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Abstract
A differential evolution (DE) algorithm with superior-inferior mutation scheme (SIDE) is proposed to solve global

optimization problems over continuous space. Firstly, a superior-inferior mutation scheme is introduced based on the

superior individual and inferior individual. Secondly, the dynamic adjustment strategy of exploration factor for balancing

superior individual and inferior individual is proposed, which indicates how much weight to place on local exploitation and

global exploration. They are integrated to DE in different milestones of optimization to balance exploration and

exploitation of the search space and can alleviate the premature convergence. In order to verify the performance of SIDE, a

set of numerical experiments on 32 benchmark functions are executed for performance comparison with 8 advanced DE

variants and 4 non-DE-based algorithms for 30, 50 and 100 variables. The experimental results indicate that SIDE is much

better than compared DE algorithms in terms of optimization quality. Furthermore, SIDE has the best adaptability to high

dimensional problems.
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1 Introduction

Differential evolution (DE) is one of the most popular and

efficient meta-heuristic optimization algorithms, which is

proposed by Storn and Price (1995). It is very popular due

to its simplicity and efficient convergence, and it has

gained much success in a series of real applications, such

as training neural network (Arce et al. 2018), object

tracking (Nenavath et al. 2018) and other research and

engineering fields. However, slow convergence rate and the

loss of the diversity at the later stage of evolution are the

key factors restricting the search performance, which

makes DE algorithm get trapped in the local optimum and

suffer the premature convergence. In recent years, many

variants of DE algorithm have been put forward, which can

mainly be categorized into the following 5 types:

(1) Mutation strategies, which design new mutation

strategies to guide the search process (Gong et al.

2013; Tang et al. 2017; Zheng et al. 2017; Cui et al.

2018; Sun et al. 2018; Zhang et al. 2019; Mohamed

et al. 2019; Nadimi-Shahraki et al. 2020; Tan and Li

2021; Liu et al. 2021; Yu et al. 2021) or assemble

different mutation operators based on the advantages

of different mutation modes (Qin et al. 2009; Wang

et al. 2011; Mallipeddi et al. 2011; Wu et al. 2016;

Wu et al. 2018; Wei et al. 2019; Li et al. 2020a;

Zhang et al. 2021a; Hu et al. 2021). Gong et al.

(2013) proposed ranking-based mutation operators.

Tang et al. (2017) presented a novel decentralizing

and coevolving differential evolution (DCDE) algo-

rithm. A novel ‘‘DE/current-to-SP-best-ring/1’’

mutation operation is also proposed in DCDE.

Moreover, some researchers combined various
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mutation strategies based on the advantages of

different mutation modes. Zheng et al. (2017)

proposed a collective information-powered DE

(CIPDE), a collective individual contained in the

mutation operator of which is a linear combination of

m individuals with optimal fitness values. Cui

et al.(2018) put forward an adaptive multiple-elites-

guided composite differential evolution algorithm

with a shift mechanism (AMECoDEs). Sun

et al.(2018) proposed a novel variant of DE with

an individual-dependent mechanism that includes an

individual-dependent parameter setting and an indi-

vidual-dependent mutation strategy. Zhang et al.

(2019) proposed a multi-layer competitive-coopera-

tive (MLCC) framework to facilitate the competition

and cooperation of multiple DEs. Mohamed et al.

(2019) proposed the DE variants (EBDE,

EBSHADE), in which three different individuals

were ranked to participate in mutations, the differ-

ence being that the former’s individuals were

randomly selected from the top p individuals and

from the entire population, while the latter three

individuals were all randomly chosen from the

population. Nadimi-Shahraki et al. (2020) proposed

an effective metaheuristic algorithm named multi-

trial vector-based differential evolution (MTDE),

which combined different search strategies in the

form of trial vector producers. Tan and Li (2021)

presented a mixed mutation strategy DE algorithm

based on deep Q-network (DQN), named DEDQN,

in which a deep reinforcement learning approach

realized the adaptive selection of mutation strategy

in the evolution process. Liu et al. (2021) proposed a

niching differential evolution algorithm (NDE),

which incorporated niching methods into differential

evolution algorithm. Yu et al. (2021) presented a

differential evolution algorithm based on the knee

point (named DEAKP), in which the knee solution

would guide the search direction of the algorithm.

Qin et al. (2009) proposed a self-adaptive DE

algorithm (SaDE). Wang et al. (2011) introduced a

Composite Differential Evolution algorithm (CoDE).

Mallipeddi et al. (2011) employed an ensemble of

mutation strategies and control parameters with the

DE (EPSDE). Wu et al. (2016) proposed a multi-

population ensemble DE (MPEDE). Wu et al. (2018)

focused on the high-level ensemble of different DE

variants and proposed a new algorithm named

EDEV. Wei et al.(2019) proposed a random pertur-

bation modified differential evolution algorithm

(PRMDE), which contained a new ‘‘DE/M_pBest-

best/1’’ mutation operator. Li et al. (2020a) proposed

an improved differential evolution algorithm with

dual mutation strategies collaboration (DMCDE), in

which an elite guidance mechanism and a mecha-

nism of dual mutation strategies collaboration were

introduced. Zhang et al. (2021a) put forward a new

strategy adaptation method, named explicit adapta-

tion scheme (Ea scheme), which separated multiple

strategies and employs them on-demand. Hu et al.

(2021) presented a multi-strategy co-evolutionary

approach considering a dynamic adaptive selection

mechanism and the combination of different charac-

teristic mutation strategies.

(2) Control parameters adaption or self-adaption strate-

gies, which mainly focus on the adjustment strategies

of the amplification factor and crossover probability.

Nasimul et al. (2011) proposed a new Adaptive

Differential Evolution algorithm (aDE), which

adjusts the scaling factor (F) and the crossover

probability (CR) adaptively according to the average

fitness of parent population and the fitness of

offspring individual. Ryoji et al. (2013) proposed a

parameter adaptation technique for DE (SHADE)

which uses a historical memory of successful control

parameters to guide the selection of future control

parameters. Gong et al. (2014) proposed a crossover

rate repair technique for the adaptive DE algorithms

(Rcr-JADE) based on successful parameters. Awad

et al. (2016) proposed LSHADE-EpSin to enhance

the performance of L-SHADE algorithm. In addition,

some scholars have proposed adaptive strategies for

the population size (Np). Awad et al. (2018) et al.

proposed ensemble sinusoidal differential evolution

with niching-based population reduction (called

EsDEr-NR). Li et al. (2020b) proposed an enhanced

adaptive differential evolution algorithm (EJADE),

which introduced the crossover rate sorting mecha-

nism and a dynamic population reduction strategy.

(3) Both mutation strategies and control parameters

strategies, which design the new mutation strategy

and novel control parameters strategies simultane-

ously to improve the performance of algorithm. Cai

et al. (2017) presented a neighborhood-adaptive DE

(NaDE). A pool of index-based neighborhood

topologies and a neighborhood-dependent directional

mutation operator are introduced into NaDE. He

et al. (2018) presented a novel DE variant with

covariance matrix self-adaptation (DECMSA). Wang

et al. (2017) proposed a self-adaptive differential

evolution algorithm with improved mutation mode

(IMMSADE) by improving ‘‘DE/rand/1’’. Ali et al.

(2017) presented adaptive guided differential evolu-

tion algorithm (AGDE). Ali et al. (2018) proposed an

enhanced fitness-adaptive differential evolution algo-

rithm with novel mutation (EFADE). Zhang et al.
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(2020) proposed an explicit exploitation and explo-

ration capabilities (EEC) control method named

selective-candidate framework with similarity selec-

tion rule (SCSS). Xu (2020) presented a novel dual-

population adaptive differential evolution (DPADE)

algorithm, in which a dual-population framework

was employed and an adaptive technology was

adopted to adjust two important control parameters

and avoid the inappropriate parameters. Tian et al.

(2020) proposed a high-performance DE (PDE)

algorithm guided by information from individuals

with potential. At each generation, the selection

probability of each strategy in the strategy pool was

determined by the strategy’s contribution to the

improvement in fitness values. Zhang et al. (2021b)

proposed a new multi-objective dynamic differential

evolution algorithm with parameter self-adaptive

strategies, named SA-MODDE. All components of

the algorithm were synergically designed to reach its

full potential, containing parental selection, mutation

strategy, parameter setting, survival selection, con-

straint handling, and termination criteria.

(4) Crossover strategies, which try to expand the search

areas to keep the diversity of population. Guo et al.

(2015) proposed a crossover operator utilizing

eigenvectors of covariance matrix. Xu et al. (2015)

proposed the superior-inferior crossover scheme. Cai

et al. (2015) proposed hybrid linkage crossover.

Ghosh et al. (2017) proposed the optional blending

crossover scheme. Qiu et al. (2017) proposed a

multiple exponential recombination.

(5) Hybrid mechanisms, which mainly study the advan-

tages of various evolutionary algorithms and have

proposed hybrid algorithms of DE and other EAs. Li

et al. (2012) proposed a new hybrid algorithm, called

as differential evolution algorithm (DE)/artificial bee

colony algorithm (ABC). Vaisakh et al. (2013) came

up with a hybrid approach involving Differential

Evolution (DE) and BFOA algorithm. Ponsich et al.

(2013) hybridized DE with Tabu Search (TS). Le

et al. (2013) merged differential evolution and

harmony search. Nenavath et al. (2018) proposed a

hybrid sine–cosine algorithm with differential evo-

lution algorithm (Hybrid SCA-DE). Myszkowski

et al. (2018) presented a hybrid Differential Evolu-

tion and Greedy Algorithm (DEGR). Wang et al.

(2019) proposed a self-adaptive mutation differential

evolution algorithm based on particle swarm opti-

mization (DEPSO). Yildizdan and Baykan (2020)

used the bat algorithm (MBA) algorithm in conjunc-

tion with the DE algorithm. Nguyen-Van et al.

(2021) proposed a novel optimization algorithm as a

cross-breed of the DE and the symbiotic organisms

search (SOS). Houssein et al. (2021) proposed a

hybrid algorithm: SMA combined to Adaptive

Guided Differential Evolution Algorithm (AGDE)

(SMA-AGDE). An opposition-based hybrid discrete

optimization algorithm that a discrete and Opposi-

tion-Based Learning (OBL) version of the Moth-

Flame Optimization (MFO) combined with the

Differential Evolution (DE) algorithm was proposed

by Ahmed et al. (2021). Chakraborty et al. (2021)

presented a modified Whale optimization with the

success history-based adaptive differential evolution

(SHADE-WOA). The differential evolution and sine

cosine algorithm based novel hybrid multi-objective

evolutionary optimization methods were proposed by

Altay and Alatas (2021).Although many kinds of DE

variants have been proposed to improve the global

optimization performance, they are still unavoidable

for getting trapped in the local optima, especially for

the complex problems, such as the problem with a

very narrow valley from local optimum to global

optimum, etc. Finding a proper balance between

exploration and exploitation is the most challenging

task in the development of any meta-heuristic

algorithm due to the stochastic nature of the

optimization process. In order to further balance

the local exploitation and global exploration ability

of DE, a differential evolution with superior-inferior

mutation scheme (SIDE) is proposed.

The rest of the paper is structured as follows. Section 2

describes the background materials of DE. Section 3 is

devoted to the proposed SIDE algorithm. Section 4 per-

forms numerical experiments and comparisons using 32

benchmark functions of different properties, comparing

with 8 DE variants and 4 non-DE-based algorithms.

Finally, Sect. 5 presents the conclusions and future work.

2 Background materials of DE

DE is a population-based meta-heuristic global optimiza-

tion algorithm and a competitive evolutionary algorithm

(EA), especially in solving complex numerical optimiza-

tion problems. Similar to the other evolution algorithms,

DE also utilizes mutation, crossover and selection opera-

tors. For D-dimensional minimum optimization problems:

min f ðx1; :::; xDÞ
xj 2 ½xLj ; xUj �; 8j ¼ 1; . . .;D

�
ð1Þ

where xLj and xUj are respectively the lower bound and

upper bound of xj.
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2.1 Mutation

A mutant vector Vi for each vector (called target vector

here) is obtained by mutation operator based on scaling

differences between randomly selected elements of the

population to another element. There are many mutation

operators available, and the classical one is ‘‘DE/rand/2’’:

Vt
i ¼ Xt

r1 þ F � ðXt
r2 � Xt

r3Þ þ F � ðXt
r4 � Xt

r5Þ ð2Þ

where F 2 ½0; 2� is the scaling factor, i ¼ f1; 2; . . . ;Npg,

Np is the population size, t is the generation number, Vt
i is

the mutant vector, r1; r2; r3; r4; r5 2 f1; 2; :::;Npgnfig are

randomly generated, and r1 6¼ r2 6¼ r3 6¼ r4 6¼ r5.

2.2 Crossover

A trial vector can be constructed by performing crossover

operator between a mutant vector and its associated target

vector. The diversity of the population can be increased to

expand the search area. The most commonly used binomial

crossover constructs the trial vector in a random manner, as

is described in Eq. (3).

Ut
i;j ¼

Vt
i;j if randð0; 1Þ�CR or j ¼ jrand

Xt
i;j others

�
ð3Þ

where CR is the crossover probability in [0,1]. jrand is

randomly chosen from the set f1; 2; . . . ; Dg, which

guarantees that Ut
i has at least one component from Vt

i .

2.3 Selection

The selection operator determines the survival of the better

one between the target vector and the trial vector to the

next generation. DE adopts a greedy strategy to determine

whether the trial vector or the old target vector survives to

the next generation. If and only if the trial vector Ut
i yields

a better fitness value than the old target vector Xt
i , then Xtþ1

i

is updated by the trial vector Ut
i . Otherwise, the old target

vector Xt
i remains unchanged. The detailed selection

scheme is as follows:

Xtþ1
i ¼ Ut

i f ðUt
i Þ\f ðXt

iÞ
Xt
i others

�
ð4Þ

3 SIDE algorithm

3.1 Superior-Inferior mutation scheme

The population diversity decreases rapidly, which leads to

the failure of the clustered individuals to reproduce better

individuals. Meanwhile, original DE has the weak local

convergence ability. To further improve the local

exploitation capability and global exploration capability of

DE, a superior-inferior mutation scheme is proposed.

In superior-inferior mutation scheme, the superior indi-

viduals mainly guide the promising searching direction,

and the inferior individuals can maintain population

diversity in the evolution process. They have different

effect to the mutation vector in the different milestones of

optimization. The former increases emphasis on local

search speeds up convergence without sacrificing the glo-

bal properties of the algorithm; the latter is used to prevent

the algorithm from becoming too local in its orientation,

wasting precious function evaluations in pursuit of extre-

mely small improvements.

The proposed superior-inferior mutation scheme is

shown in Eq. (5).

Vt
i ¼ xt

i 1 � Xt
best þ ct � xt

i 2 � Xt
worst þ F � ðXt

superior � Xt
iÞ

þ ct � xt
i 2 � ðXt

inferior � Xt
iÞ

ð5Þ

where t is the generation counter, Xt
best and Xt

worst are

respectively the best individual and worst individual at the

current generation. Xt
superior and Xt

inferior are respectively the

superior individual and inferior individual. Xt
superior, X

t
inferior

and Xt
i are distinct individuals. The fitness value of Xt

superior

is better than the parent vector Xt
i , and the fitness value of

Xt
inferior is worse than the fitness of parent vector Xt

i . x
t
i 1

and xt
i 2 serve as a relative weight on local versus global

search. if f ðXt
iÞ[ fmean, xt

i 1 ¼ 1, xt
i 2 ¼ 0, otherwise,

xt
i 1 ¼ 0, xt

i 2 ¼ 1. f ðXt
iÞ is the fitness value of Xt

i , fmean is

the mean fitness value. The larger xt
i 1 is, the higher the

relative emphasis puts on local search is. The larger xt
i 2

is, the higher the relative emphasis puts on global search is.

ct is the exploration factor, which also controls the relative

emphasis putting on global search.

As far as the fitness value is concerned, the larger the

better. The individuals are sorted in descending order

according to the fitness of individuals. After fitness sorting,

the top individual is the best, and the bottom individual is

the worst. For the ith individual Xt
i , it is the kth individual

after sorting in Fig. 1. In our mutation scheme, Xt
superior is

chosen from the superior set fX1; . . . ; Xk�1g randomly,

and Xt
inferior is randomly chosen from the inferior set

fXkþ1; . . . ; XNp
g .

3.2 Dynamic adjustment strategy of exploration
factor c

Population-based meta-heuristic optimization algorithms

share a common feature regardless of their nature. The

optimization process can be divided to two phases:

17660 M. Duan et al.
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exploration versus exploitation. In the exploration phase,

searching the promising regions of the search space with a

high rate is important. While, in the exploitation phase,

random variations are considerably less than those in the

exploration phase, which leads to lower the population

diversity. Based on the above evolutionary property, to

make full use of the role of the superior individual and the

inferior individual, dynamic adjustment strategies of

exploration factor are adopted.

Inferior individual is mainly used to improve the

diversity at the later stage of evolution. Therefore, the

exploration factor is adjusted dynamically according to

sine curve with the generations.

ct ¼ sinððt=TÞ2Þ ð6Þ

The dynamic adjustment curve of exploration factor are

shown in the Fig. 2, which take 1000 iterations as an

example.

The flow diagram of SIDE is illustrated in Fig. 3.

A detailed description of proposed SIDE algorithm is

presented in Algorithm 1.

Fig. 1 Superior-inferior mutation scheme
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4 Numerical experiments and comparisons

4.1 Experiments setup

As shown in Table 1, a total of 32 benchmark test functions

from literature (Suganthan et al. 2005; Liang et al. 2013;

Awad et al. 2017) are used to perform performance com-

parison. The properties are as follows: f1–f10 and f13 are

unimodal functions, f11 is step function, f12 is noise func-

tion, and others are multimodal functions.

Fig. 2 The adjustment curve of

exploration factor

...
...

Fig. 3 The flow diagram of

SIDE
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4.2 Time complexity

The time complexity is calculated as described in

(Suganthan et al. 2005). The codes are implemented in

Matlab 2015a and run on a PC with an Intel (R) Core (TM)

i5-6500 CPU (3.20 GHz) and 8 GB RAM. The algorithm

complexity at D = 10:10:200 is plotted in Fig. 4. In Fig. 4,

T0 denotes the running time of the following program:

for i ¼ 1 : 1000000

x ¼ ðdoubleÞ5:55;

x ¼ xþ x; x ¼ x:=2; x ¼ x � x; x ¼ sqrtðxÞ;
x ¼ lnðxÞ; x ¼ expðxÞ; y ¼ x=x;

end

T1 is the computing time just for Elliptic function for

200,000 evaluations at a certain dimension D. T2 is the

complete computing time for the algorithm with 200,000

evaluations of D dimensional Elliptic Function. T2 is

evaluated five times, and bT 2 is used to denote the mean T2.

At last, the complexity of the algorithm is reflected by: T0,

T1, bT 2, ð bT 2 � T1Þ=T0.

4.3 Comparison with 8 DE variants and 4 non-
DE-based algorithms

In order to verify the performance of proposed SIDE, SIDE

was compared with 8 advanced DE algorithms which have

been reported to have good performance, including

MLCCDE (Zhang et al. 2019), EBDE (Mohamed et al.

2019), EDEV (Wu et al. 2018), EsDEr-NR (Awad et al.

2018), EJADE (Li et al. 2020b), IMMSADE (Wang et al.

2017), EFADE (Ali et al. 2018), DEPSO (Wang et al.

2019).

• MLCCDE and EBDE are DEs with new mutation

strategies.

• EDEV is a composite DE with multiple mutation

strategies and control parameters.

• EsDEr-NR, EJADE, IMMSADE and EFADE are DEs

with an improved mutation strategy and adaptive

control parameters.

• DEPSO is a hybrid algorithm of DE and particle swarm

optimization (PSO).

• SIDE is also compared with 4 non-DE-based algo-

rithms, including Multi-Verse Optimizer (Mirjalili et al.

2016), Dragonfly algorithm (Mirjalili 2016), Gaining

Sharing Knowledge (Ali et al. 2020) and Flow Direc-

tion Algorithm (Karami et al. 2021).

• Multi-Verse Optimizer (MVO) is proposed based on

three concepts in cosmology: white hole, black hole,

and wormhole.

• Dragonfly algorithm (DA): The main inspiration of DA

originates from the static and dynamic swarming

behaviour of dragonflies in nature.

• Gaining Sharing Knowledge (GSK) mimics the process

of gaining and sharing knowledge during the human life

span.

• Flow Direction Algorithm (FDA) mimics the flow

direction to the outlet point with the lowest height in a

drainage basin.

In our experiments, for all the compared algorithms,the

associated control parameters are kept the same as the

settings in their original papers, which is shown in Table 2.

F = 0.1 and CR = 0.9 are set in SIDE.

To have a reliable and fair comparison, the other com-

mon parameters are setting as follows: the population size

is set as Np = 100, the maximum generation is set to

T = 1000 and 30 independent runs are conducted.

4.3.1 Numerical analysis

In this subsection, the numerical results obtained by pro-

posed SIDE are compared with other 12 state-of-the-art

algorithms. In the following comparisons, we adopt the

solution error (f ðxÞ � f ðx�Þ) to evaluate the optimization

performance, where x is the best solution obtained by

algorithms in one run, x� is the global optimum. The Mean

and Standard Deviation (STD) of the solution error value

are summed up in Tables 3, 4 and 5.

From Tables 3, 4 and 5, SIDE performs better than many

compared algorithms and can obtain the global optimal

solution on most of test functions, including unimodal

functions (f1 - f2, f6 - f8, f10 - f11 and f13) and multi-

modal functions (f14 - f16, f17 - f18, f13, f24, f26, f28 and f30)

in all dimensions. Especially, Rastrigin function (f14) has

several local minima and it is highly multimodal; Grie-

wank’s function (f15) has a component that causes linkage

among the dimensions; Ackley function (f18) is character-

ized by a nearly flat outer region and a large hole at the

center; Non-Continuous Rastrigin’s Function (f28) is multi-

modal, non-separable and asymmetrical function and the

local optima’s number is huge. For these functions, DE is

easy to suffer from premature convergence to be trapped in

one of its many local minima. However, SIDE can find the

global optimal solution on f14, f15, f18 and f28. The reason is

that the superior-inferior mutation strategy and the

dynamic adjustment strategy of exploration factor assist

SIDE in realizing a better balance between local

exploitation and global exploration. SIDE can maintain

larger diversity to yield better performance. For noise

quadric function f12, EJADE, EsDEr-NR and MLCCDE are

the best at D = 30, D = 50 and D = 100, respectively.

Rosenbrock function (f19) have global optimum lays inside

A differential evolution algorithm with a superior-inferior mutation scheme 17663
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Table 1 Benchmark test functions

Name Functions Domain fmin

Sphere f1ðxÞ ¼
PD

i¼1 x
2
i

[- 100,

100]D
0

Schwefel 1.2 f2ðxÞ ¼
PD

i¼1 ð
Pi

j¼1 xjÞ
2 [- 100,

100]D
0

Elliptic f3ðxÞ ¼
PD

i¼1 ð106Þ
i�1
N�1x2

i
[- 100,

100]D
0

Schwefel 2.22 f4ðxÞ ¼
PD

i¼1 jxij þ
QD

i¼1 jxij [- 10, 10]D 0

Schwefel 2.21 f5ðxÞ ¼ maxfjxij; 1� i�Dg [- 100,

100]D
0

SumSquares f6ðxÞ ¼
PD

i¼1 ix
2
i

[- 10, 10]D 0

Exponential f7 xð Þ ¼ � exp �0:5
PD

i¼1 x
2
i

� �
[- 1, 1]D - 1

Tablet f8ðxÞ ¼ 106x2
1 þ

PD
i¼2 x

2
i

[- 100,

100]D
0

Zakharov f9ðxÞ ¼
PD

i¼1 x
2
i þ ð

PD
i¼1 0:5ixiÞ2 þ ð

PD
i¼1 0:5ixiÞ4 [- 5, 10]D 0

Bent Cigar f10ðxÞ ¼ x2
1 þ 106

PD
i¼2 x

2
i

[- 100,

100]D
0

Step f11ðxÞ ¼
PD

i¼1 ðjxi þ 0:5jÞ2 [- 100,

100]D
0

Noise quartic f12ðxÞ ¼
PD

i¼1 ix
4
i þ rand½0; 1Þ [- 1.28,

1.28]D
0

SumPower f13ðxÞ ¼
PD

i¼1 jxij
ðiþ1Þ [- 1,1]D 0

Rastrigin f14ðxÞ ¼
PD

i¼1 ðx2
i � 10 cosð2pxiÞ þ 10Þ [- 5.12,

5.12]D
0

Griewank f15ðxÞ ¼
PD

i¼1 x
2
i =4000 �

QD
i¼1 cosðxi=

ffiffi
i

p
Þ þ 1 [- 600,

600]D
0

Scaffer’s F6
f16ðxÞ ¼

PD
i¼1 ð0:5 þ sin2ð

ffiffiffiffiffiffiffiffiffiffiffiffi
x2
i þx2

iþ1

p
Þ�0:5

ð1þ0:001ðx2
i þx2

iþ1
ÞÞ2ÞxDþ1 ¼ x1

[- 0.5,

0.5]D
0

Salomon
f17ðxÞ ¼ 1 � cosð2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPD
i¼1 x

2
i

q
Þ þ 0:1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPD
i¼1 x

2
i

q
[- 100,

100]D
0

Ackley
f18ðxÞ ¼ 20 þ e� 20 expð�0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPD
i¼1 x

2
i =D

q
Þ � expð

PD
i¼1 cosð2pxiÞ=DÞ [- 32, 32]D 0

Rosenbrock f19 ¼
PD�1

i¼1 ð100ðx2
i � xiþ1Þ2 þ ðxi � 1Þ2Þ [- 100,

100]D
0

Scaffer2 f20ðxÞ ¼
PD

i¼1 ðx2
i þ x2

iþ1Þ
0:25ðsinð50ðx2

i þ x2
iþ1Þ

0:1Þ þ 1Þ [- 100,

100]D
0

Modified Schwefel f21ðxÞ ¼ 418:9829 � D�
XD

i¼1
gðziÞ; zi ¼ xi þ 4:20968746227503eþ 002

gðziÞ ¼

zi sinðjzij1=2Þ if jzij\500

ð500 � modðzi; 500ÞÞ sinð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j500 � modðjzij; 500Þj

p
Þ � ðzi � 500Þ2

1000D
if zi [ 500

ðmodðzi; 500Þ � 500Þ sinð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j mod ðjzij; 500Þ � 500j

p
Þ � ðzi � 500Þ2

1000D
if zi\� 500

8>>>>>><
>>>>>>:

[- 100,

100]D
0

HappyCat
f23ðxÞ ¼

PD
i¼1 x

2
i

� �2�
PD

i¼1 xi
� �2

��� ���1=2

þ 0:5
PD

i¼1 x
2
i þ

PD
i¼1 xi

� �
=Dþ 0:5

[- 100,

100]D
0

HGBat f23ðxÞ ¼ jð
PD

i¼1 x
2
i Þ

2 � ð
PD

i¼1 xiÞ
2j1=2 þ ð0:5

PD
i¼1 x

2
i þ

PD
i¼1 xiÞ=Dþ 0:5 [- 100,

100]D
0

Weierstrass f24ðxÞ ¼
XD

i¼1
ð
Xkmax

k¼0
½ak cosð2pbkðxi þ 0:5ÞÞ�Þ � D

Xkmax

k¼0
½ak cosð2pbk � 0:5Þ�;

a ¼ 0:5; b ¼ 3; kmax ¼ 20

[- 100,

100]D
0

Katsuura
f25ðxÞ ¼ 10

D2

QD
i¼1

ð1 þ i
P32

j¼1

j2 jxi�roundð2 jxiÞj
2 j Þ

10

D1:2 � 10
D2

[- 100,

100]D
0

E_ScafferF6 f26ðxÞ ¼ f16ðx1; x2Þ þ � � � þ f16ðxD�1; xDÞ þ f16ðxD; x1Þ [- 5, 5]D 0
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a long, narrow, parabolic shaped flat valley, and it is

challenging to find the global optimum. For f19, EJADE is

the best at D = 30 and D = 50, and IMMSADE is the best

at D = 100. Happy Cat function (f22) and HGBat function

are multimodal and non-separable functions. For Happy

Cat function (f22), MLCCDE is best in all dimensions.

Griewank’s function has a component that causes linkage

among the dimensions and Rosenbrock function is very

complex, therefore, expanded Griewank’s plus Rosen-

brock’s function (f27) will be difficult to reach the global

optimum. For f27, DEPSO is best in all dimensions. The

Schaffer’s F7 function (f32) is non-separable, asymmetrical

and the local optima’s number is huge. For f32, SIDE is the

best in all dimensions.

The number of the best and the second best solution

error results are listed in Fig. 5. From Fig. 5, SIDE has

outstanding performance on most of test functions. SIDE

obtains 23 best results out of 32 functions at D = 30, while

MLCCDE, EBDE, EDEV, EsDEr-NR, EJADE,

IMMSADE, EFADE, DEPSO, MVO, DA, GSK and FDA

obtain 6, 1, 5, 4, 3, 6, 1, 8, 0, 0, 4 and 2 functions,

respectively. SIDE keeps this obvious advantage in both

50-D and 100-D problems. However, for other compared

algorithms, even for the 30-D dimensions, DEPSO only

obtains at most in 8 out of 32 functions.

To further show the performance clearly, we summarize

the number of the global optimum graphically in Fig. 6.

From the histogram in Fig. 6, for the 30-D dimensions,

SIDE obtains 18 global optimums (8 unimodal func-

tions ? 10 multi-modal functions), MLCCDE, EBDE,

EDEV, EsDEr-NR, EJADE, IMMSADE, EFADE, DEPSO,

MVO, DA, GSK and FDA only obtain 5 (2 ? 3), 0

(0 ? 0), 5 (2 ? 3), 3 (1 ? 2), 1 (1 ? 0), 6 (2 ? 4), 1

(1 ? 0), 7 (2 ? 5), 0 (0 ? 0), 0 (0 ? 0), and 1 (0 ? 1) out

of 32functions, respectively. SIDE keeps this obvious

advantage in both 50-D and 100-D problems. It is

obviously that the performance superiority of IDE becomes

gradually more significant with the increase of the prob-

lems’ dimension.

In order to illustrate the distribution of the results of

each algorithm, the box plots of function solutions of all

the algorithms on 6 functions (1 unimodal function and 5

multimodal functions) for the 30-D and 100-D dimensions

are depicted in Fig. 7, respectively. It can be seen that

SIDE has more concentrated solution error values and

fewer outliers compared with other algorithms. Therefore,

it can be concluded that SIDE performs more stable than

other algorithms on these problems.

Based on the above analysis, it is clear that the proposed

SIDE performs well and it has a high exploitation ability

and high performance in finding the global solution.

4.3.2 Convergence analysis

The Mean Number of Evolution Generations (MNEG)

required to reach the specified convergence precision and

the Success Rate (SR) are adopted to analyze the conver-

gence properties. In our experiments, the specified con-

vergence precision is set as 10–8. The MNEG and SR

obtained by SIDE, 8 DE variants and 4 non-DE-based

algorithms are described in Tables 6, 7 and 8, where ‘‘N/

A’’ denotes Not Applicable. For some functions, all the

algorithms cannot reach the specified convergence preci-

sion, so the MNEG and SR of these functions are omitted

in the following tables.

From Tables 6, 7 and 8, we obvious that the MNEG of

SIDE is much less than its competitors and the success rate

is 100% on f1*f11, f13*f18, f20, f24, f26 and f28*f30 for all

dimensions. It also can be seen that the SIDE has the better

performance of convergence rate and outperformed some

of other algorithms in terms of stability of solutions. The

reasons are as follows: On one hand, the superior

Table 1 (continued)

Name Functions Domain fmin

Griewank ? Rosenbrock f27ðxÞ ¼ f15ðf19ðx1; x2ÞÞ þ � � � f15ðf19ðxD�1; xDÞÞ þ f15ðf19ðxD; x1ÞÞ [- 3, 1]D 0

NCRastrigin
f28 ¼

PD
i¼1 ½y2

i � 10 cosð2pyi þ 10Þ�; yi ¼
xi; jxij\0:5

roundð2xiÞ=2; jxij � 0:5

(
[- 5.12,

5.12]D
0

Apline f29 ¼
PD

i¼1 jxi sin xi þ 0:1xij [- 10, 10]D 0

Bohachevsky_2 f30 ¼
PD�1

i¼1 ½x2
i þ 2x2

iþ1 � 0:3 cosð3pxiÞ cosð3pxiþ1Þ þ 0:3� [- 100,

100]D
0

Levy f31 ¼ sin2 pw1ð Þ þ
PD�1

i¼1 wi � 1ð Þ2
1 þ 10 sin2 pwi þ 1ð Þ
� �

þ wD � 1ð Þ2
1 þ sin2 2pwDð Þ
� �

wi ¼ 1 þ xi�1
4

; 8i ¼ 1; . . .;D

[- 100,

100]D
0

Schwefel’s_F7
f32 ¼ 1

D�1

PD�1
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
i þ x2

iþ1

� �0:5
q

sin 50:0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
i þ x2

iþ1

� �q 0:2

þ 1

	 
	 
	 
� �2 [- 100,

100]D
0
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individuals guide the promising searching direction, so

convergence rate will be faster. On the other hand, the

dynamic adjustment strategy of exploration factor realizes

a better balance of exploration and exploitation, hence

SIDE can obtain the better optimization results in most of

functions and has the better reliability. Based on the

superior-inferior mutation scheme and the dynamic

adjustment strategy of exploration factor, the proposed

SIDE can better alleviate the premature convergence.

4.3.3 Non-parametric statistical tests

An performance comparison between SIDE and other 12

state-of-the-art algorithms is provided in the above com-

parisons. To further compare and analyze the solution

quality from a statistical angle of different algorithms and

to check the behavior of the stochastic algorithms, the

results are compared using the following non-parametric

statistical tests (Derrac et al. 2011):

(1) Wilcoxon signed-rank test (to check the differences

for each function);

(2) The Friedman test and Kruskal_Wallis test (to obtain

the final rankings of different algorithms for all

functions);

(3) Wilcoxon rank-sum test (to check the differences

between SIDE and compared algorithms for all

functions).

Wilcoxon’s signed-rank test results at the 0.05 signifi-

cance level for each function are shown in Fig. 8. Signs

‘‘ ? ’’, ‘‘-’’ and ‘‘&’’ indicate the number of functions

that SIDE is better than, worse than and similar to its

competitor, respectively. The Friedman test and Kruskal–

Wallis test results are plotted in Fig. 9. Wilcoxon’s rank-

sum test results are listed in Tables 9, 10 and 11. In

Tables 9, 10 and 11, R ? denotes the sum of ranks for the

test problems in which the first algorithm performs better

than the second algorithm, and R - represents the sum of

Fig. 4 Time complexity (time in seconds)

Table 2 Parameters setting

Algorithm Parameters

MLCCDE lF ¼ lCR ¼ freq ¼ 0:5;GLS ¼ 250;Npmax ¼ 18 � D;Npmin ¼ 4;H ¼ 5

EBDE p = 0.1, H = 100, MF(1:H) = MCR(1:H) = 0.5, F = randn(MF, 0.1), CR = randn(MCR, 0.1)

EDEV k1 ¼ k2 ¼ k3 ¼ 0:1; k4 ¼ 0:7; ng ¼ 20

EsDEr-NR lF ¼ lCR ¼ freq ¼ 0:5;GLS ¼ 250;Npmax ¼ 18 � D;Npmin ¼ 4

EJADE lF = lCR = 0.5, c = 0.1, p = 0.05, F = randn(lF, 0.1), CR = randn(lCR, 0.1)

IMMSADE s ¼ 0:7; kε 0:7; 1:0½ �;Fε 0:1; 0:8½ �;CRε½0:3; 1:0�
EFADE e ¼ 0:01;CR1ε 0:05; 0:15½ �;CR2ε 0:9; 1:0½ �
DEPSO c1 = c2 = 2, x ε[0.4,0.9], CR ε[0.3,1.0], F ε[0.1,0.8], NSmax = 5, c = 0.001, s = 0.7, SEP = 0.4 � NP

MVO r1 ε[0,1], r2 ε[0,1], r3 ε[0,1], r4 ε[0,1],

DA r0 ¼(xU-xL)/10, Dmax ¼(xU-xL)/10

GSK P = 0.1, kf = 0.5, kr = 0.9, K = 10

FDA a ¼ 100;b ¼ 1

17666 M. Duan et al.
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ranks for the test problems in which the first algorithm

performs worse than the second algorithm. Larger ranks

indicate larger performance discrepancy. ‘‘Yes’’ indicates

that the performance of SIDE is better than its competitor

significantly.

In Fig. 8, SIDE at least outperforms all the compared

DE variants in 17, 18, 18 out of 32 functions significantly

at D = 30, D = 50 and D = 100, respectively.

Figure 9 shows the average ranks of SIDE and other

algorithms according to Friedman test and Kruskal_Wallis

test based on the solution error at D = 30, D = 50 and

D = 100, respectively. No matter low-dimensional prob-

lems or high-dimensional problems, SIDE gets the first

ranking among all algorithms, DEPSO is the second best

for 30, 50 and 100 variables.

From a comparative analysis of the results from

Tables 9, 10 and 11, it can be seen that SIDE obtains higher

R ? values than R - in all the cases. It also can be

observed that SIDE outperforms all the compared DE

variants and non-DE-based algorithms significantly. In

Fig. 5 Number of cases on

which each algorithm performs

the best and the second best in

the comparison

A differential evolution algorithm with a superior-inferior mutation scheme 17673

123



addition, Figs. 7, 8 and Tables 9, 10 and 11 clearly show

that the advantage of SIDE is more prominent as the

number of dimensions increasing.

Overall, from the above analysis and comparisons, the

proposed SIDE is better in term of searching quality, effi-

ciency and robustness. It proves that SIDE greatly keeps

the balance between the local optimization speed and the

global optimization diversity.

4.4 Performance sensitivity to the population
size Np

The impact of the population size Np on the performance of

SIDE is also investigated. SIDE variants with Np = {50,

75, 125, 150, 175, 200, 225, 250} are compared with the

SIDE with Np = 100. Friedman test results are shown in

Fig. 10.

Fig. 6 Number of cases on

which each algorithm obtains

the global optimum in the

comparison

17674 M. Duan et al.
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(c) f21

Fig. 7 Box plots of the result of solution error for functions f5, f14, f21, f26, f28 and f32

A differential evolution algorithm with a superior-inferior mutation scheme 17675
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(e) f28

(f) f32

(d) f26

Fig. 7 continued
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Although SIDE with Np = 200 is best in Fig. 10, there is

no obvious difference in performance in Table 12. In a

word, SIDE is not sensitive to the population size Np.

4.5 Efficiency analysis of proposed algorithmic
component

The proposed algorithm represents a combined effect of

superior-inferior mutation scheme and the dynamic

Table 9 The results of

Wilcoxon rank-sum test at

D = 30 over 30 independent

runs

Comparisons R ? R- p value a = 0.05 a = 0.1

SIDE versus MLCCDE 217 134 5.25E-03 Yes Yes

SIDE versus EBDE 358 170 1.06E-04 Yes Yes

SIDE versus EDEV 214 137 5.96E-03 Yes Yes

SIDE versus EsDEr-NR 255 151 1.67E-03 Yes Yes

SIDE versus EJADE 340 156 2.09E-04 Yes Yes

SIDE versus IMMSADE 228 97 3.15E-03 Yes Yes

SIDE versus EFADE 372 124 1.03E-04 Yes Yes

SIDE versus DEPSO 216 109 1.79E-02 Yes Yes

SIDE versus MVO 469 59 2.22E-07 Yes Yes

SIDE versus DA 502 26 3.35E-09 Yes Yes

SIDE versus GSK 336 99 3.33E-04 Yes Yes

SIDE versus FDA 438 90 2.87E-05 Yes Yes

Table 10 The results of

Wilcoxon rank-sum test at

D = 50 over 30 independent

runs

Comparisons R ? R- p value a = 0.05 a = 0.1

SIDE versus MLCCDE 297 138 1.61E-04 Yes Yes

SIDE versus EBDE 423 105 7.84E-06 Yes Yes

SIDE versus EDEV 299 107 2.20E-04 Yes Yes

SIDE versus EsDEr-NR 367 129 1.18E-05 Yes Yes

SIDE versus EJADE 402 126 1.01E-05 Yes Yes

SIDE versus IMMSADE 269 82 5.49E-04 Yes Yes

SIDE versus EFADE 395 101 3.11E-06 Yes Yes

SIDE versus DEPSO 196 104 1.70E-02 Yes Yes

SIDE versus MVO 479 49 4.34E-08 Yes Yes

SIDE versus DA 503 25 2.06E-09 Yes Yes

SIDE versus GSK 415 81 1.06E-05 Yes Yes

SIDE versus FDA 449 47 4.61E-06 Yes Yes

Table 11 The results of

Wilcoxon rank-sum test at

D = 100 over 30 independent

runs

Comparisons R ? R- p value a = 0.05 a = 0.1

SIDE versus MLCCDE 432 96 1.73E-06 Yes Yes

SIDE versus EBDE 458 70 8.72E-07 Yes Yes

SIDE versus EDEV 457 71 1.00E-06 Yes Yes

SIDE versus EsDEr-NR 461 67 2.10E-07 Yes Yes

SIDE versus EJADE 459 69 8.13E-07 Yes Yes

SIDE versus IMMSADE 357 78 3.88E-05 Yes Yes

SIDE versus EFADE 498 30 1.06E-08 Yes Yes

SIDE versus DEPSO 205 71 3.24E-02 Yes Yes

SIDE versus MVO 503 25 6.01E-09 Yes Yes

SIDE versus DA 501 27 1.74E-09 Yes Yes

SIDE versus GSK 512 16 9.28E-08 Yes Yes
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adjustment strategy of exploration factor c. In order to

investigate the efficiency of the proposed algorithmic

components, some experiments are conducted. Five SIDE

variants with c = {0.2, 0.4, 0.6, 0.8, rand()} have been

compared with the proposed SIDE on 32 benchmark

functions benchmark at D = 30 over 30 independent runs.

Figure 11 shows the rankings of different SIDE variants

of applying Friedman test and Kruskal–Wallis test between

proposed SIDE and other compared five versions. From

Fig. 11, the proposed SIDE is the best, SIDE with c = {0.2,

rand()} is the second best, followed by SIDE with c = {0.4,

0.6, 0.8}. From Table 13, there is no obvious performance

difference between SIDE and the five SIDE variants. But

we can see that proposed SIDE obtains higher R ? values

than R - values in comparison with its other exploration

factor c. It proves that the superior-inferior mutation

scheme has the biggest contribution to SIDE, followed by

the dynamic adjustment strategy of c. It also verifies that

superior-inferior mutation scheme and the dynamic

adjustment strategy of exploration factor balance the

exploration capability and exploitation tendency better.

Fig. 8 The Wilcoxon’s signed-

rank test results with a

significance level of 0.05 over

30 independent runs
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4.6 Adaptability analysis to high-dimensional
problems

Wilcoxon’s signed-rank test is performed to evaluate the

adaptability to high-dimensional problems for each algo-

rithm between its own 30 variables and 100 variables with

the same maximum generation. From the statistical results

in Fig. 12, it is easy to observe that:

(1) The low-dimensional performance of a part of DE

variants is significantly better than high-dimensional

performance for all the test functions, including

EBDE, EsDEr-NR, EFADE, MVO and GSK.

(2) For MLCCDE, EDEV, EJADE and DA, the low-

dimensional performance is better than high-dimen-

sional performance in 31 out of 32 functions.

(3) For SIDE, the low-dimensional performance is better

than, worse than and similar to high-dimensional

performance in 10, 4 and 18 out of 32 functions,

respectively.

We can draw the conclusion that SIDE has the best

adaptability to high-dimensional problems respectively.

4.7 Discussions on SIDE

The SIDE algorithm has a considerable ability to maintain

its convergence rate, improve its diversity as well as

advance its local tendency through a search process. Thus,

the proposed SIDE shows competitive performance in

terms of quality of solution, efficiency, convergence rate

and robustness. The outstanding performance of SIDE

stems from three aspects:

1. In the early stage of evolution, superior individual has

larger weight, and it is used to guide the population

evolving toward the promising solution and improve

local exploitation capability.

2. In the later stage of evolution, inferior individual has

larger weight, and it can expand the search area to

improve population diversity to alleviate the premature

convergence.

3. By adjusting the weight of exploration factor dynam-

ically, there is a better balance between the local

exploitation and global exploration to improve the

global optimization capability of DE.

Fig. 9 Non-parametric test

results over 30 independent runs
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5 Conclusions

In order to further balance the convergence and diversity, a

superior-inferior mutation scheme is proposed in the paper.

Furthermore, novel dynamic weight adjustment strategy of

superior individual and inferior individual are introduced

according to the evolutionary property. Based on the above

experiments, the effectiveness and efficiency of proposed

algorithmic components are verified. Extensive numerical

experiments and comparisons comparing with 8 advanced

DE algorithms and 4 non-DE-based algorithms have

demonstrated the high effectiveness of proposed SIDE. The

advantages of proposed SIDE are more obvious as the

number of dimensions increase.

Fig. 10 The Friedman test

results at D = 30 over 30

independent runs

Table 12 The results of

Wilcoxon’s rank-sum test over

30 independent runs

Comparison R ? R - p value a = 0.05 a = 0.1

SIDE with Np = 200 versus SIDE with Np = 50 51 4 9.62E-01 No No

SIDE with Np = 200 versus SIDE with Np = 75 39 6 9.87E-01 No No

SIDE with Np = 200 versus SIDE with Np = 100 78 13 4.78E-01 No No

SIDE with Np = 200 versus SIDE with Np = 125 37 8 9.87E-01 No No

SIDE with Np = 200 versus SIDE with Np = 150 40 5 9.75E-01 No No

SIDE with Np = 200 versus SIDE with Np = 175 36 9 9.62E-01 No No

SIDE with Np = 200 versus SIDE with Np = 225 41 4 9.49E-01 No No

SIDE with Np = 200 versus SIDE with Np = 250 35 10 9.62E-01 No No

‘‘No’’ indicates that the performance of SIDE with Np = 200 is similar to its competitor

Fig. 11 The Friedman test and Kruskal–Wallis test results at D = 30 over 30 independent runs
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As future work, novel control parameters optimization

strategies will be studied to solve more complex engi-

neering optimization problems. In addition, SIDE will be

applied to various optimization fields, such as carrier air-

craft landing sequencing, etc.
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