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Abstract
Because logistics companies usually have multiple depots to serve their many dispersed customers, multi-depot vehicle

routing problem (MDVRP) has gained significant research attention. To solve an MDVRP model, this paper develops a

hybrid ant colony optimization based on a polygonal circumcenter (BPC-HACO). Furthermore, because ACO has been

found to fall easily into the local optimum, simulated annealing and three local optimization operations are introduced to

encourage the ACO to improve the algorithm’s optimization ability. Finally, MDVRP benchmarks and data sets of other

papers are employed to verify the effectiveness of the BPC-HACO in solving MDVRP (In 23 instances, BPC-HACO finds

14 BSKs, and 3 results are better than the BSKs), MDVRP with distance constraints (Compared to other papers, the route

length is reduced by an average of 17.94%) and dynamic MDVRP (In 10 instances, BPC-HACO finds 3 BSKs, and 2

results are better than the BSKs). Finally, fitness landscape analysis has been applied to analyze the structural features of

MDVRP to choose the most appropriate algorithm for MDVRP.

Keywords Multi-depot vehicle routing problem � Polygonal circumcenter � Ant colony optimization � Simulated annealing

1 Introduction

Logistics distribution impacts all enterprises as it is vital to

service quality, transport costs, and revenue. The multi-

depot vehicle routing problem (MDVRP) is an extension of

VRP. Classic VRP has only one depot, while MDVRP

includes multiple depots. The MDVRP has been applied to

practical problems. For example, Wang et al. (2023)

studied a real-world logistics distribution network with 4

depots and 160 customers. Soeanu et al. (2020) studied a

small-scale risk-constrained multi-depot vehicle routing

problem with 16 nodes and 3 depots. Kronmueller et al.

(2023) investigated a grocery delivery in Amsterdam with

20 depots and 10,000 orders.

The MDVRP is a typical NP-hard problem, the com-

plexity and significance of which has attracted significant

research attention.

Current solutions to multi-depot vehicle routing prob-

lems (MDVRP) can be roughly divided into 4 categories.

(1) The part method clusters customers with the depot as

the center and then optimizes the routes for each depot.

That is, turn the multi-depot VRP into single-depot VRP,

as shown in Fig. 1a. Chen et al. (2023) and Xue et al.

(2023) first assigned each customer to its nearest depot,

after which hybrid algorithms were introduced to optimize

the vehicle routes. Kim et al. (2023) combined ant colony

optimization with a k-means clustering algorithm to solve

garbage collection on a large scale.

(2) The overall method is establishing a virtual center so

all vehicles start from the virtual center. That is, turn

MDVRP into MDVRP with a virtual center (V-MDVRP),

as shown in Fig. 1b. Yu et al. (2011) established a virtual

center, turned an MDVRP into a V-MDVRP, and proposed

an improved ACO to solve the V-MDVRP. Yan et al.

(2017) analyzed the advantages and disadvantages of the
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part method, the overall method, and heuristic algorithms

in solving MDVRP. Then, they combined the overall

method and a heuristic algorithm to solve the MDVRP. In

the overall method, there is no standard for setting the

location of the virtual center; although it becomes a single

depot problem, it still needs to assign the route to the

nearest depot according to the distance.

(3) The coding method expresses the corresponding

position of the depot and the customer using different

coding methods and then designs the algorithm to solve the

MDVRP, as shown in Fig. 2. Azuero-Ortiz et al. (2023)

and Ge et al. (2023) adopted coding methods and hybrid

algorithms to solve MDVRP. Lavigne et al. (2023) pro-

vided a Memetic Algorithm with a Sequential Split pro-

cedure (MASS) for solving a real-life waste collection

problem in Brussels with multiple depots.

The part method optimizes the routes in each part but

does not optimize the whole, and while the overall method

considers all customers every time and seeks to optimize

the whole, it does not optimize the part. Further, it isn’t

easy to design suitable and efficient coding methods for

practical MDVRP.

Regardless of the overall method, the part method, or

the coding method, the distance-based clustering method

will be involved in selecting the depot. To avoid the dis-

tance-based clustering method, the virtual center is set at

the circumcenter of the polygon formed by the depot. The

algorithm can adaptively complete the selection of the

virtual center to the depot without considering the influence

of distance.

(4) In other methods, Wang et al. (2021) proposed a GA

based on column generation to solve multi-depot electric

VRP, which first generates a set of columns (each referring

to a route), and then uses the GA to select a subset of

columns to construct the final solution. Wang et al. (2022)

propose a branch-and-price (BAP) algorithm for solving

multi-depot GVRP with time windows to reduce the total

carbon emissions, but it is very time-consuming in solving

large-scale problems.

Few kinds of the literature integrate algorithm principles

and mathematical ideas to solve MDVRP. For example,

Yücenur et al. (2011) proposed a geometric shape (circle)-

based genetic clustering algorithm for solving MDVRP.

Draw a circle with the depot as the center, and assign the

customers in the circle to the current depot. ACO has many

advantages, such as excellent global search abilities, dis-

tributed computing, and easy combination with other

algorithms, all of which can contribute to solving MDVRPs

(Londoñoa et al. (2023); Zheng et al. (2023)).

This paper makes three major contributions:

1. Combines the advantages of the part and overall

method, integrating ACO principle and mathematical

ideas, then proposes the BPC-HACO to solve the

MDVRP.

Fig. 1 The part and overall

method for MDVRP

Fig. 2 The coding method for

MDVRP
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2. MDVRP benchmarks and data sets from other papers

are employed to verify the effectiveness of the BPC-

HACO in solving various types of MDVRP.

3. FLA has been applied to analyze the structural features

of MDVRP to choose the appropriate algorithm.

The remainder of this paper is structured as follows.

Section 2 describes the DMDVRP model and defines the

problem, Sect. 3 details the hybrid BPC-HACO, Sect. 4

proves the effectiveness of the BPC-HACO algorithm, and

Sect. 5 concludes the paper and outlines future research

directions.

2 MDVRP model

MDVRP includes multiple depots and multiple vehicles in

each depot. It is assumed that each vehicle starts its travel

from a depot, and upon completion of service to customers,

it has to return to the depot. The notations and the math-

ematical model are as follows:

Sets:i ¼ 1; 2; :::; I: Set of all depotsj ¼ 1; 2; :::; J: Set of

all customersk ¼ 1; 2; :::;K: Set of all vehicles

Parameters:

Cij: Distance between points i and j, i; j 2 I [ J.

Vi: Maximum throughput at the depot i,dj: Demand of

customer j,

Qk: Capacity of vehicle k,

Decision variables:

xijk ¼
1; when vehicle k serves point j after i
0; otherwise

�

Mathematical model:

min
X
i2I[J

X
j2I[J

X
k2K

Cijxijk ð1Þ

X
k2K

X
i2I[J

xijk ¼ 1; j 2 J ð2Þ

X
j2J

dj
X
i2I[J

xijk �Qk; k 2 K ð3Þ

X
i2I[J

xijk �
X
i2I[J

xjik ¼ 0; k 2 K; j 2 I [ J ð4Þ

X
i2I

X
j2J

xijk � 1; k 2 K ð5Þ

X
j2J

dj � xijk �Vi; i 2 I ð6Þ

X
i2J

X
j2J

xijk � Jj j � 1; k 2 K ð7Þ

Equation (1) minimizes the total cost. Each customer

has to be assigned a single route according to Eq. (2). The

capacity constraint for a set of vehicles is given by Eq. (3).

Equation (4) shows the new sub-tour elimination con-

straint. The flow conservation constraints are expressed in

Eq. (5). Each route can be served almost once according to

Fig. 3 An example of MDVRP with three depots

Fig. 4 ‘‘Virtual center-Depot’’ selection method

Fig. 5 ‘‘Depot-Customer’’ selection method
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Eq. (6). The capacity constraints for the depots are given in

Eq. (7).

3 Hybrid ant colony optimization based
on polygonal circumcenter (BPC-HACO)

ACO has some excellent properties, such as strong search

ability, easy parallel operations, and robustness. However,

it also has some disadvantages, such as slow convergence

and falling easily into a local optimum (Wu et al. (2023);

Ren et al. (2023)). The simulated annealing (SA) algo-

rithm, which is an intelligent algorithm developed in the

1980s, has certain advantages for local searches as it uses

the Metropolis criterion to ensure that solutions with better

fitness are accepted or that solutions with poor fitness are

accepted with a certain probability (Vincent et al. (2023)).

Both the ACO and SA have been widely used in opti-

mization problems. For example, Li et al. (2019) adapted

the ACO to solve a multi-depot, multi-objective vehicle

routing problem and proved that the algorithm performed

well. However, the efficiency decreased when the algo-

rithm was used to solve large-scale problems. Nia et al.

(2023) and Wang et al. (2023) combined the advantages of

the SA and ACO to enhance local search abilities. They

proved that they could better solve larger-scale combina-

torial optimization problems.

3.1 Ant colony optimization

3.1.1 Determine a virtual center

Suppose there are customers,M depots, and a virtual center

at the circumcenter of a polygon formed by the depots, as

shown in the MDVRP with three depots in Fig. 3. There is

no vehicle in the virtual center, and the vehicle starts from

the actual depot. For example, if the virtual center selects

depot 1, then depot 1 schedules a vehicle to serve the

corresponding customers.

3.1.2 Initialize pheromone matrix and heuristic
information

The initial pheromone matrix is set as a constant matrix

ðN þM þ 1Þ � ðN þM þ 1Þ. The heuristic information

matrix is also set as ðN þM þ 1Þ � ðN þM þ 1Þ, which is

calculated using the distance between two customers.

Fig. 6 Neighborhood operation

mechanism

Fig. 7 SA algorithm pseudo-code
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3.1.3 Select the depot

The virtual center is set at the circumcenter of a polygon

formed by the depots to ensure that the distances between

the virtual centers and the depots are equal (as Eq. (8)),

which ensures that the heuristic information between the

virtual center and different depots is equal (as Eqs. (9–10)).

The probability (P0jðj ¼ 1; 2; 3Þ)of the virtual center

selecting the depot is only influenced by the pheromone (as

Eqs. (11–12)), as shown in Fig. 4. With the increase in

iterations, the adaptive selection of the depot is completed.

d01 ¼ d02 ¼ d03 ð8Þ

g0i ¼
1

d0i
; i ¼ 1; 2; 3 ð9Þ

g01 ¼ g02 ¼ g03 ¼ A ð10Þ

P0iðtÞ ¼
p0iðtÞ½ �a½g0i�bP

i2depot
½p0iðtÞ�a½g0i�

b ; i 2 f1; 2; 3g ð11Þ

P0iðtÞ ¼
p0iðtÞ½ �a½A�bP

i2 depot

½p0iðtÞ�a½A�b
¼ p0iðtÞ½ �aP

i2 depot

½p0iðtÞ�a
; i 2 f1; 2; 3g

ð12Þ

3.1.4 Select the customer

After the depot is selected, the vehicle at the depot chosen

selects customers (as Eq. (13)), which completes the

‘‘Depot-Customer’’ selection, then continues to select other

customers (as Eq. (14)), as shown in Fig. 5.

As a whole, the method clusters the customers with the

depots. As part, the method optimizes the customer com-

binations within each depot, which combines the overall

method and part method advantages.

P2jðtÞ ¼
p2jðtÞ
� �a½g2j�bP

j2 Customer

½p2jðtÞ�a½g2j�b
; ifj 22 fa; b; :::;mg

0; otherwise

8>><
>>:

ð13Þ

PejðtÞ ¼
pejðtÞ
� �a½gej�bP

j2 Customer

½pejðtÞ�a½gej�b
; ifj 22 fa; :::d; f ; :::;mg

0; otherwise

8>><
>>:

ð14Þ

Fig. 9 Intra-route optimization

Fig. 8 Inter-route optimization

Fig. 10 Angle scanning optimization
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3.1.5 Update the pheromone

After the routes are constructed, formula (15) updates all

pheromones and is calculated using formula (16), where Q

is a known constant, and q is the pheromone evaporation

rate.

pijðt þ 1Þ ¼ ð1� qÞpijðtÞ þ
Xm
k¼1

DpkijðtÞ ð15Þ

Fig. 11 The shortest route for

customers 1, 3, 4, and 6

Fig. 12 The steps of the BPC-

HACO algorithm
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DpkijðtÞ ¼
Q=fkðtÞ; if linkði; jÞon kth route

0; otherwise

�
ð16Þ

3.2 Simulated annealing algorithm

The SA algorithm, which has strong local optimization

ability, is introduced to optimize the local optimum solu-

tion for the ACO and encourage it to converge to the global

optimum solution. The neighborhood operation mechanism

in the SA algorithm is ‘‘Select-Insert-Optimize-Delete’’;

that is, it randomly selects a customer in one route, inserts

them into another route, minimizes the increased length of

the route, and then deletes the customer from the original

route, as shown in Fig. 6. Figure 7 shows the pseudo-code

for the SA algorithm.

As the temperature decreases, the probability gradually

decreases that the solutions with poor fitness are accepted,

which guides the ant colony to evolve toward the global

optimum.

3.3 Local interchange operation

2-Opt is a common, classical local optimization algorithm

that usually involves two exchanges: exchanging customers

on different routes and exchanging customers within the

route (Manullang et al. (2023)). Three local optimization

operations are adopted to avoid local optimization and

obtain a better route: (1) inter-route optimization, (2) intra-

route optimization, and (3) angle scanning optimization,

which includes both inter-route and intra-route optimiza-

tion (Asefi et al. (2019)).

Table 1 Detailed information for the instances

No Customers Depots Capacity Distance

1 50 4 80 –

2 50 4 160 –

3 75 5 140 –

4 100 2 100 –

5 100 2 200 –

6 100 3 100 –

7 100 4 100 –

8 249 2 500 –

9 249 3 500 –

10 249 4 500 –

11 249 5 500 –

12 80 2 60 –

13 80 2 60 200

14 80 2 60 180

15 160 4 60 –

16 160 4 60 200

17 160 4 60 180

18 240 6 60 –

19 240 6 60 200

20 240 6 60 180

21 360 9 60 –

22 360 9 60 200

23 360 9 60 180

Fig. 13 Depot distribution

before the movement of

instances 1 to 21
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3.3.1 Inter-route optimization

To determine the optimal situation, inter-route optimiza-

tion randomly selects two routes, exchanges the customers

on the two routes, and ensures the vehicle capacity limit, as

shown in Fig. 8.

3.3.2 Intra-route optimization

To determine the optimal situation, intra-route optimiza-

tion randomly selects a route and exchanges two cus-

tomers, as shown in Fig. 9.

Fig. 14 Depot setting for the instances without a circumcenter

Fig. 15 Depot distribution after the movement of instances 1,2,3,7,11,18, and 21

Table 2 The parameters of the

BPC-HACO algorithm
Algorithm Parameter Description Value

ACO m Number of ants 100

a Weight of pheromone 1

b Weight of visibility 5

q Pheromone evaporation rate 0. 75

T Number of iterations 200

w Number of elite ants 3

SA M Number of iterations at each temperature 1000

alpha Cooling index 0.95

Tend Termination temperature 1

T0 Initial temperature 100

15706 F. wan et al.
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3.3.3 Angle scanning optimization

If there is a crossover between two routes, the solution can

be improved using local optimization to eliminate this

crossover in the solution (Wu et al. (2023)). While enu-

meration can be used to identify the crossover, it reduces

the efficiency and practicality of the algorithm, especially

when trying to solve a large-scale VRP. Therefore, to

improve the local optimization efficiency, angle scanning

optimization can effectively reduce the crossover in the

solution (Cai et al. (2014)), as shown in Fig. 10.

Figure 10 illustrates the coordinate system with the

depot as the center, in which the right direction is the

reference direction. The angle between all customers and

the reference direction is calculated, and the route number

they belong to is recorded. For example, in (59.6, 1),

‘‘59.6’’ represents the angle, and ‘‘1’’ represents the route

number.

Then, it is necessary to judge whether the customer’s

angle on each route becomes larger in turn; if not, it needs

to be optimized. For example, the angles for customers 1,

3, 4, and 6 on route 1 are 9.8, 59.6, 116.1, and 138.2, all of

which become larger. Therefore, the shortest route for

customers 1, 3, 4, and 6 is ‘‘D-1-3-4-6-D,’’ which reduces

the crossovers between the routes, as shown in Fig. 11.

Then, it is necessary to judge whether the customer

angles between the different routes become larger; if not,

there is a route crossover. For example, the angle for

customer 2 (105.6) on route 2 is smaller than that for

customer 4 (116.1) on route 1, indicating a crossover

between routes 1 and 2, and then exchanging customers 2

and 4. After the exchange, the angle of customer 4 (116.1)

on route 2 is smaller than the angle of customer 6 (138.2)

on route 1, and then exchange customers 4 and 6, as shown

in Fig. 10b. After these two exchanges, as the routes in the

depot do not cross, the routes are optimal.

3.4 BPC-HACO flowchart

The BPC-HACO flowchart is shown in Fig. 12.

4 Experimental results and discussion

This section first introduces some MDVRP benchmarks,

then the algorithm’s running results, and some comparative

experiments to verify the algorithm’s effectiveness in

solving various types of MDVRP. Finally, FLA is per-

formed on the MDVRP data set to know their structural

features and select suitable algorithms for solving

MDVRP.

4.1 Benchmark experiments 1

To illustrate the effectiveness of the BPC-HACO in solving

an MDVRP, several experiments based on the benchmark

are simulated for the instances available at http://www.

bernabe.dorronsoro.es/vrp/, the detailed information for

which is given in Table 1. The first column gives the

instance name, the second and third columns show the

number of customers and the number of depots, the fourth

column indicates the vehicle capacity constraint, and the

fifth column indicates the maximum vehicle delivery dis-

tance constraint, where ‘‘–’’ means no distance constraint.

Figure 13 shows the distribution of the original depots

for instances 1–23, in which the subtitle ‘‘1–50–4’’ refers to

instance 1, which has 50 customers and 4 depots. The depot

locations for instances 12, 13 and 14 are the same; the

depot locations for instances 15, 16 and 17 are the same;

the depot locations for instances 18, 19 and 20 are the

same; and the depot locations of instances 21,22 and 23 are

the same.

From Fig. 13, it can be seen that instances 1, 2, 3, 7, 11,

18, and 21 do not have circumcenters, which are solved as

follows. First, some depots are moved to ensure that the

Table 3 Results from the 30 runs

No BSK Sbest Savg E_Sbest E_Savg SD

1 576.87 576.87 582.42 0.00% 0.96% 4.76

2 473.53 473.53 482.36 0.00% 1.87% 7.00

3 641.19 641.19 652.50 0.00% 1.76% 8.07

4 1001.59 1003.73 1010.91 0.21% 0.93% 7.26

5 750.03 750.03 760.06 0.00% 1.34% 9.42

6 876.50 876.5 885.24 0.00% 1.00% 8.31

7 885.80 884.66 894.31 - 0.13% 0.96% 6.08

8 4437.68 4406.68 4426.52 - 0.70% - 0.25% 12.46

9 3900.22 3897.6 3908.78 - 0.07% 0.22% 9.37

10 3663.02 3663.02 3672.58 0.00% 0.26% 7.67

11 3554.18 3580.8 3590.26 0.75% 1.02% 9.37

12 1318.95 1318.95 1328.35 0.00% 0.71% 7.94

13 1318.95 1318.95 1325.87 0.00% 0.52% 6.84

14 1360.12 1360.12 1370.69 0.00% 0.78% 9.43

15 2505.42 2505.42 2513.26 0.00% 0.31% 5.65

16 2572.23 2572.23 2591.40 0.00% 0.75% 9.73

17 2709.09 2731.37 2750.54 0.82% 1.53% 10.68

18 3702.85 3741.99 3751.04 1.06% 1.30% 9.15

19 3827.06 3863.9 3901.37 0.96% 1.94% 12.14

20 4058.07 4097.06 4139.11 0.96% 2.00% 11.55

21 5474.84 5575.79 5596.32 1.84% 2.22% 11.54

22 5702.16 5718 5818.34 0.28% 2.04% 9.65

23 6095.46 6145.58 6283.17 0.82% 3.08% 14.23

Avg 2669.82 2682.78 2705.89 0.30% 1.18% 9.06

Bold values represent the same or better results than BSKs

A mathematical method for solving multi-depot vehicle routing problem 15707
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polygon formed by these depots has a circumcenter, after

which these depots are input to the BPC-HACO to deter-

mine the optimal solution. Finally, the original depots are

reintroduced into the optimal solution to obtain the true

route lengths, as shown in Fig. 14. Figure 15 is the depot

distribution for instances 1, 2, 3, 7, 11, 18, 21 without

circumcenters.

The parameters of the BPC-HACO algorithm are shown

in Table 2. The algorithm is implemented in MATLAB

R2014a, Windows 7 (9 64).

All instances are run 30 times, the result from which are

shown in Table 3. The second column gives the Best

Solution Known (BSK), the third column shows the best

solution from all 30 runs, the fourth column gives the

average solution from all 30 runs, and the fifth column

shows the error between the best solution and the BSK, the

sixth column shows the error between the average solution

and the BSK, and the seventh column shows the standard

deviation for the 30 runs. The E_Sbest, E_Savg, and SD are

determined using Eqs. (17)–(19).

E Sbest %ð Þ ¼ Sbest � BSKð Þ=BSK � 100% ð17Þ
E Savg %ð Þ ¼ Savg� BSKð Þ=BSK � 100% ð18Þ

SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

ðSi� SavgÞ2

N

vuuut
ð19Þ

In Table 4, the E_Sbest for 23 instances is no greater

than 2.0%, the E_Savg is no greater than 3.1%, and the SD

is no greater than 15, which indicates that the algorithm is

stable and robust, and the algorithm performs balanced in

each instance. The best solutions are compared with Bez-

erra et al. (2018); Yao et al.(2019); Sadati et al.(2020);

Zhang et al.(2020); Gu et al.(2022); Torres et al. (2022), as

shown in Table 4.

The bold numbers in Table 4 represent the number of

BSKs found or the instances that are better than the BSK.

The last row in the table shows the average E_Sbest for the

23 instances. The BPC-HACO algorithm finds 14 optimal

solutions; meanwhile, instances 7, 8, and 9 have better

results than the BSK. The numbers of depots for instances

7, 8, and 9 are 4, 2, and 3, and the numbers of customers

Table 4 Comparison results based on benchmark 1

No BSK Bezerra (2018) Yao (2019) Sadati (2020) Zhang (2020) Gu (2022) Torres (2022) BPC-HACO

1 576.87 582.34 576.86 576.87 576.87 595.47 646.86 576.87

2 473.53 473.87 473.53 473.53 473.53 482.19 535.49 473.53

3 641.19 641.19 641.19 641.19 641.19 692.72 699.44 641.19

4 1001.59 1008.66 1001.49 1008.62 1010.57 1127.58 1090.06 1003.73

5 750.03 752.97 750.26 752.04 751.15 837.5 835.47 750.03

6 876.5 878.02 876.5 882.71 880.57 971.13 958.3 876.5

7 885.8 890.46 885.69 896.01 881.97 913.17 – 884.66

8 4437.68 – 4482.44 4417.34 4516.75 5079.62 4611.03 4406.68

9 3900.22 – 3912.23 3940.56 3939.52 4901.76 4204.66 3897.6

10 3663.02 – 3663 3696.31 3724.93 4393.91 4003.74 3663.02

11 3554.18 – 3648.95 3578.14 3624.67 4203.38 3948.98 3580.8

12 1318.95 1318.95 1318.95 1318.95 1318.95 – 1651.02 1318.95

13 1318.95 – 1318.95 1318.95 1318.95 – – 1318.95

14 1360.12 – 1365.68 1360.12 1360.12 – – 1360.12

15 2505.42 2525.85 2505.29 2538.79 2505.42 – 3113.4 2505.42

16 2572.23 – 2587.87 2572.23 2572.23 – – 2572.23

17 2709.09 – 2708.99 2731.37 2709.09 – – 2731.37

18 3702.85 3796.04 3781.04 3798.58 3749.34 – 4623.47 3741.99

19 3827.06 – 3827.06 3827.06 3827.06 – – 3863.9

20 4058.07 – 4058.07 4097.06 4058.07 – – 4097.06

21 5474.84 – 5474.84 5643.55 5619.95 – 6743.06 5575.79

22 5702.16 – 5702.06 5708.36 5702.16 – – 5718

23 6095.46 – 6095.46 6145.58 6078.75 – – 6145.58

Avg – 0.61% 0.31% 0.64% 0.49% 11.78% 13.83% 0.30%
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are 100, 249 and 249, indicating that the method remain-

ders feasible when there are more or fewer customers and

depots.

Instances 1, 2, 3, 7, 11, 18, and 21 need to move some

depots, where instances 1, 2, and 3 find the BSK, and

instance 7 finds a better result than the BSK. Figure 16

shows the distributions for the original depots and the

moved depots and the distributions for the optimal solution

in the original depots and the moved depots for instance 7.

The distributions for the optimal solution differ only in

depot 2 for the original depots and the moved depots. No

difference is found between the routes for the other three

depots. Therefore, the optimal solution is found by moving

some depots. The errors for instances 11 and 18 are 0.75%

and 1.06%, and the error for instance 21 is 1.84%, con-

sidered relatively large and mainly due to the significant

changes in the depot position in instance 21.

4.2 Benchmark experiments 2

The performance of the BPC-HACO algorithm in solving

MDVRP with distance constraints and the dynamic multi-

depot vehicle routing problem (DMDVRP) is evaluated

using a series of experiments based on another benchmark,

which is available at http://neo.lcc.uma.es/vrp/vrpin

stances/multiple-depot-vrp-instances/, the detailed infor-

mation for which is shown in Table 5.

4.2.1 BPC-HACO for solving DMDVRP

DMDVRP is an extension of MDVRP. In MDVRP, all

customers are known. In DMDVRP, some customers are

known (known customers). Other customers dynamically

appear during the service period (new customers), and the

objective is to find the shortest route for both the known

and new customers (Hu et al.(2023)). The performance of

the BPC-HACO algorithm solving for DMDVRP is eval-

uated based on instances 1–13 in Table 5; the results are

compared with Yu et al. (2013) and Xu et al. (2018), as

shown in Table 6.

Yu et al. (2013) introduced a distance-based clustering

algorithm to cluster each customer to the nearest depot. To

plan the routes, they proposed an improved ant colony

optimization (IACO) with ant colony weight and mutation

operations. Xu et al. (2018) used K-means to cluster the

customers and introduced a hybrid ant colony optimization

(HACO) with mutation operations and local optimization.

Both papers randomly selected 30% of the customers to be

Fig. 16 Depot and optimal

solution distribution for instance

7
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Table 5 Detailed information on the instances

No Depots Customers Capacity Distance

1 4 50 80 –

2 4 50 160 –

3 5 75 140 –

4 2 100 100 –

5 2 100 200 –

6 3 100 100 –

7 4 100 100 –

8 2 249 500 –

9 3 249 500 –

10 4 249 500 –

11 5 249 500 –

12 2 80 60 –

13 4 160 60 –

R1 4 48 200 500

R2 4 96 195 480

R3 4 144 190 460

R4 4 192 185 440

R5 4 240 180 420

R6 4 288 175 400

R7 6 72 200 500

R8 6 144 190 475

R9 6 216 180 450

R10 6 288 170 426

Table 6 The comparison results of DMDVRP

No IACO HACO BPC-HACO

Length Time(s) Length Time(s) Length Time(s)

1 686.46 56 811.72 60.45 634.373 50.07

2 568.24 59 599.6 46.62 526.872 52.31

3 772.62 109 1033.07 89.86 748.674 75.10

4 1158.77 124 1482 158.92 1144.6 129.42

5 865.23 146 1255.38 130.16 863.734 134.55

6 1043.04 132 1274.6 137.51 1025.7 130.94

7 1053.97 148 1292.97 123.6 1052.6 139.59

8 5147.59 678 7873.47 599.77 4683.78 372.85

9 4543.65 602 6279.87 453.87 4178.51 365.25

10 4267.4 598 6076.75 384.96 3986.5 366.96

11 4186.71 611 6101.29 366.24 3851.6 370.46

12 1529.98 93 1524.62 106.05 1508.9 93.52

13 2936.2 306 3100.88 214.5 2874.9 185.57

Avg 2212.3 281.692 2977.4 220.962 2083.13 189.73

Bold values represent the same or better results than other algorithms

Fig. 17 An example of DMDVRP

Fig. 18 An example of MDVRP with distance constraints

Table 7 The comparison results of MDVRP with distance constraints

No BSK Sbest Savg E_Sbest E_Savg T(S)

R1 861.32 861.32 876.85 0.00% 1.80% 27.55

R2 1307.61 1307.61 1310.68 0.00% 0.24% 65.24

R3 1806.6 1891.3 1908.71 4.69% 5.65% 88.94

R4 2072.52 2125.63 2150.85 2.56% 3.78% 127.62

R5 2385.77 2372.67 2400.33 -0.55% 0.61% 177.36

R6 2723.27 2799.73 2812.27 2.81% 3.27% 212.64

R7 1089.56 1089.56 1099.33 0.00% 0.90% 45.51

R8 1666.6 1716.9 1717.21 3.02% 3.04% 97.58

R9 2153.1 2238.31 2264.16 3.96% 5.16% 152.75

R10 2921.85 2902.59 2915.48 -0.66% -0.22% 225.14

Avg 1898.82 1930.562 1945.59 1.58% 2.42% 122.03

Bold values represent the same or better results than BSKs
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new customers and then used ‘‘The nearest addition

method’’ to deal with the new customers, as shown in

Fig. 17. After the new customers (N1, N2, N3, N4) appear,

the distances are calculated between the new customers and

the customers (V1, V2, V3, V4) that are being or have been

served. Then, the new customers (N3, N4) are added to the

nearest route, on which customers V3 and V4 are located.

While N1 and N2 are close to V1 and V2, the vehicles in

Table 8 The comparison results of small-scale MDVRP

Data sets Customer Depot Capacity Length Time(s) BPC-HACO

Length Route Time(s)

Wang et al. (2012) 25 3 20 67.44 – 66.14 1,3,17,10,27,3,1

1,3,24,14,19,12,3,1

1,3,6,20,28,15,23,3,1

1,4,9,25,21,4,1

1,2,5,13,26,2,1

1,4,11,16,7,4,1

1,2,29,18,22,8,2,1

4.15

Luo et al. (2014) 25 3 20 65.56 – 65.56 1,3,25,18,10,6,3,1

1,2,12,11,28,2,1

1,4,13,16,17,4,1

1,3,21,23,22,27,8,3,1

1,4,14,7,29,4,1

1,3,9,26,15,3,1

1,2,19,5,20,24,2,1

4.29

Ma et al. (2014) 30 3 4,6,8 1464.4 6.55 756.07 1,2,15,33,32,17,2,1

1,3,25,21,3,1

1,4,8,14,11,4,1

1,3,31,9,16,29,20,3,1

1,3,23,24,27,28,6,13,3,1

1,4,34,18,26,4,1

1,3,30,22,7,3,1

1,3,5,12,19,10,3,1

5.07

Yan et al. (2017) 15 3 5 475.67 – 430.20 1,2,8,14,7,9,2, 1

1,2,15,11,13,2, 1

1,4,17,16,19,4, 1

1,3,10,18,3, 1

1,3,12,6,5,3,1

1.38

Zhang et al. (2009) 15 4 4 458.21 1.5 458.73 1,4,17,16,19,4,1

1,2,13,11,15,2,1

1,2,18,10,8,2,1

1,2,14,7,9,2,1

1,3,5,6,12,3,1

1.41

Ling et al. (2017) 24 3 4 641.3 – 565.37 1,2,7,22,13,2,1

1,3,6,28,5,3,1

1,3,17,25,3,1

1,4,24,19,10,4,1

1,4,23,18,9,4,1

1,3,16,26,21,12,3,1

1,2,27,14,11,20,15,2,1

1,4,8,4,1

4.13

Bold values represent the same or better results than other algorithms
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these routes have no remaining capacity. Therefore, depot

1 needed to arrange new vehicles to serve new customers

N1 and N2.

As can be seen from Table 6, the BPC-HACO performs

better, especially when the customer and depot numbers are

relatively large (instances 8, 9, 10, and 11). This is because

the BPC-HACO selects the depot and the customers based

on probability. Then, the algorithm adaptively completes

the ‘‘depot-customer-vehicle’’ selection as the number of

iterations increases.

BPC-HACO regards the depot and the customer as a

whole and then optimizes the whole. In contrast, the IACO

and HACO first clustered the customers to the depot and

then optimized the routes inside the depot. However, as

previously discussed, optimizing the part does optimize the

whole. The number of ants and the number of iterations of

the three algorithms are the same (100 iterations and 30

ants). When the number of customers or depots is large, the

time is shorter because BPC-HACO does not need to select

the depot by other means, such as clustering, thus saving

time.

4.2.2 BPC-HACO for solving MDVRP with distance
constraints

MDVRP with distance constraints has one more vehicle

constraint than MDVRP. Therefore, as well as considering

vehicle capacity, it is also necessary to consider a vehicle

travel distance less than the maximum distance constraint

(Yuan et al.(2020)), as shown in Fig. 18.

To demonstrate that the BPC-HACO is also effective in

solving MDVRP with distance constraints, experiments are

conducted based on instances R1-R10 in Table 5, after

which the results are compared with the Best Solution

Known (BSK), as shown in Table 7. The third column

shows the best solution over the 30 runs, and the fourth

column shows the average solution for the 30 runs, which

are determined using Eqs. (12)–(14), and the seventh col-

umn ‘‘T’’ is the average running time (seconds).

The E_Sbest for the 10 instances is not greater than

5.0%, the E_Savg is not greater than 6.0%, and the T is not

greater than 230 s. The BPC-HACO is found to be able to

effectively solve the MDVRP with distance constraints

within a reasonable running time. The E_Sbest for

instances R5 (240 customers, 4 depots) and R10 (288

customers, 6 depots) are, respectively, -0.55% and -

Table 9 Information and

Statistical measures for 23

instances of landscapes

NO HðeÞ MðeÞ e� rFD s d

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

1 0.28 0.001 0.33 0.005 391.91 9.58 0.006 0.003 0.35 0.006 62.17 3.40

2 0.26 0.009 0.30 0.004 384.32 7.70 0.040 0.004 0.26 0.008 64.64 2.85

3 0.32 0.010 0.35 0.009 408.56 10.49 - 0.040 0.000 0.28 0.002 75.88 4.04

4 0.31 0.003 0.40 0.005 636.33 8.87 0.013 0.004 0.35 0.006 87.35 4.67

5 0.30 0.007 0.37 0.002 600.76 10.20 0.015 0.004 0.33 0.002 85.59 4.05

6 0.32 0.001 0.39 0.005 645.64 11.40 0.012 0.005 0.31 0.008 94.69 3.36

7 0.42 0.007 0.38 0.000 700.48 9.69 - 0.023 0.002 0.28 0.001 99.10 4.99

8 0.49 0.006 0.40 0.010 883.84 10.53 0.011 0.003 0.38 0.005 124.20 4.07

9 0.50 0.009 0.45 0.001 897.67 12.34 - 0.003 0.005 0.33 0.005 135.71 4.01

10 0.52 0.002 0.45 0.009 906.66 11.90 - 0.014 0.002 0.28 0.003 137.13 3.66

11 0.55 0.005 0.43 0.005 920.76 12.16 - 0.048 0.002 0.26 0.007 147.32 3.41

12 0.21 0.003 0.27 0.004 404.17 7.53 0.013 0.005 0.31 0.008 75.24 2.49

13 0.20 0.004 0.29 0.010 412.63 9.50 0.016 0.001 0.34 0.003 78.42 3.68

14 0.19 0.001 0.28 0.002 434.11 8.22 0.017 0.002 0.36 0.003 70.44 3.78

15 0.41 0.007 0.48 0.007 749.52 9.04 0.037 0.003 0.32 0.001 112.19 4.06

16 0.43 0.002 0.40 0.003 718.48 8.71 - 0.030 0.002 0.31 0.007 105.32 5.26

17 0.40 0.003 0.45 0.006 798.99 10.78 0.040 0.005 0.33 0.000 123.15 4.14

18 0.55 0.000 0.44 0.003 1020.77 11.07 - 0.010 0.004 0.24 0.008 125.02 5.56

19 0.54 0.004 0.46 0.004 1134.03 10.94 0.029 0.004 0.27 0.007 122.48 4.46

20 0.56 0.002 0.41 0.004 1057.74 11.83 - 0.047 0.002 0.19 0.004 134.03 5.53

21 0.63 0.009 0.42 0.000 1415.26 10.21 0.041 0.000 0.15 0.006 144.86 4.08

22 0.66 0.002 0.43 0.002 1529.08 12.48 - 0.025 0.004 0.12 0.002 146.62 5.11

23 0.62 0.010 0.44 0.005 1479.71 11.59 - 0.048 0.005 0.13 0.008 153.99 5.00
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0.66%, indicating that the BPC-HACO algorithm can

achieve better solutions for large-scale problems. The

E_Sbest for instances R1 (48 customers, 4 depots), R2 (96

customers, 4 depots), and R7 (72 customers, 6 depots) is

0%, indicating that the BPC-HACO algorithm can achieve

a BSK for small-scale problems.

4.3 BPC-HACO for solving small-scale MDVRP

The BPC-HACO is also effective for solving small-scale

MDVRP (MDVRP with a small number of customers and

depots). The experimental data come from Wang et al.

(2012), Luo et al. (2014), Ma et al. (2014), Yan et al.

(2017), Zhang et al. (2009), Ling et al. (2017), where the

number of depots is 3, and the number of customers ranged

from 15 to 30. The detailed information for the data sets

and the solution results are shown in Table 8.

The fifth column shows the lengths, the sixth and sev-

enth columns show the lengths and the routes solved by the

BPC-HACO, and in the seventh column, 1 is the virtual

center, 2, 3 and 4 are the depots, 5 is customer 1, 6 is

customer 2, and so on. The BPC-HACO can get better

solutions than Wang et al. (2012), Ma et al. (2014), Yan

et al. (2017), and Ling et al. (2017) and finds the same

result as Luo et al. (2014). The length of the BPC-HACO is

0.52 more than Zhang et al. (2009), but it had one less

vehicle, demonstrating that the BPC-HACO has advan-

tages for solving small-scale MDVRP.

4.4 Fitness landscape analysis of the algorithm

There are many metaheuristic algorithms for solving

MDVRP, such as Ant Colony Optimization (ACO),

Genetic Algorithm (GA), Particle Swarm Optimization

(PSO), Differential Evolution (DE), and Tabu Search (TS).

Hence, a fundamental question arises: how to select a

best-suited heuristic? Fitness landscape analysis (FLA) has

been applied successfully (Zhou et al. (2023); Rodrı́guez

et al. (2023); Dokeroglu et al. (2023)), which provides

structural features of the problem to choose the most

appropriate algorithm for solving the problem. Fitness

landscape generated by random walks in search spaces

obtained using different local operators on MDVRP. The

fitness landscape is a surface in the search space that

defines the fitness for each sample.

Table 11 Summary of landscape features and most appropriate algorithm

Customer/

Depot

NO Landscape Features Ranking of the most

appropriate Algorithm

Cus:50,75

Dep:4,5

1 The landscape structure of each instance is rugged, multi-modal, and the presence of some

needle-like funnels

1st: ACO

2nd: DE2

3

Cus:100

Dep:2,3,4

4 The landscape structure of each instance is rugged, multi-modal, and the presence of some

needle-like funnels. Also, the number of local optimum increases as the number of depots

1st: ACO

2nd: TS5

6

7

Cus:249

Dep:2,3,4,5

8 The landscape structure of each instance is rugged, multi-modal, deceptive, and the presence

of many needle-like funnels. The number of local optimum increases as the number of

depots

1st: GA

2nd: ACO9

10

11

Cus:80

Dep:2

12 The landscape structure of each instance is rugged, multi-modal, and the presence of some

needle-like funnels

1st: ACO

2nd: GA, DE13

14

Cus:160

Dep:4

15 The landscape structure of each instance is highly rugged, multi-modal, deceptive, and the

presence of many needle-like funnels

1st: GA

2nd: PSO16

17

Cus:240

Dep:6

18 The landscape structure of each instance is highly rugged, multi-modal, deceptive, and the

presence of many needle-like funnels. Also, the number of local optimum is approximately

same due to same number of customers and depots

1st: GA

2nd: ACO19

20

Cus:360

Dep:9

21 The landscape structure of each instance is highly rugged, multi-modal, deceptive, and the

presence of many needle-like funnels. Also, the number of local optimum is approximately

same due to same number of customers and depots

1st: TS

2nd: GA22

23
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4.4.1 Landscape analysis

FLA measures the ruggedness of a landscape in two

ways:1. Information analysis measure (HðeÞ, MðeÞ, e�) 2.
Statistical analysis measure (rFD, s, d). The calculation

methods of these 6 parameters refer to Jana et al. (2017).

Table 9 summarizes the mean and standard deviation (Std.)

of the parameters of the landscape measure for 23 bench-

mark instances (detailed information in Table 1) over 20

runs.

HðeÞ increases with the number of customers or depots,

and the Entropy measure indicates that all instances’

landscapes are rugged. MðeÞ does not change significantly

and indicates the existence of multi-modality on the

instance landscape structure. e� increases with the com-

plexity of the instance. The more complex the instance, the

greater the fitness difference between samples. To make the

landscape structure becomes flat, the greater e� will be.rFD
is small for all instances, indicating that the samples’ fit-

ness and distances to the global minimum are uncorrelated.

Moreover, the negative value indicates that many local

optimums exist on the landscape structure, which is

deceptive. s decreases with an increase in the number of

customers or depots, which indicates that the degree of

nonlinear correlation between neighbor samples increases

with the complexity of the instance.d indicates a significant

increase in dispersion with length, which indicates the

existence of multi-funnels in the landscape structure and

the best solution is far away from the possible solutions.

4.4.2 Performance analysis for algorithms

We consider the 5 widely used algorithms for solving

MDVRP (ACO, GA, PSO, DE, TS) and only use the

standard versions of these algorithms. The parameter set-

tings of these algorithms refer to (Jana et al. (2017)). For

fair comparisons, the algorithm’s parameters are consis-

tent, such as population size and the number of iterations.

Table 10 reports the best and mean results and standard

deviation of 20 runs for each algorithm on 23 instances.

Wilcoxon’s rank sum test is conducted to judge whether

has a statistical difference between the best algorithm and

the competitors (Bo et al. (2023)). The mean results on

each row are in boldface, while ‘italics’ indicate no sig-

nificant difference between the best algorithm. The best

result is underlined.

From the above results and discussions, we summarize

the landscape features and the most appropriate algorithm

for solving MDVRP in Table 11.

ACO performs well when the number of customers or

depots is small (instances 1 * 14), and the standard

deviation does not change much, indicating that ACO is

robust. GA performs well when the number of customers or

depots is large (instances 15 * 21), but GA has large

standard deviations in some instances. TS achieved the best

results on instances 5, 9, 22 and 23 and performed on

average similarly to ACO and GA. The standard deviation

shows that TS is also robust in some instances. DE pro-

vided the best results for instances 1 and 12, and no sig-

nificant performance improvement except for instances 1

and 12. DE performance decreases as the complexity of the

instance increases. In general, the success of DE depends

heavily on mutation and crossover operators. PSO obtains

the best results on instances 11 and 16. PSO performance

degrades as the complexity of the instance increases,

similar to DE.

In conclusion, ACO, GA and TS algorithms perform

well in solving MDVRP. For other algorithms, some

improvements are made to get better results.

5 Conclusions and future work

This paper proposes a hybrid ant colony optimization

(BPC-HACO) to solve the MDVRP model based on the

polygonal circumcenter. As the BPC-HACO avoids clus-

tering and uses pheromone accumulations to guide the

algorithm to select depots and customers intelligently, it

can optimize the routes in each depot and the total route of

all depots to achieve a unity of quality and efficiency.

Furthermore, local search and elite strategies are added to

increase the population diversity and retain better solutions.

Two kinds of MDVRP benchmarks and six small-scale

data sets are employed to verify the effectiveness of the

BPC-HACO in solving MDVRP, MDVRP with distance

constraints, DMDVRP and small-scale MDVRP. Finally,

FLA technology is used to analyze the structural features of

MDVRP to choose a suitable algorithm to solve it. Further

research could consider an MDVRP with customer priority,

distance, and time asymmetries, closer to the needed

practical applications.
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