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Abstract
Inspired by Li (2019) who considers one parameter, we propose a novel two-parameter coherent fuzzy number (TPCFN)

that can flexibly capture investors’ attitudes (pessimistic, optimistic, or neutral). We define the possibilistic density

function, the possibilistic distribution function, the possibilistic mean, and the possibilistic variance of the TPCFN for the

first time. Furthermore, we derive the above statistical characteristics with numerical expressions through rigorous

mathematical proof. The monotonicity of the possibilistic mean and possibilistic variance are presented by the first-order

derivative and illustrated with figures in detail. In addition, we discuss the investors’ attitudes by using different parameter

values and their influences on the mean and variance. Then, we construct an equal-weighted model, a mean–variance

model, and a regret minimization model with TPCFN, respectively. We carry out a sensitivity analysis to explore the

parametric influence on the model’s solution. At the same time, we compare different models with the same parameter

values. Finally, we use a numerical example to demonstrate the feasibility and effectiveness of our proposed models. We

compare the performance of the three models by five indexes (annual return, Sharpe ratio, beta value, unsystematic risk,

and alpha value). The results show that optimistic investors can obtain more gains in the three models. Our minimization

model considering the regret factor outperforms the mean–variance model and the equal-weighted portfolio in returns

when the parameter values are the same.
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1 Introduction

In this part, we introduce the current research works and

their limitations. At the same time, we point out the

motivation and novelty of this paper. Finally, we introduce

the structure of this paper.

The core problem of portfolios is to seek investment

returns and diversify investment risks through the scientific

allocation of assets. Markowitz (1952) proposed the mean–

variance model, which used the mean of the portfolio to

measure the return and the variance to measure the risk,

establishing the foundation of the modern portfolio theory

and opening the prelude to the quantitative evaluation of

portfolio performance on the basis of probability theory.

Subsequently, many scholars at home and abroad have

conducted in-depth and detailed discussions and research

on the portfolio problem. Mao (1970) found that variance is

limited to measuring investment risk, as treating all

extreme returns as unpopular with investors is not objec-

tive. He believed that risk should be characterized by a

portion of returns lower than the expected return, thus

proposing a mean-half variance portfolio model. Subse-

quently, Knono et al. (1991) used the absolute deviation to

measure the risk and constructed the mean-absolute devi-

ation model to reduce the computational burden. Further-

more, Speranza (1993) proposed the mean-semi-absolute

deviation model to improve the previous model. Samuelson

(1958) introduced high-order moments into the portfolio

model for the first time, used the skewness of the return

rate to measure the risk, and put forward the mean–vari-

ance skewness portfolio model. In recent years, Tong et al.

(2010) used the CVaR model, Lai et al. (2022) proposed

the MT-CVAR model, and Li et al. (2023) proposed a new
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tail network enhanced parametric average conditional

value at Risk (TNA-PMC) portfolio model to improve the

CVaR model for portfolio research. Adcock (2014) studied

the mean–variance-skewness combination model with

multivariate extended skews-student distribution, then used

quadratic programming to find the effective combination

on the effective surface. Mehlawat et al. (2018) analyzed

the portfolio selection problem from the perspective of

considering skewness and kurtosis and including more non-

normality information on asset returns.

The uncertainty of the security market includes random

uncertainty and fuzzy uncertainty. The above research only

focuses on random uncertainty and studies portfolios from

the perspective of probability theory. Since the fuzzy set

theory and possibilistic theory proposed by Zadeh

(1965, 1978) in 1965 provided effective methods to solve

the fuzziness problem, many scholars began to add the

study of the fuzzy uncertainty of the security market to that

of portfolios, and regarded the security returns as fuzzy

variables, opening the door of the study of fuzzy portfolios.

Carlsson and Fuller (2001) proposed the likelihood

expectation and variance of fuzzy numbers and established

the fuzzy portfolio model. Li et al. (2010) proposed the

concept of skewness of fuzzy variables, and on this basis

proposed and analyzed the mean-various-skewness model

of fuzzy return portfolio selection. Li and Yi (2019)

introduced a new fuzzy portfolio selection model of pos-

sibilistic mean-variation-skewness with an adaptive index

to obtain the coherence of investors’ expectations and

obtain the final asset allocation. In 2021, Pankaj et al.

(2021) established a multi-period and multi-objective

portfolio optimization model with two coherent triangular

fuzzy numbers within the credibility framework, respec-

tively using mean absolute half-deviation and conditional

value at risk (CVaR) as risk measures. Gong et al. (2022)

discussed the portfolio selection problems in which the

uncertainty of future returns and the heterogeneity of

investor attitudes towards the stock market (optimistic–

pessimistic–neutral) are captured by coherent fuzzy num-

bers. Mehlawat et al. (2021) studied the multi-objective

portfolio optimization problem using coherent fuzzy

numbers in a credibilistic environment. Gupta et al. (2020)

constructed intuitionistic fuzzy optimistic and pessimistic

multi-period portfolio optimization models.

Regret theory plays an important role in investors’

decision-making. Bell (1982), Loomes and Sugden (2015)

found that regret would affect investors’ investment

behavior. Regret theory mainly studies the comparison

between the choices people have made and have not made.

If their choices are better than other choices, investors will

feel happy; otherwise, they will feel regretful. Moreover,

the joy brought by gains is far less than the regret brought

by losses. The regret theory has been used to explain some

anomalies in finance since it was proposed. Magron and

Merli (2015) and Frydman and Camerer (2016) pointed out

that regret aversion can explain the ‘‘repurchase effect’’,

that is, investors are unwilling to repurchase stock assets

sold at a lower price. Herweg and Müller (2021) studied the

relationship between regret theory and salience theory

when investors face risky decisions. In addition, regret

theory can also explain investors’ irrational behaviors in

the investment market. Arisoy and Bali (2018) constructed

a measurement method based on regret volatility uncer-

tainty and found that regret aversion would affect the cross-

sectional return of stocks. Fioretti (2022) studied the

impact of experienced regret and expected regret on

investors’ selling decisions in dynamic trading. Ouzan

2020) proposed a rational expectations equilibrium model

of stock market collapse with asymmetric information and

loss-averse speculators and used this model to prove that

short-selling restrictions would intensify the relative

upward movement of asset prices. Qin (2020) analyzed the

asset pricing model with regret aversion. Xidonas (2017)

incorporated future return scenarios into investment deci-

sions and constructs a robust multi-objective portfolio

optimization model using the minimax regret value

method. Li et al. (2012) studied fuzzy portfolios from the

perspective of regret under the framework of credibility

theory and proposed the expected regret minimization

model, which aims to minimize the distance between the

maximum return of investors and the relevant return of

each portfolio. Chorus (2008, 2010) established a random

regret minimization model based on the regret theory and

applied it to the choice of travel routes. Gong et al. (2021)

proposed a multi-objective regret portfolio model involv-

ing DEA cross-efficiency and higher moments. Baule et al.

(2019) expanded Markowitz’s portfolio selection to include

investor regret as an additional decision criterion in addi-

tion to ultimate wealth.

By reviewing and sorting out the previous literature, we

can find that all the researches on fuzzy portfolio use tri-

angular fuzzy numbers, trapezoidal fuzzy numbers, and

consistent fuzzy numbers containing one parameter to

describe portfolio returns. There is no research on consis-

tent fuzzy numbers with two parameters. In the previous

literature, there is no research field concerning the com-

bination of fuzzy numbers with two parameters and

behavioral finance. Although the inclusion of an adaptive

index takes into account investor psychology by Li and Yi

(2019), it does not take into account the fact that the extent

to which investors prefer favorable situations and avoid

unfavorable ones may be different. In order to flexibly

capture investors’ attitudes (pessimistic, optimistic, or

neutral), this paper extends the coherent fuzzy number,

proposes the generalized coherent fuzzy number with two

parameters, and combines the regret theory in behavioral
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finance to study the fuzzy portfolio problem considering

investor psychology. Under the possibilistic measure, a

regret minimization portfolio model with the two-param-

eter coherent fuzzy number is constructed. We compare the

literature from nine features including whether we consider

the possibilistic mean, the possibilistic variance, the pos-

sibilistic density function, the possibilistic distribution

function, the form of membership function, the fuzzy

environment, the attitude of investors, the two-parameter

generalized coherent fuzzy number, and the regret psy-

chology. The novelty of our proposed method is illustrated

below.

(a) We innovatively propose a coherent generalized

fuzzy number with two parameters a and b with the

ability to describe the pessimistic, neutral, and

optimistic attitudes of investors. As far as we know,

this has never been done before.

(b) We present the membership degree functions of the

coherent trapezoidal fuzzy number and the general-

ized coherent triangular fuzzy number with two

parameters, respectively. We believe this is the first

time anyone has given this definition.

(c) We derive the expressions of the possibilistic density

function, possibilistic mean, possibilistic variance,

and possibilistic distribution function of the coherent

trapezoidal fuzzy number with two parameters, and

take the coherent triangular fuzzy number as a

special form to derive its corresponding expressions.

These expressions are also the first innovative

derivation.

(d) We use the preference function to describe the regret

value and develop a regret minimization portfolio

model with the new coherent trapezoidal fuzzy

number. We pay attention to the important influence

of regret theory on investors’ decision-making and

creatively combine the two-parameter coherent fuzzy

number and regret theory to build this model.

(e) We construct a new mean–variance model with two-

parameter coherent trapezoidal fuzzy numbers. This

is also an extension of the traditional Markowitz

model. In addition, we construct an equal-weight

portfolio model to compare with our proposed model.

(f) We select 20 stocks as examples to verify the

feasibility and effectiveness of our proposed model.

The results show that our new regret model can

obtain higher returns and at the same time well

describe investors’ optimism or pessimism.

The remainder of this paper is as follows. Section 2

summarizes the theoretical background of the LR fuzzy

numbers, proposes some new definitions of two-parameter

coherent fuzzy numbers, and gives derivations for the

possibilistic expected value and the possibilistic variance

of a new coherent fuzzy number. Section 3 proposes the

possibilistic equal-weight, mean–variance model and the

regret minimization portfolio model with TPCFN. Sec-

tion 4 reports details of the empirical results. In Sect. 5, we

conclude the research results and remark about future

work.

2 Preliminaries

In this part, we recall LR fuzzy numbers and give a new

definition of two-parameter coherent fuzzy numbers. At the

same time, we give the possibilistic distribution function,

possibilistic density function, possibilistic mean, and pos-

sibilistic variance of the newly defined fuzzy number.

Furthermore, we calculate the numerical expressions of the

above statistical characteristics by rigorous mathematical

proof. In addition, we also explore the influence of two

parameters on the values of mean and variance.

2.1 LR fuzzy numbers

Definition 1 (Dubois and Prade 1983) A fuzzy number A

is called an LR fuzzy number and denoted as A ¼
ða1; a2; a3; a4ÞLR if its membership function lAðxÞ has the

following form:

lAðxÞ ¼

L
a2 � x

a2 � a1

� �
; x 2 ða1; a2�;

1; x 2 ða2; a3�;
R

x� a3
a4 � a3

� �
; x 2 ða3; a4�;

0; else:

8>>>>>><
>>>>>>:

ð1Þ

where the functions L and R are called left and right shape

functions fulfilling the following conditions:

(1) LðxÞ ¼ Lð�xÞ; RðxÞ ¼ Rð�xÞ;
(2) Lð0Þ ¼ Rð0Þ ¼ 1; Lð1Þ ¼ Rð1Þ ¼ 0;

(3) Lð�Þ and Rð�Þ are decreasing functions from ½0;1Þ to
½0; 1�.

Case 1: If LðtÞ ¼ RðtÞ ¼ 1� t, then the LR fuzzy

number eA is degenerated to the trapezoidal fuzzy number.

Case 2: If LðtÞ ¼ RðtÞ ¼ 1� t; a2 ¼ a3, then the LR

fuzzy number eA is degenerated to the triangular fuzzy

number and denoted as eA ¼ ða1; a2; a4Þ.
Case 3: If LðtÞ ¼ RðtÞ ¼ 1� t; a2 ¼ a3 ¼ a;

a2 � a1 ¼ a4 � a3 ¼ r, then the LR fuzzy number eA is

called to the symmetric triangular fuzzy number and

denoted as eA ¼ ða; rÞ or eA ¼ ða� r; a; aþ rÞ.
To help you understand, we give the following three

examples: trapezoidal fuzzy numbers (1,2,3,5), triangular

Portfolio model with a novel two-parameter coherent fuzzy number based on regret theory 17191

123



fuzzy numbers (1,2,5), and symmetric triangular fuzzy

numbers (1,3,5) (Fig. 1).

Definition 2 (Zadeh 1965) For any c 2 ½0; 1�, the c� level

set of a fuzzy number eA denoted by

½ eA�c ¼ fx 2 X : leAðxÞ� cg. There exists an increasing

function g1 : ½0; 1� ! x and a decreasing function g2 :

½0; 1� ! x such that ½ eA�c ¼ fg1ðcÞ; g1ðcÞg for all c 2 ½0; 1�.

2.2 New definitions of two-parameter coherent
fuzzy numbers (TPCFN)

Definition 3 A LR fuzzy number eA is called a two-pa-

rameter coherent LR fuzzy number and denoted as eA ¼
ða1; a2; a3; a4; a; bÞLR if its membership function leAðxÞ has
the following form:

leAðxÞ ¼
L

a2 � x

a2 � a1

� �� �1
a

; x 2 ða1; a2�;
1; x 2 ða2; a3�;

R
x� a3
a4 � a3

� �� �b

; x 2 ða3; a4�;
0; else:

8>>>>>>><
>>>>>>>:

ð2Þ

where a and b are fixed positive real numbers called

adaptive parameters and satisfy ða� 1Þðb� 1Þ� 0. Obvi-

ously, if a ¼ b ¼ 1, then the coherent LR fuzzy number

reduces to the usual LR fuzzy number.

Definition 4 If LðtÞ ¼ RðtÞ ¼ 1� t, then the two-param-

eter coherent LR fuzzy number eA degenerates to the two-

parameter coherent trapezoidal fuzzy number

eA ¼ ða1; a2; a3; a4; a; bÞ.

Fig. 1 Examples of trapezoidal fuzzy numbers, triangular fuzzy numbers and symmetric triangular fuzzy numbers
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leAðxÞ ¼
x� a1
a2 � a1

� �1
a

; x 2 ða1; a2�;
1; x 2 ða2; a3�;
a4 � x

a4 � a3

� �b

; x 2 ða3; a4�;
0; else

8>>>>>>><
>>>>>>>:

ð3Þ

Specially, when a ¼ b, we get the same result as Li and

Yi (2019). Obviously, if a ¼ b ¼ 1, then the two-parameter

coherent trapezoidal fuzzy number reduces to the usual

trapezoidal fuzzy number which means neutrality of

investors. Next, we discuss the relationship between the

parameters’ range of the coherent trapezoidal fuzzy

number and the investors’ attitude, as well as its member-

ship degree compared with that of the traditional trape-

zoidal fuzzy number. In addition, for a better presentation,

we have listed the results in Table 1.

Case 1: If 0\a\1 and 0\b\1, the two-parameter

coherent trapezoidal fuzzy number assigns relatively

smaller membership degrees to unfavorable returns in

½a1; a2� and larger membership degrees to favorable returns

in ½a3; a4� comparing with the corresponding trapezoidal

fuzzy number. In view of this fact, 0\a\1; and 0\b\1

both can be seen as indications of the optimistic expecta-

tion of the investors. Smaller a and b (0\a; b\1) mean

more optimism for the investors.

Case 2: If 0\a\1 and b ¼ 1, the two-parameter

coherent trapezoidal fuzzy number assigns relatively

smaller membership degrees to unfavorable returns in

½a1; a2� comparing with the corresponding trapezoidal

fuzzy number. It means that investors are optimistic in

½a1; a2� and neutral in ½a3; a4�. Smaller a (0\a\1) means

more optimism for the investors.

Case 3: If a ¼ 1 and 0\b\1, the two-parameter

coherent trapezoidal fuzzy number assigns relatively larger

membership degrees to favorable returns in ½a3; a4� com-

paring with the corresponding trapezoidal fuzzy number. It

means that investors are neutral in ½a1; a2� and optimistic in

½a3; a4�. Smaller b (0\b\1) means more optimism for the

investors.

Case 4: If a ¼ 1 and b ¼ 1; the two-parameter coherent

trapezoidal fuzzy number reduces to the usual trapezoidal

fuzzy number, which represents the neutrality of investors.

Case 5: If a ¼ 1 and b[ 1, the two-parameter coherent

trapezoidal fuzzy number assigns relatively smaller mem-

bership degrees to favorable returns in ½a3; a4� comparing

with the corresponding trapezoidal fuzzy number. It means

that investors are neutral in ½a1; a2� and pessimistic in

½a3; a4�. Larger b ([ 1) means more pessimism for the

investors.

Case 6: If a[ 1 and b ¼ 1, the two-parameter coherent

trapezoidal fuzzy number assigns relatively larger mem-

bership degrees to unfavorable returns in ½a1; a2� compar-

ing with the corresponding trapezoidal fuzzy number. It

means that investors are pessimistic in ½a1; a2� and neutral

in ½a3; a4�. Larger a ([ 1) means more pessimism for the

investors.

Case 7: If a[ 1 and b[ 1, the two-parameter coherent

trapezoidal fuzzy number assigns relatively larger mem-

bership degrees to unfavorable returns in ½a1; a2� and

smaller membership degrees to favorable returns in ½a3; a4�
comparing with the corresponding trapezoidal fuzzy num-

ber. It means that investors are pessimistic in ½a1; a2� and
pessimistic in ½a3; a4�. Larger a and b ([ 1) mean more

pessimism for the investors.

Remark 1 By contrast, Li and Yi (2019) modeled the return

of the assets by membership function in the special form:

leAðxÞ ¼
x� a1
a2 � a1

� �1
k

; x 2 ða1; a2�;
1; x 2 ða2; a3�;
a4 � x

a4 � a3

� �k

; x 2 ða3; a4�;
0; else:

8>>>>>>><
>>>>>>>:

ð4Þ

Although the inclusion of the adaptive index takes into

account investor psychology, it does not take into account

Table 1 The influence of parameter range on investor attitude and degree of membership

Parameters a;b Investor attitude in ½a1; a2� Investor attitude in ½a3; a4� Membership degrees in

½a1; a2�
Membership degrees in

½a3; a4�

0\a\1; 0\b\1 Optimistic Optimistic Smaller Lager

0\a\1; b ¼ 1 Optimistic Neutral Smaller Equal

a ¼ 1; 0\b\1 Neutral Optimistic Equal lager

a ¼ 1; b ¼ 1 Neutral Neutral Equal Equal

a ¼ 1; b[ 1 Neutral Pessimistic Equal Smaller

a[ 1; b ¼ 1 Pessimistic Neutral Lager Equal

a[ 1; b[ 1 Pessimistic Pessimistic Lager Smaller
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the fact that the extent to which investors prefer favorable

situations and avoid unfavorable ones may be different. In

this paper, two parameters a; b are introduced and the

coherent trapezoidal fuzzy number with two parameters is

defined. We consider the situation that investors’ prefer-

ence for favorable returns is different from their aversion to

unfavorable returns. In this respect, Li and Yi (2019) is a

special case of our definition.

In order to show it more intuitively, we draw the fol-

lowing four types of two-parameter coherent trapezoidal

fuzzy numbers with different parameter values, as shown in

Fig. 2. The picture on the upper left is the membership

function image of (1, 2, 3, 4, 0.5, 0.4), which corresponds

to the case that both parameters are less than 1, repre-

senting optimistic investors. The upper right figure shows

the membership function of (1, 2, 3, 4, 1, 1), where both

parameters are equal to 1, which is the traditional trape-

zoidal fuzzy number, representing the neutral investor. By

comparing the two images, we can see that when two

parameters are less than 1, the membership degree corre-

sponding to the left width is less than that of the parameters

equal to 1, while the membership degree corresponding to

the right width is greater than that of the parameters equal

to 1. This further suggests that optimistic investors assign

more membership degrees to favorable returns. The bottom

left and bottom right graphs represent the coherent trape-

zoidal fuzzy numbers (1, 2, 3, 4, 2, 2) and (1, 2, 3, 4, 2, 2.5)

with parameters greater than 1, respectively, and both

correspond to pessimistic investors. By comparing them

with the figure above, the opposite conclusion can be

drawn.

Definition 5 If LðtÞ ¼ RðtÞ ¼ 1� t; a2 ¼ a3, then the

two-parameter coherent trapezoidal fuzzy number is

degenerated to the two-parameter coherent triangular fuzzy

number and denoted as eA ¼ ða1; a2; a4; a; bÞ.

leAðxÞ ¼
x� a1
a2 � a1

� �1
a

; x 2 ða1; a2�;

a4 � x

a4 � a2

� �b

; x 2 ða2; a4�;
0; else

8>>>>><
>>>>>:

ð5Þ

Specially, when a ¼ b, we get the same result as Pankaj

et al. (2021).

Fig. 2 The membership functions for coherent trapezoidal fuzzy numbers eA ¼ ð1; 2; 3; 4; a;bÞ with different parameters
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2.3 New definitions of possibilistic density
function for TPCFN

Li et al. (2015) proposed a possibilistic density function for

fuzzy numbers through membership functions to describe

their numerical characteristics. Inspired by Li et al. (2015),

we obtain the possibilistic density function for TPCFN.

Definition 6 Possibilistic density function for two-pa-

rameter coherent LR fuzzy number eA ¼
ða1; a2; a3; a4; a; bÞLR is.

f ðxÞ ¼ leAðxÞjl0eAðxÞj

¼

L
a2 � x

a2 � a1

� �� �2
a�1

L0
a2 � x

a2 � a1

� �
�1

aða2 � a1Þ

����
����; x 2 ða1; a2Þ;

R
x� a3
a4 � a3

� �� �2b�1

R0 x� a3
a4 � a3

� �
b

a4 � a3

����
����; x 2 ða3; a4Þ;

0; else:

8>>>>>><
>>>>>>:

ð6Þ

Specially, when eA ¼ ða1; a2; a3; a4; a; bÞ is a two-pa-

rameter coherent trapezoidal fuzzy number, the possibilis-

tic density function is

f ðxÞ ¼ leAðxÞjl0eAðxÞj

¼

x� a1
a2 � a1

� ��a�1
1

aða2 � a1Þ
; x 2 ða1; a2Þ;

a4 � x

a4 � a3

� �2b�1 b
a4 � a3

; x 2 ða3; a4Þ;
0; else:

8>>>><
>>>>:

ð7Þ

Furtherly, when a ¼ b; we get the same result as Li and

Yi (2019). When eA ¼ ða1; a2; a4; a; bÞ is a two-parameter

coherent triangular fuzzy number, the possibilistic density

function is

f ðxÞ ¼ leAðxÞjl0eAðxÞj

¼

x� a1
a2 � a1

� �2
a�1

1

aða2 � a1Þ
; x 2 ða1; a2Þ;

a4 � x

a4 � a2

� �2b�1 b
a4 � a2

; x 2 ða2; a4Þ;
0; else:

8>>>>><
>>>>>:

ð8Þ

Similar to the probability density function of a random

variable, the possibilistic density function of the fuzzy

number has the following properties:

(1) f ðxÞ� 0;

(2)
Rþ1
�1 f ðxÞdx ¼ 1.

Consequently, we define the possibilistic expected mean

and the possibilistic variance of the two-parameter coher-

ent fuzzy number respectively, as follows.

2.4 New possibilistic distribution functions
of TPCFN

For the convenience of computation, we propose a coun-

terpart of the possibilistic distribution function for the two-

parameter coherent trapezoidal fuzzy number

eA ¼ ða1; a2; a3; a4; a; bÞ.

Definition 7 The possibilistic distribution function FðxÞ
for the coherent trapezoidal fuzzy number eA ¼
ða1; a2; a3; a4; a; bÞ is defined as.

FðxÞ ¼
Z x

�1
f ðtÞdt ¼

0; x� a1;
1

2

x� a

b� a

� �2
a
; a1\x� a2;

1

2
; a2\x� a3;

1� 1

2

d � x

d � c

� �2b

; a3\x� a4;

1; x[ a4:

8>>>>>>>>><
>>>>>>>>>:

ð9Þ

Furtherly, when a ¼ b, we get the same result as Li and

Yi (2019). When eA ¼ ða1; a2; a4; a; bÞ is a two-parameter

coherent triangular fuzzy number, the possibilistic density

function is

FðxÞ ¼
Z x

�1
f ðtÞdt ¼

0; x� a1;
1

2

x� a

b� a

� �2
a
; a1\x� a2;

1� 1

2

d � x

d � c

� �2b

; a2\x� a4;

1; x[ a4:

8>>>>><
>>>>>:

ð10Þ

2.5 New possibilistic means of TPCFN and their
proofs

Theorem 1 For a two-parameter coherent trapezoidal

fuzzy number eA ¼ ða1; a2; a3; a4; a; bÞ with the possibilistic

density function f ðxÞ, the possibilistic mean is:

Eð eAÞ ¼ a
2ðaþ 2Þ a1 þ

1

aþ 2
a2 þ

b
2bþ 1

a3

þ 1

2 2bþ 1ð Þ a4: ð11Þ

Proof By definition of the possibilistic mean, we get.
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Eð eAÞ ¼
Z þ1

�1
xf ðxÞdx

ffiffiffi
2

p

¼
Z 1

0

cg1ðcÞdcþ
Z 1

0

cg2ðcÞdc

¼
Z 1

0

cða1 þ ða2 � a1ÞcaÞdcþ
Z 1

0

cða4 � ða4 � a3Þc
1
bÞdc

¼ a
2ðaþ 2Þ a1 þ

1

aþ 2
a2 þ

b
2bþ 1

a3 þ
1

2 2bþ 1ð Þ a4:

Specially, when a ¼ b, for a two-parameter coherent

trapezoidal fuzzy number eA ¼ ða1; a2; a3; a4; a; aÞ,

Eð eAÞ ¼ a
2ðaþ 2Þ a1 þ

1

aþ 2
a2 þ

a
2aþ 1

a3

þ 1

2 2aþ 1ð Þ a4; ð12Þ

we get the same result as Li and Yi (2019).

When a2 ¼ a3, for a two-parameter coherent triangular

fuzzy number eA ¼ ða1; a2; a4; a; bÞ,

Eð eAÞ ¼ a
2ðaþ 2Þ a1 þ

1

aþ 2
þ b
2bþ 1

� �
a2

þ 1

2 2bþ 1ð Þ a4: ð13Þ

When a2 ¼ a3 and a ¼ b, for a two-parameter coherent

trapezoidal fuzzy number eA ¼ ða1; a2; a4; a; aÞ,

Eð eAÞ ¼ a
2ðaþ 2Þ a1 þ

1

aþ 2
þ a
2aþ 1

� �
a2

þ 1

2 2aþ 1ð Þ a4: ð14Þ

Remark 2 When a ¼ b ¼ 1, the two-parameter coherent

trapezoidal fuzzy number eA ¼ ða1; a2; a3; a4; a; bÞ degen-

erates into a trapezoidal fuzzy number eA ¼ ða1; a2; a3; a4Þ,
then Eð eAÞ ¼ a1þ2a2þ2a3þa4

6
, the two-parameter coherent tri-

angular fuzzy number eA ¼ ða1; a2; a4; a; bÞ degenerates

into the triangular fuzzy number eA ¼ ða1; a2; a4Þ, then

Eð eAÞ ¼ a1þ4a2þa4
6

. Since a
2ðaþ2Þ þ 1

aþ2
þ b

2bþ1
þ 1

2 2bþ1ð Þ ¼ 1,

Eð eAÞ is a weighted average of a1; a2; a3 and a4. We

summarize the above results in Table 2.

Next, for the two-parameter trapezoidal fuzzy number

eA ¼ ða1; a2; a3; a4; a; bÞ, we discuss the effect of different

parameter values on the possibilistic mean as follows.

(1) If a; b\1, then in Eq. (10), the coefficient a
2ðaþ2Þ\

1
6

for a1,
1

aþ2
[ 1

3
for a2,

b
2bþ1

\ 1
3
for a3,

1
2ðbþ2Þ [

1
6
for

a4. That is to say, compared with the usual

trapezoidal fuzzy number, less weight is assigned

to a1 and a3 while more weight is assigned to a2 and

a4 when calculating the expected mean.

(2) If a\1; b ¼ 1, then in Eq. (10), the coefficient
a

2ðaþ2Þ\
1
6

for a1,
1

aþ2
[ 1

3
for a2,

b
2bþ1

¼ 1
3

for a3,
1

2ðbþ2Þ ¼ 1
6
for a4. That is to say, compared with the

usual trapezoidal fuzzy number, less weight is

assigned to a1 while more weight is assigned to a2
when calculating the expected mean.

(3) If a ¼ 1; b\1, then in Eq. (10), the coefficient
a

2ðaþ2Þ ¼ 1
6

for a1,
1

aþ2
¼ 1

3
for a2,

b
2bþ1

\ 1
3

for a3,
1

2ðbþ2Þ [
1
6
for a4. That is to say, compared with the

usual trapezoidal fuzzy number, less weight is

assigned to a3 while more weight is assigned to a4
when calculating the expected mean.

(4) If a ¼ 1; b ¼ 1, then in Eq. (10), the coefficient
a

2ðaþ2Þ ¼ 1
6

for a1,
1

aþ2
¼ 1

3
for a2,

b
2bþ1

¼ 1
3

for a3,
1

2ðbþ2Þ ¼ 1
6
for a4. That is to say, compared with the

usual trapezoidal fuzzy number, the trapezoidal

fuzzy number with two parameters has the same

expected mean.

(5) If a ¼ 1; b[ 1, then in Eq. (10), the coefficient
a

2ðaþ2Þ ¼ 1
6

for a1,
1

aþ2
¼ 1

3
for a2,

b
2bþ1

[ 1
3

for a3,
1

2ðbþ2Þ\
1
6
for a4. That is to say, compared with the

usual trapezoidal fuzzy number, more weight is

assigned to a3 while less weight is assigned to a4
when calculating the expected mean.

(6) If a[ 1; b ¼ 1, then in Eq. (10), the coefficient
a

2ðaþ2Þ [
1
6
for a1,

1
aþ2

\ 1
3
for a2,

b
2bþ1

¼ 1
3
for a3,

1
2ðbþ2Þ ¼ 1

6
for a4. That is to say, compared with the

usual trapezoidal fuzzy number, more weight is

assigned to a1 while less weight is assigned to a2
when calculating the expected mean.

(7) If a; b[ 1, then in Eq. (10), the coefficient
a

2ðaþ2Þ [
1
6
for a1,

1
aþ2

\ 1
3
for a2,

b
2bþ1

[ 1
3
for a3,

1
2ðbþ2Þ\

1
6
for a4. That is to say, compared with the

usual trapezoidal fuzzy number, more weight is

assigned to a1 and a3 while less weight is assigned to

a2 and a4 when calculating the expected mean.

Remark 3 These facts further indicate that a; b[ 1 rep-

resents the pessimistic attitude of investors and a; b\1

represents the optimistic attitude of investors, respectively.

For an extremely pessimistic investor (a; b ! 1), Eð ~AÞ ¼
a1þa3

2
while for an extremely optimistic investor (a; b ! 0),

Eð ~AÞ ¼ a2þa4
2

. The above discussion results are summarized

in Table 3 below.
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2.6 New possibilistic variances of TPCFN
and their proofs

Theorem 2 For a two-parameter coherent trapezoidal

fuzzy number eA ¼ ða1; a2; a3; a4; a; bÞ with the possibilistic

density function f ðxÞ, the possibilistic variance is.

Vð eAÞ ¼ q1ða2 � a1Þ2 þ q2ða3 � a2Þ2 þ q3ða4 � a3Þ2

þ q4ða2 � a1Þða3 � a2Þ
þ q5ða2 � a1Þða4 � a3Þ þ q6ða3 � a2Þða4 � a3Þ;

ð15Þ

where

q1 ¼
1

4
þ 1

2ðaþ 1Þ �
1

aþ 2
� 1

ðaþ 2Þ2
;

q2 ¼
1

4
;

q3 ¼
1

2bþ 1
� 1

2ðbþ 1Þ �
1

4ð2bþ 1Þ2
;

q4 ¼
1

2
� 1

aþ 2
;

q5 ¼
1

2ð2bþ 1Þ �
1

ðaþ 2Þð2bþ 1Þ ;

q6 ¼
1

2ð2bþ 1Þ :

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð16Þ

Proof By definition of the possibilistic mean, we obtain.

lVð eAÞ ¼
Z þ1

�1
x� Eð eAÞ� �

f ðxÞdx

¼
Z 1

0

cðg1ðcÞ � Eð eAÞÞ2dcþ
Z 1

0

cðg2ðcÞ � Eð eAÞÞ2dc
¼
Z 1

0

cða1 þ ða2 � a1Þca � Eð eAÞÞ2dc
þ
Z 1

0

cða4 � ða4 � a3Þc
1
b � Eð eAÞÞ2dc

¼ ða2 � a1Þ2

2aþ 2
þ 2ða2 � a1Þða1 � Eð eAÞÞ

aþ 2
þ ða1 � Eð eAÞÞ2

2

þ bða4 � a3Þ2

2bþ 2
� 2bða4 � a3Þða4 � Eð eAÞÞ

2bþ 1

þ ða4 � Eð eAÞÞ2
2

¼ q1ða2 � a1Þ2 þ q2ða3 � a2Þ2 þ q3ða4 � a3Þ2

þ q4ða2 � a1Þða3 � a2Þ
þ q5ða2 � a1Þða4 � a3Þ þ q6ða3 � a2Þða4 � a3Þ;

where

Table 3 The influence of parameter range on possibilistic mean

Parameters a;b Coefficient for a1 Coefficient for a2 Coefficient for a3 Coefficient for a4 Possibilistic mean Eð ~AÞ

0\a\1; 0\b\1 \1=6 [ 1=3 \1=3 [ 1=6 Larger

0\a\1; b ¼ 1 \1=6 [ 1=3 ¼ 1=3 ¼ 1=6 Larger

a ¼ 1; 0\b\1 ¼ 1=6 ¼ 1=3 \1=3 [ 1=6 Larger

a ¼ 1; b ¼ 1 ¼ 1=6 ¼ 1=3 ¼ 1=3 ¼ 1=6 Equal

a ¼ 1; b[ 1 ¼ 1=6 ¼ 1=3 [ 1=3 \1=6 Smaller

a[ 1; b ¼ 1 [ 1=6 \1=3 ¼ 1=3 ¼ 1=6 Smaller

a[ 1; b[ 1 [ 1=6 \1=3 [ 1=3 \1=6 Smaller

Table 2 Possibilistic mean of

coherent fuzzy number
Coherent fuzzy number Possibilistic mean

eA ¼ ða1; a2; a3; a4; a; bÞ Eð eAÞ ¼ a
2ðaþ2Þ a1 þ 1

aþ2
a2 þ b

2bþ1
a3 þ 1

2 2bþ1ð Þ a4

eA ¼ ða1; a2; a3; a4; a; aÞ Eð eAÞ ¼ a
2ðaþ2Þ a1 þ 1

aþ2
a2 þ a

2aþ1
a3 þ 1

2 2aþ1ð Þ a4

eA ¼ ða1; a2; a4; a;bÞ Eð eAÞ ¼ a
2ðaþ2Þ a1 þ 1

aþ2
þ b

2bþ1

� �
a2 þ 1

2 2bþ1ð Þ a4:

eA ¼ ða1; a2; a4; a; aÞ Eð eAÞ ¼ a
2ðaþ2Þ a1 þ 1

aþ2
þ a

2aþ1

� �
a2 þ 1

2 2aþ1ð Þ a4:

eA ¼ ða1; a2; a3; a4Þða ¼ b ¼ 1Þ Eð eAÞ ¼ a1þ2a2þ2a3þa4
6

eA ¼ ða1; a2; a4Þða ¼ b ¼ 1Þ Eð eAÞ ¼ a1þ4a2þa4
6
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q1 ¼
1

4
þ 1

2ðaþ 1Þ �
1

aþ 2
� 1

ðaþ 2Þ2
;

q2 ¼
1

4
;

q3 ¼
1

2bþ 1
� 1

2ðbþ 1Þ �
1

4ð2bþ 1Þ2
;

q4 ¼
1

2
� 1

aþ 2
;

q5 ¼
1

2ð2bþ 1Þ �
1

ðaþ 2Þð2bþ 1Þ ;

q6 ¼
1

2ð2bþ 1Þ :

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:
when a ¼ b, for the two-parameter coherent trapezoidal

fuzzy number eA ¼ ða1; a2; a3; a4; a; aÞ,

Vð eAÞ ¼ d1ða2 � a1Þ2 þ d2ða3 � a2Þ2

þ d3ða4 � a3Þ2 þ d4ða2 � a1Þða3 � a2Þ
þ d5ða2 � a1Þða4 � a3Þ þ d6ða3 � a2Þða4 � a3Þ;

ð17Þ

where

d1 ¼
1

4
þ 1

2ðaþ 1Þ �
1

aþ 2
� 1

ðaþ 2Þ2
;

d2 ¼
1

4
;

d3 ¼
1

2aþ 1
� 1

2ðaþ 1Þ �
1

4ð2aþ 1Þ2
;

d4 ¼
1

2
� 1

aþ 2
;

d5 ¼
1

3ðaþ 2Þ �
1

6ð2aþ 1Þ ;

d6 ¼
1

2ð2aþ 1Þ :

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð18Þ

We get the same result as Li and Yi (2019). When

a2 ¼ a3, for the two-parameter coherent triangular fuzzy

number eA ¼ ða1; a2; a4; a; bÞ,

Vð eAÞ ¼ g1ða2 � a1Þ2 þ g2ða4 � a2Þ2 þ g3ða2 � a1Þða4
� a2Þ;

ð19Þ

where

g1 ¼
1

4
þ 1

2ðaþ 1Þ �
1

aþ 2
� 1

ðaþ 2Þ2
;

g2 ¼
1

2bþ 1
� 1

2ðbþ 1Þ �
1

4ð2bþ 1Þ2
;

g3 ¼
1

2ð2bþ 1Þ �
1

ðaþ 2Þð2bþ 1Þ :

8>>>>>><
>>>>>>:

ð20Þ

When a2 ¼ a3, a ¼ b, for the two-parameter coherent

triangular fuzzy number eA ¼ ða1; a2; a4; a; aÞ,

Vð eAÞ ¼ e1ða2 � a1Þ2 þ e2ða4 � a2Þ2 þ e3ða2 � a1Þða4
� a2Þ;

ð21Þ

where

e1 ¼
1

4
þ 1

2ðaþ 1Þ �
1

aþ 2
� 1

ðaþ 2Þ2
;

e2 ¼
1

2aþ 1
� 1

2ðaþ 1Þ �
1

4ð2aþ 1Þ2
;

e3 ¼
1

3ðaþ 2Þ �
1

6ð2aþ 1Þ :

8>>>>>>><
>>>>>>>:

ð22Þ

Remark 4 When a ¼ b ¼ 1, the two-parameter coherent

trapezoidal fuzzy number eA ¼ ða1; a2; a3; a4; a; bÞ degen-

erates into the trapezoidal fuzzy number

eA ¼ ða1; a2; a3; a4Þ, then.

Vð eAÞ ¼ 1

18
ða2 � a1Þ2 þ

1

4
ða3 � a2Þ2

þ 1

18
ða4 � a3Þ2 þ

1

6
ða2 � a1Þða3 � a2Þ

þ 1

18
ða2 � a1Þða4 � a3Þ þ

1

6
ða3 � a2Þða4 � a3Þ;

ð23Þ

which is coherent with the results by Li et al. (2015). The

two-parameter coherent triangular fuzzy number eA ¼
ða1; a2; a4; a; bÞ degenerates into the triangular fuzzy

number eA ¼ ða1; a2; a4Þ, then

Vð eAÞ ¼ 1

18
ða2 � a1Þ2 þ

1

18
ða4 � a2Þ2 þ

1

18
ða2 � a1Þða4

� a2Þ:
ð24Þ

We summarize the above results in Table 4.

Remark 5 It can be seen that the possibilistic expected

mean of a two-parameter coherent trapezoidal fuzzy

number can also be obtained by.

Eð ~AÞ ¼ a1 þ
Z a4

a1

ð1� FðxÞÞdx ð25Þ

And the possibilistic variance of a two-parameter

coherent trapezoidal fuzzy number can also be obtained by

Vð ~AÞ ¼ ða4 � Eð ~AÞÞ2 � 2

Z a2

a1

ðx�Eð ~AÞÞFðxÞdx: ð26Þ
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Property 1 The derivatives of the variance of the two-

parameter coherent trapezoidal fuzzy number with respect

to the two parameters are as follows.

o

oa
Eð eAÞ ¼ 1

ðaþ 2Þ2
a1 þ

2

ðaþ 2Þ2
a2: ð27Þ

o

ob
Eð eAÞ ¼ 1

ð2bþ 1Þ2
a3 þ

1

2ð2bþ 1Þ2
a4: ð28Þ

o

oa
Vð eAÞ ¼ � 1

2ðaþ 1Þ2
þ 1

ðaþ 2Þ2
þ 2

ðaþ 2Þ3

 !
ða2 � a1Þ2

þ 1

ðaþ 2Þ2
ða2 � a1Þða3 � a2Þ

þ 1

ðaþ 2Þ2ð2bþ 1Þ
ða2 � a1Þða4 � a3Þ

ð29Þ

o

ob
Vð eAÞ ¼ � 2

ð2bþ 1Þ2
þ 1

ðbþ 1Þ2
þ 2

ð2bþ 1Þ3

 !
ða4 � a3Þ2

þ � 1

ð2bþ 1Þ2
þ 2

ðaþ 2Þð2bþ 1Þ2

 !
ða2 � a1Þða4 � a3Þ

� 1

ð2bþ 1Þ2
ða3 � a2Þða4 � a3Þ:

ð30Þ

After one parameter is fixed, the images of the variance

of the two-parameter coherent trapezoidal fuzzy number

changing with the other parameter are as follows:

Remark 6 Figure 3 shows that the mean decreases and the

variance increases with the increase of a when b is fixed,

and Fig. 4 shows that the mean and variance decrease with

the increase of b when a is fixed. This is coherent with the

theoretical result of Property 1.

Remark 7 Figure 5 shows that when a ¼ b\1, the vari-

ance decreases as a and b increase, when a ¼ b[ 1, the

variance increases as a and b increase, when a ¼ b ¼ 1,

the variance is minimized. then we obtain the same result

as Li and Yi (2019).

Definition 10 Let eAi ¼ ðai1; ai2; ai3; ai4; a; bÞði ¼ 1; 2Þ be

the two-parameter coherent trapezoidal fuzzy numbers

with parameters a and b,x� 0. Then the addition and the

scalar multiplication are respectively defined as follows:

(1) ~A1 � ~A2 ¼ ða11 þ a21; a12 þ a22; a13 þ a23; a14
þa24; a; bÞ;

(2) x ~A1 ¼ ðxa1; xa2; xa3; xa4; a; bÞ.

Remark 8 It is supposed that short sale is not allowed in

this work, so x[ 0 for the scalar multiplication. By

Eqs. (9) and (13), we can obtain these properties:

(1) Eð ~A1 � ~A2Þ ¼ Eð ~A1Þ þ Eð ~A2Þ;
(2) Eðx ~A1Þ ¼ xEð ~A1Þ;
(3) Vðx ~A1Þ ¼ x2Vð ~A1Þ.

In general, Vð ~A1 � ~A2Þ 6¼ Vð ~A1Þ þ Vð ~A2Þ, which is

analogous to the traditional property of variance on

probabilistic random variables in the presence of covari-

ance. For example, two two-parameter coherent trapezoidal

fuzzy numbers ~A1 ¼ ð1; 2; 3; 4; 2; 2Þ and
~A2 ¼ ð1; 2; 3; 5; 2; 2Þ. According to Definition 10, we can

calculate A1 � A2 ¼ ð2; 4; 6; 9; 2; 2Þ. According to Theo-

rem 2, we can calculate VðA1 � A2Þ ¼ 3.5267, VðA1Þ ¼
0:7775 and VðA2Þ ¼ 0.9975: Then VðA1Þ þ VðA2Þ ¼
0:7775þ 0:9975 ¼ 1:7750 6¼ VðA1 � A2Þ:

3 Model formulation

In this part, the equal-weighted portfolio model, the mean–

variance model, and the regret portfolio model with two-

parameter coherent trapezoidal fuzzy numbers are pro-

posed. Suppose that an investor wishes to allocate the

Table 4 Possibilistic variance of coherent fuzzy number

Fuzzy number Possibilistic variance

eA ¼ ða1; a2; a3; a4; a; bÞ Vð eAÞ ¼ q1ða2 � a1Þ2 þ q2ða3 � a2Þ2 þ q3ða4 � a3Þ2
þq4ða2 � a1Þða3 � a2Þ þ q5ða2 � a1Þða4 � a3Þ þ q6ða3 � a2Þða4 � a3Þ:

eA ¼ ða1; a2; a3; a4; a; aÞ Vð eAÞ ¼ d1ða2 � a1Þ2 þ d2ða3 � a2Þ2 þ d3ða4 � a3Þ2 þ d4ða2 � a1Þða3 � a2Þ
þd5ða2 � a1Þða4 � a3Þ þ d6ða3 � a2Þða4 � a3Þ:

eA ¼ ða1; a2; a4; a;bÞ Vð eAÞ ¼ g1ða2 � a1Þ2 þ g2ða4 � a2Þ2 þ g3ða2 � a1Þða4 � a2Þ:
eA ¼ ða1; a2; a4; a; aÞ Vð eAÞ ¼ e1ða2 � a1Þ2 þ e2ða4 � a2Þ2 þ e3ða2 � a1Þða4 � a2Þ:
eA ¼ ða1; a2; a3; a4; 1; 1Þ Vð eAÞ ¼ 1

18
ða2 � a1Þ2 þ

1

4
ða3 � a2Þ2 þ

1

18
ða4 � a3Þ2 þ

1

6
ða2 � a1Þða3 � a2Þ

þ 1
18
ða2 � a1Þða4 � a3Þ þ 1

6
ða3 � a2Þða4 � a3Þ:

eA ¼ ða1; a2; a4; 1; 1Þ Vð eAÞ ¼ 1
18
ða2 � a1Þ2 þ 1

18
ða4 � a2Þ2 þ 1

18
ða2 � a1Þða4 � a2Þ:
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available wealth among n assets i ¼ 1; 2; . . .; nð Þ. The

returns of assets are described by the two-parameter

coherent trapezoidal fuzzy numbers. The investor assigns

parameters a and b, which indicate his market perception

(pessimistic, optimistic, or neutral). Let us suppose that the

return of the i - th asset is given by the two-parameter

coherent trapezoidal fuzzy number

ni;a;b ¼ ðai1; ai2; ai3; ai4; a; bÞ. xi is the proportion of

investment in the i - th asset. We define an auxiliary

variable yi, which takes the value 1 if the i - th asset is

included in the portfolio and 0 otherwise. We assume that

short selling of assets is not allowed, so xi � 0, for each

i ¼ 1; 2; . . .; n. The portfolio return is modeled by the

fuzzy number
Pn
i¼1

xini;a;b ¼
Pn
i¼1

xiai1;
Pn
i¼1

xiai2;
Pn
i¼1

xiai3;

�

Pn
i¼1

xiai4; a; bÞ. Next, we define the objectives and con-

straints of the model.

3.1 Objectives

3.1.1 Expected return

The first objective is to maximize the expected return from

the portfolio. This is modeled as

E
Xn
i¼1

xini;a;b

 !
¼ a

2ðaþ 2Þ
Xn
i¼1

xiai1 þ
1

aþ 2

Xn
i¼1

xiai2

þ b
2bþ 1

Xn
i¼1

xiai3 þ
b

2 2bþ 1ð Þ
Xn
i¼1

xiai4:

ð31Þ

3.1.2 Variance

The second objective is to minimize the risk of the port-

folio. In our case, this is the variance of the portfolio return.

This is modeled as

V
Xn
i¼1

xini;a;b

 !

¼ q1
Xn
i¼1

xiðai2 � ai1Þ
 !2

þq2
Xn
i¼1

xiðai3 � ai2Þ
 !2

þ q3
Xn
i¼1

xiðai4 � ai3Þ
 !2

þq4
Xn
i¼1

xiðai2 � ai1Þ
 ! Xn

i¼1

xiðai3 � ai2Þ
 !

þ q5
Xn
i¼1

xiðai2 � ai1Þ
 ! Xn

i¼1

xiðai4 � ai3Þ
 !

þ q6
Xn
i¼1

xiðai3 � ai2Þ
 ! Xn

i¼1

xiðai4 � ai3Þ
 !

:

ð32Þ

where qiði ¼ 1; 2; 3; 4; 5Þ are those coefficients in

Eq. (13).

3.1.3 Regret value

The third objective is to minimize the regret value of the

portfolio. In our case, the preference function

(Eðni;a;bÞ � cVarðni;a;bÞ) is used to measure regret value,

and the difference of preference function values is mini-

mized,c is the coefficient of risk aversion. This is modeled

as

max
1� i� n

Eðni;a;bÞ � cVar ni;a;b
� 	� 	

� E
Xn
i¼1

xini;a;b

 !
� cVar

Xn
i¼1

xini;a;b

 ! !
: ð33Þ

3.2 Constraints

(a) Total investment constraint.

x1 þ x2 þ � � � þ xn ¼ 1: ð34Þ

(b) Upper bound on investment in the i - th asset.

Suppose the investor sets an upper bound ui on the

proportion of investment in the i - th asset. Then

Fig. 3 The possibilistic mean

and possibilistic variance with

different a when b ¼ 1 for

coherent trapezoidal fuzzy

numbers eA ¼ ð1; 2; 3; 4; a; bÞ
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xiyi � ui;8 i ¼ 1; 2; . . .; n: ð35Þ

(c) Lower bound on investment in the i - th asset.

Suppose the investor sets a lower bound li on the

proportion of investment in the i - th asset. Then

xiyi � li;8 i ¼ 1; 2; . . .; n: ð36Þ

(d) No short selling constraint.

xi � 0;8 i ¼ 1; 2; . . .; n: ð37Þ

(e) Dummy variable constraint. Since yi is allowed to

take values 0 and 1, we subject yi to the following

constraint:

yi 2 0; 1f g;8 i ¼ 1; 2; . . .; n: ð38Þ

3.3 Three portfolio optimization model
with two-parameter coherent trapezoidal
fuzzy numbers

(a) The equal-weighted portfolio with two-parameter

coherent trapezoidal fuzzy number

‘‘Don’t put all your eggs in one basket’’ is one of

the most familiar investment principles. It means that

you should invest in a broadly diversified portfolio to

spread your risk. Equal-weighted investment is one

of the simplest ways to achieve portfolio diversifi-

cation, which can be mathematically expressed as:

xi ¼
1

N

s.t. Eqs:ð34Þ � ð38Þ.

8<
: ð39Þ

where N is the total number of assets in the portfolio.

xi is the proportion of i - th assets. For the equal

weight investment portfolio problem, it still satisfies

the constraints (34)-(38). Specifically, in the equity

investment portfolio, x1 ¼ x2 ¼ � � � ¼ xn ¼
1
n � 0; yi ¼ 1; x1 þ x2 þ � � � þ xn ¼ 1; therefore, the

constraints (34), (37), and (38) are met. And for

given appropriate investment upper bound ui and

lower bound li, it can be achieved

xiyi � li;8 i ¼ 1; 2; . . .; n:xiyi � li;8 i ¼ 1; 2; . . .; n: So

the constraints (35) and (36) are met. This method is

very easy to implement. Equal-weighted investment

is one of the fastest and most effective ways to

diversify investment in the absence of historical asset

Fig. 5 The possibilistic variance

with different a ¼ b for

coherent trapezoidal fuzzy

numbers eA ¼ ð1; 2; 3; 4; a; bÞ

Fig. 4 The possibilistic mean

and possibilistic variance with

different b when a ¼ 1 for

coherent trapezoidal fuzzy

numbers eA ¼ ð1; 2; 3; 4; a; bÞ
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data. However, equal-weighted investment only

considers the allocation of weight in terms of quan-

tity and does not consider the risk of the asset itself.

That is to say, no matter the asset with great or

minimal risk, the weight assigned under this method

is the same, so the risk diversification effect brought

by the model is limited.

(b) The mean–variance portfolio with two-parameter

coherent trapezoidal fuzzy numbers

As the descriptions of the mean returns and risks

of asset returns by the two-parameter coherent

trapezoidal fuzzy numbers, the possibilistic expected

mean and variance for the two-parameter coherent

trapezoidal fuzzy numbers are counterparts of the

usual expected mean and variance of asset returns in

mean–variance methodology. Therefore, following

the mean–variance methodology, in order to obtain

an optimized portfolio, the possibilistic expected

mean can be maximized given the upper bound of

the risk the investor can bear, i.e., the possibilistic

variance of the portfolio. Specifically, the possibilis-

tic expected mean–variance model for portfolio

selection by the coherent trapezoidal fuzzy numbers

can be structured as follows:

max Z1 ¼ E
Xn
i¼1

xini;a;b

 !

s.t:Var
Xn
i¼1

xini;a;b

 !
� v

Eqs:ð34Þ � ð38Þ.

8>>>>>>><
>>>>>>>:

ð40Þ

(c) Regret minimization model with two-parameter

coherent trapezoidal fuzzy number

The preference function ðEðni;a;bÞ � cVðni;a;bÞÞ is
used to measure regret value, and the difference of

preference function value is minimized, a single

objective regret minimization model with two-pa-

rameter coherent trapezoidal fuzzy numbers is

structured as follows

min Z2 ¼ max
1� i� n

Eðni;a;bÞ � cVarðni;a;bÞ
� 	

� Eð
Pn
i¼1

xini;a;bÞ � cVarð
Pn
i¼1

xini;a;bÞ
� �

s.t. Eqs:ð34Þ � ð38Þ.

8>>><
>>>:

ð41Þ

4 Illustrative examples

In this section, we select a numerical example to verify the

validity of our proposed model. First, we select 20 stocks

as our data and convert the data into two-parameter

consistent fuzzy numbers. Secondly, we use software to

solve the three models and carry out a sensitivity analysis

of the parameters. Finally, we compare the performance of

the three models under five indicators.

4.1 Data sources

In this section, in order to verify the validity of the pro-

posed models for portfolio selection by the two-parameter

coherent trapezoidal fuzzy numbers, we provide a numer-

ical example of asset allocation in investment portfolios.

Specifically, we select 728 trading data of 20 stocks in

CSI100 from June 3, 2019 to June 1, 2022. We have pro-

vided links to the website for the data here: https://cndata1-

csmar-com.webvpn.scut.edu.cn/.

4.2 Model solving

In order to quantify the daily logarithmic return rates of the

stocks by the two-parameter coherent trapezoidal fuzzy

numbers in the form of ni ¼ ðq0:1; q0:4; q0:6; q0:9; a; bÞ, in
which the intervals are specified by the sample quantiles qa
of the history returns by the method of Vercher and Ber-

mudez (2013) and a; b[ 0 are the given parameters, two

indications of the expectations of the involved investors.

Consequently, we can derive the returns of the stocks by

the two-parameter coherent trapezoidal fuzzy numbers,

listed in Table 5.

Considering the different expectations of the investors,

we can use different values for a and b. Note that a; b\1

means the optimism of the investors, a; b ¼ 1 means neu-

trality, and a; b[ 1 means the pessimism of the investors.

For illustration, we set the following values for two

parameters in Table 6. Each parameter is set as 0.5, 1.0,

and 1.5. Due to the constraint of ða� 1Þðb� 1Þ� 0, the

values that do not meet the conditions are excluded, and

there are a total of 7 cases. In addition, we set

li ¼ 0; ui ¼ 0:9.

4.2.1 For the equal-weighted model with two-parameter
coherent trapezoidal fuzzy numbers

In order to diversify investment risks as much as possible,

we set the number of assets in the portfolio N as the total

number of shares 20, and regard the logarithmic return rate

of assets as a two-parameter coherent trapezoidal fuzzy

number, the mean value and variance of the portfolio can

be calculated according to the formula of the possibilistic

mean and variance of the portfolio, namely Formulae (31)

and (32), as shown in Table 7 below.
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4.2.2 For the mean–variance model with two-parameter
coherent trapezoidal fuzzy numbers

We use Matlab to solve Formula (40), gaining the optimal

solution of the model, the possibilistic expected mean, and

the possibilistic variance. Then we obtain the efficient

frontiers by the possibilistic expected mean and the pos-

sibilistic variance, as shown in Fig. 6. It can be seen that

when one parameter is fixed and the other parameter is

smaller, the efficient frontier in Fig. 6 is steeper, such as

when a ¼ 0:5 is fixed, the efficient frontier with b ¼ 0:5 is

steeper than that with b ¼ 1:0(The dark blue line is above

the orange line); when b ¼ 1:0 is fixed, the efficient fron-

tier with a ¼ 0:5 is steeper than that with a ¼ 1:0 (The

orange line is above the purple line), which means that

optimistic investors will get a more favorable mean–vari-

ance portfolio in the fuzzy framework. Notably, each of

these frontiers suggests that investors can earn higher

returns by accepting a slightly higher variance.

Table 8 shows the optimal solution of Eq. (40) when the

variance upper bound v ¼ 2� 10�4, including the invest-

ment proportion, the expected mean, and the variance. As

can be seen from Table 8, when the variance upper bound

is 2� 10�4, one parameter is fixed, the mean strictly

decreases as the other parameter increases. When

a ¼ 0:5; b ¼ 0:5, the expected mean has the largest value

of 0.43%, at this point, 45.18% of the fourth stock is

invested and 54.82% of the sixteenth stock is invested. This

indicates that when the variance upper bound

v ¼ 2� 10�4, active investors get higher investment

returns. When a ¼ 0:5; b ¼ 1:0 and a ¼ 1:0; b ¼ 0:5, the

obtained optimal expected mean values are 0.35% and

0.25% respectively, which indicates that the increments of

the two parameters have different effects on the mean

values, and it also implies that the introduction of coherent

fuzzy number with two parameters is of practical signifi-

cance to maximize the return of the portfolio model.

Table 9 shows the optimal solution of Eq. (40) when the

variance upper bound v ¼ 4� 10�4, As can be seen from

Table 9, when the variance upper bound is 4� 10�4, one

parameter is fixed, the mean strictly decreases as the other

parameter increases. When a ¼ 0:5; b ¼ 0:5, the expected

mean has the largest value of 0.77%, at this point, 90.00%

of the fourth stock is invested, 1.41% of the seventh stock

is invested and 8.59% of the tenth stock is invested. Dif-

ferent from Table 8, when the upper bound of variance

changes from 2� 10�4 to 4� 10�4 and the values of

parameters a and b are 1.5, the optimal variance is

3:5624� 10�4, which is less than the given upper bound.

At this time, investors are too pessimistic and the obtained

expected mean becomes negative.

Table 10 shows the optimal solution of Eq. (40) when

the variance upper bound v ¼ 6� 10�4, As can be seen

from Table 10, when the variance upper bound is 6� 10�4,

one parameter is fixed, the mean strictly decreases as the

other parameter increases. When a ¼ 0:5; b ¼ 0:5, the

expected mean has the largest value of 0.89%, at this point,

10.00% of the seventh stock is invested and 90.00% of the

tenth stock is invested. Different from Table 9, when the

upper bound of variance changes from 4� 10�4 to

6� 10�4, for these cases a ¼ 0:5; b ¼ 0:5,

a ¼ 0:5; b ¼ 1:0, a ¼ 1:0; b ¼ 1:0 and a ¼ 1:5; b ¼ 1:5

the optimal variances are 5:8120� 10�4,4:1626�
10�4,5:1921� 10�4 and 4:3563� 10�4 which are less than

the given upper bound. This shows that when the upper

bound becomes 6� 10�4, the ability to constrain the model

becomes very weak. In addition, when the upper bound of

the risk that investors can tolerate becomes larger while the

other parameters are unchanged, they can get higher

returns. For example, in a ¼ 1:0; b ¼ 0:5, the mean

changed from 0.48% to 0.61%.

From the comparison of Tables 8, 9, 10, it can be seen

that although the values of the upper bounds of variance are

different, when investors are most optimistic, the expected

means reach their maximum values. In addition, we can

derive that when one parameter is fixed, as the other

parameter increases, the change in the mean becomes

smaller. For example, for the case that the upper bound for

the possibilistic variance changes from v ¼ 2� 10�4 to

v ¼ 4� 10�4, when a ¼ 1:0, the increments of the maxi-

mized possibilistic expected means of the returns for the

cases b ¼ 0:5; b ¼ 1:0; b ¼ 1:5 are 0.0023, 0.0013, and

0.0006. A similar result can be obtained for the case v ¼
4� 10�4 changes to v ¼ 6� 10�4. This means that when

investors bear the same increment of risk, the more pes-

simistic they are, the less marginal return they will get.

4.2.3 For the regret minimization model with two-
parameter coherent trapezoidal fuzzy numbers

In this part, the parameters are still set to the seven cases

above, then we use Matlab to solve Eq. (41). Then we get

the optimal solution of the model when the risk aversion

coefficient is set as 2, 3, and 4 respectively under the

conditions of the above seven situations, and obtain the

possibilistic expected mean, possibilistic variance, and the

optimal value of the objective function. Specific numerical

results are shown in Tables 11, 12, and 13. (The actual

values of mean, variance, and regret function should be

multiplied by 10 to the -4th power.)

As can be seen from Table 11, when the risk aversion

coefficient c ¼ 2, parameter a is fixed, both the optimal

expected mean and the optimal variance decrease with the
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increase of parameter b. Similarly, when parameter b is

fixed, both the optimal expected mean and the optimal

variance decrease with the increase of the parameter a.
Coherent with the theoretical results, the variance increases

with the increase of the expected mean. When

a ¼ 0:5; b ¼ 0:5, the expected mean of the return rate is

the largest, which is 0.89%, and the variance is also the

largest, which is 5:8120� 10�4. When a ¼ 1:0; b ¼ 1:0,

the objective function value is the smallest, which is

2:51� 10�6. At this time, the expected mean of the return

rate is 0.3%, and the variance is 5:1921� 10�4. As can be

seen from the table, the parameter combination that max-

imizes the mean value will not minimize the value of the

objective function, which also indicates that minimizing

regret and maximizing return are different goals. When

investors are more optimistic, they can get more expected

returns, and when investors keep a neutral attitude, they

can minimize the regret value.

Table 12 shows the solution results of Eq. (41) when the

risk aversion coefficient c ¼ 3. Similar to Tables 11, 12

also shows that when one parameter is fixed, the mean and

variance decrease as the other parameter increases. When

a ¼ 0:5; b ¼ 0:5, the mean of return rate is the largest,

which is 0.89%, and the variance is also the largest, which

is 5:8120� 10�4. When a ¼ 1:0; b ¼ 0:5, the objective

function value is the smallest, which is 1:13� 10�5. At this

time, the expected mean is 0.64%, and the variance is

6:9688� 10�4. In this situation, the neutral attitude of the

investor does not minimize the value of our regret function,

but requires appropriate optimism.

Table 13 presents the solution results of Eq. (41) when

the risk aversion coefficient c ¼ 4. Similar to Tables 12, 13

also shows that when one parameter is fixed, the expected

mean and variance decrease as the other parameter

increases. When a ¼ 0:5; b ¼ 0:5, the mean of return rate

is the largest, which is 0.89%, and the variance is also the

largest, which is 5.8120. When a ¼ 1:0; b ¼ 0:5, the

objective function value is the smallest, which is

1:381� 10�5. At this time, the mean is 0.57%, and the

variance is 4:9601� 10�4.

From the comparison of the three tables, it can be seen

that when the risk aversion coefficient takes different val-

ues, it is when the investor’s attitude is the most optimistic

that the mean is the largest. In addition, as the risk aversion

coefficient increases, the value of the regret function will

decrease when the same parameters are taken. For exam-

ple, when a ¼ 0:5; b ¼ 0:5, the regret value is 4:824�
10�5 at c ¼ 2, the regret value is 4:387� 10�5 at c ¼ 3,

Table 6 Parameter setting of two-parameter coherent trapezoidal

fuzzy numbers

ða; bÞ 0.5 1.0 1.5

0.5 ð0:5; 0:5Þ ð0:5; 1:0Þ –

1.0 ð1:0; 0:5Þ ð1:0; 1:0Þ ð1:0; 1:5Þ
1.5 – ð1:5; 1:0Þ ð1:5; 1:5Þ

Table 5 The return rates by the

two-parameter coherent

trapezoidal fuzzy numbers with

parameters a and b

Stocks Percentage of logarithmic return rates Stocks Percentage of logarithmic return rates

1 ð�3:03;�0:72; 0:40; 3:77; a;bÞ 11 ð�3.66, - 0:63; 0.63,4:21;a; bÞ
2 ð�2.83, - 0:48; 0.48,3:18; a;bÞ 12 ð�2.71, - 0:65; 0.28,2:67;a; bÞ
3 ð�2.74, - 0:41; 0:38; 3:10; a;bÞ 13 ð�1.40, - 0:24; 0.19,1:24;a; bÞ
4 ð�3.41, - 0:42;0:73; 4:35; a;bÞ 14 ð�1.01, - 0:18; 0.16,0:94;a; bÞ
5 ð�3.43, - 0:68; 0:49; 4:04; a;bÞ 15 ð�2.46, - 0:47; 0.36,2:54;a; bÞ
6 ð�2.16, - 0:35; 0.27,2:04;a;bÞ 16 ð�1.46, - 0:24; 0.23,1:39;a; bÞ
7 ð�4.36, - 0:52; 0.94,5:00;a;bÞ 17 ð�2.84, - 0:59; 0.47,3:21;a; bÞ
8 ð�3.22, - 0:47; 0.57,3:59;a;bÞ 18 ð�2.19, - 0:48; 0.25,2:41;a; bÞ
9 ð�3.65, - 0:48; 0.73,3:92;a;bÞ 19 ð�2.56, - 0:54; 0.33,2:96;a; bÞ
10 ð�4.30, - 0:59; 1:05; 5:20; a;bÞ 20 ð�2.23, - 0:49; 0.26,2:31;a; bÞ

Table 7 The optimal portfolio

at different parameters in Model

(39)

Parameters ð0:5; 0:5Þ ð0:5; 1:0Þ ð1:0; 0:5Þ ð1:0; 1:0Þ ð1:0; 1:5Þ ð1:5; 1:0Þ ð1:5; 1:5Þ

Mean �10�4 41.9914 19.9745 26.6521 4.6352 - 6.3732 - 6.3214 - 17.3298

Variance �10�4 2.4823 1.7547 3.0598 2.2568 1.8798 2.6395 2.2357
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and when the regret value continues to decrease to 3:950�
10�5 at c ¼ 4.

Below, we draw line graphs of the possibilistic mean

and variance of the equal-weight model, the mean–vari-

ance model, and the regret minimization model under

different parameter values. According to Fig. 7, we can see

that the mean of the regret minimization model is greater

than that of the mean–variance model under the conditions

(0.5, 0.5), (0.5, 1.0), (1.0, 0.5), (1.0, 1.0) and (1.5, 1.0). The

mean of the equal-weighted portfolio is the smallest in all

seven cases. In Fig. 8, in seven cases, the variance of regret

minimization is the smallest, which is smaller than the

Table 8 The optimal portfolio at different parameters when v ¼ 2� 10�4 in Model (40)

ða; bÞ Mean �10�4 Variance �10�4 Investment proportion

ð0:5; 0:5Þ 43.3849 2.0000 (0, 0, 0, 0.4518, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.5482, 0, 0, 0, 0)

ð0:5; 1:0Þ 34.6923 2.0000 (0, 0, 0, 0.7323, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.2677, 0, 0, 0, 0, 0, 0)

ð1:0; 0:5Þ 24.5520 2.0000 (0, 0, 0, 0.3858, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.6142, 0, 0, 0, 0, 0, 0)

ð1:0; 1:0Þ 13.6432 2.0000 (0, 0, 0, 0.5540, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.4460, 0, 0, 0, 0, 0, 0)

ð1:0; 1:5Þ 5.9811 2.0000 (0, 0, 0, 0.6860, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.3140, 0, 0, 0, 0, 0, 0)

ð1:5; 1:0Þ 2.4061 2.0000 (0, 0, 0, 0.4631, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.5369, 0, 0, 0, 0, 0, 0)

ð1:5; 1:5Þ - 5.7228 2.0000 (0, 0, 0, 0.5646, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.4354, 0, 0, 0, 0, 0, 0)

Table 9 The optimal portfolio at different parameters when v ¼ 4� 10�4 in Model (40)

ða; bÞ Mean �10�4 Variance �10�4 Investment proportion

ð0:5; 0:5Þ 77.0955 4.0000 (0, 0, 0, 0.9000, 0, 0, 0.0141, 0, 0, 0.0859, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

ð0:5; 1:0Þ 53.8974 4.0000 (0, 0, 0, 0.1280, 0, 0, 0, 0, 0, 0.8720, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

ð1:0; 0:5Þ 47.9249 4.0000 (0, 0, 0, 0.8393, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1607, 0, 0, 0, 0, 0, 0)

ð1:0; 1:0Þ 27.3142 4.0000 (0, 0, 0, 0.7076, 0, 0, 0, 0, 0, 0.2924, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

ð1:0; 1:5Þ 12.3676 4.0000 (0, 0, 0, 0.3095, 0, 0, 0, 0, 0, 0.6905, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

ð1:5; 1:0Þ 11.2115 4.0000 (0, 0, 0, 0.9000, 0, 0, 0, 0, 0, 0.0612, 0, 0, 0, 0.0388, 0, 0, 0, 0, 0, 0)

ð1:5; 1:5Þ - 3.3613 3.5624 (0, 0, 0, 0.9000, 0, 0, 0, 0, 0, 01000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

Fig. 6 The efficient frontiers by

the possibilistic expected mean

and variance using the two-

parameter coherent trapezoidal

fuzzy numbers with different

parameters
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variance of the equal weight model; meanwhile, the vari-

ance of the mean–variance model is the largest, which is

larger than the variance of the equal weight model.

4.3 Comparative analysis

In order to prove that our proposed models are feasible and

effective, we make use of the daily return data of the above

20 stocks, take annual returns, Sharpe ratio, beta value,

unsystematic risk, and alpha value as indicators to compare

our proposed model with equal-weighted portfolio. The

specific data obtained are shown in Table 14. The risk

aversion coefficient c ¼ 2 and variance upper bound

v ¼ 4� 10�4. We use the benchmark rate of 2.41% for

three-year time deposits as the risk-free rate.

(1) In terms of annual returns, compared with the equal-

weighted portfolio, the mean–variance model and

regret minimization model have larger annual returns

under the same parameter setting. When both

parameters are less than 1, the regret minimization

model has a higher return than the mean–variance

model, which indicates that when investors are

optimistic, the regret minimization model is better

than the mean–variance model. When both

parameters are at least 1, the opposite result is

obtained (Fig. 9).

(2) The Sharpe ratio represents that investors can get a

few extra rewards for each extra point of risk they

take. If it is greater than 1, it means that the fund

return rate is higher than the volatility risk. If it is

less than 1, it means that the fund operation risk is

greater than the rate of return. In this way, the Sharpe

ratio can be calculated for each portfolio, namely, the

ratio of investment return to excess risk. The higher

the ratio, the better the portfolio. In terms of the

Sharpe ratio, the value of the regret minimization

model is smaller than that of the mean–variance

model but larger than that of the equal-weight

portfolio under the same parameter setting (Fig. 10).

(3) Beta is a risk index that measures the price move-

ments of individual stocks or stock funds relative to

the overall stock market. A higher beta means a stock

is more volatile relative to its performance bench-

mark, and vice versa. When b ¼ 1, it means that the

returns and risks of the stock are in line with those of

the broad index. When b[ 1, it means that the

return and risk of the stock are greater than that of

the broad index. Except in the extremely pessimistic

case, the beta values of the regret minimization

model are larger than those of the mean–variance

Table 10 The optimal portfolio at different parameters when v ¼ 6� 10�4 in Model (40)

ða; bÞ Mean �10�4 Variance �10�4 Investment proportion

ð0:5; 0:5Þ 89.0881 5.8120 (0, 0, 0, 0, 0, 0, 0.1000, 0, 0, 0.9000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

ð0:5; 1:0Þ 54.5655 4.1626 (0, 0, 0, 0.1000, 0, 0, 0, 0, 0, 0.9000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

ð1:0; 0:5Þ 60.6651 6.0000 (0, 0, 0, 0.4858, 0, 0, 0, 0, 0, 0.5142, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

ð1:0; 1:0Þ 29.8506 5.1921 (0, 0, 0, 0.1000, 0, 0, 0, 0, 0, 0.9000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

ð1:0; 1:5Þ 12.7721 4.3563 (0, 0, 0, 0.1000, 0, 0, 0, 0, 0, 0.9000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

ð1:5; 1:0Þ 12.4727 6.0000 (0, 0, 0, 0.1294, 0, 0, 0, 0, 0, 0.8706, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

ð1:5; 1:5Þ - 3.3613 3.5624 (0, 0, 0, 0.9000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1000, 0, 0, 0, 0, 0, 0)

Table 11 The optimal portfolio at different parameters when c ¼ 2 in Model (41)

ða; bÞ Mean Variance Regret value Investment proportion

ð0:5; 0:5Þ 89.0881 5.8120 0.4824 (0, 0, 0, 0, 0, 0, 0.1000, 0, 0, 0.9000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

ð0:5; 1:0Þ 54.5655 4.1626 0.4206 (0, 0, 0, 0, 0, 0, 0.1000, 0, 0, 0.9000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

ð1:0; 0:5Þ 64.0076 6.9688 0.3641 (0, 0, 0, 0.1000, 0, 0, 0, 0, 0, 0.9000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

ð1:0; 1:0Þ 29.8506 5.1921 0.0251 (0, 0, 0, 0.1000, 0, 0, 0, 0, 0, 0.9000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

ð1:0; 1:5Þ 11.2277 2.9958 0.1471 (0, 0, 0, 0.1000, 0, 0, 0, 0, 0, 0.9000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

ð1:5; 1:0Þ 11.9220 4.2338 0.3869 (0, 0, 0, 0.1000, 0, 0, 0, 0, 0, 0.9000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

ð1:5; 1:5Þ - 8.4053 0.5478 0.0478 (0, 0, 0, 0, 0, 0, 0.1000, 0, 0, 0, 0, 0, 0, 0.9000, 0, 0, 0, 0, 0, 0)
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model and the equal-weight portfolio. This indicates

that the regret minimization model has the strongest

volatility relative to the market, while the equal-

weight model has the weakest volatility relative to

the market (Fig. 11).

(4) Unsystematic risk is also called ‘non-market risk’

and ‘diversifiable risk’. It refers to those risks that

have nothing to do with fluctuations in financial

speculation markets such as stock markets, futures

markets, and foreign exchange markets. In terms of

unsystematic risk, the equal-weight portfolio has the

smallest unsystematic risk, which can also be

deduced from its greater dispersion (Fig. 12).

(5) Alpha represents the excess return on the portfolio.

As can be seen from the above table, the alpha values

of the mean–variance model and the minimization

regret model are both greater than that of the equal-

weight portfolio, except when investors are in an

extremely pessimistic attitude. Under the same

parameter setting, the excess return of the regret

minimization portfolio model is greater than the

corresponding values of the mean–variance model

and equal-weight model (Fig. 13).

In addition, when both parameter values are equal to 1,

we processed the data in Table 14 to find the corresponding

percentages of each index value for three models and

obtain Fig. 14. We can see that the regret minimization

model has the highest annualized returns and excess

returns. At the same time, it also has higher unsystematic

risk and volatility.

From the above discussion, it can be seen that the regret

minimization model is superior to the mean–variance

model to the equal-weight portfolio in terms of obtaining

higher returns. If the investor wants to obtain higher

returns, the regret minimization model is the best choice

for him. In terms of risk aversion, the mean–variance

model is better than the regret minimization model. If the

investor’s main purpose is to avoid risk, the mean–variance

model is the best choice for him.

We have compared our work with some existing ones

and listed them in Table 15. Compared with Li’s work in

2019, we explored the investment situation in which the

coherent fuzzy number with an adaptive index is used to

describe the return, including the case that the parameters

are all equal to 0.5, 1.0, and 1.5. At the same time, we also

consider the two parameters are not equal, and explore the

two parameters on the different impact of investment

Table 12 The optimal portfolio at different parameters when c ¼ 3 in Model (41)

ða; bÞ Mean Variance Regret value Investment proportion

ð0:5; 0:5Þ 89.0881 5.812 0.4387 (0, 0, 0, 0, 0, 0, 0.1000, 0, 0, 0.9000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

ð0:5; 1:0Þ 54.5655 4.1626 0.3877 (0, 0, 0, 0, 0, 0, 0.1000, 0, 0, 0.9000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

ð1:0; 0:5Þ 64.0076 6.9688 0.1130 (0, 0, 0, 0.1000, 0, 0, 0, 0, 0, 0.9000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

ð1:0; 1:0Þ 26.5109 3.6225 0.1711 (0, 0, 0, 0.1000, 0, 0, 0, 0, 0, 0.9000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

ð1:0; 1:5Þ 11.2277 2.9958 0.3171 (0, 0, 0, 0.1000, 0, 0, 0, 0, 0, 0.9000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

ð1:5; 1:0Þ 11.9220 4.2338 0.6161 (0, 0, 0, 0.1000, 0, 0, 0, 0, 0, 0.9000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

ð1:5; 1:5Þ - 8.4053 0.5478 0.3604 (0, 0, 0, 0, 0, 0, 0.1000, 0, 0, 0, 0, 0, 0, 0.9000, 0, 0, 0, 0, 0, 0)

Table 13 The optimal portfolio at different parameters when c ¼ 4 in Model (41)

ða; bÞ Mean Variance Regret value Investment proportion

ð0:5; 0:5Þ 89.0881 5.812 0.3950 (0, 0, 0, 0, 0, 0, 0.1000, 0, 0, 0.9000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

ð0:5; 1:0Þ 54.1502 4.0428 0.2907 (0, 0, 0, 0.1000, 0, 0, 0, 0, 0, 0.9000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

ð1:0; 0:5Þ 57.0774 4.9601 0.1381 (0, 0, 0, 0.9000, 0, 0, 0, 0, 0, 0.1000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

ð1:0; 1:0Þ 26.5109 3.6225 0.3673 (0, 0, 0, 0.9000, 0, 0, 0, 0, 0, 0.1000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

ð1:0; 1:5Þ 11.2277 2.9958 0.4872 (0, 0, 0, 0.9000, 0, 0, 0, 0, 0, 0.1000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

ð1:5; 1:0Þ 10.0913 3.6312 0.2656 (0, 0, 0, 0.9000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1000, 0, 0, 0, 0, 0, 0)

ð1:5; 1:5Þ - 9.2867 0.2605 0.4054 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.9000, 0, 0.1000, 0, 0, 0, 0)
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Table 14 Performance analysis of Models (39), (40), and (41) when c ¼ 2; v ¼ 4� 10�4

Models Parameters Annualized

returns

Sharpe

ratio

Beta

value

Unsystematic

Risk

Alpha

value

Equal-weighted model (39) ð0:5; 0:5Þ 1.6018 0.2719 1.1207 0.0564 0.0043

ð0:5; 1:0Þ 0.7817 0.1557 1.1094 0.0551 0.0021

ð1:0; 0:5Þ 1.0518 0.1601 1.1141 0.0556 0.0028

ð1:0; 1:0Þ 0.2317 0.0378 1.1027 0.0544 0.0006

ð1:0; 1:5Þ - 0.1783 - 0.0404 1.0971 0.0537 - 0.0006

ð1:5; 1:0Þ - 0.1611 - 0.0312 1.0980 0.0538 - 0.0005

ð1:5; 1:5Þ - 0.5711 - 0.1092 1.0924 0.0532 - 0.0016

Mean–variance model (40) ð0:5; 0:5Þ 2.9565 0.3939 1.5770 0.0803 0.0080

ð0:5; 1:0Þ 2.0805 0.2801 1.5476 0.0836 0.0056

ð1:0; 0:5Þ 1.8615 0.2490 1.3857 0.0667 0.0050

ð1:0; 1:0Þ 1.0950 0.1480 1.5159 0.0779 0.0029

ð1:0; 1:5Þ 0.5475 0.0740 1.5117 0.0803 0.0014

ð1:5; 1:0Þ 0.5110 0.0672 1.4548 0.0722 0.0013

ð1:5; 1:5Þ - 0.0243 - 0.0070 1.4705 0.0742 - 0.0002

Regret minimization model (41) ð0:5; 0:5Þ 3.4310 0.3806 1.6160 0.0878 0.0093

ð0:5; 1:0Þ 2.1170 0.2785 1.5741 0.0867 0.0057

ð1:0; 0:5Þ 2.5185 0.2566 1.5855 0.0837 0.0068

ð1:0; 1:0Þ 1.2410 0.1446 1.5433 0.0826 0.0033

ð1:0; 1:5Þ 0.5840 0.0741 1.5222 0.0821 0.0015

ð1:5; 1:0Þ 0.6205 0.0655 1.5396 0.0818 0.0016

ð1:5; 1:5Þ - 0.2918 - 0.0064 0.5939 0.0161 - 0.0002

Fig. 7 Possibilistic mean of

Models (39), (40), and (41) in

different parameters

Fig. 8 Possibilistic variance of

Models (39), (40), and (41) in

different parameters
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decisions. This shows that the portfolio model we consider

is more universal and practical. Through the above argu-

ments, it can be concluded that the different expectations of

investors can be proved by coherent trapezoidal fuzzy

numbers when the two parameters are introduced into the

fuzzy portfolio selection model. Compared with the

coherent trapezoidal fuzzy number with an adaptive index,

the coherent trapezoidal fuzzy number with two parameters

is generalized, which is an extension of the original case.

5 Conclusion

In this paper, a kind of coherent generalized fuzzy number

with two parameters is presented. In particular, the mem-

bership degree functions of two-parameter coherent trape-

zoidal fuzzy numbers and two-parameter coherent

triangular fuzzy numbers are proposed. Then we work out

the possibilistic mean and the possibilistic variance. To

some extent, it is a generalization of the coherent trape-

zoidal fuzzy number with an adaptive index proposed by Li

and Yi (2019) and we remedy the limitation of coherent

trapezoidal fuzzy number with an adaptive index, namely,

we consider the situation that investors’ preference for

favorable returns is different from their aversion to unfa-

vorable returns (when the two parameters have different

values). Furtherly, we use the preference function to

describe the regret value. Based on the regret theory, we

propose a regret minimization portfolio model and a mean–

variance model with two-parameter coherent trapezoidal

fuzzy numbers. Finally, we use a numerical example to

demonstrate the feasibility of our proposed models and

compare them with the equal-weighted portfolio. The

results show that the regret minimization model outper-

forms the mean–variance model and the equal-weighted

portfolio in obtaining higher returns. In terms of risk

aversion, the mean–variance model is better than the regret

minimization model.

Fig. 9 Annualized returns of

Models (39), (40), and (41) in

different parameters

Fig. 10 The Sharpe ratio of

Models (39), (40) and (41) in

different parameters
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In future research, on the one hand, we are committed to

extending the two-parameter coherent fuzzy number to the

two-parameter coherent intuitionistic fuzzy number. We

should consider not only the membership degree of the

fuzzy number, but also the non-membership degree and

hesitation degree of the fuzzy number, so that it can

describe the real investment environment more accurately.

On the other hand, we intend to combine the two-parameter

Fig. 11 The beta value of

Models (39), (40) and (41) in

different parameters

Fig. 12 The unsystematic risk

of Models (39), (40) and (41) in

different parameters

Fig. 13 The alpha value of

Models (39), (40) and (41) in

different parameters
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coherent fuzzy number with the prospect theory to further

explore the influence of investment psychology on invest-

ment decisions.
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Table 15 Comparison of literature features

Features Possibilistic

mean

Possibilistic

variance

Possibilistic

density

function

Possibilistic

distribution

function

Membership

function

Fuzzy

environment

Investor

attitude

Fuzzy

number with

two-

parameters

Regret

Markowitz

(1952)

H H 9 9 9 9 9 9 9

Li et al.

(2010)

H H 9 9 Linear H 9 9 9

Baule et al.

(2019)

9 9 9 9 9 9 H 9 H

Li and Yi

(2019)

H H H H Non linear H H 9 9

Mehlawat

et al.

(2021)

H H 9 9 Non linear H H 9 9

Gupta et al.

(2020)

9 9 9 9 Linear H H 9 9

Pankaj et al.

(2021)

9 9 9 9 Non linear H H 9 9

Gong et al.

(2021)

H H 9 9 Linear H 9 9 H

Gong et al.

(2022)

H H H 9 Non linear H H 9 9

Our
proposed
approach

H H H H Non linear H H H H

Fig. 14 Performances of

Models (39), (40) and (41) when

a ¼ b ¼ 1
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