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Abstract
Chaotic systems have good characteristics, such as sensitivity to initial value and parameter, ergodicity, certainty and so on.

Using chaos to generate pseudo-random sequences for encryption has good efficiency and security. However, due to the

limitation of computing precision, the chaotic sequence running on the computer will enter a cycle after several times of

iterations. In this paper, a control method is proposed to reduce this phenomenon. In this method, one chaotic map is used

to adjust the parameters of another chaotic map, which makes the sequence generated by this model has good dynamic

characteristics under a low computing precision. To prove the effectiveness of this model, two examples are provided.

Furthermore, the dynamical performances of these two chaotic systems have been demonstrated by a series of analyses.
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1 Introduction

As a discipline emerging at the end of the last century,

chaos is now used in various fields, such as computer

science, physics, mathematics (Tanriverdi et al. 2021;

Baskonus et al. 2022), cryptography (Liu and Miao 2017a;

Li et al. 2019), economics and etc. (Lynnyk et al. 2015). In

the field of cryptography, a pseudo-random number gen-

erator is needed in most of the information encryption

algorithms, especially in stream-cipher. The cipher text is

obtained through a series of operations between the number

sequences computed by the generators and the plain-text

information, which means that the performance of the

generator determines the effect of encryption directly.

Chaotic systems have many excellent dynamic charac-

teristics, such as randomness and uncertainty (Wang and

Guo 2014). All these characteristics make the chaotic

system suitable to be applied in cryptography, especially as

a pseudo-random number generator (Kafetzis et al. 2023;

Ming et al. 2023). In this era when computers are widely

used as encryption machines, chaotic systems can be

simulated in computers due to the advantages of simplicity

and ease of implementation, and such chaotic systems are

called digital chaotic systems (Teh et al. 2015; Teh and

Samsudin 2017; Hua et al. 2019)..

However, due to the limitation of computing precision,

the chaotic map simulated on computer will quickly fall

into a cycle, which makes the generated sequence by dig-

ital chaotic systems no longer be pseudo-random. To

address this problem, scholars have proposed many

strategies, such as using higher computing precision

(Wheeler and Matthews 1991), cascading multiple chaotic

systems (Zhou et al. 2015; Hua et al. 2017; Alawida et al.

2019a), switching between multiple chaotic systems (Xiao

et al. 2005; Nagaraj et al. 2008; Zhou et al. 2013; Wu et al.

2014), error compensation (Deng et al. 2015a; Hu et al.

2008), coupling chaotic system (Liu et al. 2018; Huang

et al. 2019), introducing delays (Liu and Miao

2015, 2017b), combining chaotic maps using modular

operation (Hu et al. 2014; Zhou et al. 2014; Deng et al.

2015b; Alawida et al. 2019b) and perturbing the chaotic

system (Cao et al. 2015; Deng et al. 2015c; Wang et al.

2016; Liu et al. 2017a, 2017b; Luo et al. 2021).

(Wheeler and Matthews 1991) proposed a method to use

high-precision computers. With the improvement of pre-

cision, the average period of the chaotic system trajectory

will be increased. However, the improvement of computing
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precision will greatly add its implementation cost, and the

period of system trajectory cannot be controlled. In (Hua

et al. 2017), a method based on sine transformation is

presented to improve the chaotic system. Users can freely

select two chaotic maps as seed maps, and then combine

the states generated by these two chaotic maps for sine

transformation to get its output. In (Wu et al. 2014), the

researchers proposed a chaotic system combined with

various chaotic maps. In this chaotic framework, the seed

map used in the next iteration is determined by a control

sequence. Experimental performance analysis demon-

strates that the dynamical characteristics can be greatly

enhanced. However, the complexity of the improved sys-

tem is completely determined by the control sequence. In

(Deng et al. 2015a), a varying-parameter control method,

which belongs to the error compensation method, is firstly

proposed. It makes a great performance of chaotic behavior

even the chaotic system is realized on a low computing

precision computer. Based on this method, an effective

pseudo-random number generator is constructed. Although

the method is proven to be effective by simulation exper-

iments, it still has some weaknesses, such as the limitation

of parameter range and poor flexibility, as well as a small

key space. In (Liu and Miao 2017b), a delayed chaotic state

function is used to perturb the digital chaotic map.

Numerical experimental results indicate that this method is

quite effective. In (Zhou et al. 2014), a modular operation

is used to adjust the chaotic maps to reduce the dynamical

degradation.

Moreover, (Zheng and Hu 2022) introduced a novel bit

shift method. According to different strategies, the current

calculation result of the chaotic map is carried out through

the operation of a bit cycle shift. Fan and Ding (2022) used

a stochastic jump mechanism to improve such problem.

Firstly, the researchers designed a chaotic cycle-finding

algorithm named CCFA. Then, a stochastic jump mecha-

nism is introduced to counteract the problem of the chaotic

cycle. In (Fan and Ding 2023), the authors designed a

general iterative model which can construct a polynomial

chaotic map. This chaotic map has a positive Lyapunov

exponent with arbitrary expectations. In addition, the

author also puts forward some geometric control ideas of a

polynomial chaotic map. In (Zhou et al. 2023), a novel

perturbation method of generating ideal chaotic sequence is

introduced, etc.

Inspired by the literature mentioned above, to reduce the

dynamical degradation of digital chaotic maps, we pro-

posed a model based on two maps in this paper. The

sequence generated by one-dimensional chaotic map is

used to adjust the parameters of another map. The output of

one-dimensional chaotic map and other values are involved

in the calculation of other chaotic map parameters to make

these parameters vary randomly. In this method, the ran-

domness of the output chaotic sequence can be greatly

improved. Several experimental results prove that the

improved chaotic sequence is more complex than the

sequence generated by the original chaotic maps. The

advantages of this method can be summarized as follows.

(1) This method is easy to implement, and does not add

much extra computational costs.

(2) The parameters in this model are time-varied, which

can make more complex dynamic characteristics.

(3) The method is universal, which can be used to any

digital chaotic maps.

The rest of this paper are organized as follows: Sect. 2

introduces the proposed chaotic model. Section 3 presents

a chaotic system as an example based on Logistic map and

Baker map. Several dynamic characteristic and security

tests are provided in this section as well. Another example

and its performance analysis are provided in Sect. 4.

Finally, Sect. 5 concludes the whole paper.

2 A novel perturbation model for digital
chaotic maps

A chaotic map will suffer dynamical degradation when it is

realized on a finite precision device, such as computer. Due

to the finite phase space, the time series of chaotic map will

Fig. 1 The flow chart of chaotic sequence generation
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finally enter a cycle after several times of iteration. In order

to solve this problem, here, we propose a parameter per-

turbation model to improve the performance of chaotic

maps. This model can be written as follows:

x
ð1Þ
i ¼ PRðF1ðxð1Þi�1; a

ð1Þ
i ÞÞ

x
ð2Þ
i ¼ PRðF2ðxð2Þi�1; a

ð2Þ
i ÞÞ

:::

x
ðnÞ
i ¼ PRðFnðxðnÞi�1; a

ðnÞ
i ÞÞ

8
>>>>><

>>>>>:

; ð1Þ

where function PR(�) donate the precision function, and it

can limit the time variables onto a finite phase space.

a
1ð Þ
i ; a

ð2Þ
i ; . . .a

ðnÞ
i are parameters of chaotic maps

F1;F2; . . .Fn, respectively. It should be noticed that

parameter sequences a
ð1Þ
i

n o
; fa 2ð Þ

i g; . . . a
ðnÞ
i

n o
are different

at each iteration, and it can be calculated as follows:

a
ð1Þ
i ¼ PRððv1 � l1Þwi�1 þ l1Þ

a
ð2Þ
i ¼ PRððv2 � l2Þwi�1 þ l2Þ

:::

a
ðnÞ
i ¼ PRððvn � lnÞwi�1 þ lnÞ

8
>>>>><

>>>>>:

: ð2Þ

And sequence {wi} can be calculated as:

wi ¼ PRðGðwi�1; l0ÞÞ: ð3Þ

where G(�) is a chaotic map and l0 is a parameter of G(�).
Parameter sequences {ai

(1)}, {ai
(2)}, …, {ai

(n)} are com-

puted by using formula Eqs. (2) and (3). Given that control

parameters are different at each iteration, system security

can be significantly improved. Moreover, in Eq. (2), the

parameters l1; l2; . . .; ln are different and we remain these

parameters within a reasonable range in each iteration for

different chaotic maps. In general, when one of the

parameters in chaotic map Fi is at most a, we’re going to

take vi to be a here. The advantage of assigning vi in this

way is that the parameter range is not being compressed.

Finally, set the parameter k, add the obtained sequence

x
ð1Þ
i

n o
; x

ð2Þ
i

n o
; . . .; x

ðnÞ
i

n o
and the chaotic sequence {zi}

can be calculated as:

zi ¼ ðxð1Þi þ x
ð2Þ
i þ ::: þ x

ðnÞ
i Þ � k

� �
mod 1: ð4Þ

The function a mod b means to divide the value a by

b and then take the remainder, which is a modular

operation.

The improved chaotic map can be generated by per-

forming the above steps. Since the parameter changes

constantly with iteration, the security and the randomness

of the chaotic sequence can be enhanced. Moreover, dif-

ferent from the chaotic system with fixed parameters, in

this model, the parameters will change with iteration,

Fig. 2 Bifurcation diagram of Logistic map

Fig. 3 Bifurcation diagram of Baker map

Table 1 ApEn value of parameter k

k value ApEn k value ApEn

1 0.0904 7000 0.4161

10 0.3307 8000 0.4205

100 0.4063 9000 0.4093

1000 0.4105 10,000 0.4100

2000 0.4115 11,000 0.4144

3000 0.4145 12,000 0.4218

4000 0.4069 13,000 0.4110

5000 0.4168 14,000 0.4132

6000 0.4143 15,000 0.4098
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which can improve the chaotic dynamic complexity and

minimize the influence of the parameters on the chaotic

function to the greatest extent. The chaotic maps calcu-

lating the sequence of parameters can be a simple structure

chaotic map, which can improve the performance of the

chaotic system without much computational cost. The flow

chart of generating ideal chaotic sequence is shown in

Fig. 1.

3 A logistic-baker dual chaotic system

This section introduces an example of the novel chaotic

system model. This chaotic system comprises one-dimen-

sional Logistic map and Baker map.

Fig. 4 Value of ApEn with different parameter k

Fig. 5 Trajectory of the

sequence with the precision of

2–12 a sequence generated by

original chaotic system;

b sequence generated by

improved chaotic system
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3.1 Original chaotic maps

3.1.1 Logistic chaotic map

The Logistic map is a classical one-dimensional chaotic

map with complex dynamic behavior in a mathematical

form. Its excellent performance makes it be widely used in

communication and cryptography (Francois et al. 2014;

Sun and Liu 2009; Hua et al. 2021; Khedmati et al. 2020).

The formula of this map can be shown as:

xnþ1 ¼ l xnð1� xnÞ: ð5Þ

In this formula, l is called a logistic branch parameter,

the variable x ranges from 0 to 1. Figure 2 shows the

bifurcation diagram of this map. When the parameter

l [ (3.5699, 4], the range of x between 0 and 1 is more

widely distributed, and can be regarded to be chaotic.

3.1.2 Baker chaotic map

Baker map is a two-dimensional chaotic map (Zheng et al.

2008) and the formula can be shown as:

xiþ1; yiþ1ð Þ

¼
xi=a; pyið Þ 0\xi � a

xi � að Þ= 1� að Þð Þ; 1� að Þyi þ a a\xi � 1

(

ð6Þ

The Baker map is an iterative equation simultaneously

determined by two variables, x and y. This manner is

considerably more complicated than synchronizing two

independent 1D chaotic sequence generations. The control

parameter range of the Baker map is a [ (0,1). Figure 3

shows the bifurcation diagram of the original Baker map.

As we can see, when the value of a is between 0 and 1,

some of the results using a particular parameter a may have

fixed points so that the behavior of the sequence is not

chaotic. Since the calculation of variables (x and y) of this

formula is relatively independent, in this paper, we use the

x-dimension of this map, which can be viewed as a one-

dimensional chaotic map.

Fig. 6 The phase space analysis (the precision is set to be 2–12) a Baker map; b developed chaotic system

Table 2 Period analysis (U denotes undetected)

Precision Digital Logistic map Digital Baker map Equation (8)

2–12 76 60 2016

2–13 29 1 1552

2–14 59 143 29,472

2–15 9 290 8372

2–16 87 718 10,177

2–17 104 69 U

2–18 57 15 22,177

2–19 9 434 U

2–20 86 1331 U

2–21 148 3528 U

2–22 1299 5198 U

2–23 2355 1489 U

2–24 1896 10,074 U

Table 3 ApEn and PE value of different sequences

Precision (2–16) ApEn PE

x-dimensional of Baker map 0.4812 0.6416

Normal Logistic map 0.5665 0.7076

Improved system with k = 10,000 2.1587 0.9945
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3.2 Improved chaotic model

3.2.1 Improved chaotic map

By introducing the Baker map and Logistic map in

Sect. 3.1.1 and the model mentioned in Sect. 2, an

improved chaotic system can be derived as following

formulas:

xi ¼
xi�1=ai�1; 0\xi�1 � ai�1

xi�1 � ai�1ð Þ= 1� ai�1ð Þ; ai�1\xi�1 � 1

(

; ð7Þ

zi ¼ xi � kð Þ mod 1; ð8Þ

where sequence {ai} can be calculated as follows:

ai ¼ ðv� l1Þwi�1 þ l1: ð9Þ

Sequence {wi} can be calculated by Eq. (5) with the

initial value l0 and w0:

wi ¼ l0wi�1ð1� wi�1Þ: ð10Þ

Moreover, because the parameter a [ (0, 1), we set

v = 1. The process of selecting parameter k will be pre-

sented in the next section.

3.2.2 Selection of the parameter k

To select an appropriate parameter k, the Approximate

entropy (ApEn) is used to measure the complexity of dif-

ferent chaotic sequences. Set the initial values v = 1,

l0 = 4.0, l1 = 0.8, w0 = 0.123 and x = 0.561. The preci-

sion is set to be 2–12. For parameter k, we calculate the

ApEn of the sequences with different parameters. The

results are shown in Table 1 and Fig. 4. It can be found that

the ApEn value will remain substantially stable since

k = 1000. Therefore, In this paper, we always set

k = 10,000.

Fig. 7 ApEn and PE analysis with different chaotic maps a ApEn

analysis of improved chaotic map and original maps; b Pe analysis of

improved chaotic map and original maps; c ApEn analysis of

improved chaotic map and improved maps mentioned in other

literatures; d Pe analysis of improved chaotic map and improved

maps mentioned in other literatures
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3.3 Performance of improved chaotic system

In this section, we always set the initial parameters and

values v = 1, l0 = 4.0, l1 = 0.8, w0 = 0.123, k = 10,000

and x = 0.561, the precision is set to be 2–12.

3.3.1 Trajectories, phase space and period analysis

The trajectory maps are shown in Fig. 5. From the trajec-

tory point of view, the sequence {z0} produced by the

improved chaotic system is random-like, while the x-di-

mensional time series of the Baker map enter a period after

about 100 iterations. This can prove that our improvement

on the original chaotic mapping is effective.

Figure 6 shows the phase space analysis of the original

Baker sequence and the new chaotic sequence. The fig-

ure shows that the Baker sequence has a specific shape,

whereas the improved sequence appears disorderly. It is

thus shown that the parameters of the Baker map are

changed at each iteration so that the control parameter ai
changes with each iteration can improve the complexity of

the system effectively. To calculate the length of the

number sequence entering the period, we set different

precision and uniformly set the length of the state sequence

as 100,000, and the period analysis is shown in Table 2. We

can conclude from Table 2 that the period of the sequence

generated by the improved map has been greatly extended.

When the precision is set to 2–19, the period of this new

system cannot be detected. Comparing to other method, the

period of the map can still be detected when the precision

is set to be 2–36 in (Tang et al. 2019), which indicates that

our method is more effective in reducing dynamical

degradation.

3.3.2 Approximate entropy and permutation entropy
analysis

In the application process, the approximate entropy shows

the following features:

(1) The approximate entropy only requires relatively

short data to estimate a stable statistical value.

Fig. 8 Bifurcation diagram of chaotic system. a parameter l0 of Logistic map; b parameter l0 of improved chaotic map; c parameter l1 of Baker
map; d parameter l1 of improved chaotic map
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Fig. 9 Sensitivity analysis of the improved chaotic map of initial value and parameters: a x0; b l0; c l1; d w0

Fig. 10 Auto-Correlation analysis of different chaotic maps a Original Baker map; b Improved chaotic system
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(2) The approximate entropy has good anti-interference

and anti-noise capabilities.

(3) The approximate entropy can test both random and

deterministic signals. The more complex and random

the signal is, the higher the measured ApEn value is.

In addition, to find another way to measure the com-

plexity of chaotic series, Bandt and Pompe has utilized the

Permutation entropy (PE) (Bandt and Pompe 2002). This is

another method to test sequence complexity, which has

become a vital test index. The ApEn and PE values can be

shown in Table 3 and Fig. 7. In Table 3 and Fig. 7a, b, we

can see that both ApEn and PE values of the improved

sequence are considerably larger than the Baker and

Logistic sequences. Moreover, to compare with other

methods, some comparison results are shown in Fig. 7c and

d. From Fig. 7c and d, we can conclude that the ApEn

values of our improved sequences are higher than the

improved map mentioned in (Liu et al. 2018) and (Tang

et al. 2019). Furthermore, our PE value is more closer to

the ideal value 1 than the improved Logistic map proposed

by (Tang et al. 2019). Such results prove that the generated

chaotic sequences have a quite high complexity.

3.3.3 Bifurcation diagram analysis

A bifurcation diagram can show the region of control

parameters of a chaotic system. In Eqs. (9) and (10), we

have three control parameters in the improved chaotic

system, l0, l1 and w0. Where l0 and l1 are two parameters

related to the original map, thus we will compare these

three chaotic systems in this section. Set the largest pre-

cision be 2–12, the bifurcation diagrams of parameters l0
and l1 are depicted in Fig. 8. From Fig. 8b and d, we can

conclude that the improved system is chaotic since the

Fig. 11 a Lyapunov exponent with parameter l0; b Lyapunov exponent with parameter l1

Fig. 12 Bifurcation diagram of Sine map Fig. 13 Bifurcation diagram of 2D-LASM
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parameter l1 [ (0, 1) and l0 [ [3.0, 4.0], and no periodic

window could be found. While the Logistic map will be

chaotic since l0[ 3.57, and although the Baker map will

be chaotic since 0\ l1\ 1, the chaotic performance is not

as good as that of the improved chaotic system.

3.3.4 Sensitivity analysis of initial values

Sensitivity to initial values and parameters is one of the

significant properties of chaotic system. That is to say, even

a slight change in the conditions of a chaotic system could

result in a large difference in the iterative chaotic sequence.

In this section, the sensitivity analysis of initial values x0
and parameters (l0, l1, w0) are shown in Fig. 9a–d,

respectively. All subgraphs show that the trajectory has a

great difference when the conditions are changed only by

2–12, which indicates that this improved chaotic system is

sensitive to initial value and parameters.

3.3.5 Auto-correlation analysis

Correlation refers to the relationship between two variables

and the related directions. This paper uses the auto-corre-

lation function to evaluate the randomness of state

sequences generated by the chaotic maps. If a sequence is

an ideal random sequence, its auto-correlation function

should be approximate to the delta function. In this test, we

Set the largest precision be 2–14. The result of this auto-

correlation analysis can be shown in Fig. 10. From the

Fig. 10, we can have that the time series computed by the

Baker map has strong correlations, while the correlations of

sequence computed by improved chaotic map reach an

ideal state quickly after a brief peak. Therefore, the auto-

correlation property of this sequence is ideal.

3.3.6 Lyapunov exponent

Lyapunov exponents (LE) is used to described the diver-

gence speed of trajectories of dynamical system. A

dynamical system is called chaotic if its Lyapunov expo-

nent is larger than zero. In this section, the Lyapunov

exponents of the different parameters of the improved

chaotic system are shown in Fig. 11. The figures display

that the Lyapunov exponent is quite stable and always

greater than zero when the parameters l0 and l1 in the

range [3, 4.0] and (0, 1), respectively. Hence, our system is

chaotic in this sense.

4 A Sine-2D LASM dual chaotic system

This section proposes another example of the novel chaotic

system model. This chaotic system comprises Sine map

and two-dimensional LASM.

4.1 Original chaotic map

4.1.1 Sine chaotic map

The Sine map is one of the most common low-dimensional

chaotic map, which has many applications. The simple

dynamic structure of the Sine map makes the calculation

cost low and easy to simulate on the computer. The

mathematical expressions are as follows:

xnþ1 ¼
l
4
sinðp xnÞ: ð11Þ

where l [ [0, 4], x [ (0, 1), xn is a state variable. Figure 12

shows the bifurcation diagram of this map. And we can

conclude that when the range of l from 3.5 to 4, the Sine

map is chaotic.

Table 4 ApEn value with different parameters k

k value ApEn k value ApEn

1 1.9319 7000 2.1544

10 2.1451 8000 2.2004

100 2.1479 9000 2.1541

1000 2.1536 10,000 2.1682

2000 2.1640 11,000 2.1515

3000 2.1504 12,000 2.1385

4000 2.1348 13,000 2.1524

5000 2.1544 14,000 2.1685

6000 2.1619 15,000 2.1564

Fig. 14 ApEn value with different parameters k
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Fig. 15 Trajectory of the

sequence with the precision of

2–12 a sequence generated by

2D-LASM; b sequence

generated by improved chaotic

system

Fig. 16 The phase space analysis (the precision is set to be 2–12) a 2D-LASM; b developed chaotic system
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4.1.2 2D Logistic-adjusted-Sine map

In (Hua and Zhou 2016), to improve the disadvantages of

small parameter range and simple structure of a one-di-

mensional chaotic map, the author uses one-dimensional

chaotic map to adjust another map and takes Sine map and

Logistic map as an example. This example has better

dynamical performance and a more comprehensive

parameter range than many chaotic maps. Based on this 2D

chaotic map, (Gan et al. 2018) designed an algorithm to

encrypt the images. The simulation experiment results

indicated that this algorithm’s effect is more excellent than

many encryption methods. The formula can be written as:

xnþ1 ¼ sinðp uðyn þ 3Þxnð1� xnÞÞ
ynþ1 ¼ sinðp uðxnþ1 þ 3Þynð1� ynÞÞ

(

ð12Þ

Here, u is the parameter ranging from 0 to1, xn and yn
are state variables (xn, yn [ (0, 1)). Figure 13 shows the

bifurcation diagram of this chaotic map, and we can find

that the selection range of parameter u is from 0.31 to 0.92.

Since the chaotic properties of these two sequences of this

equation are similar, the x-dimensional and the improved

chaotic sequence are used for performance comparison in

this paper.

4.2 Improved chaotic system

4.2.1 Improved chaotic map

By introducing the 2D-LASM and Sine map in Sect. 4.1.1,

the formula of this improved chaotic map can be derived as

follows:

xi ¼ sinðp aiðyi�1 þ 3Þxi�1ð1� xi�1ÞÞ
yi ¼ sinðp aiðxi þ 3Þyi�1ð1� yi�1ÞÞ

(

; ð13Þ

zi ¼ ðxi þ yiÞ � kð Þ mod 1; ð14Þ

where sequence {ai} can be computed as follows:

ai ¼ ðv� l1Þwi�1 þ l1: ð15Þ

Table 5 Period analysis (U denotes undetected)

Precision Digital Sine map Digital 2D LASM Equation (14)

2–12 9 432 2447

2–13 103 1023 2586

2–14 101 774 12,818

2–15 133 2521 25,250

2–16 42 2231 23,862

2–17 384 17,402 U

2–18 46 774 U

2–19 123 32,783 U

2–20 585 27,265 U

2–21 66 U U

2–22 551 U U

2–23 1812 U U

2–24 2017 U U

Table 6 ApEn and PE value of different sequences

Precision (2–12) ApEn PE

x-dimensional of 2D LASM 0.7782 0.7595

y-dimensional of 2D LASM 0.7756 0.7485

Normal Sine map 0.5504 0.6440

Improved system with k = 10,000 2.0433 0.9774

Fig. 17 ApEn and PE analysis with different chaotic maps a ApEn analysis of improved chaotic map and original maps; b PE analysis of

improved chaotic map and original maps
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And sequence {wi} can be calculated by Eq. (11) with

the initial value l0 and w0.

wi ¼
l0
4
sinðpwi�1Þ; ð16Þ

the range of parameter a of 2D LASM is a [ [0, 1], so we

set a = 1. The process of selecting parameter k will be

presented in the next section.

4.2.2 Selection of the parameter k

Similar to the selection method mentioned in Sect. 3.2.2,

we still use the ApEn value as the selection criterion here.

The approximate entropy values are different when using

different parameters k in Eq. (14). We set the initial

parameters and values v = 1, l0 = 4.0, l1 = 0.6,

w0 = 0.123, x = 0.561, and y = 0.356. The precision is set

to be 2–12. Moreover, the ApEn values of different k are

shown in Table 4 and Fig. 14. From Table 4 and Fig. 14,

we can conclude that the value of ApEn is stable since

parameter k is larger than 100. Here we set k = 10,000 in

this model.

4.3 Performance of improved chaotic system

Set the initial value and parameters be v = 1, l0 = 4.0,

l1 = 0.6, w0 = 0.123, k = 10,000, x = 0.561 and y = 0.356;

the precision is set to be 2–12.

4.3.1 Trajectories, phase space and period analysis
of chaotic sequences

The trajectory diagram is shown in Fig. 15. It can be easily

found that the sequence generated by 2D-LASM enters a

cycle after a few times of iteration, while the time series of

the improved map is random-like. Moreover, the phase

analysis of the original chaotic maps and improved map are

shown in Fig. 16. Compared with Fig. 16a of Eq. (12), the

chaotic sequence of the improved chaotic system appears

more uniformly; it does not have a fixed shape and dis-

tributed throughout the internal [0,1] evenly. Here we still

Fig. 18 Bifurcation diagram of chaotic system a parameter l0 of Sine map; b parameter l0 of improved chaotic map; c parameter l1 of 2D-
LASM; d parameter l1 of improved chaotic map
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set the sequence length we need to check to 100,000, and

the period analysis of three chaotic maps is shown in

Table 5. The period of this improved map has been greatly

extended. When the computing precision is larger than

2–17, the period of this new system cannot be detected,

which is bettern than the results of 2D-LASM.

4.3.2 Approximate entropy and permutation entropy
analysis

The ApEn analysis and PE analyses are widely used in

chaotic complexity tests. The higher the ApEn values of a

chaotic map, the more complex its chaotic dynamics

characteristics will be. Similar to the approximate entropy

Fig. 19 Sensitivity analysis of the improved chaotic map for initial values and parameters: a x; b y; c l0; d l1;(e) w0
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analysis, the permutation entropy analysis has the same

properties. Slightly different from ApEn analysis, the PE

value has an upper limitation, which is value 1. The closer

the PE value is to 1, the higher complexity the sequence

has. Set the largest precision be 2–12. Table 6 and Fig. 17a–

d show the ApEn and PE values of the original chaotic

maps and the improved chaotic model. It is easy to find that

the ApEn and PE values of the improved chaotic system

are always larger than the original 2D-LASM and the

Logistic chaotic map, which means that the complexity has

been greatly improved.

4.3.3 Bifurcation diagram analysis

For an ideal chaotic map, the chaotic region of control

parameters should be as large as possible to obtain a larger

key space. Here, we can show a region of control param-

eters of a chaotic system using a bifurcation diagram.

Similar to the above example, we have three control

parameters in this improved chaotic system, l0, l1, and w0,

where l0 and l1 are two parameters related to the Sine map

and 2D LASM, respectively. The bifurcation diagrams of

parameters l0 and l1 (with a precision of 2–12) are depicted

in Fig. 18. From Fig. 18 we can find that the improved

chaotic map has a large chaotic region of control param-

eters than the Sine map and 2D-LASM, which indicates a

larger key space.

4.3.4 Sensitivity analysis of initial values

Here, we test on the sensitivity of this improved chaotic

system. Set the precision be 2-12, change the initial con-

ditions slightly, and the sensitivity analysis of the param-

eters (l0, l1, w0) and initial values (x, y) are shown in

Fig. 19. From Fig. 19, we can see the trajectory signifi-

cantly differs when the initial conditions change only by

2–12. This indicates that this improved chaotic system is

sensitive to initial values and parameters.

Fig. 20 Auto-Correlation

analysis of different chaotic

maps a Original 2D-LASM;

b Improved chaotic system

Fig. 21 a Lyapunov exponent with parameter l0; b Lyapunov exponent with parameter l1
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4.3.5 Auto-correlation analysis

Set the largest precision be 2–14. The auto-correlation

analysis of the original chaotic map and improved chaotic

system are presented in Fig. 20. From Fig. 20, we have that

the improved chaotic system has an ideal auto-correlation

property, while the sequence generated by original chaotic

map has strong correlations.

4.3.6 Lyapunov exponent

The Lyapunov exponents of the improved chaotic system

with different parameters are calculated and plotted in

Fig. 21. From Fig. 21, we can have that the Lyapunov

exponents of different control parameters of the improved

chaotic system are always larger than zero when l0 [ [0.1,

4.0] and l1 [ (0, 1), which indicates that the improved

chaotic system is chaotic within this parameter range.

5 Conclusion

When chaotic systems are simulated on computer, the

degradation of dynamic properties is inevitable, especially

for low-dimensional chaotic maps. To reduce dynamical

degradation, in this paper, a new time-varied chaotic model

is proposed. In this model, the output of one-dimensional

chaotic map is used to caculate the parameters of another

chaotic map. This method can make the parameters vary in

real-time, thereby improving the dynamic performances

and randomness of the chaotic system. In order to verify

this model, two examples are presented. The dynamical

behavior of sequences generated by these two examples are

both better than the original sequences, which concludes

that the proposed model is effective, and can be competi-

tive withg other remedies. This method is universal, which

can be used to any digitial chaotic maps. In the future work,

we will apply this model to encrypt the images to verify its

practicability.
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