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Abstract
The study was aimed at developing a new automatic search technique for specific invariant patterns of movement-related

brain potentials reflected in multidimensional electroencephalogram (EEG) signals. An adaptive band-pass filter with

bandwidth closely matching the spectrum of the desired EEG pattern at the observed moment was synthesized based on the

Singular Spectrum Analysis methodology. The preliminary filtering of the original EEG signals provides the required

sensitivity for subsequent searching of time boundaries in patterns. The correctness of the developed method was con-

firmed with standard machine learning tools through the validation of the adaptive search method carried out on the general

set of initial data. It is shown that the synthesized method has provided a reliable automatic search for induced pre-

movement EEG patterns and the correct determination of their time boundaries (accuracy up 29% on average and reached

maximum values to 100% for some individuals). The developed method expands the existing tools to improve the

functionality and reliability of various Brain-computer interfaces for various purposes, including medical applications for

paralyzed patients.

Keywords Electroencephalogram � Movement-related brain potentials � Initial and final time boundaries �
Automatic detection � Adaptive band-pass filter � Singular spectrum analysis � Hausdorff distance � Human voluntary motor

activity

1 Introduction

It is known that a noninvasive approach based on elec-

troencephalogram (EEG) signals has proven to be very

useful in Brain-computer interface (BCI). BCIs strictly do

not use normal neuromuscular output pathways. The orig-

inal idea of BCI is to replace or restore brain function in

patients with neuromuscular disorders such as amyotrophic

lateral sclerosis, stroke, and spinal cord injury (McFarland

et al. 2017). The study on the features of electrophysio-

logical indicators associated with brain potentials is a key

aspect in improving the accuracy and reliability of the BCI.

Usually these indicators (brain patterns) in EEG signals are

random a priori undefined structures with unknown

temporal dynamics and fluctuations of frequency oscilla-

tors with various intensities. Nowadays, the search in

multidimensional EEG signals for these brain patterns is

being thoroughly studied (Abiri et al. 2019). The widely

used methods for analyzing and decoding brain EEG sig-

nals can promote widespread application of neural control.

These methods have an impact on the accuracy of the

pattern classification of electrical brain activity (Cola-

marino et al. 2018).

Nevertheless, the character of movement-related brain

potential (MRP) patterns being displayed in EEG signals

sets a limit on the use of a classical approaches to solving

the problem of their automatic detection (Takashima et al.

2020). First and foremost, the quasistationary nature of the

EEG itself makes it problematic to analyze and interpret

the bioelectric activity of the brain (Craik et al. 2019).

There have been numerous attempts to use spectral density

decomposition method for automatic detection of specific

brain patterns associated with the epileptic foci (Türk and
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Özerdem 2019), or to assess the effects of EEG synchro-

nization/desynchronization (Li et al. 2019), and others.

Second, the main disadvantage of known approaches,

however, is the assumption that several parameters,

including nonlinear indicators in different frequency

regions of the signal, are known a priori. The EEG assumes

the presence of a set of narrow-band MRPs that specifically

reflect the voluntary motor activity of a person associated

with movement preparation (Readiness potentials, RP), or

movement execution (Motor potentials, MP), or motor

imagery (MI) and inner speech activity (IS). Parameters of

recorded MRPs depend on the nature of the activity being

executed—visual or kinesthetic imagination (Lee et al.

2019). Moreover, the frequency spectrum of target MRP

patterns is determined by the current psychophysiological

and functional state of a person, and, for example, the type

of movement being prepared—voluntary motor execution

or ballistic (spontaneous) (Lazurenko et al. 2018; Chen

et al. 2019). Thus, as a rule, the frequency composition and

power spectrum of these specific EEG patterns are not

known in advance as they are determined by a sufficiently

large set of uncontrolled random factors unknown to the

researcher. Another substantial problem in the study of

voluntary motor activity, especially, motor imagery is the

blurring of time boundaries in determining the processes of

planning, preparation, and execution of motor acts (Freer

and Yang 2020). This problem does not allow for a suffi-

ciently reliable coherent summation of induced brain

electrograms, as compared to evoked potentials (Jin et al.

2012; Eidel and Kübler 2020; Kübler et al. 2021). In

addition, the modal frequencies of various brain rhythm

oscillators usually associated with an individual’s different

activity can demonstrate a very high variability even during

one experimental series. This phenomenon may be caused

by fatigue and monotony (Sengupta 2020). Thus, several

problems related to the detection, interpretation, and clas-

sification of MRPs accompanying voluntary motor activity

(including motor imagery) of a person have not yet been

fully resolved. Such nonstationary character of the required

EEG patterns, as well as the a priori uncertainty of their

parameters and time boundaries require the development of

new adaptive approaches for MRPs automatic detection

(Samuel et al. 2021).

This study is aimed at the development of the new

adaptive method for automated detection of MRPs as EEG

markers of the well-known individual brain activity asso-

ciated with voluntary movement preparation. The hypoth-

esis of the study is that the search function reflects the

presence of the initial and final time boundaries of the

MRPs. First, an adaptive spectro-temporal decomposition

of the EEG signals employing a number of band-pass filters

(BPF) is performed. Only one of the adaptive BPFs is

selected so that the filtered EEG signal has a frequency

range corresponding to the maximum frequency spectrum

of the target MRPs. The subsequent search of time

boundaries of for low-amplitude target MRP pattern in

time domain we carried out not in the original EEG signal,

but in so preliminary filtered original EEG time series.

Therefore, we ensured high sensitivity of the search algo-

rithm. Based on the found time boundaries of the MRPs,

time epochs corresponding to the voluntary motor prepa-

ration brain activity of a person are extracted from the

original unfiltered multidimensional EEG. This allows to

create an efficient machine learning dataset to classify the

type of movement being prepared and designed to build the

most reliable BCIs.

2 Method for automatic detection time
boundaries of the MRPs

Registration of the multidimensional EEG

S tð Þ ¼ S1 tð Þ S2 tð Þ . . . SJ tð Þð ÞT ð1Þ

was carried out at the same time intervals t 2 t0; tk½ � on J

standard leads (where t0 and tk are the initial and final time

intervals; T signifies transposition). The EEG S(T) (1)

assumes the presence of a number of movement-related

brain potentials that specifically reflect the voluntary motor

preparation brain activity, where T ¼ tk � t0 is the

observed time for automated detection of MRPs. The time

interval T was known a priori and corresponded to the

duration of the target MRP pattern Tp ¼ tk;p � t0;p, where

t0,p and tk,p are the initial and final time boundaries of the

MRP pattern. Thus, T and Tp were close in value, but

Tp\ T is guaranteed.

Time boundaries of MRP patterns were detected in time

domain. Criterion-based search reflected the presence of

the time boundaries of the MRPs. Usually, the search

sensitivity isn’t sufficient for searching low-amplitude

MRP patterns with a priori unknown parameters in noisy

EEG signals. It is known that some parameters of MRP

patterns and their spatial localizations are determined by

the type of human mental activity (Amin et al. 2019). For

instance, frequencies from 30 to 70 Hz (c1 and c2- fre-

quencies) demonstrate high directional sensitivity to the

type of motor activity being executed and correlate with

the processes of selective attention. But it is the alpha

frequencies (a-range) from 12 to 16 Hz of the frontal and

central regions of the cerebral hemispheres that are closely

related to the preparation for the execution of voluntary

movements (Babiloni et al. 1999; Deiber et al. 2012;

Kobler et al. 2020). It was shown that the maximum fre-

quency power spectrum of narrow-band pattern of the

named regions in the a range specifically reflect BCIs
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compatible early conscious access to preparation of vol-

untary motor activity, related to the pre-motor potential

(also known as Bereitschaftspotential or Readiness poten-

tial) (Shibasaki and Hallett 2006; Parés-Pujolràs et al.

2019; Braquet et al. 2020). So, it is advisable to run a

preliminary search of the narrow-band MRP pattern in the

individual frequencies related to the different type of

movement-related brain activity of an individual at the

observed moment. Preliminary filtering the original EEG in

the frequency range maximum correspond to the frequency

range of the target MRP pattern can provide a very high

sensitivity for subsequent searching of time boundaries of

this pattern.

Obviously, the modal frequencies of MRPs are a priori

uncertain and can demonstrate a very high variability even

during one experimental series. Therefore, the use of band-

pass filter with a priori specified parameters would not

provide maximum corresponding of the frequency range of

the filtered EEG signal to the frequency range of the sought

narrow-band MRP patterns at the observable time moment.

For example, experimental studies confirmed the well-

established fact (Zapała et al. 2020) that multiple execu-

tions of the same type of movement can significantly

modify the frequency range of these patterns.

To transfer EEG signals from the temporal representa-

tion to the time–frequency representation, historically, a

mathematical tool has been used based on the windowed

Fourier transform and spatial filtering of oscillating com-

ponents (Jusas and Samuvel 2019), or discrete or contin-

uous wavelet transforms (Taran and Bajaj 2019), or multi-

taper spectral decomposition (Walden 2000; Babadi and

Brown 2014), or empirical mode decomposition (EMD)

(Huang et al. 1998; Bajaj and Pachori 2012). These

methods allow to search for a specific brain pattern within

the framework of various criteria functions (Shcherban

et al. 2018, 2019; Bablani et al. 2019). Nowadays, wavelet

decomposition and EMD are the most widely discussed

frequency domain techniques in this case. But each method

has some features that can be used to synthesize required

adaptive BPF. It was considered that, depending on the

type of cognitive load, physiological EEG rhythms can

demonstrate multidirectional changes in narrow frequency

bands. Thus, for example, preparation for the implemen-

tation of real movement is accompanied by changes both in

low-frequency delta- (1–4 Hz) and alpha-ranges (8–12 Hz)

of the EEG, and in higher-frequency beta- (13–35 Hz) and

gamma (c1, 35–45 Hz) frequencies (Onay and Köse 2019).

For this reason, it is necessary that parameters of BPFs

correspond to the spectrum characteristics of the most

high-frequency rhythm of all frequency ranges related to

the studied process of preparation for the execution of

motor acts recorded at the interval T in target channels. It is

still difficult to control parameters of the synthesized

adaptive filter so that its bandwidth matches the narrow-

band frequency range of the sought MRP pattern at the

observable time moment.

It is known that such time series as EEG signal can be

deconstructed in the time domain with the use of the Sin-

gular Spectrum Analysis (SSA) methodology into a sum of

oscillatory components—reconstructed components (RC)

(Golyandina and Zhigljavsky 2020). The frequency spectra

of each RC depend on the number of SSA filters used in the

decomposition and are ordered in ascending order. Thanks

to this feature, SSA filters are adaptive to probabilistic

changes in the original signal. This feature enabled us to

solve, for example, the problems of extraction of multi-

source brain activity using only single-channel recordings

of electromagnetic brain signals (James and Lowe 2003),

rejection of low-frequency artifacts in spontaneous EEG

(Hu et al. 2017), high-quality suppression of high-fre-

quency noise (Ghaderi et al. 2011) and high-precision fil-

tering (Maddirala and Shaik 2016). To automatically

remove low-frequency artifacts in the human EEG, an

adaptive filter was synthesized as part of the development

of portable telemedicine devices (Hu et al. 2017). In Ref.

(Shcherban et al. 2020) the use of an adaptive band-pass

SSA filter was considered mainly for increasing the sen-

sitivity of the criterion function to search olfactory evoked

patterns in the bioelectric activity of the rat’s olfactory

bulb. Another important aspect of the SSA, unlike many

other methods, is that it works well even for small sample

sizes (Hassani 2007; Hassani and Zhigljavsky 2009). For

example, a short motor potential (40–80 ms) is formed in

the primary motor cortex (M1) immediately before exe-

cuting a voluntary movement, which is associated with the

impulse of pyramidal cells to the motor end plates of the

effector muscle, that is why this feature is important for

automated detection of time boundaries of short MRPs.

The new method for detecting specific MRP patterns

was as follows. At first it was considered that different type

of human mental activity determines different spatial

localization of EEG patterns (Amin et al. 2019). That is

why only J0 \ J EEG leads from the regions of interest

were required for subsequent analyses. Applying SSA on

the measurement interval T with a set of M filters the first

of which is a low-pass filter (LPF), and the rest (M-1) are

band-pass filters (BPF), each j-th (j ¼ 1; J0)component

Sj(T) of multidimensional EEG S(T) required for subse-

quent analysis can be divided into M time series Sj Tð Þ ¼
~Sj;1

~Sj;2 . . . ~Sj;M

� �T
of the same dimension as the original

data Sj (Golyandina and Zhigljavsky 2020). To reconstruct

a system of simultaneous time series similar as the multi-

dimensional EEG S(T) (1), the multidimensional SSA

(MSSA) (Golyandina and Zhigljavsky 2020) can be used.

But in each j lead the narrow-band MRP pattern has
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different maximum frequency spectrum at the observed

time moment (Xu et al. 2021). Therefore, the SSA

decomposition of each j-th component Sj(T) from (1) sep-

arately is more correct in comparison with the simultane-

ous MSSA decomposition of the original multidimensional

EEG.

The frequency spectra DFj;1; :::;DFj;M of j,m-th

(j ¼ 1; J0; m ¼ 1;M) reconstructed components (RC)
~Sj;1;:::; ~Sj;M depend on the number M of SSA filters used in

the decomposition and are ordered in ascending order. The

upper frequency limits of the spectra of the RCs satisfy

f h
1 � f h

2 � � � � � f h
M ; where f h

M ¼ 0:5fs and fs is the EEG

sampling rate. In this case, the sum of all narrow-band RCs

reconstructs the original series EEG Sj Tð Þ ¼
PM

m¼1
~Sj;m Tð Þ,

while the choice of only some of them allows us to perform

frequency filtering of the original EEG signal. In Ref.

(Shcherban et al. 2020), to simplify the synthesis procedure

for the required adaptive band-pass filter, the narrow-band

signal was restored by just one RC and the required BPF

was synthesized. Considering that MRP pattern has the

narrow-band frequency spectral characteristics we used the

same approach further on. Varying of number M in the

range M 2 Mmin;Mmax½ � leads to change in the bandwidth

of each m-th filter. With an increase in M, the effective

passbands of BPFs decrease. Also in Ref. (Golyandina and

Zhigljavsky 2020), it is shown, that the amplitude-fre-

quency characteristic (AFC) Am ¼ Hm ej2pf 0
� ��� �� ¼

Am f 0;Mð Þ of a given M filter is a function of the M, where

Hm ej2pf 0
� �

¼
PMJ�1

n¼0 hm;ne�j2p f 0n—the frequency response;

hm—the known impulse response of non-recursive SSA

filter; f 0 2 0; 0:5½ �—the given frequency. The choice of the

given frequency step from the equality f’ = 1/fs makes it

possible to calculate the frequency response AFC Am f ;Mð Þ
in the real frequency range f [ [0; 0.5 fs] with a discrete-

ness of 1 Hz. So, thanks to known hm in SSA decompo-

sition it’s easy to control the frequency spectra of each m-th

RC ~Sj;m(T). Varying the number M simultaneously changes

each m-th (m ¼ 1;M) SSA filter parameters in M-th

decomposition (M ¼ Mmin;Mmax) and so changes the fre-

quency spectrum of the filtering j-th component Sj(T) of the

original EEG (1).

The AFC of SSA filters has a shape of a Gaussian

function (GF) g fð Þ ¼ exp � f̂ � f
� �2

.
2c2

� �
. So, varying

M leads to simultaneous changes in the modal frequency f̂ :

gmax = g(f̂ ) = 1 of the Gaussian-like AFC and its band-

width, determined by the c value (Golyandina and Zhigl-

javsky 2020). We also approximated the sought narrow-

band MRP pattern in the frequency domain by the Gaus-

sian shape. Therefore, it was required to select only one

SSA band-pass filter (BPF) so that its Gaussian-like AFC

maximally repeated the approximate MRP Gaussian

function.

Parameters f̂ and c alternatively can be interpreted by

saying that the two inflection points f GF
L and f GF

H of the of

the GF occur at f GF
L ¼ f̂ � c, f GF

H ¼ f̂ � c. Moreover, for

the presented GF of unit height, it is true that g f GF
L

� �
¼

g f GF
H

� �
¼ exp �1=2ð Þ for any pairs of numbers (f̂ , c).

Consequently, a proximity measure of the pairs of inflec-

tion points of the GF of m-th BPF f BPF
L ; f BPF

H

� �
and of the

approximate MRP GF f RP
L ; f RP

H

� �
fully reflect the proximity

measure of the spectrum parameters of the m-th RC and the

MRP pattern. Determination of the number mopt from the

criterion

mopt Mð Þ ¼ min
m¼1;M

M¼Mmin;Mmax

f BPF
L � f RP

L

� �2þ f BPF
H � f RP

H

� �2
n o

;

ð2Þ

provides maximum correspondence of the spectrum

parameters of the RC ~Sj;mopt
Tð Þ and of the sought narrow-

band MRP pattern on the j-th lead (j ¼ 1; J0) on the

observed time interval T. In general, there are different

numbers mopt on the EEG leads. The preliminary filtering

of the original EEG signals in the frequency range corre-

sponding most to the frequency range of the MRP pattern

provides the required sensitivity for subsequent searching

of time boundaries of this pattern in time domain.

Subsequent search of time boundaries of the MRP pat-

tern was carried out on the analysis of the multidimensional

time series of RCs

~S Tð Þ ¼ ~S1;mopt
~S2;mopt

. . . ~SJ0;mopt

� �T
; ð3Þ

where dim(~S) = J0 9 K; K = Tfs—the time series length.

By comparing two neighboring sliding time windows equal

in volume and containing J0 9 n point sets (n\\K) the

criterion-based search reflecting the degree of dynamic

differences in ~S Tð Þ (3) for each adjacent sliding pair of

windows.

The criterion function was based on the calculation of

the Hausdorff distance (HD) H. The HD is a measure of

dissimilarity between two-point sets. It is commonly used

in many domains like pattern matching, for example, in

medical applications related to the evaluation of medical

segmentations (Vizilter and Zheltov 2014; Taha and Han-

bury 2015). The HD is the maximum of the non-symmet-

rically directed Hausdorff distances in both directions. In

the considered approach, the directed Hausdorff distance

Hd between two J0 9 n point sets ~S Tið Þ and ~S Tiþ1ð Þ from

two i and i ? 1 neighboring time windows (where Ti,

Ti?1\\ T and Ti = Ti?1 = n/fs) is the maximum of the
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Euclidean distances �k k from each point ~s ih i 2 ~S Tið Þ to its

nearest neighbor ~s iþ1h i 2 ~S Tiþ1ð Þ:

Hd
~S Tið Þ; ~S Tiþ1ð Þ

� �

¼ max

~s ih i2~S Tið Þ
min

~s iþ1h i2~S Tiþ1ð Þ
~s ih i; ~s iþ1h i		 		
 �

8
<

:

9
=

;
:

So, HD H is given by

H ~S Tið Þ; ~S Tiþ1ð Þ
� �

¼ max Hd
~S Tið Þ; ~S Tiþ1ð Þ

� �
;




Hd
~S Tiþ1ð Þ; ~S Tið Þ

� ��
:

ð4Þ

The HD (4) is calculated for all adjacent windows. Then,

if there is an initial or final boundary of the desired MRP

pattern in any pair of the neighboring sliding windows, the

measure of the dissimilarity of these two-point sets

increase, the criterion function H (4) acquires its local

maximum value. The size n of the sliding time window is

selected so that the a priori known duration of the MRP

pattern is guaranteed to exceed the value of n/fs. We

synthesized the following algorithm for automatic detec-

tion of time boundaries of the target RP patterns (Fig. 1).

Taking into consideration the spatial localization of the

studied human brain activity type, J0 \ J EEG signals are

selected from the original multidimensional EEG. Based on

the Fast Fourier transform of each j-th (j ¼ 1; J0) original

signal Sj(T) on the observed time T power spectral density

(PSD) functions are calculated. Then, in the frequencies of

interest f [ [fL, fH] the modal frequencies f RP
j : Pjðf RP

j Þ ¼ 1

of the MRPs are detected, where Pj(f) denotes normalized

PSD. It is easy to calculate inflection point pairs f RP
L ; f RP

H

� �
j

of the approximate GFs of the Pj(f) of MRPs. Also, by

varying the number M in the range M 2 Mmin;Mmax½ � the

one optimal BPF with number (mopt(M))j from the criterion

(2) is selected. In this case the spectrum of the filtering j,

m-th RC ~Sj;mopt
Tð Þ most closely matches the spectrum of the

target MRP pattern, observed at the j-th EEG lead. The

multidimensional so preliminary filtering signal ~S Tð Þ (3) is

divide into K/n of time windows of the same dimensions

J0 � n. The HD (4) is calculated for all adjacent windows.

Fig. 1 Developed algorithm for automatic detection time of boundaries of the MRP
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Then, if there is an initial or final boundary of the desired

pattern in any of the neighboring windows, the criterion

function H (4) acquires its local maximum value.

Based on the found time boundaries of the MRPs epochs

corresponding to the voluntary movement-related brain

potentials, in particular, the Readiness potentials are

extracted from the original unfiltered multidimensional

EEG (1). We apply the above proposed method to move-

ment and motor imagery dataset that we have previously

obtained and analyzed using other methods to create new

asynchronous and stimulus-independent Brain-computer

interfaces (Shepelev et al. 2018; Lazurenko et al. 2019).

3 Research methodology

To test the developed tools, the following experimental

studies were performed. The surveys involved 16 healthy

volunteers (11 men and 5 women) with the average age of

21. In accordance with ethical standards of the 1964 Hel-

sinki Declaration and its later amendments and the ethics

committee of Southern Federal University, they all signed a

voluntary consent protocol for participation in the research.

Further experimental studies were carried out only on

voluntary motor activity related to the pre-movement

Readiness potential (RP) (or Bereitschaftspotential). The

fact of preparation for movement execution by a person is

obvious and it is easy to test with the developed tools on

the RP patterns compared with the motor imagery patterns.

For selected type of motor activity, the alpha-range (mu-

rhythm) frequencies from fL = 12 to fH = 16 Hz of the

central regions of the cerebral hemispheres are closely

related to the preparation for the execution of voluntary

movements. It is obvious that the initial moment ta of the

actual hand movement initialization practically coincides

with the terminal moment of the target pre-motor RP pat-

tern associated with the preparation for the motor act and

ta = tk,p = tk. For this reason, in each study sample, we

were searching for only the initial boundaries of the pre-

motor RP patterns of a person t0,p. It is generally accepted

that RP patterns associated with the direct preparation of a

specific plan for executing voluntary movements, as a rule,

do not exceed 500 ms (Kobler et al. 2020). In this regard,

the detection of the desired RP patterns was carried out at

T = 1000 ms preceding the moment of actual initialization

of the hand movement ta and Tp\ T is guaranteed.

During the electrophysiological tests, the participants

were in a comfortable position (in a chair) in a specially

equipped light and sound-proof Faraday chamber. The

subjects executed real movements with their legs, right and

left arms at a voluntary pace with the eye fixed on the

placemark in the center of the screen. The movements of

the upper limbs alternated with a state of rest when the

subject was motionless for some random time with their

eyes open. In this case, the EEG was recorded continu-

ously—both at rest and in preparation for the execution of

the actual movement. Movement execution with each arm

was covered around 25 cycles for each subject. Figure 2

shows a fragment of the timing diagram of an experimental

session for one type of movement.

The EEG S(t) (1) was recorded relative to the ear ref-

erence electrodes (combined reference) with an Encepha-

lan-131–03 amplifier (Medikom MTD, Taganrog) from

J = 17 standard channels (F7, F8, F3, Fz, F4, C3, Cz, C4,

P3, Pz, P4, O1, O2, T3, T4, T5, T6) in accordance with the

international system ‘‘10–20’’. The EEG sampling rate was

fs = 250 Hz for each of the recording channels. The first

and second harmonics of the 50 and 100 Hz power supply

were removed using a notch filter.

In parallel, an electromyogram (EMG) was recorded on

the superficial muscles flexing the forearm in the elbow

joint (m. Brachioradialis) and the superficial flexors of the

fingers (m. Flexor digitorum superficialis). The bipolar

electromyogram was used to form event markers syn-

chronized with the EEG channels. Each EMG channel was

filtered in the frequency band of 1–4 Hz. As a result, a

smoothed myographic spindle was formed. The events of

the actual initiation of movement execution were set

automatically when the threshold amplitude of 10 lV was

reached on the ascending front of the smoothed EMG

spindle. Thus, the initial moment ta of the actual movement

of arms was recorded quite accurately by means of bipolar

EMG channels. To detect and subsequently reject artifacts

associated with eye movement and blinking automatically,

an electro-oculogram (horizontal and vertical EOG) was

recorded. The dataset is available at (http://neuro.sfedu.ru/

eeg_premotor_pattern_sfedu_2020/).

4 Computational results

4.1 Time boundaries detecting results

The correctness of the decisions made were verified with

standard statistical tests and machine learning algorithms.

The developed method was used to detect the initial time

boundaries of the pre-motor RP patterns of 16 persons in

each trial of movement execution both with the right and

left arm.

For the right arm, the target leads of the left hemisphere

F3, C3, P3 and T3 responsible for the development of the

pre-motor pattern were selected, and for the left arm—the

EEG leads F4, C4, P4 and T4 (J0 = 4 in both cases). The

maximum permissible number of filters is determined by

Mmax B 0.5 K, where the length of the time series was

K = 250. Considering the frequency range of RPs [12;16]

4494 I. V. Shcherban et al.
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Hz in the SSA decomposition of selected single-channel

EEG components Sj(T) we used Mmax = 70, Mmin = 4.

Spectrum parameters of synthesized adaptive SSA BPFs

and of sought narrow-band RP patterns matched well.

Three typical examples of the preliminary filtering of j-th

component Sj(T) from one target EEG channel shown on

Fig. 3.

To verify the adaptation properties of the selected SSA

BPFs, we also used six-order Butterworth BPF with the

constant passband [12;16] Hz for comparison. The spectral

composition of the RPs recorded for the actual movement

execution preparation in the shown examples is signifi-

cantly different. In the graphs (Fig. 3b) the modal fre-

quency fj
RP: Pjðf RP

j Þ ¼ 1 of the RP pattern shifted to the

lowest frequency of alpha-rhythm (normalized in range [fL;

fH] PSD Pj(f) shown with bold solid lines). In the other two

examples, the modal frequency of RP patterns is in the

middle of the frequency range of interest (Fig. 3a) or close

to the upper frequency limits (Fig. 3c). The top graphs in

Fig. 3 also show normalized amplitude-frequency charac-

teristic (AFC) Am of the selected m = mopt BPFs, normal-

ized AFC AB of the Butterworth BPF and approximate GFs

(AGF) of the PSD Pj(f) of RP patterns. The dotted lines in

the graphs at the bottom of Fig. 3 demonstrate normalized

PSD PRC
j fð Þ of the RCs ~Sj;mopt

Tð Þ (solid lines) and nor-

malized PSD Pj
B(f) of the filtering with Butterworth BPF j-

th single-channel EEG time series (dotted lines). It is clear

that the spectrum of RCs ~Sj;mopt
Tð Þ closely matches the

spectrum of the target RP patterns and, therefore, the

developed algorithm made it possible to obtain individual

optimal SSA BPF for the given examples of RPs. Butter-

worth BPF with a priori specified parameters did not pro-

vide maximum correspondence to of the frequency range

of the filtered EEG signal to the frequency range of the RP

patterns at the observed time moment.

When searching for the initial boundary of the RP pat-

terns t0,p the width of the sliding window was 100 ms, and

the overlap coefficient of the adjacent windows was 0.9.

(Fig. 4a–c) shows 3 typical examples of the HD (4) graphs

carried out at observed time interval T = t0 = 1000 ms

preceding the moment ta = tk,p = tk = 0 of actual initial-

ization of the right arm movement from one experimental

session of a person.

We detected that the first maximum value of the HD

corresponds to the initial boundary of the target RP pattern

t0,p while preparing for the actual movement execution. In

Ref. (Kobler et al. 2020) generally accepted that RP pat-

terns, as a rule, do not exceed 500 ms. A detailed analysis

demonstrated that there are significant fluctuations in t0,p

coupled with the temporal characteristics of the RPs. In

some cases, the t0,p exceeded 500 ms and were, on average,

374 ± 130 ms for the right arm and 348 ± 100 ms for the

left arm. (Fig. 5) shows box plot of RPs initial time

boundaries t0,p in sec for both arms.

Fig. 2 Timing representation of a scenario with the participation of

volunteers in the task of movement execution. [1] Rest with eyes

open; [2] Instructions; [3] Movement execution with left or right arm;

[4] Rest after movement execution. A time diagram of an experi-

mental session for voluntary movement execution
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The well-known fact was also confirmed (Hu et al.

2017; Pereira et al. 2019), according to which the fre-

quency ranges associated with the preparation for move-

ment can demonstrate a certain variability in the

assessment of single trials even within the same subject. It

is for this reason that the use of frequency filters with a

priori given parameters seems to be ineffective.

4.2 Results of discrete classification problems

Based on the found time boundaries of the MRPs, time

epochs corresponding to the voluntary motor preparation

brain activity of a person were extracted from the original

unfiltered multidimensional EEG signals. The hypothesis

of the study was that this fact allows to create an efficient

machine learning dataset to classify the type of movement

being prepared by a person. We validated this hypothesis

with standard machine learning algorithms. We checked

the quality of the separation of time epochs related to the

state of rest of each person and epochs pertaining to the

preparation for the execution, therefore, containing RP

patterns. Based on the detected time boundaries of the RP

patterns for each trial of movement execution by each

person correct time epochs [t0,p; tk] were extracted from the

original EEG. Thus, we prepared data sets of classes

namely the ‘‘Modified method (MM), right arm (RA)’’ and

the ‘‘MM, left arm (LA).’’ Also, we had the analogous data

sets of classes namely the ‘‘Standard method (SM), RA’’

and ‘‘SM, LA,’’ where detection of initial time boundaries

was carried out as constant t0,p
Standard = 500 ms (Kobler

Fig. 3 The top graphs show PSD function Pj(f) (bold solid lines),

normalized AFC Am, m = mopt of the selected BPFs, normalized AFC

AB of the Butterworth BPF and approximate GFs of the PSD Pj(f) of

RP patterns. The bottom graphs show normalized PSD Pj
RC(f) of the

RCs ~Sj;mopt
Tð Þ (solid lines) and normalized PSD Pj

B(f) of the filtering

with Butterworth BPF EEG component Sj (dotted lines)

Fig. 4 Three examples of the HD function (4) from one experimental session of a person
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et al. 2020). Final time boundaries of time epochs tk were

the same as in the samples of ‘‘Modified method.’’ For each

person, we also prepared data sets of class ‘‘Rest,’’ each

containing 25 samples of 500-ms epochs selected randomly

in each cycle of the experimental series in intervals cor-

responding to the state of operative rest before and after a

single limb movement (see Fig. 2). Therefore, it was pos-

sible to solve the problem of discrete classification with

standard machine learning algorithms.

At the first stage of calculations, best machine learning

(ML) models and their best parameters were selected.

Standard ML models Random Forest, Support Vector

Machine, k-nearest neighbors, Gradient boosting decision

trees (GBDT), Multilayer Perceptron and Classifier, based

on linear discriminant analysis from the Python. Scikit-

learn library were used. In total, about 300 reference fea-

tures of different types from selected EEG epochs were

calculated and synthesized—temporal, frequency, and fre-

quency-temporal, as well as spatial. Additionally, the

standardization of each selected feature in the data set was

performed by removing the mean and scaling it to a unit

variance. Detection of the best parameters for each ML

model was provided using scikit-learn’s GridSeacrh

method. The selected classification models had sufficient

generalizing ability which excluded the possibility of their

undertraining or retraining. It turned out that the classifi-

cation model of GBDT with parameters {deviance loss

function, the minimum number of samples required to split

an internal node and required to be in a leaf node equals 3,

number of estimators equals 50} was the most efficient

among the trained methods. The most important features

were slopes of the regression lines, intersections of

regression lines, correlation coefficients, standard errors of

the estimated slopes, standard errors of the calculated

intersection points assuming residual normality between

the non-filtering single-channel EEG time series.

At the second stage, the binary discrete classification

problem on standard datasets of two target states {‘‘SM,

RH/LH’’—‘‘Rest’’} was solved. As expected, the maxi-

mum accuracy of binary classification in Stratified Shuf-

fleSplit cross-validation at this stage was low and averaged

at only 62% for the right arm and 67% for left arm.

(Fig. 6a) shows box plot of accuracy of the solved classi-

fication problem. There were also significant variations in

the classification accuracy—from 48 to 82% among dif-

ferent subjects. Interindividual differences are known to

make a significant contribution to the assessment of subsets

of EEG channels that usually differ significantly. In fact,

the low average classification accuracy in the general set of

data observed at the first calculation stage is most likely

explained by the fact that, in addition to the target RP

patterns, the composition of the epochs T = 500 ms of the

‘‘SM, RH/LH’’ classes includes other electrographic pat-

terns not related to the current motor task.

Then was solved the binary discrete classification

problem of the same two target states but on modified data

sets {‘‘MM, RH/LH’’—‘‘Rest’’}. The GBDT model with

the best parameters was retrained, and its accuracy was

verified during cross-validation. The accuracy of the binary

classification for Modified method increased in comparison

with Standard method on average by 32% for the right and

26% for left arm (see Fig. 6b). At the same time, the

maximum observed classification accuracy on modified

datasets calculated separately for each person, in some

cases, increased to 99% for the right arm and to 100% for

the left arm.

Then data sets of classes ‘‘MM, RH’’ and ‘‘MM, LH’’

had been merged in one class ‘‘MM, Movement execu-

tion.’’ Classes ‘‘SM, RH’’ and ‘‘SM, LH’’ were also com-

bined in one class ‘‘SM, Movement execution.’’ Two

binary discrete classification problems of classes {‘‘MM,

Movement execution’’—‘‘Rest’’} and classes {‘‘SM,

Movement execution’’—‘‘Rest’’} were solved. The accu-

racy of the binary classification categorized by ‘‘Method’’

was significantly higher for Modified method and amoun-

ted to average 94% ± 6% (see Fig. 6, c).

(Fig. 7a) shows quantile–quantile plot of the accuracy

categorized by Method with Gamma distribution reflecting

two probability movement-related EEG pattern distribu-

tions by comparing their quantiles against each other. MM

had accuracy 89 ? 3.9 9 x and SM had accuracy only

55 ? 8.9 9 x (Shape par. x = 1, 2). (Fig. 7b) shows

quantile–quantile plot of accuracy, categorized by Method

and State (Rest and Movement preparation) with Gamma

Fig. 5 Box plot of Mean parameters of the initial time boundaries of

two target movement-related EEG patterns
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distribution. MM had accuracy 89/88 for RH/LH and SM

had accuracy only 53/57 for RH/LH.

5 Discussion

Results highlighted the main features of the work and

proved the hypothesis of the study that detailed determi-

nation of time boundaries of MRP patterns reflected in

EEG signals allows increasing the classification accuracy

of the state of rest of a person and of the state associated

with movement preparation. Therefore, developed method

is capable of automatic detection of MRPs as a marker of

voluntary motor EEG activity of an individual. Application

of a synthesized method obtain to correctly extract from

EEG signals of those time epochs that containing the

desired pre-motor MRPs. Thanks to this fact, it is possible

to prepare an efficient machine learning dataset and,

therefore, to increase the accuracy of the subsequent clas-

sification of the type of movement executed by a person at

the observable time moment.

The required search sensitivity of time boundaries of

MRPs is achieved through preliminary filtering of the

original EEG signals. SSA methodology allows to take into

account significant fluctuations in spatial-frequency char-

acteristics of the EEG in terms of voluntary movements

execution (Mammone et al. 2020; Wang et al. 2020; Santos

et al. 2020) and, therefore to control parameters of the

synthesized adaptive filter so that to obtain individual

optimal SSA band-pass filter with bandwidth closely

matching the spectrum of the desired MRP at the observed

moment. We showed that Butterworth BPF with a priori

Fig. 6 Box plot of accuracy of the binary discrete classification of two target movement-related EEG patterns: a classes ‘‘SM, RA/LA’’ and

‘‘Rest (R)’’; b classes ‘‘MM, RA/LA’’ and ‘‘Rest (R)’’; c classes ‘‘SM/MM, Movement execution’’ and ‘‘Rest’’

Fig. 7 Box plot of quantile–quantile plot of accuracy: a Categorized by ‘‘Method’’ with Gamma distribution (Gamma shape = 1,2);

b Categorized by ‘‘Method’’ and State (Rest and Movement preparation) with Gamma distribution
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specified parameters did not provide maximum corre-

spondence of the frequency range of the filtered EEG

signal to the frequency range of the sought narrow-band RP

pattern at the observed time moment.

We made a statistical analysis of the results and showed

that duration of RP patterns was, on average,

374 ± 130 ms for the right hand and 348 ± 100 ms for the

left hand. We have emphasized the well-known fact (Hu

et al. 2017; Pereira et al. 2019) that frequency ranges

associated with the preparation for movement can

demonstrate a certain variability in the assessment of single

trials even within the same subject. It is for this reason that

the use of frequency filters with a priori given parameters

seems to be ineffective. Our results also indicate that the

information processes of the brain related to pre-movement

EEG patterns in particular can be seen as a promising

direction for improving Brain-Computer Interfaces (Boc-

quelet et al. 2016; Cooney et al. 2018). The results obtained

in this study are consistent with the findings related to the

fact that subjective desire to perform a movement (W-

judgment) occurs 300–500 ms before it is execution (Libet

et al. 1983, Alexander et al. 2014; Drozdzewska et al.

2017; Kobler et al. 2020).

We also used standard machine learning algorithms. We

checked the quality of the separation of time epochs from

original EEG signals related to the state of rest of each

person and epochs pertaining to the preparation for the

execution, i.e., containing RP patterns. A detailed deter-

mination of initial time boundaries of the pre-movement

RP patterns allowed to extract from original EEG epochs,

containing only the desired pre-motor brain patterns. The

main goal of analysis was to prove, that classification

accuracy on the data sets with determined time boundaries

of epochs, higher than classification accuracy on the data

sets with standard time intervals (500 ms) of epochs con-

taining RP patterns. On average, the developed method has

increased the accuracy of the binary classification by 32%

for the right and 26% for the left arm. The maximum

observed classification accuracy calculated separately for

each subject, in some cases, increased to 99% for the right

arm and to 100% for the left arm. Results obtained allow us

to prove that the method of adaptive search we developed

is able to effectively and reliably determine the time

intervals when the functional state of brain structures

transit from idle activity or default mode to the actual

motor task. These transitions between states are important

for identifying the presence of a target movement prepa-

ration and motor imagery EEG patterns potentially suit-

able for control in the circuit of ‘‘Brain-computer’’ or

‘‘Brain-to-Brain’’ systems.

6 Conclusion

This study presents a new method for automatic detection

in the spontaneous bioelectric activity of the human brain

of specific, invariant patterns of activity associated with the

execution of voluntary motor acts by individuals. An

adaptive band-pass filter with bandwidth closely matching

the spectrum of the desired pre-motor EEG patterns pre-

ceding the execution of actual movements was synthesized

based on Singular Spectrum Analysis methodology. The

preliminary filtering of the original EEG signals provides

the required sensitivity for subsequent searching of time

boundaries of this pattern in time domain. The search

function calculates the Hausdorff distance between two

neighboring sliding time windows and reflects the presence

of time boundaries of the pattern. If there is an initial or

final boundary of the desired pattern in any pair of the

neighboring sliding windows, the criterion function

acquires its local maximum value.

The correctness of the developed method was confirmed

with standard machine learning tools through the validation

of the adaptive search method carried out on the general set

of initial data. Computational experiments have convinc-

ingly demonstrated that the use of the developed method is

possible to provide reliable detection of induced pre-motor

EEG patterns and the correct determination of their time

intervals. Extracting from original EEG signals of those

epochs, that containing only the desired pre-motor brain

patterns made it possible to increase the accuracy of binary

classification for all subjects without exception by 29% on

average and reach maximum values of 99% for the right

arm and to 100% for the left arm with some subjects.

The developed method can be a reliable tool for solving

applied problems of neural control in the BCIs circuit, as

well as increasing the overall reliability of Neural inter-

faces for various purposes. We consider potential brain

signals such as movement-related EEG patterns as well as

the goals of BCI-based therapeutic applications. These

useful BCI applications rely mostly on original and adap-

tive signal-processing technologies.
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