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Abstract
The effectiveness of treatment for lung nodules is significantly impacted by early diagnosis of the nodules on CT scans.

Radiologists are aided by the utilization of CAD technologies. The purpose of this paper is to present a methodology for

identifying lung cancer: ‘‘(i) pre-processing, (ii) segmentation, (iii) feature extraction, and (iv) detection.’’ The GF methods

commence with the input image being pre-processed. To segment the pre-processed images, a ‘‘improved cross-entropy-

based active contour segmentation model’’ is implemented. Then, using a CNN that has been optimized, features such as

LBP, entropy, and contrast are computed. The self-adaptive tunicate swarm algorithm (SATSA) is used to optimize CNN

weights. For this study, the LIDC-IDRI dataset was used, and Python was used for experimentation. Because pulmonary

nodules can differ significantly in size, shape, texture, and appearance, it’s crucial to include a wide variety of patterns in

the training dataset. The authors hope to improve the generalization and robustness of the CNN model in identifying lung

nodules by incorporating a large number of patterns. Comparing the CNN ? SATSA model to existing models allowed

researchers to assess its effectiveness in identifying lung nodules. The suggested model’s correctness is demonstrated by its

high recall, false discovery rate, FNR, MCC, FPR, precision, FOR, accuracy, specificity, NPV, FMS, and sensitivity values.
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Abbreviations
AUC Area under curve

NMS Non-maximum suppression

3D Three-dimensional

GGO Ground-glass opacity

FOR False omission rate

DCNN Deep convolutional neural network

FAUC Area under the FROC

CPM Competition performance metric

FP False positive

CT Computed tomographic

GF Gaussian filtering

CN Convolutional network

mAP Mean average precision

I3D Inflated 3D ConvNet

CNNs Convolutional neural networks

NN Neural network

TSCNN Two-stage convolutional neural networks

TP Training percentage

SVM Support vector machine

NPV Net predictive value

2D Two-dimensional

RoI Region of interest

VOI Volume of interest

FPR False positive rate

WOA Whale optimization algorithm

TSA Tunicate swarm algorithm

FNR False negative rate

WTEEB Whale with tri-level enhanced encircling

behaviour

MCC Matthews correlation coefficient

R-CPM Refined competition performance metric

DL Deep learning

FDR False discovery rate

FMS F-measure

SATSA Self-adaptive tunicate swarm algorithm

EHO Elephant herding optimization
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1 Introduction

Nowadays, people are troubled with more diseases, par-

ticularly cancer. As per the predicted report, about 8.9

million people are died from cancer. In this world, every 6

death is due to the lung cancer that makes it as the second

leading reason of death and the most deadly disease is lung

cancer (Xie et al. 2019). The formation of malignant

nodules in the lung or lung lobe is the primary cause of

lung cancer. Early lung nodule diagnosis is more important

(Zuo et al. 2019) to reduce the fatality rate from lung

cancer. Since the nodules are little dots in CT images, the

clinicians require to observe the image individually, which

is a time-consuming task. In the CT consecutive images,

the nodules may exist in four different slices. The nodules

are classified further as part solid, GGO, and solid based on

the different brightness degrees in the CT images (Li et al.

2019; Aresta et al. 2020). However, the GGO nodule is less

clear than the bronchial structures and pulmonary vessels,

and it is illustrated through hazy improved lung attenuation

with no obscuration of the bronchial walls and underlying

vascular markings. The part solid nodule includes both

GGO and solid components that shows the central area of

solid attenuation and the peripheral GGO. Many

researchers have shown that the CAD approaches would

assist the physicians for improving the pulmonary nodules

detection rate. The most significant step in the CAD system

is the nodule screening (Halder et al. 2020). The classifier

and the feature value selection are more important to

maintain the maximum accuracy and sensitivity of the

system.

In this approach, the nodule detection of the applicant

would provide the correct contour and minimize the mis-

judgements (Zhang and Kong 2020; Wang et al. 2020). The

greyscale thresholds are used for the objects with maxi-

mum brightness including the solid nodules and blood

vessels. Furthermore, the image superposition system is

used for improving the GGO quickly with less brightness;

therefore, the candidate points is acquired with a bina-

rization threshold. The contour correction and decreased

noise are removed for facilitating the succeeding classifi-

cations effectively by the morphological disconnects

operation (Cao et al. 2019; Li et al. 2018). The iterative

surface elimination methods and the 3D shape-based fea-

ture descriptors set are implemented for reducing the over-

snatch and to alter the nodule profile associated with pleura

or blood vessels, which enhances the overall sensitivity of

SVM classifiers (Naqi et al. 2019; Veronica 2020).

The lung nodule detection includes two approaches, i.e.

the VOI detection methods promise the maximum sensi-

tivity of the succeeding phases and the classifier approa-

ches to minimize the FPs (Saba et al. 2019). Moreover, the

advance in the research is categorized into three periods. At

the first period, neither the classifiers nor detectors

implanted are based on the NN. The detection approaches

are the threshold-based models like lung segmentation

systems. However, the threshold-based approaches are

more complex than the lung region segmentation approa-

ches for selecting the VOIs since the lung nodules are more

diverse edges and shapes (Feng et al. 2019; Wang et al.

2019). The easy classifiers are trained for determining the

lung nodules obtained in the VOIs chosen. The CNNs

(Arul et al. 2019; Sarkar 2020; Chandanapalli et al. 2019;

Deotale et al. 2020) are employed for reducing the FPs

count in most of the research works. Thus, the detector

approaches and threshold-based were employed in this

period; however, they are more complex (Naqi et al. 2018).

Both the classifiers and detectors are the NN-based

approaches (Fu et al. 2019; Bhagyalakshmi et al. 2018;

Vinolin and Vinusha 2018; Srinivasa Rao et al. 2019). The

major contributions are:

• Introducing an improved cross-entropy-based active

contour segmentation model for segmenting the pre-

processed lung nodule images.

• Proposing a new SATSA model for CNN weight

optimization.

The rest of the paper is arranged as follows. Section 2 of

this essay discusses the review on lung nodule detection.

The overall design of the accepted methodology is

described in Sect. 3. The suggested segmentation method

and image pre-processing are illustrated in Sect. 3.1. In

Sect. 3.2, the feature extraction process for lung nodule

identification is illustrated. The categorization of lung

nodules is shown in Sect. 3.3 using a CNN that has been

optimized for training using a self-adaptive swarm

approach. Section 4 details the outcome. At last, Sect. 5

finishes the work.

2 Literature review

In 2020, Zuo et al. (2020) have introduced a novel 3D CNN

model for reducing FPs in the detection of lung nodule.

Moreover, the new 3D CNN has included the implanted

multiple branches in its framework. Every branch pro-

cessed the feature map with various depths from the layer.

Further, each branch was cascaded at its ends; therefore,

the features from various depth layers were joined for

predicting the candidate’s categories. The adopted model

in the lung nodule candidate classification includes a

competitive score on LUNA16 dataset with certain mea-

sures like 97.83% accuracy, 87.71% sensitivity, 94.26%

precision, and 99.25% specificity, respectively. The adop-

ted method was efficient in the lung nodules detection.
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Finally, the adopted scheme in lung nodule detection has

attained the competitive score to reduce the FP and has

used as the reference to classify the nodule candidates.

In 2020, Cao et al. (2020) have proposed a TSCNN

model for detecting the lung nodule. At the initial stage, the

proposed model was to determine an initial lung nodules

detection based on the enhanced U-Net segmentation net-

work. For obtaining the larger recall rate without deter-

mining the extreme FP nodules, a new sampling strategy

and two-phase prediction method were proposed for

training purpose during this stage. Then, the TSCNN

architecture was constructed into classification networks.

In addition, the generalization ability has enhanced the FP

reduction approach through the ensemble learning process.

The adopted architecture on the LUNA dataset was

examined, and it has obtained the better detection

outcomes.

In 2019, Li et al. (2019) have introduced a DL on the

basis of detection approach in the lung nodule. The patch-

based multi-resolution CN was utilized for feature extrac-

tion, and four different fusion approaches were also

employed for the classification purpose. The adopted lung

nodule detection scheme consists of two major parts such

as training and testing. Moreover, the images were pre-

processed via the rib suppression and lung field segmen-

tation for obtaining the RoI and improved the lung nodules

visibility. Next, the images were improved by the his-

togram operation. The adopted model has shown enhanced

concert with robustness than other conventional models.

The R-CPM and FAUC of the adopted model were 98.7%

and 98.2%, correspondingly.

In 2020, Harsono et al. (2020) have suggested a new

lung nodule classification and detection approach by the

single-stage detector known as ‘‘I3DR-Net’’. Moreover, the

proposed approach in the multi-scale 3D Thorax CT-scan

dataset was obtained through integrating the weight of I3D

backbone pre-trained natural images. The I3DR-Net would

generate the remarkable outcomes on the task of lung

nodule texture detecting with mAP 22.86% and 49.61%

and AUC of 70.36% and 81.84% for private and public

dataset. Finally, the adopted scheme has altered the Reti-

naNet NN backbone, NMS, loss function, and weighted

clustering approach of adopted detection box.

In 2019, Kuo et al. (2019) have proposed new approach

to detect the GGO nodules, solid, and part solid in chest

CT. Moreover, the adopted model has included nodule

enhancement, image pre-processing, candidate detection,

lung segmentation, and FPs reduction. The edge searching

approach has replaced the ‘‘computing-intensive iterative

hole-filling method’’ for the purpose of lung segmentation.

In the nodule enhancement, the image accumulation was

used for extracting the nodules with widely distributed grey

levels and rapidly improved the individual nodules grey

level. Further, SVM was applied twice for reducing the

FPs. At last, the experimental outcomes have shown that

the adopted rapid detection model has low FPs and maxi-

mum sensitivity to assist the clinicians’ diagnosis.

In 2019, Xu et al. (2019) published the ‘‘DeepLN

Dataset’’, a multi-resolution CT screening image dataset.

The ‘‘semi-automatic annotation system and three-level

labelling criterion’’ was also acquired to guarantee the

efficacy and precision of lung nodule annotation. To locate

pulmonary nodules, the multi-level characteristics were

extracted using the NN-based detector. The severe negative

mining and the modified focal loss function were utilized to

address normal category imbalance issues. Numerous NN

algorithms with varying resolutions were synthesized using

the newly discovered ‘‘non-maximum suppression’’ tech-

nique. The simulation’s final results demonstrated that its

predictions were accurate and that it was more effective

than alternative approaches.

In 2018, Gu et al. (2018) introduced a new CAD method

for identifying the lung nodules via the multi-scale pre-

diction with 3D DCNN integrated approach to aid radiol-

ogists in accurately identifying lung nodules. The 3D CNN

was employed with more spatial 3D contextual information

than previous 2D CNN models, and after training with 3D

samples of the lung nodule representation, more discrimi-

native features were generated. This strategy included cube

clustering and multi-scale cube prediction, which was

developed to detect microscopic nodules with exceptional

accuracy. 2D CNN demonstrated high sensitivity, a posi-

tive CPM score, and a high degree of assurance.

Jiang et al. (2018) developed an outstanding model for

detecting lung nodules in 2018 based on multi patches

derived from images and augmented by the Frangi filter.

By combining the two classes of images, the channel-based

CNN method was used to learn radiologists’ information.

This was done to establish the four levels of the nodule.

Due to the assets of two groups and the connected dataset,

the adopted model reduced the amount of data compared to

the conventional CNN framework and produced generally

acceptable results. In comparison to other methodologies,

the proposed model has demonstrated superior sensitivity.

The simulation results demonstrated that this strategy

improved lung nodule detection more effectively.

The review of lung nodule detection was performed.

However, the training technique was not utilized as a ref-

erence with the same sophisticated frameworks for the

quick convergence networks. Initially, a novel 3D CNN

model was implemented in Zuo et al. (2020), which exhi-

bits high accuracy, greater sensitivity, increased precision,

and maximum specificity. TSCNN model was exploited in

Cao et al. (2020) that offer false positive reduction,

improved generalization ability, and better detection per-

formance, but more complicated background information
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was obtained in the medical images than natural images.

Moreover, CNN model was deployed in Li et al. (2019)

that offer robustness and detection performance. Never-

theless, the proposed model was not employed in the large

CXR database gathered from various hospitals. Likewise,

I3DR-Net model was exploited in Harsono et al. (2020),

which offers better AUC, high confidence score, improved

sensitivity, and minimum FPR. However, the adopted

model was not implemented in the real-time CT scan by

combining the software interface, cloud computing, and

suitable GPU. SVM model was exploited in Kuo et al.

(2019) that have high sensitivity, good detection outcomes,

and low false positives; however, the objects not in nodule

shape were eliminated like blood vessels and lung tissues.

In addition, 3D DCNN model was introduced in Xu et al.

(2019), which offers accurate predictions, improved effi-

ciency, and maximum sensitivity. However, the robustness

of the detector was not improved. 3D deep CNN model was

proposed in Gu et al. (2018) that offers high sensitivity,

satisfied CPM score, and high confidence. However, there

is a need to focus on automated classification of lung

nodules and FP reduction. Finally, CNN model was

implemented in Jiang et al. (2018), which offers sensitivity

and good detection performance; however, all the black

images in the CNN structure were not considered as the

input images. The challenges of existing methods are

explained in the Table 1.

3 Proposed system

This paper aims to introduce a new lung nodule detection

approach: ‘‘(i) pre-processing, (ii) segmentation, (iii) fea-

ture extraction, and (iv) classification’’. At first, GF is

deployed for pre-processing, and then, novel active contour

segmentation model is established for segmentation.

Moreover, features like LBP, entropy, and contrast features

are derived and then classified via optimized CNN model.

Further, the CNN weights are optimized via adopted

SATSA model. This enhances the detection accuracy of the

proposed system. Figure 1 demonstrates the structural

design of adopted method.

3.1 Image pre-processing and proposed
segmentation process

The input image Im from database is pre-processed using

the filtering techniques, i.e. Gaussian filtering. In this

process, the noise and artefacts are removed from the input

data. Then, the pre-processed image is further used for

segmentation process. Novel active contour segmentation

algorithm is used for segmenting lung image regions.

3.1.1 Gaussian filtering techniques

Gaussian filtering would blur the images and take away the

noises. The Gaussian function in one dimension is deter-

mined in Eq. (1).

K xið Þ ¼ 1
ffiffiffiffiffiffiffiffiffiffi

2pr2
p e�

xi2

2r2 ð1Þ

In Eq. (1),r denotes the distribution of SD. Moreover,

the distribution is assigned with zero mean. The Gaussian

function of the SD plays a significant role based on its

behaviour.

The Gaussian function is applied in the following ways

in several study fields: define the smoothing operator,

mathematics, and probability distribution for data or noise.

The fundamental characteristics of the Gaussian function

are confirmed in relation to its integral as stated in Eq. (2).

I ¼
Z

/

�/

exp �XI2
� �

dxi ¼
ffiffiffi

p
p

ð2Þ

Furthermore, the feasible value, which ranges from

negative to positive values, probabilistically characterizes

the entirety of a given space. In addition, the Gaussian

function never equals zero. It behaves symmetrically. It is a

symmetric function. The 2D Gaussian function is used

while working with the images. Therefore, the two 1D

Gaussian functions product is determined in Eq. (3).

Input Image

Pre Processing

Segmentation

Classification

Feature Extraction

Detected output

Gaussian Filtering

Novel active counter 
Segmentation model

LBP, Contrast, Energy 
Feature

Proposed SASTA model
Optimized CNN

Fig. 1 Proposed architecture for lung nodule classification
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K xi; yið Þ ¼ 1
ffiffiffiffiffiffiffiffiffiffi

2pr2
p e�

xi2þyi2

2r2 ð3Þ

The Gaussian filters worked as a point spread function

via the 2D distribution. It is attained with the image

through convolving the 2D Gaussian distribution function.

Moreover, the discrete approximation is produced in the

Gaussian function. Further, it requires an infinite large

convolution kernel and as nonzero in all places of the

Gaussian distribution. In addition, the distribution is very

near to 0 that concerns 3 SD from the mean. Moreover,

99% of the distribution decreases within 3 SDs. The kernel

size is normally limits to hold only values within 3 SDs of

the mean.

Superior values of r create a higher blurring, i.e. wider

peak. The Gaussian nature of the filter is maintained by

raising the kernel size. Similarly, the coefficients of

Gaussian kernel depend on the r value. Gaussian filters

should not conserve the image brightness. This filtering is

used to get rid of the noise. The pre-processed image is

denoted as Impre.

Gaussian filtering is a popular image processing tech-

nique that uses a kernel based on the Gaussian distribution

to smooth an image. It is effective at reducing high-fre-

quency noise and blurring sharp edges, both of which can

help to improve image quality and remove unwanted

artefacts.

Gaussian filtering was chosen in the pre-processing

stage because of its ability to suppress noise while pre-

serving important image features. High-frequency noise

components are attenuated by convolving the image with a

Gaussian kernel, resulting in a smoother image. This can

improve segmentation by reducing the impact of noise on

subsequent analysis. Additionally, Gaussian filtering can

function as a point spread function, which means it simu-

lates the effect of blurring in the imaging system. This can

be advantageous in medical imaging, where the acquired

images may suffer from blurring due to various factors

such as motion artefacts or limitations of the imaging

equipment. By applying Gaussian filtering, the blurring

effect can be approximated, leading to a more accurate

representation of the underlying structures and making the

subsequent segmentation algorithm more robust.

3.1.2 Improved cross-entropy-based active contour
segmentation model

At first, Impre the world is divided into ROI and non-ROI

zones by the ACM. The ACM also divides the image into

small local zones based on the foreground and background.

Further, Impre in the domain # is segmented in the maxi-

mum iterations setting as max iterð Þ.

The proposed algorithm iterates 600 times to find the

most cost-effective solution. Each iteration includes a

specific set of operations or calculations on the image or its

segmented regions. These iterations allow the algorithm to

refine its segmentation results, gradually improving seg-

mentation accuracy and quality. The algorithm aims to

converge towards a solution that optimally separates the

foreground and background regions by performing multiple

iterations.

Likewise, the closed contour CL = 0, and it belongs to

the distance function j. Moreover, CL is defined mathe-

matically as in Eq. (4). The CL interior is CLint, and it can

be seen through the rounded the determination of Heav-

iside function in Eq. (5). The exterior closed contour CL is

numerically specified in Eq. (6).

CLint ¼ bjj bð Þ ¼ 0f g ð4Þ

FS j bð Þ ¼

1; j bð Þ\� c
0; j bð Þ[ c
1

2
1þ j

c
þ 1

p
sin

pj bð Þ
c

� �� �

; otherwise

8

>

>

<

>

>

:

ð5Þ
CLout ¼ 1� FS j bð Þð Þ ð6Þ

Additionally, the AUC with the Dirac delta is mathe-

matically smoothed as in Eq. (7).

x j bð Þ ¼

1; j bð Þ ¼ c
0; j bð Þj\c
1

2c
1þ cos

pj bð Þ
c

� �� �

; otherwise

8

>

>

<

>

>

:

ð7Þ

Here, the domain #, the distinctive spatial variables b

and g are the single points. In Eq. (8), q indicates the radius

parameters. The local regions masking takes place by the

function H b; gð Þ. Further, an energy function is determined

with H b; gð Þ based on the generic force function GFF in

Eq. (9). Normally, GFF refers to ‘‘generic internal energy

measure’’. By using the periodicity term, the curve is

smoothed. The length of the curve’s arc is weighted by

fixing the u = 0.2. Equation (10) illustrates the overall

energy computation, and the final evolution equation is

related to the fundamental energy variation with respect to

j, and it is expressed in Eq. (11).

H b; gð Þ ¼ 1; b� gk k\q
0; otherwise

� �

ð8Þ

EF jð Þ ¼
Z

#b

xj bð Þ
Z

#a

H b; gð Þ � GFF S gð Þ; j gð Þð Þdgdb ð9Þ
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EF jð Þ ¼
Z

#b

xj bð Þ
Z

#a

H b; gð Þ � GFF S gð Þ; j gð Þð Þdgdb

þ u
Z

Xb

xj bð Þjjrj bð Þjjdb

ð10Þ
oj
ot

¼ xj bð Þ
Z

#b

H b; gð Þ � rj gð ÞGFF S gð Þ;j gð Þð Þdg

þ uxj bð Þdiv rj bð Þ
jrj bð Þj

� �

ð11Þ

The proposed active contour segmentation is determined

as follows:

EIACM ¼ lL kð Þ þ vs kð Þ þ k1

Z

Xb

f vð Þ log f vð Þ
kb þ c

� �
	

	

	

	

	

	

	

	

dv

þ k2

Z

Xa

f vð Þ log f vð Þ
ka þ c

� �
	

	

	

	

	

	

	

	

dv

ð12Þ

In Eq. (12), L kð Þ portrays the length of the curve k, s kð Þ
indicates the area inside the curve, f vð Þ depicts the grey-

scale value of the image, and l, v, k1, and k2 denote the

weights of corresponding energy terms. Moreover, the

cross-entropy is used to calculate the similarity among the

segmented and the original regions.

CEntropy ¼
X

n

i¼1

pi log
pi
qi
þ
X

n

i¼1

qi log
qi
pi

ð13Þ

The probability distribution of object region kb and

background region ka is Q ¼ q1; q2; . . .qhf g and

P ¼ p1; p2; . . .phf g. Kullback–Leibler distance utilizes the

cross-entropy of P and Q. Moreover, the obtained seg-

mented image is denoted as Imseg.

3.2 Feature extraction for lung nodule detection

Three features are extracted in this phase that include:

• LBP features

• Contrast features

• Entropy features

3.2.1 LBP features

In addition, the segmented image undergoes LBP feature

extraction. The LBP (Honeycutt and Plotnick 2008) is

more discriminatory and easier to implement computa-

tionally. LBP, or local binary pattern, is a texture descriptor

that is widely used in computer vision and image

processing. It works by comparing the intensity values of

pixels in a greyscale image’s neighbourhood around each

pixel. LBP captures the image’s local structure and texture

information by encoding the relationships between the

central pixel and its neighbours into a binary pattern. The

LBP algorithm involves determining the size and shape of

the neighbourhood, comparing the intensity values of

pixels within the neighbourhood to the central pixel, and

generating a binary pattern based on these comparisons.

This binary pattern is then converted into a decimal value

that represents the central pixel’s local texture information.

A concise representation of the texture distribution is

obtained by calculating histograms of these decimal values

across the entire image.

LBP is well known for its resistance to changes in

lighting and ability to capture fine-grained texture details.

It has found use in a variety of computer vision tasks such

as texture classification, face recognition, and object

detection. LBP is a powerful tool for characterizing and

analysing local texture information in images due to its

simplicity, efficiency, and potential for multi-scale

analysis.

The LBP operator is used to assign decimal values to

each image pixel. A negative number is also represented as

0, a positive number as 1, and a zero value as 0. The LBP

codes are all the binary codes for obtaining the binary

number, starting at the upper left. A vast number of local

descriptions provided by the texture descriptor are com-

bined to form the global description. In addition, the

properties of these texture objects are extracted in accor-

dance with their discernibility. In Eq. (14), SHcl and SHpl

refer to the image centre pixel and the centre pixel inten-

sities from the neighbour pl, respectively. The LBP

descriptors are denoted as LBP �ð Þ, and NEPl represents the

count of neighbour. Further, the LBP descriptor function

FLBPðpl;clÞ is determined in Eq. (15). The obtained LBP

features are denoted as ImLBP.

LBP SHclð Þ ¼
X

NEpl

pl¼0

FLBPðpl;clÞ2
pl�1 ð14Þ

FLBPðpl;clÞ ¼
1; if SHpl � SHcl � 0

0; otherwise

� �

ð15Þ

3.2.2 Contrast features

Variations in luminance or colour can distinguish between

two objects. The summation of square variance, or Hon-

eycutt and Plotnick (2008) the contrast characteristics, is

the calculation of the contrast in intensity between a pixel’s

neighbouring pixels and the entire image pixel. It also

calculates the total diversity of the greyscale images. Here,
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Eq. (16) represents the contrast value calculation. The

obtained contrast features are denoted as Imcon.

Contrast ¼
X

NT�1

p̂j;q̂j¼0

AMp̂j;q̂j p̂j� q̂jj j2 ð16Þ

3.2.3 Entropy features

Entropy and energy are both measures of the orderliness of

an image. The entropy characteristic of an image is a sta-

tistical characteristic (Honeycutt and Plotnick 2008). These

characteristics are computed utilizing the segmented

regions. It computes the grey-level concentration intensity

of the GLCM and returns its sum of squared elements.

Equation (17) determines the energy value calculation. The

obtained entropy features are denoted as ImEn. Finally, the

obtained features are designated as ImFea, and it is

expressed in Eq. (18).

ImEn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

NT�1

p̂j;q̂j¼0

AM2
p̂j;q̂j

v

u

u

t ð17Þ

ImFea ¼ IMLBP þ IMcon þ IMEn ð18Þ

Because of their ability to capture different aspects of

the nodule’s characteristics, the extraction of LBP, con-

trast, and entropy features is critical in the context of lung

nodule extraction. LBP features are important in analysing

the local texture patterns found in lung nodules. LBP fea-

tures can effectively capture nodule texture patterns, such

as speculated edges or internal structures, and provide

valuable information for nodule detection and classifica-

tion. The ability to distinguish between lung nodules and

surrounding tissues is aided by contrast features. Because

nodules have higher contrast than surrounding lung tissue,

the algorithm can focus on regions with significant inten-

sity variations by incorporating contrast features. This can

lead to better detection and differentiation of nodules from

the background. Entropy characteristics reveal information

about the texture complexity or heterogeneity of lung

nodules. Because of irregular internal structures or

heterogeneous tissue composition, malignant nodules fre-

quently have higher entropy. The algorithm can capture the

textural variations associated with malignant nodules by

extracting entropy features, allowing for the potential dif-

ferentiation of benign and malignant cases.

The combination of LBP, contrast, and entropy features

enables a thorough examination of lung nodule character-

istics such as texture patterns, intensity variations, and

textural complexity. By incorporating these features into

the analysis, the algorithm can use their discriminative

power to improve nodule detection and classification

accuracy, ultimately assisting in the early diagnosis and

treatment of lung cancer.

3.3 Lung nodule classification: optimized CNN
with optimal training via proposed self-
adaptive tunicate swarm algorithm

3.3.1 Optimized CNN model

A CNN that has been tuned to classify lung nodules

receives the obtained features (LeCun et al. 2010). Known

classifier CNN is made up of ‘‘three layers, such as pool-

ing, fully connected, and convolution layers.’’ The rth

layers harmonized to zth feature map in position e; xð Þ is

implied by Sre;x;z, and it is implied by Eq. (19). The zth filter

value is specified in rth layer and optimal bias term ! Br
l

and weight vector ! Wr
l , I

r
e;x ! associated input patches.

As a result, the adopted SATSA technique is employed to

optimally tune the weight. Consider the ‘‘activation value

AFre;x;z


 �

and the nonlinear activation function as AF �ð Þ’’
as defined in Eq. (20). The shift variance is calculated as

given in Eq. (21). The pooling function pool ðÞ and local

neighbourhood AFre;x;z


 �

at neighbour position e ; xð Þ !
Je;x.

Sre;x;z ¼ WrT

l Ire;x þ Br
l ð19Þ

AFre;x;z ¼ AF Sre;x;z


 �

ð20Þ

Or
e;x;z ¼ pool AFre;x;z


 �

; 8 cs; crð Þ 2 Je;x ð21Þ

In CNN, Eq. (22) determines the loss function. Further,

the CNN output, tth input data and target values are

determined as OUT tð Þ, U tð Þ and V tð Þ, correspondingly.

Loss ¼ 1

Num

X

ms

t¼1

P 1;V tð Þ;OUT tð Þ

 �

ð22Þ

The pooling layer of CNN carried out the down sam-

pling operations using the convolutional layers’ output.

Additionally, there are two distinct types of pooling:

average pooling and maximal pooling. While the average

pooling represents the mean value, the maximum pooling

has reached the greatest value.

The optimized CNN model used in the study had a total

of 8 layers, 5 of which were hidden layers. The number of

hidden layers is critical in determining the model’s

robustness because it has a direct impact on the model’s

ability to learn complex representations and extract

meaningful features from the input data. The model can

capture hierarchical representations of the input by using

multiple hidden layers, with each layer learning
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increasingly abstract and high-level features. This network

depth allows the model to handle intricate patterns and

variations in data, resulting in improved performance and

generalization. Furthermore, as more hidden layers are

added, the model gains the ability to learn nonlinear rela-

tionships and model complex decision boundaries. This

adaptability improves the model’s robustness by allowing

it to handle a wide range of input variations and adapt to

various lung nodule characteristics.

3.3.2 Solution encoding

As previously mentioned, the weights of CNN are adjusted

using the SATSA model. Here, the total CNN weights are

shown. Maximizing accuracy is the goal of the SATSA

model 1=lossð Þ, and it is shown in Eq. (14) (Fig. 2).

Obj ¼ maximal accuracyð Þ ð23Þ

3.3.3 Proposed SATSA algorithm

Although the current TSA (Kaur et al. 2020) technique is

capable of detecting food sources in the ocean, it is

oblivious of any food sources in the search area. This study

predicts that the SATSA model will outperform this sce-

nario. In most cases, self-improvement in the present

optimization models causes the algorithm to become even

more effective at resolving optimization problems

(Rajakumar 2013a, 2013b; Swamy et al. 2013; George and

Rajakumar 2013; Rajakumar and George 2012). TSA

defines the two tunicate behaviours for locating the food

source (Susan and Aju 2022). Jet propulsion and swarm

intelligence are the two TSA behaviours. The self-adaptive

tunicate swarm algorithm (SATSA), an optimization

algorithm inspired by nature, aims to address challenging

optimization issues. It is based on the collective behaviour

of marine invertebrates called tunicates, which are

renowned for their extraordinary capacity to adapt to and

survive in a variety of environments. SATSA uses self-

adaptation mechanisms to get around the drawbacks of

conventional optimization algorithms. Through the use of

these mechanisms, the algorithm is able to dynamically

modify the parameters and search tactics used during the

optimization process, resulting in better performance and

greater effectiveness. The handling of high-dimensional

and nonlinear optimization issues is a key feature of

SATSA. Multiple search agents simultaneously explore the

solution space using a population-based approach. SATSA

can explore a larger area of the search space and find a

variety of solutions thanks to this parallel search.

Jet propulsion behaviour The tunicate must also adhere

to the following three conditions: maintaining close prox-

imity to the best searching agent, migrating towards the

best searching agent’s position, and avoiding conflicts

between searching agents. As a consequence of the optimal

response, the swarm’s behaviour shifted the position of the

other search agent. The three factors that influence the

behaviour of jet propulsion are listed below. (i) Avoiding

conflicts: To evade the conflicts among the searching

agents, the G~ vector is used for calculating the location of

novel searching agents, and it is determined in Eq. (24).

G~ ¼ Z~

Y~
ð24Þ

where; Z~¼ d2 þ d3 � R~ ð25Þ

R
*
¼ 2 � d1 ð26Þ

In Eqs. (25) and (26), R~ ! water flow advection, Y~ !
social forces among the search agents, Z~ ! gravity force,

and the variables d1, d2, and d3 ! random number ranges.

Conventionally, the G~ vector calculates the position of

novel search agents. However, as in SATSA technique, the

positions are updated as shown in Eq. (27).

Z~¼ Rbest þ d1 � Rbest � Rworst½ � ð27Þ

In Eq. (27), Xbest and Rworst portray the best solution and

worst solution, correspondingly.

(ii) Moving in the direction of the best neighbour: This

is modelled as shown in Eq. (28), where u ! current

iteration,D~ ! distance amid tunicate and food source, M~

! position of food source, X~y uð Þ ! tunicate position and

rand ! random digit.

D~ ¼ M~ � rand � X~y uð Þ
	

	

	

	 ð28Þ

(iii) Converge towards the best search agent: This phase

is modelled as shown in Eq. (29).

X~y uð Þ ¼ M~ þ G~:D~; if rand� 0:5
M~ � G~:D~; if rand\0:5

�

ð29Þ

In Eq. (20) X~y uð Þ indicates the updated position of

tunicate at M~ food source position. However, as per the

adopted SATSA method, instead of rand function we used

the chaotic map of circular map as per Eq. (30), in which

w ¼ 0:02.

W1 W2 …. WN X

Fig. 2 Solution encoding

15372 M. K. Kumar, A. Amalanathan

123

RETRACTED A
RTIC

LE



X~y uþ 1ð Þ ¼ X~y uð Þ þ w� 2

2p
sin 2pX~y uð Þ

� �

	

	

	

	

	

	

	

	

ð30Þ

Swarm behaviour To simulate the tunicate’s swarm

behaviour, it saves the 1st and 2nd optimal best solutions

and the other search agent’s positions are updated as in

Eq. (31).

X~y uþ 1ð Þ0¼ X~y uð Þ þ X~y uþ 1ð Þ
2þ d1

ð31Þ

The ultimate position is discovered within a random

cylindrical or cone-shaped spot that represents the tunicate

position. The SATSA model’s pseudocode is explained in

Algorithm 1.

Algorithm 1: Proposed SATSA Model

Step 1: Initialize populace X~y

Step 2: Select initial constraints and entire iterations

Step 3: Compute the fitness value using Eq. (23)

Step 4: The proposed best search agent is exposed in Eq. (30)

after the fitness value calculation

Step 5: Each search agent’s proposed updated position is

provided in Eq. (31)

Fig. 3 Sample images: a input

images, b images—pre-

processed, c segmented images
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Step 6: The agents are adjusted in a specified search space away

from the boundary

Step 7: Calculate the fitness and Update X~y Only if there is a

superior alternative to the preceding optimal solution

Step 8: Exit; it satisfies the ending criterion

Alternately, repeat steps 6& 7

Step 9: The most promising outcome has thus far been returned

4 Results and discussion

4.1 Simulation procedure

Python was utilized to execute the adopted CNN ?

SATSA method for lung nodule identification, and the

results were validated. The LIDC-IDRI dataset was utilized

for this study (Armato et al. 2011). The LIDC-IDRI (Lung

Image Database Consortium—Image Database Resource

Initiative) dataset was used in this study. The collection of

CT images and annotations of lung nodules in this dataset

are well-known. The dataset used in this study specifically

included 7371 lesions that at least one radiologist classified

as ‘‘nodules.’’ We chose 500 samples for the experiment

from this sizable dataset. We trained and tested their sug-

gested method for identifying and categorizing lung nod-

ules using these samples. Following an 80–20 split, the

dataset was split into training and testing sets. The model

was trained using 400 samples, or 80% of the samples,

during the training phase. In order to optimize the model’s

parameters and discover the patterns suggestive of lung

nodules, this involved feeding the model the CT scan

images and associated annotations. The training procedure

was designed to give the model the ability to correctly

Fig. 4 Performance of CNN ? SATSA schemes over traditional models for a precision, b specificity, c accuracy, d sensitivity

15374 M. K. Kumar, A. Amalanathan

123

RETRACTED A
RTIC

LE



identify nodules in unobserved data. The remaining 20% of

the samples (100 samples) were set aside for testing the

trained model’s performance. These samples served as a

separate evaluation set and weren’t used during the training

phase. The dataset had a 60% abnormal sample distribu-

tion, representing cancerous cells, and 40% normal sample

distribution. This distribution reflects a real-world scenario

in which detecting and classifying abnormal nodules

indicative of potential lung cancer is critical. We wanted to

ensure the model’s robustness and accuracy in identifying

cancerous nodules by including a large number of abnor-

mal samples. These test samples were used to evaluate the

model’s capability to recognize and classify lung nodules

accurately. While it is possible that in this specific study,

no irrelevant or unusable samples were encountered, it is

important to acknowledge that in other scenarios, the

presence of such samples can occur. The occurrence of

irrelevant or unusable samples can vary depending on

factors such as data collection methods, inclusion criteria,

and potential issues during the data acquisition process.

The efficacy of the CNN ? SATSA model for lung

nodule detection was determined by comparing it to current

models such as DBN (Wang et al. 2016), SVM (Avci

2009), CNN ? EHO (Elhosseini et al. 2019), CNN ?

WOA (Mirjalili and Lewis 2016), CNN ? TSA (Kaur

et al. 2020), and CNN ? WTEEB (Kumar and Amala-

nathan 2022). The performance was also determined by

adjusting the TP for metrics such as ‘‘accuracy, sensitivity,

specificity, precision, recall, FMS, thread score, FDR,

FNR, FPR, FOR, NPV, and MCC,’’ respectively. The final

images are shown in Fig. 3.

Fig. 5 Performance of CNN ? SATSA model over traditional schemes for a FPR, b FNR, c FDR, d FOR
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4.2 Performance analysis

Figures 4, 5 and 6 compare the CNN ? SATSA model’s

performance against that of DBN, SVM, CNN ? EHO,

CNN ? WOA, CNN ? TSA, and CNN ? WTEEB. Fur-

thermore, the adopted CNN ? SATSA model achieves

outstanding accuracy (92); in contrast, the typical approa-

ches for TP 60 in Fig. 4c produce lower accuracy values

for DBN (70), SVM (79), CNN ? EHO (83), CNN ?

WOA (84), CNN ? TSA (87), and CNN ? WTEEB (88).

For TP 50, the suggested CNN ? SATSA model has

specificity that is 30%, 16.67%, 11.11%, 7.78%, 4.44%,

and 2.22% higher than DBN, SVM, CNN ? EHO,

CNN ? WOA, CNN ? TSA, and CNN ? WTEEB, as

shown in Fig. 4b. Furthermore, as shown in Fig. 4d, the

CNN ? SATSA algorithm beats DBN, SVM, CNN ?

EHO, CNN ? WOA, CNN ? TSA, and CNN ? WTEEB

in terms of TP 90 sensitivity (98). For TP 40, the adopted

model CNN ? SATSA achieves higher precision (94) in

detected results than DBN, SVM, CNN ? EHO, CNN ?

WOA, CNN ? TSA, and CNN ? WTEEB, as shown in

Fig. 4a.

The given different measures are appropriate in proving

the betterment of proposed work in detecting the nodule.

This achievement is due to the empowerment of proposed

segmentation process that segments the ROI and non-ROI

regions effectively.

Figure 5 illustrates FPR, FNR, FDR, and FOR of

CNN ? SATSA and existing schemes. For the purpose of

achieving the improved performance, the negative mea-

sures should be minimal. The adopted CNN ? SATSA

method holds minimum FPR value that is 92.30%, 90.90%,

86.6%, 80%, 66.67%, and 50% than ‘‘DBN, SVM,

CNN ? EHO, CNN ? WOA, CNN ? TSA, and CNN ?

WTEEB’’, respectively for TP 90 in Fig. 5a. Thus, the

presented CNN ? SATSA model is proved with less error

(indicating high accuracy on nodule detection).

In Fig. 6, numerous metrics for the accepted and current

models are examined, including NPV, recall, MCC, FMS,

and thread score. The adopted CNN ? SATSA model

achieves maximum recall (91) with a training percentage of

80; in contrast, typical schemes like as DBN (73), SVM

(80), CNN ? EHO (83), CNN ? WOA (84), CNN ?

TSA (86), and CNN ? WTEEB (88) achieve low recall. In

Fig. 6d, the CNN ? SATSA model has a thread score that

is 34.73%, 23.15%, 21.05%, 11.51%, 9.47%, and 5.26%

higher than SVM, CNN ? EHO, CNN ? WOA, CNN ?

TSA, and CNN ? WTEEB. As a result, the adopted

CNN ? SATSA algorithm outperformed other contempo-

rary models.

Fig. 6 Performance of CNN ? SATSA model with traditional models for a NPV, b FMS, c MCC, d recall, e thread score
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4.3 Analyses of the overall performance

Table 2 provides a summary of the accuracy experiments

conducted on the proposed CNN ? SATSA model for TPs

40, 50, 60, 70, 80, and 90. CNN ? SATSA has demon-

strated that it can identify all TPs with greater precision

than DBN, SVM, CNN ? EHO, CNN ? WOA, CNN ?

TSA, and CNN ? WTEEB. In terms of TP 90 accuracy

(9.55), Table 1 demonstrates that the CNN ? SATSA

model outperforms DBN, SVM, CNN ? EHO, CNN ?

WOA, CNN ? TSA, and CNN ? WTEEB. Additionally,

for TP 70, the suggested CNN ? SATSA model performs

3.97 per cent better than other traditional models (Pawar

and Premchand 2023) including DBN, SVM, CNN ?

EHO, CNN ? WOA, CNN ? TSA, and CNN ? WTEEB.

Table 1 Review on existing lung nodule recognition approaches

Author Proposed

methods

Features Challenges

Zuo et al.
(2020)

Novel 3D

CNN model

High specificity The training strategy was not used as reference with same complex frameworks for the

rapid convergence networks

Increased

sensitivity

Greater precision

Cao et al.

(2020)

TSCNN

model

False positive

reduction

More complicated background information was obtained in the medical images than

natural images

Improved

generalization

ability

Better detection

performance

Li et al.

(2019)

CNN model Robustness The proposed model was not employed in the large CXR database gathered from various

hospitals

Detection

performance

Harsono

et al.

(2020)

I3DR-Net

model

Better AUC The adopted model was not implemented in the real-time CT scan by combining the

software interface, cloud computing, and suitable GPU

High confidence

score

Improved

sensitivity

Minimum FPR

Kuo et al.

(2019)

SVM model High sensitivity The objects not in nodule-shaped were eliminated like blood vessels and lung tissues

Good detection

outcomes

Low false positives

Xu et al.

(2019)

3D DCNN

model

Accurate

predictions

The robustness of the detector was not improved

Improved

efficiency

Maximum

sensitivity

Gu et al.

(2018)

3D deep CNN

model

High sensitivity Need to focus on automated classification of lung nodules and FP reduction

Satisfied CPM

score

High confidence

Jiang et al.

(2018)

CNN model Sensitivity All the black images in the CNN structure were not considered as the input images

Good detection

performance
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The outcome shows that the CNN ? SATSA combination

outperforms the traditional models.

4.4 Statistical analysis

Table 3 statistically compares the CNN ? SATSA tech-

nique to other known models. As shown in the table, the

acceptable CNN ? SATSA model gave better outcomes

for numerous case scenarios, including the best, worst,

mean, standard deviation, and median values. Under the

best-case scenario, the adopted model outperformed

‘‘DBN, SVM, CNN ? EHO, CNN ? WOA, CNN ?

TSA, and CNN ? WTEEB’’ by 22.21%, 12.74%, 11.70%,

4.86%, 2.91%, and 2.69%, respectively. In terms of accu-

racy, the adopted model outperforms other conventional

models such as DBN, SVM, CNN ? EHO, CNN ? WOA,

CNN ? TSA, and CNN ? WTEEB (92.27347). The pro-

posed model also has the highest median value (91.95007),

while the existing schemes have the lowest accuracy

values, which are DBN (71.79335), SVM (80.19017),

CNN ? EHO (84.08179), CNN ? WOA (85.09699),

CNN ? TSA (89.24413), and CNN ? WTEEB

(89.77986).

The confusion matrix has been generated in this work

and it describes the model’s predictions in detail, including

true positives (TP), true negatives (TN), false positives

(FP), and false negatives (FN). The proportion of correctly

classified samples out of the total number of samples is

represented by accuracy, which is calculated using these

values. The use of positive and negative values in the

confusion matrix is critical in the context of lung nodule

detection. Accuracy captures the overall performance of

the detection system in correctly identifying lung nodules

(TP) as well as correctly classifying non-nodules (TN) by

taking both positive and negative values into account. The

numericals in the table show how the adopted CNN ?

SATSA model outperforms other models in terms of

accuracy, recall, and specific thresholds (TP 90, TP 70, TP

Table 2 Overall performance analysis of CNN ? SATSA

Metrics Training

percentage

40 50 60 70 80 90

DBN (Wang et al. 2016) 6.54 �10þ01 6.63

�10þ01

6.98

�10þ01

7.38

�10þ01

7.41

�10þ01

7.43

�10þ01

SVM (Avci 2009) 7.32 �10þ01 7.68

�10þ01

8.00

�10þ01

8.03

�10þ01

8.13

�10þ01

8.34

�10þ01

CNN ? EHO (2019) 8.05 �10þ01 8.36

�10þ01

8.38

�10þ01

8.43

�10þ01

8.43

�10þ01

8.44

�10þ01

CNN ? WOA (Mirjalili and Lewis 2016) 8.40 �10þ01 8.46

�10þ01

8.49

�10þ01

8.53

�10þ01

8.57

�10þ01

9.09

�10þ01

CNN ? TSA (Kaur et al. 2020) 8.69 �10þ01 8.89

�10þ01

8.89

�10þ01

8.96

�10þ01

9.09

�10þ01

9.28

�10þ01

CNN ? WTEEB (Kumar and Amalanathan

2022)
8.86 �10þ01 8.95

�10þ01

8.97

�10þ01

8.98

�10þ01

9.16

�10þ01

9.30

�10þ01

CNN ? SATSA 8.98 �10þ01 9.01

�10þ01

9.17

�10þ01

9.22

�10þ01

9.43

�10þ01

9.55

�10þ01

Table 3 Statistical analysis on accuracy

Measures DBN (Wang

et al. 2016)

SVM

(Avci

2009)

CNN ? EHO

(2019)

CNN ? WOA

(Mirjalili and Lewis

2016)

CNN ? TSA

(Kaur et al.

2020)

CNN ? WTEEB

(Kumar and

Amalanathan 2022)

CNN ? SATSA

Mean 70.63063 79.16057 83.4919 85.89925 89.65142 90.38187 92.27347

Median 71.79335 80.19017 84.08179 85.09699 89.24413 89.77986 91.95007

Standard

deviation

3.703001 3.318564 1.364427 2.302913 1.811695 1.465332 2.075484

Worst 65.40284 73.15914 80.50713 83.99366 86.93587 88.59857 89.80285

Best 74.32647 83.37292 84.36019 90.89905 92.75927 92.97597 95.54829
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80). TP 90 represents the true positive rate when a 90%

threshold is used, indicating how well the model detects

lung nodules with high certainty. Similarly, TP 70 and TP

80 represent true positive rates at 70% and 80% thresholds,

respectively. These values provide information about the

model’s performance in identifying lung nodules at various

confidence levels.

5 Conclusion

This work developed an effective lung cancer detection

model. The GF methods commence with the input image

being pre-processed. To segment the pre-processed images,

a ‘‘improved cross-entropy-based active contour segmen-

tation model’’ was implemented. Then, features such as

LBP, entropy, and contrast were classified using an opti-

mized CNN. The CNN weights were also SATSA model

optimized. Thus, the output was detected. Furthermore, the

adopted CNN ? SATSA model obtains higher accurate-

ness values (9.55 �10þ01) for TP 90 over DBN, SVM,

CNN ? EHO, CNN ? WOA, CNN ? TSA, and CNN ?

WTEEB, respectively. Further, the proposed CNN ?

SATSA model holds 3.97% maximum accuracy value than

DBN, SVM, CNN ? EHO, CNN ? WOA, CNN ? TSA,

and CNN ? WTEEB, correspondingly for TP 70. The

adopted CNN ? SATSA model attained maximum recall

(* 91) for TP 80, whereas the traditional approaches only

manage low recall, like DBN (* 73), SVM (* 80),

CNN ? EHO (* 83), CNN ? WOA (* 84), CNN ?

TSA (* 86), and CNN ? WTEEB (* 88). In summary,

the CNN ? SATSA model presented in the work outper-

forms other models in terms of accuracy and recall for lung

cancer detection. However, a few limitations must be

addressed, such as dataset limitations and the need for

continuous improvement. The proposed method has the

potential to make significant contributions to the field of

lung cancer detection by taking these factors into account

and exploring future directions.
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