12740e−01(7.24156e−05) = Wilcoxon 7.50e−01

WFG8 1.70780e−01(1.54466e−02) 1.55995e−01(1.56837e−02) − Wilcoxon 5.67e−03

WFG9 2.42450e−01(8.73721e−04) 2.42810e−01(8.09038e−04) = Wilcoxon 5.45e−02

ZDT1 6.53995e−01(1.07650e−03) 6.63513e−01(1.72262e−04) + Welch 3.10e−30

ZDT2 3.13921e−01(2.64180e−03) 3.29930e−01(5.96829e−04) + Wilcoxon 1.73e−06

ZDT3 5.07723e−01(1.17048e−03) 5.15760e−01(1.48757e−04) + Welch 1.17e−26

ZDT4 2.30579e−01(1.55613e−01) 5.55161e−01(1.11938e−01) + Wilcoxon 2.13e−06

ZDT6 1.57056e−01(2.41919e−02) 4.01091e−01(6.71092e−04) + Welch 5.69e−31

Kursawe 4.03120e−01(1.26516e−04) 4.03276e−01(5.75611e−05) + Welch 2.66e−07

Schaffer 3.74026e−01(2.18289e−01) 8.13777e−01(1.79589e−02) + Wilcoxon 1.73e−06

Srinivas 5.43385e−01(7.44869e−05) 5.43396e−01(6.32421e−05) = Student 5.14e−01

Tanaka 3.08598e−01(5.32528e−04) 3.10192e−01(2.82957e−04) + Welch 2.27e−18

As this work deals with stochastic algorithms, we average
the captured quality indicator values over 30 independent
executions for each problem instance and present them with
theirmean and variance. Figure7 illustrates the statistical test
methodology followed in order to guarantee that the obtained
results are not due to randomness. We start by applying a
Shapiro normality test to the data coming from each algo-
rithm.With a negative answer (they do not follow a Gaussian
distribution) a Wilcoxon test is then applied to see their
means similarity. Otherwise, having assured a normal dis-
tribution for the data, a Levene test is executed to check the
homoscedasticity of the series; in the negative case where
they do not have equal variances, we end by running aWelch
test to check the similarity of their means. If, on the contrary,
they have similar variances, we apply a paired Student t-test
in order to see if they have similar means. We always con-
sider a level of confidence of 99% in the statistical tests used
in this work. Thus, with a significance level of 1% or p-value
under 0.01, we are able to reject the null hypothesis of both
algorithms performing similarly.

As mentioned earlier in this section, Tables 2, 3 and 4
incorporate the mean and variance calculated over 30 inde-
pendent executions of both algorithms. In the “Test result”
column of each table, a “+” sign indicates that the new PLM
variation outperforms the regular PLM with enough statisti-
cal confidence (as specified in the statistical testmethodology
described earlier in this section); conversely, a “−” sign is
utilized when the regular PLM gives better results than the
new PLM proposal. Finally, the “=” sign indicates that no
difference exists in the performance of both PLM implemen-
tations.

4.3.1 Hypervolume results

Table 2 collects the HV indicator results for the experiments.
Notice that the self-adaptive PLM performs better than the
regular operator in 19 problems and gives a similar perfor-
mance regarding this indicator in other 4 problems. Worse
results are observed only for 2 problems, WFG5 andWFG8.
We also observe an important variance improvement in all
the positive cases.

123

17722 J. L. Carles-Bou, S. F. Galán

Table 3 IGD+ results obtained in the experiments (significance level α = 0.01)

NSGA-II + PLM NSGA-II + SA-PLM Test Statistical
Problem IGD+ mean(variance) IGD+ mean(variance) result test p-value

DTLZ1 4.29294e−02(1.79080e−02) 2.52563e−02(3.46030e−03) + Wilcoxon 1.73e−06

DTLZ2 2.24472e−02(7.49704e−04) 2.03312e−02(6.22110e−04) + Student 3.38e−17

DTLZ3 6.31840e+00(2.14560e+00) 9.29473e−01(7.80514e−01) + Wilcoxon 1.73e−06

DTLZ4 1.84729e−02(1.87342e−03) 1.72746e−02(1.38996e−03) + Wilcoxon 8.22e−03

DTLZ5 1.29969e−03(9.20083e−05) 1.18259e−03(5.07067e−05) + Welch 2.16e−07

DTLZ6 1.45038e+00(9.45727e−02) 1.02208e−03(7.05488e−05) + Welch 3.56e−36

DTLZ7 2.28455e−02(8.48368e−04) 1.65048e−02(7.61342e−04) + Student 2.21e−37

WFG1 1.62578e−01(8.81688e−02) 4.24815e−03(1.44789e−02) + Wilcoxon 1.73e−06

WFG2 1.79572e−03(1.00515e−03) 5.68657e−04(8.42110e−05) + Welch 2.45e−07

WFG3 1.87519e−03(5.16401e−04) 1.52509e−03(1.81825e−04) + Welch 1.25e−03

WFG4 1.11489e−03(9.91284e−05) 1.09393e−03(9.13196e−05) = Student 3.98e−01

WFG5 2.44724e−02(3.20312e−03) 2.67584e−02(2.41543e−05) = Wilcoxon 2.43e−02

WFG6 7.32971e−03(5.32402e−03) 4.80630e−03(5.13637e−03) + Wilcoxon 7.73e−03

WFG7 1.16441e−03(1.15305e−04) 1.13743e−03(4.20012e−05) = Welch 2.36e−01

WFG8 2.74424e−02(1.08720e−02) 3.97090e−02(1.06094e−02) − Wilcoxon 2.11e−03

WFG9 2.05996e−03(5.22650e−04) 1.85940e−03(4.72033e−04) = Wilcoxon 5.98e−02

ZDT1 7.87085e−03(7.11770e−04) 1.68842e−03(9.80272e−05) + Welch 9.12e−30

ZDT2 1.23470e−02(1.83534e−03) 1.70104e−03(2.21003e−04) + Wilcoxon 1.73e−06

ZDT3 4.60996e−03(5.12205e−04) 9.99848e−04(5.51605e−05) + Welch 7.53e−27

ZDT4 3.83799e−01(1.95947e−01) 7.92631e−02(8.47617e−02) + Wilcoxon 2.13e−06

ZDT6 2.15281e−01(2.97713e−02) 2.85648e−03(3.97697e−04) + Welch 1.21e−26

Kursawe 9.45517e−04(5.39416e−05) 8.83722e−04(3.98815e−05) + Student 4.77e−06

Schaffer 3.96014e+00(7.55962e+00) 9.74580e−03(8.93751e−03) + Wilcoxon 1.73e−06

Srinivas 1.19705e−03(4.13415e−05) 1.21465e−03(3.84070e−05) = Student 9.29e−02

Tanaka 1.81649e−03(1.89739e−04) 9.63356e−04(8.69346e−05) + Welch 1.75e−24

It is worth noticing the HV results obtained for DTLZ3
and DTLZ6 problems, where we indicate a zero HV mean
and variance for the traditional PLM run. A zero HV is
obtained when no solution is found inside the hypercube
delimited by the reference point for any of the algorithm
executions (in a minimization problem). However, the self-
adaptive PLM is able to produce acceptable results in the
same number of runs.

4.3.2 IGD+ results

The data gathered for the IGD+ indicator are presented
in Table 3. We observe again that the self-adapted muta-
tion operator performed equal to or better than the regular
PLM operator in almost every problem (24 out of 25). One
more time, WFG8 seems to be specially difficult to the new
algorithm regarding this quality indicator. Both algorithms
produce similar results forWFG4,WFG7,WFG9, and Srini-
vas problems.

We observe again similar variance improvements in the
new algorithm, where we get a variance reduction in all the

positive instances. Notice that the performance of the new
algorithm for several of the positive cases is very remarkable
(see DTLZ3, DTLZ6, and Schaffer problems).

4.3.3 1∗ results

As reported in Table 4, when dealing with the spread and
diversity of the generated solutions, our new operator does
not give as impressive results as those obtained for the other
twometrics. It performs better than the regular operator on 13
occasions, similarly in 11 problems, and worse in 1 instance.
Once again, WFG5 seems to be a hard problem for our new
algorithm; however, to our surprise, it surpassed regular PLM
in the WFG8 problem.

The variance analysis produces similar conclusions. For
all the problemswhere thenewalgorithmoutperforms the tra-
ditional one, an important reduction of the variance is again
measured.

123

Self-adaptive polynomial mutation... 17723

Table 4 �∗ results gathered in the experiments (significance level α = 0.01)

NSGA-II + PLM NSGA-II + SA-PLM Test Statistical
Problem �∗ mean(variance) �∗ mean(variance) result test p-value

DTLZ1 1.03000e+00(2.42294e−01) 7.83823e−01(2.53935e−02) + Welch 5.36e−06

DTLZ2 6.83813e−01(3.49377e−02) 6.85980e−01(2.57095e−02) = Student 7.85e−01

DTLZ3 1.18850e+00(1.41623e−01) 9.82180e−01(1.55223e−01) + Student 1.41e−06

DTLZ4 6.83076e−01(2.09105e−02) 6.69204e−01(2.87127e−02) = Student 3.66e−02

DTLZ5 5.00491e−01(7.34210e−02) 4.58849e−01(3.76746e−02) + Wilcoxon 7.27e−03

DTLZ6 8.06492e−01(3.08745e−02) 5.28644e−01(2.07721e−02) + Student 1.81e−44

DTLZ7 7.76200e−01(3.07696e−02) 7.60299e−01(2.81390e−02) = Student 4.11e−02

WFG1 7.78357e−01(6.96307e−02) 5.83607e−01(2.04473e−02) + Wilcoxon 1.73e−06

WFG2 8.47435e−01(6.38581e−03) 8.47032e−01(6.29434e−03) = Student 8.07e−01

WFG3 3.74635e−01(2.01767e−02) 3.73888e−01(2.03391e−02) = Student 8.87e−01

WFG4 3.91242e−01(1.61785e−02) 3.86159e−01(1.39361e−02) = Student 1.97e−01

WFG5 4.21736e−01(4.61604e−02) 4.39391e−01(1.71102e−02) − Wilcoxon 4.39e−03

WFG6 3.80974e−01(1.73058e−02) 3.80257e−01(1.82474e−02) = Student 8.77e−01

WFG7 3.85675e−01(1.29152e−02) 3.80295e−01(1.78018e−02) = Student 1.85e−01

WFG8 1.06876e+00(1.32272e−01) 7.92715e−01(8.13220e−02) + Student 8.24e−14

WFG9 4.01281e−01(1.53825e−02) 4.05325e−01(1.93257e−02) = Student 3.74e−01

ZDT1 3.82825e−01(4.24148e−02) 3.54789e−01(1.74185e−02) + Wilcoxon 2.26e−03

ZDT2 5.84850e−01(4.84450e−02) 3.70502e−01(4.29535e−02) + Wilcoxon 1.73e−06

ZDT3 8.06824e−01(1.59158e−02) 7.95947e−01(8.19819e−03) + Student 1.53e−03

ZDT4 8.08177e−01(7.25930e−02) 7.40472e−01(1.63474e−01) = Student 4.26e−02

ZDT6 6.88152e−01(4.29740e−02) 3.30043e−01(1.85386e−02) + Welch 2.56e−34

Kursawe 6.13962e−01(1.67108e−02) 5.95343e−01(1.16735e−02) + Student 5.56e−06

Schaffer 7.59430e−01(3.01218e−01) 6.77871e−01(1.48243e−01) = Wilcoxon 1.53e−01

Srinivas 4.50891e−01(2.49322e−02) 4.06597e−01(1.94923e−02) + Student 2.23e−10

Tanaka 1.21786e+00(3.63926e−02) 9.54866e−01(4.35326e−02) + Student 4.20e−33

4.3.4 Tests summary

The test results for eachmetric are compiled inTable 5,where
we additionally highlight the table cells with a “+” sign when
our algorithm gives better results for a problem (and with a
“=” sign when there is no difference in performance between
them). A “-” sign means that our algorithm is performing
worse for that quality indicator.

It is easy to see that HV and IGD+ are suggesting a
similar behavior of the new algorithm. It surpasses the tra-
ditional one in 19 problems and provides similar results for
other 4 or 5 problems. There is only a divergence in WFG5
problem, where HV indicates that the self-adaptive PLM is
doing worse than the regular operator. Anyway, it seems to
be consistent with the negative�∗, as we know that HV also
captures the diversity of solutions.

Additionally,�∗ results are not as good as those provided
by the other indicators, but they are still quite encouraging.
The new algorithm provides better results on 13 occasions,
and in 11 cases it shows similar performance. Only in one
problem, WFG5, the new operator provides poorer results.

Reviewing the characteristics of that problem,we could point
to its deceptive characteristic. Probably, it is easier for the new
operator to fall in the deception front and not in the real PF.

5 Conclusions and future work

NSGA-II with a fine-tuned statically parameterized polyno-
mial mutator is typically used as a baseline when comparing
the performance of MOEAs or when it is applied to solve
some MOPs. In this work, a new version of NSGA-II algo-
rithm incorporating a novel and computationally lightweight
polynomial mutator that self-adapts its distribution index ηm
has been proposed. The modified algorithm with the new
dynamic operator has been experimentally compared to its
static counterpart over 25 problems coming from different
well established test suites (DTLZ, WFG, ZDT, and other
key problems) covering diverse features of typical multi-
objective problems. Furthermore, its performance has been
measured over three major quality indicators: hypervolume,

123

17724 J. L. Carles-Bou, S. F. Galán

Table 5 Tests summary for each problem and indicator

Problem HV IGD+ �∗

DTLZ1 + + +
DTLZ2 + + =
DTLZ3 + + +
DTLZ4 + + =
DTLZ5 + + +
DTLZ6 + + +
DTLZ7 + + =
WFG1 + + +
WFG2 + + =
WFG3 + + =
WFG4 = = =
WFG5 − = −
WFG6 + + =
WFG7 = = =
WFG8 − − +
WFG9 = = =
ZDT1 + + +
ZDT2 + + +
ZDT3 + + +
ZDT4 + + =
ZDT6 + + +
Kursawe + + +
Schaffer + + =
Srinivas = = +
Tanaka + + +
+/ = /− 19/4/2 19/5/1 13/11/1

generalized spread, and modified inverted generational dis-
tance.

The experiments provide a clear confirmation that the
proposed variation improves the observed performance of
the regular NSGA-II and PLM on almost all of the tested
problems and for all the three covered indicators. The main
advantage of this self-adaptive mutation and the modified
NSGA-II are that they are really easy to implement and intro-
duce a very small overhead in the optimization run-time.

This work also emphasizes an algorithm comparison
methodologywhosemain characteristics are: (i) a large num-
ber of problems with different PS and PF features, (ii) the use
of several quality indicators to measure the algorithm perfor-
mance, and (iii) a strict statistical test procedure to analyze
the output data.

Additionally, this paper remarks the importance of param-
eter setting in EAs and specially in MOEAs. It has been
experimentally demonstrated that dynamically adaptedparam-
eters can improve the algorithm efficacy without imply-
ing a significant increase of computational cost. Simple
dynamic methods, like the proposed self-adapted operator,

can improve the performance of the regular NSGA-II and,
potentially, alter the benchmarking results obtained using
statically configured parameters.

Currently, the main drawback of the new algorithm is the
not specially good solution distribution measured through
the Generalized Spread metric �∗. Understanding why the
algorithmmakes only a moderate performance improvement
regarding the spread and diversity of the obtained solutions
should be a priority in future investigation. Adding other
quality metrics, like Maximum Spread Sp (Schott 1995;
Riquelme et al. 2015) and Spacing M∗

3 (Zitzler et al. 1999),
would be desirable to better understand these results.

One direction of future work is studying how the algo-
rithm could be improved when dealing with highly deceptive
problems. It would be also advisable to confront this new
NSGA-II variant with some recent and state-of-art multi-
objective algorithms like Multi-Objective Non-dominated
Advanced Butterfly Optimization Algorithm (MONSBOA)
described in (Sharma et al. 2023).

Finally, the possible application of this dynamic approach
to newmutation strategies like the Lévy flight based found in
the hybrid Lévy Slime Mould Algorithm Teaching-Learning
BasedOptimization (LSMA-TLBO)proposed in (Kundu and
Garg 2022b) or the quantum inspired mutation found in the
Quantum Mutation-based Backtracking Search Algorithm
introduced in (Nama et al. 2022) should be studied.

Author Contributions All authors contributed to the study conception
and design. Material preparation, data collection and analysis were per-
formed by Jose L. Carles-Bou. The first draft of the manuscript was
written by Jose L. Carles-Bou and all authors commented on previ-
ous versions of the manuscript. All authors read and approved the final
manuscript.

Funding The authors declare that no funds, grants, or other support
were received during the preparation of this manuscript.

Data Availability The data that support the findings of this work are
available from the corresponding author upon request.

Declaration

Conflict of interest The authors declare that they have no conflict of
interest either financial or non-financial.

Research involving Human Participants and/or Animals The authors
declare no human or animals where involved in this research.

References

Aleti A, Moser I (2016) A systematic literature review of adap-
tive parameter control methods for evolutionary algorithms.
ACM Comput Surv (CSUR) 49(3):1–35. https://doi.org/10.1145/
2996355

Angeline PJ (1995) Adaptive and self-adaptive evolutionary compu-
tations. In: Palaniswami M, Attikiouzel Y (eds) Computational

123

https://doi.org/10.1145/2996355
https://doi.org/10.1145/2996355

Self-adaptive polynomial mutation... 17725

intelligence: a dynamic systems perspective. IEEE Press, New
York, pp 152–163

Audet C, Bigeon J, Cartier D, Digabel SL, Salomon L (2020) Perfor-
mance indicators in multiobjective optimization. Eur J Oper Res
292(2):397–422. https://doi.org/10.1016/j.ejor.2020.11.016

Auger A, Bader J, Brockhoff D, Zitzler E (2009) Theory of the hyper-
volume indicator: optimal μ-distributions and the choice of the
reference point. In: Proceedings of the tenth ACM SIGEVOwork-
shop on foundations of genetic algorithms - FOGA ’09 https://doi.
org/10.1145/1527125.1527138

AugerA, Stutzle T, SharmaM,KomninosA, López-IbánezM,Kazakov
D (2019) Deep reinforcement learning based parameter control in
differential evolution. In: Proceedings of the genetic and evolu-
tionary computation conference pp. 709–717. https://doi.org/10.
1145/3321707.3321813

Back T (1992) The interaction of mutation rate, selection, and self-
adaptation within a genetic algorithm. In: Parallel problem solving
from nature 2, PPSN-II. Elsevier, Brussels, Belgium

Back T, Schutz M (1996) Intelligent mutation rate control in canonical
genetic algorithms. In: ISMIS ’96: Proceedings of the 9th interna-
tional symposium on foundations of intelligent systems. Springer,
Berlin, Heidelberg, pp 158–167, https://doi.org/10.1007/3-540-
61286-6_141

Bader J, Zitzler E (2011) HypE: an algorithm for fast hypervolume-
based many-objective optimization. Evol Comput 19(1):45–76.
https://doi.org/10.1162/evco_a_00009

Birattari M, Yuan Z, Balaprakash P, Stuzle T (2010) F-race and iterated
f-race: an overview. In: Experimental methods for the analysis
of optimization algorithms. Springer, Berlin, Heidelberg, pp 311–
336, https://doi.org/10.1007/978-3-642-02538-9_13

Bosman PAN, Thierens D (2003) The balance between proximity and
diversity in multiobjective evolutionary algorithms. IEEE Trans
Evol Comput. https://doi.org/10.1109/tevc.2003.810761

Bosman PAN, Cruz-Salinas AF, Perdomo JG (2017) Self-adaptation
of genetic operators through genetic programming techniques. In:
Proceedings of the genetic and evolutionary computation confer-
ence. Association for Computing Machinery, Berlin, pp 913–920,
https://doi.org/10.1145/3071178.3071214

CoelloCAC, SierraMR (2004)A study of the parallelization of a coevo-
lutionarymulti-objective evolutionary algorithm. In:MICAI 2004:
advances in artificial intelligence, thirdMexican international con-
ference on artificial intelligence. Springer, Mexico City, https://
doi.org/10.1007/978-3-540-24694-7_71

Deb K, Agrawal S, Pratap A, Mayarivan T (2000) A fast elitist
non-dominated sorting genetic algorithm for multi-objective opti-
mization: NSGA-II. In: Parallel problem solving from nature
PPSN VI, lecture notes in computer science, vol 1917. Springer,
Berlin, pp 849–858, https://doi.org/10.1007/3-540-45356-3_83

Deb K, Thiele L, Laumanns M, Zitzler E (2002) Scalable multi-
objective optimization test problems. In: Proceedings of the 2002
congress on evolutionary computation. CEC’02, vol 1. IEEE,Hon-
olulu, pp 825–830, https://doi.org/10.1109/cec.2002.1007032

Deb K, Sindhya K, Okabe T (2007) Self-adaptive simulated binary
crossover for real-parameter optimization. In: Proceedings of the
9th annual conference on genetic and evolutionary computation.
Association for computing machinery, London, GECCO ’07, p
1187-1194, https://doi.org/10.1145/1276958.1277190

Doerr B, Doerr C (2020) Theory of parameter control for discrete black-
box optimization: provable performance gains through dynamic
parameter choices. In: Theory of evolutionary computation, recent
developments in discrete optimization. Springer International Pub-
lishing, Cham, pp 271–321, https://doi.org/10.1007/978-3-030-
29414-4_6

Durillo JJ, Nebro AJ (2011) jMetal: a Java framework for multi-
objective optimization. In: Advances in Engineering Software, vol

42, no. 10. Elsevier, Oxford, pp 760–771, https://doi.org/10.1016/
j.advengsoft.2011.05.014

Eiben A, Hinterding R, Michalewicz Z (1999) Parameter control in
evolutionary algorithms. IEEE Trans Evol Comput 3(2):124–141.
https://doi.org/10.1109/4235.771166

Eiben AE, Horvath M, Kowalczyk W, Schut MC (2007) Reinforce-
ment learning for online control of evolutionary algorithms. In:
Engineering self-organising systems, 4th international workshop,
ESOA 2006. Springer, Hakodate, Japan, pp 151–160, https://doi.
org/10.1007/978-3-540-69868-5_10

Garg H (2019) A hybrid GSA-GA algorithm for constrained optimiza-
tion problems. Inf Sci 478:499–523. https://doi.org/10.1016/j.ins.
2018.11.041

Grefenstette JJ (1986) Optimization of control parameters for genetic
algorithms. IEEE Trans Syst Man Cybern 16(1):122–128. https://
doi.org/10.1109/tsmc.1986.289288

Hamdan MM (2012) The distribution index in polynomial mutation
for evolutionary multiobjective optimisation algorithms: an exper-
imental study. In: Proceedings of international conference on
electronics computer technology

Hamdan MM (2014) Revisiting the distribution index in simulated
binary crossover operator for evolutionary multiobjective opti-
misation algorithms. In: 2014 fourth international conference on
digital information and communication technology and its appli-
cations (DICTAP) pp 37–41. https://doi.org/10.1109/dictap.2014.
6821653

HansenMP, Jaszkiewicz A (1998) Evaluating the quality of approxima-
tions to the non-dominated set. Technical University of Denmark,
Technical Report IMM-REP-1998-7, Denmark

Hassanat A, Almohammadi K, Alkafaween E, Abunawas E, Hammouri
A, Prasath VBS (2019) Choosing mutation and crossover ratios
for genetic algorithms-a review with a new dynamic approach.
Information 10(12):390. https://doi.org/10.3390/info10120390

Hinterding R, Michalewicz Z, Eiben AE (1997) Adaptation in evo-
lutionary computation: a survey. In: Proceedings of 1997 IEEE
international conference on evolutionary computation (ICEC ’97).
IEEE, Indianapolis

Huang C, Li Y, Yao X (2020) A survey of automatic parameter tuning
methods for metaheuristics. IEEE Trans Evol Comput 24(2):201–
216. https://doi.org/10.1109/tevc.2019.2921598

Huang C, Bai H, Yao X (2022) Online algorithm configuration for dif-
ferential evolution algorithm. Appl Intell. https://doi.org/10.1007/
s10489-021-02752-1

Huband S, Barone L, While L, Hingston P (2005) A scalable multi-
objective test problem toolkit. In: Evolutionary multi-criterion
optimization, third international conference, EMO 2005, lecture
notes in computer science, vol 3410. Springer, Guanajuato, Méx-
ico, pp 280–295, https://doi.org/10.1007/978-3-540-31880-4_20

Ishibuchi H, Yoshida T, Murata T (2003) Balance between genetic
search and localsearch in memetic algorithms for multiobjec-
tive permutation flowshop scheduling. IEEE Trans Evol Comput
7(2):204–223. https://doi.org/10.1109/tevc.2003.810752

Ishibuchi H, Masuda H, Tanigaki Y, Nojima Y (2015) Modified
distance calculation in generational distance and inverted gener-
ational distance. In: Proceedings of 8th international conference
on evolutionarymulti-criterionoptimization. Springer,Guimaraes,
Portugal, pp 110–125, https://doi.org/10.1007/978-3-319-15892-
1_8

Ishibuchi H, Imada R, Setoguchi Y, Nojima Y (2018) How to specify
a reference point in hypervolume calculation for fair perfor-
mance comparison. Evol Comput 26(3):411–440. https://doi.org/
10.1162/evco_a_00226

Jiang S, Ong YS, Zhang J, Feng L (2014) Consistencies and contra-
dictions of performance metrics in multiobjective optimization.
IEEE Trans Cybern 44(12):2391–2404. https://doi.org/10.1109/
tcyb.2014.2307319

123

https://doi.org/10.1016/j.ejor.2020.11.016
https://doi.org/10.1145/1527125.1527138
https://doi.org/10.1145/1527125.1527138
https://doi.org/10.1145/3321707.3321813
https://doi.org/10.1145/3321707.3321813
https://doi.org/10.1007/3-540-61286-6_141
https://doi.org/10.1007/3-540-61286-6_141
https://doi.org/10.1162/evco_a_00009
https://doi.org/10.1007/978-3-642-02538-9_13
https://doi.org/10.1109/tevc.2003.810761
https://doi.org/10.1145/3071178.3071214
https://doi.org/10.1007/978-3-540-24694-7_71
https://doi.org/10.1007/978-3-540-24694-7_71
https://doi.org/10.1007/3-540-45356-3_83
https://doi.org/10.1109/cec.2002.1007032
https://doi.org/10.1145/1276958.1277190
https://doi.org/10.1007/978-3-030-29414-4_6
https://doi.org/10.1007/978-3-030-29414-4_6
https://doi.org/10.1016/j.advengsoft.2011.05.014
https://doi.org/10.1016/j.advengsoft.2011.05.014
https://doi.org/10.1109/4235.771166
https://doi.org/10.1007/978-3-540-69868-5_10
https://doi.org/10.1007/978-3-540-69868-5_10
https://doi.org/10.1016/j.ins.2018.11.041
https://doi.org/10.1016/j.ins.2018.11.041
https://doi.org/10.1109/tsmc.1986.289288
https://doi.org/10.1109/tsmc.1986.289288
https://doi.org/10.1109/dictap.2014.6821653
https://doi.org/10.1109/dictap.2014.6821653
https://doi.org/10.3390/info10120390
https://doi.org/10.1109/tevc.2019.2921598
https://doi.org/10.1007/s10489-021-02752-1
https://doi.org/10.1007/s10489-021-02752-1
https://doi.org/10.1007/978-3-540-31880-4_20
https://doi.org/10.1109/tevc.2003.810752
https://doi.org/10.1007/978-3-319-15892-1_8
https://doi.org/10.1007/978-3-319-15892-1_8
https://doi.org/10.1162/evco_a_00226
https://doi.org/10.1162/evco_a_00226
https://doi.org/10.1109/tcyb.2014.2307319
https://doi.org/10.1109/tcyb.2014.2307319

17726 J. L. Carles-Bou, S. F. Galán

Jong KAD (1975) Analysis of the beavior of a class of genetic adap-
tive systems. PhD thesis, Computer and Communication Sciences
Department, University of Michigan

Karafotias G, Hoogendoorn M, Eiben AE (2015) Parameter control
in evolutionary algorithms: trends and challenges. IEEE Trans
Evol Comput 19(2):167–187. https://doi.org/10.1109/tevc.2014.
2308294

Knowles J, Corne D (2002) On metrics for comparing nondominated
sets. In: Proceedings of the 2002 congress on evolutionary compu-
tation. CEC’02, vol 1. IEEE, Honolulu, pp 711–716, https://doi.
org/10.1109/cec.2002.1007013

Knowles JD (2002)Local-search andhybrid evolutionary algorithms for
pareto optimization. PhD thesis,Department ofComputer Science,
University of Reading

KochenderferMJ,Wheeler TA (2019)Algorithms for optimization. The
MIT Press, Cambridge and London

Korejo I, Yang S, Li C (2009) A comparative study of adaptive muta-
tion operators for genetic algorithms. In: The VIII metaheuristic
international conference, Hamburg, Germany

KunduT,GargH (2022)Ahybrid ITLHHOalgorithm for numerical and
engineering optimization problems. Int J Intell Syst 37(7):3900–
3980. https://doi.org/10.1002/int.22707

Kundu T, Garg H (2022) LSMA-TLBO: a hybrid SMA-TLBO algo-
rithm with lévy flight based mutation for numerical optimization
and engineering design problems. Adv Eng Software. https://doi.
org/10.1016/j.advengsoft.2022.103185

Kursawe F (1991) A variant of evolution strategies for vector optimiza-
tion. In: Schwefel HP, Männer R (eds) Parallel problem solving
from nature. Springer Berlin Heidelberg, Berlin, Heidelberg, pp
193–197, https://doi.org/10.1007/BFb0029752

Lacerda MGPd, Pessoa LFdA, Neto FBdL, Ludermir TB, Kuchen H
(2021) A systematic literature review on general parameter con-
trol for evolutionary and swarm-based algorithms. Swarm Evol
Comput. https://doi.org/10.1016/j.swevo.2020.100777

Lee CY, Yao X (2004) Evolutionary programming using mutations
based on the Lévy probability distribution. IEEE Trans Evol Com-
put 8(1):1–13. https://doi.org/10.1109/tevc.2003.816583

Li M, Yao X (2019) Quality evaluation of solution sets in multiobjec-
tive optimisation: a survey. ACM Comput Surv (CSUR) 52(2):26.
https://doi.org/10.1145/3300148

LiuZ,ChenG,OngC,YaoZ,LiX,Deng J,Cui F (2023)Multi-objective
design optimization of stent-grafts for the aortic arch. Mater Des.
https://doi.org/10.1016/j.matdes.2023.111748

Lobo FG, Lima CF, Michalewicz Z (2007) Parameter setting in evo-
lutionary algorithms, studies in computation intelligence, vol 54.
Springer, Berlin, Heidelberg,. https://doi.org/10.1007/978-3-540-
69432-8

Long Q, Li G, Jiang L (2022) A novel solver for multi-objective
optimization: dynamic non-dominated sorting genetic algorithm
(DNSGA). Soft Comput 26(2):725–747. https://doi.org/10.1007/
s00500-021-06223-0

Lopez EM, A C, Coello C (2016) IGD+ -EMOA: a multi-objective
evolutionary algorithm based on IGD+. In: 2016 IEEE congress
on evolutionary computation (CEC), pp 999–1006, https://doi.org/
10.1109/cec.2016.7743898

López-Ibánez M, Dubois-Lacoste J, Cáceres LP, Birattari M, Stutzle
T (2016) The irace package: iterated racing for automatic algo-
rithm configuration. Oper Res Perspect 3:43–58. https://doi.org/
10.1016/j.orp.2016.09.002

Mezura-Montes E, Palomeque-Ortiz AG (2009) Self-adaptive and
deterministic parameter control in differential evolution for con-
strainedoptimization. In:Constraint-handling in evolutionaryopti-
mization, pp 95–120, https://doi.org/10.1007/978-3-642-00619-
7_5

Mohamed A, Oliva D, Suganthan P (2022) Handbook of nature-
inspired optimization algorithms: the state of the art: Volume II:

solving constrained single objective real-parameter optimization
problems. Studies in systems, decision and control, Springer Inter-
national Publishing https://doi.org/10.1007/978-3-031-07516-2

Nama S, Sharma S, Saha AK, Gandomi AH (2022) A quantum
mutation-based backtracking search algorithm. Artif Intell Rev
55(4):3019–3073. https://doi.org/10.1007/s10462-021-10078-0

Nebro AJ, Luna F, Alba E, Dorronsoro B, Durillo JJ, Beham A (2008)
AbYSS: adapting scatter search to multiobjective optimization.
IEEETrans Evol Comput 12(4):439–457. https://doi.org/10.1109/
tevc.2007.913109

Okabe T, Jin Y, Sendhoff B (2003) A critical survey of performance
indices for multi-objective optimisation. In: The 2003 congress on
evolutionary computation, 2003. CEC ’03, vol 2. IEEE, Canberra,
Australia, pp 878–885, https://doi.org/10.1109/cec.2003.1299759

Ozcelikkan N, Tuzkaya G, Alabas-Uslu C, Sennaroglu B (2022) A
multi-objective agile project planning model and a comparative
meta-heuristic approach. Inf Softw Technol. https://doi.org/10.
1016/j.infsof.2022.107023

PapaG, (2021)Applications of dynamic parameter control in evolution-
ary computation. In, (2021) Genetic and evolutionary computation
conference companion (GECCO ’21 Companion). ACM, Lille,
France, proceedings of the genetic and evolutionary computation
conference companion, DOI 10(1145/3449726):3461435

Parpinelli RS, Plichoski GF, Silva RSD, Narloch PH (2019) A review of
techniques for online control of parameters in swarm intelligence
and evolutionary computation algorithms. Int J Bio-Inspired Com-
put 13(1):1. https://doi.org/10.1504/ijbic.2019.097731

Rahimi I, Gandomi AH, Deb K, Chen F, Nikoo MR (2022) Scheduling
byNSGA-II: reviewandbibliometric analysis. Processes 10(1):98.
https://doi.org/10.3390/pr10010098

Rajabi A,Witt C (2020) Self-adjusting evolutionary algorithms formul-
timodal optimization. In: Proceedings ofGECCO ’20. ACMPress,
Cancun, Mexico, pp 1314–1322, https://doi.org/10.1007/s00453-
022-00933-z

Rechenberg I (1971) Evolutionsstrategie; optimierung technischer sys-
teme nach prinzipien der biologischen evolution. PhD thesis,
Department of Process Engineering, Technical University of
Berlin

Riquelme N, Lucken CV, Barán B, (2015) Performance metrics in
multi-objective optimization. In: 2015 Latin American comput-
ing conference (CLEI). IEEE, Arequipa, Perú,. https://doi.org/10.
1109/clei.2015.7360024

Schaffer JD (1985) Multiple objective optimization with vector evalu-
ated genetic algorithms. In: Proceedings of the 1st international
conference on genetic algorithms. L. Erlbaum Associates Inc.,
Sheffield, UK, pp 93–100

Schott JR (1995) Fault tolerant design using single and multicriteria
genetic algorithm optimization. PhD thesis, Department of Aero-
nautics and Astronautics, Massachusetts Institute of Technology

Sharma S, Khodadadi N, Saha AK, Gharehchopogh FS, Mirjalili S
(2023) Non-dominated sorting advanced butterfly optimization
algorithm for multi-objective problems. J Bionic Eng 20(2):819–
843. https://doi.org/10.1007/s42235-022-00288-9

Smith J, Fogarty T (1996) Self adaptation of mutation rates in a steady
state genetic algorithm. In: Proceedings of 1996 IEEE international
conference on evolutionary computation. IEEE,Nagoya, Japan, pp
318–323, https://doi.org/10.1109/icec.1996.542382

Smith JE, Fogarty TC (1997) Operator and parameter adaptation in
genetic algorithms. Soft Comput 1(2):81–87. https://doi.org/10.
1007/s005000050009

Srinivas N, Deb K (1994) Muiltiobjective optimization using nondom-
inated sorting in genetic algorithms. Evol Comput 2(3):221–248.
https://doi.org/10.1162/evco.1994.2.3.221

Storn R, Price K (1997) Differential evolution: a simple and efficient
heuristic for global optimization over continuous spaces. J Global
Optim 11(4):341–359. https://doi.org/10.1023/a:1008202821328

123

https://doi.org/10.1109/tevc.2014.2308294
https://doi.org/10.1109/tevc.2014.2308294
https://doi.org/10.1109/cec.2002.1007013
https://doi.org/10.1109/cec.2002.1007013
https://doi.org/10.1002/int.22707
https://doi.org/10.1016/j.advengsoft.2022.103185
https://doi.org/10.1016/j.advengsoft.2022.103185
https://doi.org/10.1007/BFb0029752
https://doi.org/10.1016/j.swevo.2020.100777
https://doi.org/10.1109/tevc.2003.816583
https://doi.org/10.1145/3300148
https://doi.org/10.1016/j.matdes.2023.111748
https://doi.org/10.1007/978-3-540-69432-8
https://doi.org/10.1007/978-3-540-69432-8
https://doi.org/10.1007/s00500-021-06223-0
https://doi.org/10.1007/s00500-021-06223-0
https://doi.org/10.1109/cec.2016.7743898
https://doi.org/10.1109/cec.2016.7743898
https://doi.org/10.1016/j.orp.2016.09.002
https://doi.org/10.1016/j.orp.2016.09.002
https://doi.org/10.1007/978-3-642-00619-7_5
https://doi.org/10.1007/978-3-642-00619-7_5
https://doi.org/10.1007/978-3-031-07516-2
https://doi.org/10.1007/s10462-021-10078-0
https://doi.org/10.1109/tevc.2007.913109
https://doi.org/10.1109/tevc.2007.913109
https://doi.org/10.1109/cec.2003.1299759
https://doi.org/10.1016/j.infsof.2022.107023
https://doi.org/10.1016/j.infsof.2022.107023
https://doi.org/10.1504/ijbic.2019.097731
https://doi.org/10.3390/pr10010098
https://doi.org/10.1007/s00453-022-00933-z
https://doi.org/10.1007/s00453-022-00933-z
https://doi.org/10.1109/clei.2015.7360024
https://doi.org/10.1109/clei.2015.7360024
https://doi.org/10.1007/s42235-022-00288-9
https://doi.org/10.1109/icec.1996.542382
https://doi.org/10.1007/s005000050009
https://doi.org/10.1007/s005000050009
https://doi.org/10.1162/evco.1994.2.3.221
https://doi.org/10.1023/a:1008202821328

Self-adaptive polynomial mutation... 17727

Tan K, Chiam S, Mamun A, Goh C (2009) Balancing exploration
and exploitation with adaptive variation for evolutionary multi-
objective optimization. Eur J Oper Res 197(2):701–713. https://
doi.org/10.1016/j.ejor.2008.07.025

Tanabe R, Ishibuchi H (2020) An Analysis of Quality Indicators Using
Approximated Optimal Distributions in a 3-D Objective Space.
IEEE Trans Evol Comput 24(5):853–867

Tanaka M, Watanabe H, Furukawa Y, Tanino T (1995) GA-based deci-
sion support system for multicriteria optimization. In: 1995 IEEE
international conference on systems, man and cybernetics. Intelli-
gent systems for the 21st century, vol 2. IEEE, Vancouver, British
Columbia, Canada, pp 1556–1561, https://doi.org/10.1109/icsmc.
1995.537993

Tinós R, Yang S (2007) Self-adaptation of mutation distribution in
evolutionary algorithms. In: 2007 IEEE congress on evolution-
ary computation. IEEE, Singapore, pp 79–86, https://doi.org/10.
1109/cec.2007.4424457

Veldhuizen DAV, Lamont GB (1998) Evolutionary computation and
convergence to a pareto front. Late-breaking papers book at the
genetic programming 1998 conference (GP-98). Stanford Univer-
sity Bookstore, Winsconsin, pp 221–228

Wang J, LiuY,RenS,WangC,MaS (2023)Edge computing-based real-
time scheduling for digital twin flexible job shopwith variable time
window. Robot Comput Integr Manuf. https://doi.org/10.1016/j.
rcim.2022.102435

Wang S, Ali S, Yue T, Li Y, Liaaen M (2016) A practical guide to select
quality indicators for assessing pareto-based search algorithms
in search based software engineering. In: IEEE/ACM 38th IEEE
international conference on software engineering. IEEE, Austin,
https://doi.org/10.1145/2884781.2884880

Yang S, Uyar S (2006) Adaptive mutation with fitness and allele
distribution correlation for genetic algorithms. In: Proceedings
of the 2006 ACM symposium on Applied computing - SAC
’06. ACM, Dijon, France, pp 940–944, https://doi.org/10.1145/
1141277.1141499

Zeng F, Low MYH, Decraene J, Zhou S, Cai W (2010) Self-adaptive
mechanism for multi-objective evolutionary algorithms. In: Pro-
ceedings of the international multiconference of engineers and
computer scientists pp. 7–12

Zhang J, Chen WN, Zhan ZH, Yu WJ, Li YL, Chen N, Zhou Q
(2012) A survey on algorithm adaptation in evolutionary com-
putation. Front Electr Electr Eng 7(1):16–31. https://doi.org/10.
1007/s11460-012-0192-0

Zhao Z, Liu B, Zhang C, Liu H (2019) An improved adaptive NSGA-
II with multi-population algorithm. Appl Intell 49(2):569–580.
https://doi.org/10.1007/s10489-018-1263-6

ZhouA, JinY, ZhangQ, SendhoffB, TsangE (2006)Combiningmodel-
based and genetics-based offspring generation for multi-objective
optimization using a convergence criterion. In: 2006 IEEE interna-
tional conference on evolutionary computation. IEEE, Vancouver,
pp 892–899, https://doi.org/10.1109/cec.2006.1688406

Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a
comparative case study and the strength Pareto approach. IEEE
Trans Evol Comput 3(4):257–271. https://doi.org/10.1109/4235.
797969

Zitzler E, Deb K, Thiele L (1999) Comparison of multiobjective evolu-
tionary algorithms: empirical results. Evol Comput 8(2):173–195.
https://doi.org/10.1162/106365600568202

Zitzler E, Thiele L, Laumanns M, Fonseca CM, Fonseca VGd (2003)
Performance assessment of multiobjective optimizers: an analysis
and review. IEEE Trans Evol Comput 7(13):117–132. https://doi.
org/10.1109/tevc.2003.810758

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

https://doi.org/10.1016/j.ejor.2008.07.025
https://doi.org/10.1016/j.ejor.2008.07.025
https://doi.org/10.1109/icsmc.1995.537993
https://doi.org/10.1109/icsmc.1995.537993
https://doi.org/10.1109/cec.2007.4424457
https://doi.org/10.1109/cec.2007.4424457
https://doi.org/10.1016/j.rcim.2022.102435
https://doi.org/10.1016/j.rcim.2022.102435
https://doi.org/10.1145/2884781.2884880
https://doi.org/10.1145/1141277.1141499
https://doi.org/10.1145/1141277.1141499
https://doi.org/10.1007/s11460-012-0192-0
https://doi.org/10.1007/s11460-012-0192-0
https://doi.org/10.1007/s10489-018-1263-6
https://doi.org/10.1109/cec.2006.1688406
https://doi.org/10.1109/4235.797969
https://doi.org/10.1109/4235.797969
https://doi.org/10.1162/106365600568202
https://doi.org/10.1109/tevc.2003.810758
https://doi.org/10.1109/tevc.2003.810758

	Self-adaptive polynomial mutation in NSGA-II
	Abstract
	1 Introduction
	2 Background and related work
	2.1 Multi-objective optimization concepts
	2.2 Parameter tuning and control
	2.3 Quality indicators
	2.3.1 Hypervolume
	2.3.2 Generalized spread
	2.3.3 Modified inverted generational distance

	3 From static to self-adaptive polynomial mutation in NSGA-II
	3.1 NSGA-II
	3.2 Static polynomial mutation
	3.3 Novel self-adaptive polynomial mutation

	4 Experimental evaluation
	4.1 Test problems
	4.2 Algorithm execution
	4.3 Results
	4.3.1 Hypervolume results
	4.3.2 IGD+ results
	4.3.3 Generalized spread results
	4.3.4 Tests summary

	5 Conclusions and future work
	References

