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Abstract
The challenge of routing in energy-constrained wireless sensor networks is to balance energy and extend network lifetime,

and reinforcement learning is an effective method to address this problem. However, poor learning and decision-making

efficiency are still the main factors affecting the network routing performance. In this research, RLR-TET is proposed as a

reinforcement learning approach that evaluates the shortest routing and achieves node energy balance. First, this study

employs a method in which each node broadcasts control information directly to its neighbor nodes, allowing learning to be

accomplished by simple communication. Second, multiple greedy action chains form a tree structure by learning to build a

greedy action chain. Third, the tree is dynamically adjusted during the learning process. Toward the root, each sensor node

can obtain its optimal next hop; toward the leaf, each sensor node can achieve the update of the learning errors. Fourth, the

learning errors of V-values are backpropagated along the tree to multi-layer nodes using the eligibility traces approach,

achieving fast multi-step updates. In our experiments, we compared the method of this paper with five other algorithms.

The number of packets delivered, the number of alive nodes, and the standard deviation of the nodes’ remaining energy all

improved significantly over time. Experiments have shown that our method responds quickly to network changes, improves

the energy balance of network nodes, and successfully extends the lifetime of the network.

Keywords Wireless sensor networks � Routing � Reinforcement learning � Energy balance � Greedy action chains �
Error tree-based backpropagation � Eligibility traces

1 Introduction

The wireless sensor network is a self-organized network

with a particular topology that comprises fixed or mobile

sensing nodes that monitor different types of environ-

mental data such as temperature, pressure, light intensity,

humidity, and noise (Al-Janabi et al. 2021). These small,

low-cost nodes have some computing and processing

power. Wireless sensors are built self-organizing, and the

collected information is sent to base stations or sinks via

multi-hop relaying. Developing wireless sensor network

technology aims to link more intelligent devices and

provide more accessible, dependable, and rapid services.

Improving network throughput, reducing and balancing

load power consumption, increasing network response

speed, and extending network lifetime have been hot

research topics.

The routing problem is fundamental to the study of

wireless sensor networks (Saleh et al. 2015). In contrast to

fixed communication and computer networks, wireless

sensor networks are more sophisticated in multi-hop rout-

ing, manifested in the following aspects. First, wireless

sensor network nodes are powered by batteries, but node

energy is limited, necessitating optimization of routing,

load balancing, and reducing the number of routing hops to

extend its life (Mohammed and Al-Janabi 2022). Second,

changes in network architecture are readily induced by

battery depletion, instability of communications connection

signals, or signal interference (Srivastava and Mishra

2022). Third, if the data transmission path is not balanced,

data cannot be transferred in time and becomes
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overstocked in the node buffer, resulting in packet loss,

time delay, and performance deterioration. Fourth, changes

in network architecture are caused by battery power, con-

gestion, and sensor node movement. These issues have

posed significant challenges to network routing (Lin et al.

2020). A pre-defined routing strategy decides the tradi-

tional routing scheme. However, this is only relevant to a

given network environment and cannot be flexibly opti-

mized and modified in a changing environment. Traditional

approaches based on mathematical models are likewise

challenging to implement. It is difficult to describe the

changing network topology with an accurate mathematical

model, and even if it can, the model is complicated,

computationally costly, and has the drawback of poor self-

adaptability.

In recent years, machine learning (Kadhuim and Al-

Janabi 2023) approaches have gained much interest for

routing in a continually changing network to provide self-

adaptive solutions to wireless sensor network issues with

changing topologies (Yang 2020). Among these, rein-

forcement learning (Sutton and Barto 1998) is a significant

field of machine learning with significant application

potential in wireless sensor networks (Frikha et al. 2021;

Kaur et al. 2021; Cho and Lee 2020; Kwon et al. 2020).

Perception is used in reinforcement learning to make

decisions (Zhang et al. 2020). Through continual trial and

error, the agent enhances the value of its experience and

progressively optimizes its approach. Sensor nodes can

continually identify the best option for adaptive routing.

Reinforcement learning has emerged as a fundamental

approach for determining the best pathways to sinks in

wireless sensor networks (Yau et al. 2015), but its optimal

path is shifting. We must consider the network’s QoS

indicators, such as the degree of network congestion, the

energy consumption of sensor nodes, the amount of node

buffer space, and node mobility. Many methods consider

the shortest path routing of wireless sensor networks and

these dynamic QoS indicators (Gazi et al. 2021). It is

simple to understand that the reinforcement learning pro-

cess must keep up with the network’s constant changes to

develop improved routing solutions. For network routing,

out-of-date routing strategies are worthless. As shown in a

vast quantity of literature, the routing algorithm based on

reinforcement learning completely incorporates the net-

work’s QoS metrics but seldom considers improving the

learning rate (Mammeri 2019, 2019).

Boyan and Littman (1993) pioneered the use of rein-

forcement learning in wireless sensor routing with their

Q-routing method. The Q-routing method combines active

and on-demand routing protocols (Zaraket et al. 2021) to

maintain a Q-table through information exchange. Fur-

thermore, it discovers the best information transmission

method using exploitation and exploration.

Maintain the Q table, which has two update methods:

periodic and triggered. The periodic update interval is set

to around 10 s. Thus, if 10 routing nodes are traversed from

the source node to the destination node, the transmission

time will be 110 s. This technique fails to provide an

efficient decision process because its learning convergence

rate is far from keeping up with the changing topology of

the sensor network. If learning efficiency is pursued by

drastically lowering periodic update intervals, network

information congestion and node energy consumption will

occur. The update time between nodes is a few millisec-

onds with triggered updates, and only individual nodes are

accessed. Sensor networks generally utilize less energy and

are less likely to generate information package congestion.

This approach, however, can only reverse one update step,

which is still wasteful. Jiang et al. (2019) used the Sarsa(k)
method for wireless sensor communication, leveraging

eligibility traces and multi-step backpropagation of errors

to enhance convergence speed and learning efficiency. Like

the Q-routing approach, the Sarsa(k) algorithm ignores

node power consumption and balance, causing the net-

work’s lifetime to end prematurely. At the same time, this

method uses linear error backward updating, which has less

learning efficiency and adaptive ability than the method

proposed in this paper.

This study presents a reinforcement learning routing

protocol using tree-based eligibility traces (RLR-TET).

During learning, greedy action chains are created, and the

various greedy action chains form a tree structure. The

network uses this tree to keep the routing decisions of the

wireless network so that the system may be updated swiftly

within a specific time interval. The large-scale wireless

sensor network establishes a multi-hop network transmis-

sion mechanism. Reinforcement learning is incorporated

into network communication, and its reward function pri-

marily incorporates node relay, communication energy

consumption between nodes, and node residual energy. A

multi-agent learning mechanism accomplishes the net-

work’s energy and data load balancing. The network’s

functioning is a dynamic process in which time and energy

consumption are critical. If the learning efficiency is too

low, the learning process will not always converge in a

dynamic environment, leading the system to operate in a

non-optimized environment with unoptimized routing

performance. The RLR-TET approach has substantially
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enhanced the overall performance of wireless sensor net-

works. The following are the primary contributions of this

study.

(1) Nodes broadcast low-power, small-data control

packets to neighboring nodes at reduced intervals,

and sensor network nodes use reinforcement learning

to create a tree consisting of greedy action chains

automatically. During the learning process, the tree’s

structure can be dynamically adjusted.

(2) In the tree, toward the root, each sensor node can

obtain its optimal next hop; toward the leaf, each

sensor node can achieve the update of the learning

errors.

(3) During learning, V-value learning errors are back-

propagated along the tree to multi-layer nodes using

the eligibility traces approach, resulting in multi-step

updates.

During the learning process, the network nodes implic-

itly construct an adaptive tree. This tree can achieve

excellent learning efficiency and decision performance,

giving it a significant advantage over other algorithms.

The main innovations in this paper compared to other

reinforcement learning based sensor routing algorithms are

described as follows. Previous sensor routing algorithms

can only back-propagate a node’s Q-value update by one

step when performing reinforcement learning. Even if

overhearing techniques are used, they can only influence

the Q updates of the node’s neighbors. In this paper, the

idea of greedy action chains is proposed and a dynamically

changing tree of greedy action chains is constructed.

Unlike previous algorithms, our approach propagates

updates from the root to multiple nodes in the tree. This

greatly improves the learning efficiency of the sensor net-

works and results in more optimal and trustworthy routing

decisions.

The remainder of this work is organized as follows.

The second section discusses the use of reinforcement

learning in wireless sensor networks. The third section

explains the reinforcement learning method and the issue to

be solved in this study. The fourth section discusses the

notion and algorithm of RLR-TET and the creation of

greedy action chains in wireless sensor networks with their

tree. The fifth section presents simulation results for the

RLR-TET method and compares them to previous algo-

rithms. This paper is summarized in the sixth section.

2 Related work

Traditional self-organizing network routing methods are

classified into three forms based on the path discovery

method: active protocols, reactive routing protocols, and

hybrid routing protocols. A reactive routing protocol is

DSR (Dynamic Source Routing Protocol) (Johnson and

Maltz 1996). When the source node wishes to transmit data

to the target node, it broadcasts a request packet to move

information via network nodes until the target node

receives it or the information reaches the node that links to

the target node. The node then sends the routing informa-

tion back to the source node, which generates a routing

path. A multi-hop reactive routing protocol is AODV (Ad

Hoc On-demand Distance Vector) (Das et al. 2003). This

method, like the DSR approach, uses a route discovery

mechanism. The network’s nodes only keep a routing

table for the relevant nodes. The routing database records

the target node’s next-hop address and the number of hops

to the destination node and utilizes the sequence number to

identify the most recent routing results.

Because reinforcement learning is independent of the

model, it is frequently researched in wireless sensor net-

works with frequent topology changes (Mammeri 2019;

Guo and Zhang 2014). The Q-routing method (Boyan and

Littman 1993) considers the quickest path and the degree

of data congestion during data transfer. By learning, the

algorithm is more adaptable than the shortest path routing

approach and can avoid congested nodes. However, neither

the node’s mobility nor its power consumption is taken into

consideration by this method. This approach can converge

correctly when the network topology changes slowly, but it

is ineffective when it changes fast. Oddi et al. (2014)

improved the Q-routing algorithm. The algorithm uses

residual energy to balance the routing of sensors while

optimizing the control overhead of sensor nodes, thereby

increasing the lifetime of the network.

The DFES-AODV algorithm (Chettibi and Chikhi 2016)

is an AODV routing protocol that employs fuzzy energy

states to fuzzily calculate a single node’s power and energy

usage. Unlike previous fuzzy logic-based approaches, the

membership function of the input state value in this method

is dynamic, and it is adaptively altered throughout the

network’s working process to obtain higher generalization

performance. This approach integrates fuzzy logic and

reinforcement learning into wireless network routing,

boosting network performance while balancing battery

usage.

Energy-balanced routing in wireless sensor networks with reinforcement learning…
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The AdaR (Wang and Wang 2006) method optimizes

the goal by considering path length, load balancing, com-

munication connection dependability, and data aggrega-

tion. The node sends the samples to the base station

through the routing node, and the base station learns from a

vast number of sample sets. The learning technique then

uses the Least-Squares Policy Iteration (LSPI) method to

train the samples toward the best strategy gradually. After

the base station determines the best method, it broadcasts

the information to each sensor node, allowing them to send

data more efficiently. This approach uses more samples

than table-based reinforcement learning algorithms and

converges faster. It is appropriate for cases in which net-

work QoS indicators fluctuate often.

Hu and Fei (2010) presented the QELAR algorithm

based on Q learning and created a network routing

approach that extends the network’s lifetime by attaining

energy balance. It computes the reward value depending on

the node’s remaining energy and the energy distribution of

the surrounding nodes. The QELAR method employs an

underwater sensor network as the application scenario;

each node only retains the information of surrounding

nodes, and communication is confined to local sections,

reducing system overhead. With unstable transmission

links and moving nodes, this method can swiftly adapt to

changes in network architecture. The sensor network

nodes’ power is restricted. If the shortest path and the

fewest amount of communication hops are chosen as ideal

goals, the power of the nodes on these pathways will be

quickly depleted, limiting the network’s life. The QELAR

algorithm’s reward value incorporates the nodes’ remain-

ing energy and energy distribution, resulting in a more

balanced network energy consumption, a longer network

life, and a network topology more responsive to changes in

the network topology.

Maleki et al. (2017) used model-based reinforcement

learning approaches to solve the routing problem in mobile

ad hoc networks. Nodes may receive energy from their

surroundings, causing energy acquisition and consumption

to fluctuate randomly over time. Furthermore, transmission

delay will be caused by the network’s link quality. This

approach employs reinforcement learning to achieve

intelligent routing, intending to reduce route transmission

time and node energy loss. The Markov decision process

realizes routing integrating network mobility and energy

dynamics without prior knowledge. The model-based

learning process is accomplished using window statistics,

and the learning rate has been substantially enhanced.

Zheng et al. (2018) used reinforcement learning for the

intelligent data transmission of a UAV (Unmanned Aerial

Vehicle) and suggested a directed MAC protocol based on

location prediction. The protocol is divided into three

stages: location prediction, communication control, and

data transfer. The approach of integrating antenna orien-

tation and position prediction is accomplished. The UAV

anticipates its position and speed, updates its local strategy,

and accomplishes the routing strategy’s automated devel-

opment and a high degree of autonomy with the help of the

reinforcement learning algorithm. The proposed algorithm

has strong reliability and resilience, and it can generate

communication links quickly in a high-speed environment

network and transmit data with minimal latency.

Basagni et al. (2019) achieved high-performance

underwater sensor node transmission and routing. The data

flow is classified as either steady or urgent. A reinforce-

ment learning framework is used to build the multi-modal

approach MARLIN-Q, and the optimal route is chosen

based on the data’s multiple QoS indicators. It offers

improved adaptive performance when network scale and

critical data transfer changes. It has low latency, low power

consumption, and high dependability.

Wang et al. (2020) developed a distributed adaptive

routing algorithm (EDACR) for heterogeneous wireless

multimedia sensor networks, as well as a routing method

from the source node to the sink with transmission latency

and energy limitations. Nodes in heterogeneous networks

transmit text and multimedia data, such as photographs.

The paper categorizes the node energy level and addresses

each one independently. The optimization path is contin-

uously changed through reinforcement learning based on

the node’s remaining energy, transmission reliability, and

communication delay, with the periodic update of network

knowledge and structure to ensure the balanced distribution

of various QoS indicators and energy.

The network is very prone to congestion due to the

enormous transfer of data packets. Ding et al. (2019) pre-

sented two deep reinforcement learning approaches that

employ a centralized method to learn based on historical

experience to address network routing problems, minimize

network congestion, and shorten the path length of data

packet transmission. The SDMT-DQN approach, for

example, utilizes the pair of source-target nodes as a

sample to create a neural network, whereas the DOMT-

DQN method uses the target node as a sample to build a

neural network. Kaur et al. (2021) also used a deep learning

approach for intelligent decision-making, which divides the

entire network into unequal clusters based on the current
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data load of the sensor nodes to prevent the network from

dying prematurely.

The QGrid method (Li et al. 2014) separates the oper-

ational area of cars into grids in which all vehicles are in

motion, intending to improve vehicle communication and

the route across the grids via reinforcement learning. The

QGrid method uses Q-learning to compute the Q-value

needed to reach the nearby grids, while the vehicle picks

the best next grid by querying the Q table. Compared to the

GSPR (Karp and Kung 2000) method, this method

improves the delivery ratio, hop count, delay, number of

forwards, and other metrics.

The QGeo algorithm (Jung et al. 2017) provides a

reinforcement learning-based geographic routing strategy.

In cases with high mobility and a lack of global knowledge,

UAVs execute learning and policy optimization in a dis-

tributed computing fashion, resulting in reduced network

traffic for QGeo during network performance evaluation.

The QGeo method has three modules: position estimation,

neighbor table management, and Q-learning. During com-

munication, nodes learn by receiving HELLO messages

regularly and learning knowledge from neighboring nodes.

Based on the QGeo algorithm, the RFLQGeo algorithm

(Jin et al. 2019) develops a routing strategy to increase

network performance using a reverse reinforcement learn-

ing method, and the reward function of this scheme is

created by real-time learning. The approach features a high

packet delivery rate, a low number of re-transmissions, and

a low end-to-end latency.

Renold and Chandrakala (2017) introduced an MRL-

SCSO algorithm for network topology management and

data distribution that employs multi-agent reinforcement

learning and energy-aware convex packet algorithms to

perform autonomous design and optimization of adaptive

wireless sensor networks. The MRL-SCSO method main-

tains a stable network topology, picks influential neighbor

nodes via a learning process, and sets network boundaries

using a convex packet algorithm to sustain wireless net-

work connection and coverage under heavy traffic

situations.

Guo et al. (2019) developed an RLBR approach for

maximizing the lifetime of wireless sensor networks using

reinforcement learning routing algorithms. The reward

function considers the link distance, the node’s remaining

energy, and the number of hops to the sinks, and the node

receives feedback from its nearby nodes after transmitting

a packet. The transmit power of the nodes is dynamically

modified so that the sensor nodes retain a stronger con-

nection with the sinks, and this strategy equalizes the

sensor network’s energy consumption, decreases total

energy consumption, and increases packet transmission

efficiency. Bouzid et al. (2020) advanced on the RLBR

method by presenting the R2LTO algorithm, which also

attempts to optimize network lifetime and energy con-

sumption by postponing network node death with extended

learning time and dynamic path selection. When deter-

mining the reward function, the direct distance of the node,

the node’s remaining energy, and the number of hops from

the node to the sink node are all taken into account. The

incentive value was modified by the authors depending on

the ratio of the node’s transmission energy to the maximum

energy consumption.

Li et al. (2020) presented a multi-agent reinforcement

learning routing protocol DMARL for underwater optical

wireless sensor networks, characterizing the network as a

distributed multi-agent system. The reinforcement learning

algorithm uses the nodes’ residual energy and the con-

nections’ quality as reward values to adapt to changes in

topology to prolong the network’s lifetime. Two tactics are

used to accelerate learning convergence: one is to utilize

node location to initialize the Q value, and the other is to

alter the learning rate parameter to adapt to the constantly

changing network rapidly. Serhani et al. (2020) proposed

AQRouting, an adaptive routing protocol that can assess

the movement level of nodes at different times and learn

the movement status inside the network. Nodes modify

their routing behavior based on the network circumstances

around them, which can increase connection reliability and

packet transmission rate in both static and dynamic mobile

environments.

Table 1 compares the 3 properties of the 11 algorithms.

3 System modeling and reinforcement
learning

3.1 System model and problem description

In a wireless sensor network, nodes are considered non-

rechargeable; for comparative reasons, all nodes are

assumed to have the same starting power level. Many

sensor nodes are equally dispersed in a defined region, and

the network has one or more sinks. The sinks are expected

to have adequate processing and electrical power and are

linked to the central server through a high-speed trans-

mission channel. If a sensor node creates or receives a

packet that cannot be transmitted directly to the sinks, the

packet can only be relayed by other nodes and sent to the

Energy-balanced routing in wireless sensor networks with reinforcement learning…
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sinks in a multi-hop fashion (Guo et al. 2019). As a result,

specific sensor nodes are utilized more frequently than

others, resulting in uneven energy consumption in the

network. Individual nodes with a high frequency of usage,

whose energy is quickly drained and cannot continue to

perform transfer tasks, will cause the entire network to fail

to work correctly. The primary strategy for solving this

problem in wireless sensor networks is the balanced usage

and scheduling of node energy. A network should also

consider QoS measures such as node mobility, link channel

allocation, and communication quality. In this work, just

the number of hops from nodes to sinks and node power are

evaluated to show and validate the algorithm’s

effectiveness.

One data transmission is handled as a Markov decision

process in a wireless sensor network environment, and one

hop data transfer is treated as an agent’s state change with

feedback reward values. The following performance fac-

tors must be considered.

(1) If the power of the data sensor node is adequate,

bigger feedback is supplied to encourage the sending

node to communicate the data; if the power is

insufficient, smaller feedback is returned to discour-

age the sending node from transmitting the data. If

the sensor node power is imbalanced, the network

will break, and the entire life will expire

prematurely.

(2) When a sensor node sends data, if the receiving node

is close to the sending node, only a lower transmit

power is required to send the packet, resulting in a

higher reward value; if the receiving node is far from

the sending node, a higher transmit power is required

to send the packet, resulting in a lower reward value.

This strategy promotes data transmission in an

energy-efficient manner while simultaneously reduc-

ing interlink interference.

(3) Short pathways are critical in routing wireless sensor

networks, whereas node power balancing and load

balancing are key auxiliary metrics. If the number of

hops of the routing trajectory is used as a measure of

the routing length, the more hops, the greater the

network’s instability and energy consumption; how-

ever, if only the shortest path is considered, the

energy of the nodes on a specific shortest path

trajectory is quickly exhausted, causing severe

congestion.

(4) To show the approach’s usefulness in this study, a

plane routing protocol is used, and it is assumed that

each sensor node’s sensing radius is constant, while

nodes beyond the sensing radius cannot interact with

one another. The node cannot acquire global infor-

mation from the sensor network, and the communi-

cation channel between the nodes is symmetrical.

(5) By receiving packets, each sensor node is aware of

the position of its neighbors.

3.2 Reinforcement learning and its
mathematical representation

Wireless sensor network nodes provide two functions: one

is to generate data, and the other is to act as packet routing

relays. We consider wireless sensor network data trans-

mission a multi-agent reinforcement learning issue. Each

data packet or message is considered an agent, and com-

plicated reinforcement learning is performed through

information transmission and feedback.

Reinforcement learning is a subfield of machine learning

in which the goal is to continually learn and optimize the

Table 1 Comparison of various

algorithms
Routing protocols Learning entities Consider energy balance Update method

Q-routing Discrete No Single-step update

AdaR Centralized No Single-step update

RLBR Discrete Yes Single-step update

Sarsa(k) Discrete No Single-step update

Sarsa(k)-EB Discrete Yes Single-step update

MRL-SCSO Discrete Yes Single-step update

SDMT-DQN Centralized No Single-step update

EDACR Discrete Yes Single-step update

R2LTO Discrete Yes Single-step update

OPT-EQ-Routing Discrete Yes Single-step update

RLR-TET Discrete Yes Tree multi-step update
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state-to-action mapping by interacting with the environ-

ment and computing the cumulative value of the reward

earned from each action. Q-learning (Watkins and Dayan

1992) is a model-free reinforcement learning approach

theoretically based on the Markov decision process (MDP).

Assuming the model is known, the dynamic programming

approach is utilized to solve it. However, this type of

dynamic model is unavailable in the context of a wireless

sensor network. With a high number of samples in the

transmission process, the optimization action that approx-

imates dynamic programming is gradually discovered in

the learning process. At time t, the agent is in the state st,

and the action that the agent can take at this time is

at 2 AðstÞ. After executing the action at, the random

reward value that the environment feeds back to the agent

is rt the average reward value Rst , and the probability of

transitioning from state st to state stþ1 is: Pst ;stþ1ðatÞ.The Q

value is defined as follows:

Qpðst; atÞ ¼ RstðatÞ
þ c

X
stþ12Stþ1

Pst ;stþ1ðatÞ
X

atþ12Atþ1
p½atþ1jstþ1�Qpðstþ1; atþ1Þ

ð1Þ

The goal of obtaining the optimal solution is to maxi-

mize Qpðs; aÞ by adjusting the strategy pðajsÞ.
Since the environment model is unknown, the Q-learn-

ing algorithm solves this problem by maximizing each

state-action pair with constant sampling and optimizing

iterations to maximize the policy p� under state s. The

iterative formula for calculating the Q-value is as follows:

Q(st; atÞ ¼ 1� að ÞQ st; atð Þ

þ a rt þ c max
atþ12A stþ1ð Þ

Q stþ1; atþ1ð Þ
� �

ð2Þ

When the agent is sampled by action trajectory, the Q-

learning technique is used to update the Q-values of the

nodes offline, using the e - greedy approach. The following

is how the state s gets its action a:

aE�greedy sð Þ ¼
max
a2A sð Þ

Q s; að Þ; Prob ¼ 1� E

random action inA sð Þ; Prob ¼ E

(
ð3Þ

The optimization goal can be reached using the

Q learning method if each state-action pair is visited bal-

anced and the number of accesses is large enough. How-

ever, because the network optimization process is online,

learning efficiency is crucial, as learning results must

converge as fast as feasible with as little node contact as

possible. Slower learning efficiency can cause data packet

congestion, packet loss, and network power imbalance,

significantly impacting network performance.

The TD(k) (multi-step temporal-difference learning

based on eligibility traces) algorithm is a better solution, in

which the node is updated in a single step within a specified

time interval, and its knowledge can be used to update the

Q values of multiple other nodes, avoiding Q-learning with

only one step update.

The eligibility trace is defined as follows:

etþ1ðsÞ ¼
cketðsÞ; s 6¼ st

cketðsÞ þ 1; s ¼ st

� �
ð4Þ

etþ1ðsÞ ¼
cketðsÞ; s 6¼ st

1; s ¼ st

� �
ð5Þ

Equation (4) employs an accumulation technique; when

the node is visited, its eligibility trace is enhanced by one

on its original basis. Equation (5) uses the replacement

method. When a node is visited, its eligibility trace is set to

1, and the new trace replaces the old one regardless of its

previous value. In this paper, the replacement method is

used in the subsequent sections. The efficiency of the Q-

table update is significantly increased by applying the eli-

gibility trace method to propagate a node’s one-step Q-

value update backward along the best link direction for

many steps. The one-step update of the Q-value is as

follows:

dt ¼ Rtþ1 þ cVðstþ1Þ � VðstÞ ð6Þ

The Q-value update formula for each node on the state-

action trajectory is as follows:

VðsÞ ¼ VðsÞ þ adtetðsÞ ð7Þ

4 RLR-TET algorithm performance metrics

Our proposed RLR-TET method is a reinforcement learn-

ing wireless routing protocol that employs eligibility traces

and back-propagates errors in the tree direction. The

algorithm transfers information between nodes and opti-

mizes them through progressive learning to meet the aim of

node power balance, which increases the overall network’s

lifetime. The energy model of node transmission and the

number of hops from node to sink are critical parameters

during reinforcement learning.

4.1 Energy model

The sensor node is made up of a power supply subsystem, a

sensing subsystem, a computer subsystem, and a commu-

nication subsystem. Each sensor node has the same initial

energy Einit, and its remaining energy during use is Erem.

Sensor nodes consume energy in various ways, includ-

ing sensing environmental information, computing and

processing information, transmitting and receiving infor-

mation, spending energy in an idle state, consuming energy

in a sleep state, and other energy-consuming activities. All
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of them consume the most power, with transmitting data

using the most, while receiving data and idle state consume

energy but less than sending data, and other scenarios

consume minimal energy. The discussions and calculations

in this paper use an energy model for analysis, taking only

the energy consumption of nodes sending and receiving

data into account. In contrast, the energy consumption in

the idle state can be avoided as much as possible by opti-

mizing the node sleep time, and the energy consumption in

other cases is not considered. The reinforcement learning

algorithm is utilized in this research. In practical applica-

tions, obtaining an accurate mathematical model of the

sensor nodes is not necessary, as it is possible to make the

correct decision based on the environmental feedback

reward information. Therefore, the algorithm used in this

paper does not lose its generality.

The nodes inside sensor node n’s communication radius

are referred to as its neighbor nodes, and all of them form a

set, denoted as Neighbor nð Þ, and this communication

radius is written as: Rneighbor. When sensor node n delivers a

k-bits packet to a nearby node with a distance of d, both the

transmitter and the receiver spend energy, as defined by

Guo et al. (2019).

ETxðk; dÞ ¼
Eeleck þ efskd2; d\d0
Eeleck þ eampkd

4; d� d0

�
ð8Þ

ERxðkÞ ¼ Eeleck ð9Þ

where k is the length of the packet sent or received by the

node, d is the distance between the sending and receiving

nodes,ERxðkÞ is the power consumed by the node to send a

packet of length k bits to the receiving node at the range d,

and ERxðkÞ is the power consumed by the node to receive a

packet of length k bits. Constants include m,Eelec,efs, and
eamp.Eelec denotes the energy required by the transmitting or

receiving circuit to process each bit of data,efs, and eamp

denote the energy consumed by the transmitting node to

convey 1 bit of data per unit distance by broadcasting a

wireless signal, and m is the propagation attenuation index.

The distance threshold for the amplifier to change the

power is denoted d0 and computed as follows:

d0 ¼
ffiffiffiffiffiffiffiffi
efs
eamp

r
ð10Þ

4.2 The number of hops between a node
and a sink

The nodes transmit packages to the sink, and packets are

routed through the fewest hops, the best configuration for

data transmission. However, networks have drawbacks

when packets are all routed most shortly. Frequent visits to

fixed nodes can cause these nodes to die prematurely in the

long run, while too many visits to fixed nodes might cause

congestion in the near run.

When a node connects with its neighbors, it learns the

number of hops between the neighbors and the sink. Iter-

ating repeatedly allows the number of hops from the node

to the sink to be obtained faster and then participates in

updating the network nodes’ Q and V values in the form of

reward values. Some nodes will run out of energy and die

during network operation, or their locations will be altered

for various reasons. Hence it is critical to fix the node hop

count throughout the learning process.

4.3 The data structure of node information

Each node needs to maintain a node information table to

record its information and the information of neighbor

nodes. The entire network maintains a dynamic Q table,

and each entry of the Q table is recorded in the node

information table to provide necessary data for learning

and decision-making. The data structure of node informa-

tion is illustrated in Table 2.

The traditional approach in the learning process of

reinforcement learning-based wireless sensor networks

employs four types of packets to communicate between

nodes. First, there are probe message packets sent between

nodes for reinforcement learning. The second is the probe

message packet’s reply message. Finally, there are the data

packets. Fourth, after transmitting packets to surrounding

nodes, their reply messages.

The first and second information interaction procedures

are simplified and enhanced in this study: each node

broadcasts control information to its neighbor nodes, the

adjacent nodes receive the information, and then their

Q and V values are updated.

In network communication, the data packet is signifi-

cantly longer than the control packet, and the network

architecture is constantly changing. The data packet will

not be delivered to the target node without appropriate

learning, resulting in packet loss and increased network

congestion and power consumption. Nodes delivering

control packets at regular intervals to achieve learning is

also a vital way of network optimization; of course, packet

transmission also includes learning information to achieve

network policy optimization jointly.

5 RLR-TET algorithm description

The RLR-TET algorithm’s main components are as fol-

lows: the minimum number of hops from nodes to sinks,

nodes periodically sending control packets to neighboring

nodes to drive network Q table updates, generation of a tree

structure consisting of greedy action chains,
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backpropagation of error updates through the tree structure

and Q-value updates, data packets are sent using greedy

policies, and reinforcement learning is performed during

data packet sending.

5.1 Greedy action chains

When applying reinforcement learning algorithms to rout-

ing problems in wireless sensor networks, such as the

Q-routing algorithm, QELAR algorithm, and RLBR algo-

rithm, each step of error update can only affect one node.

However, when introducing the reinforcement learning

algorithm based on eligibility traces to communication in

wireless sensors, nodes can reversely propagate the error of

one learning step along the learning trajectory for multiple

nodes in a detection cycle. Because the Sarsa (k) method

(Sutton and Barto 1998; Jiang et al. 2019) is an online

learning algorithm, its action trajectory is discarded after

learning, and its Q-value is instantly updated by the node’s

message, as well as the Q-value of the explored next-hop

node is also used to update the Q-value of the current node.

While Q (k) has a definite learning trajectory through the

reverse learning process of optimum Q-value routing, from

the learning trajectory, the entire wireless sensor network

produces many state-action chains, and when an exploring

action is encountered, this state-action chain is disrupted.

As illustrated in Fig. 1, in the state S1, the agent chooses

the action a1 into the state S2, QðS1; a1Þ depending on

QðS2; a�2Þ where the greedy action is chosen in the state S2,

and the action with the highest value of Q is chosen in the

optional states. The agent enters the state S3 after per-

forming the greedy action a�2 in the state S2. The update of

QðS2; a�2Þ is dependent on QðS3; a�3Þ, where a�3 is the greedy
action done in the state S3, and the action with the highest

Q value is chosen in the optional state. The agent then

reaches the state S5 after performing the exploration action

a
0

3 in state S3. The update of QðS3; a
0

3Þ is dependent on

QðS5; a�5Þ, where a�5 is the greedy action executed in the

state S5 and the action with the highest Q value is chosen in

the optional state.

The agent’s actual trajectory is as follows:

Fig. 1 The generation process of greedy action chains, where the

solid lines with arrows form the greedy action chains

Table 2 The data structure of node information

Node item 1 Node item 2 Description

ID Unique identifier of the node

V V value of the node

coordinateX X coordinate of the node

coordinateY Y coordinate of the node

optNextNode Optimal next-hop node

optLastNodes optLastNode1 The set of predecessor nodes of this node, nodes in the set,

make this node the optimal hopoptLastNode2

…
minHopCount Minimum number of hops from the current node to the sink

neighborNodes neighborID1 The ID of neighbor node 1

neighborQ1 Q value of neighbor node 1

coordinateX1 X coordinate of neighbor node 1

coordinateY1 X coordinate of neighbor node 1

neighborID2 The ID of neighbor node 2

neighborQ2 Q value of neighbor node 2

coordinateX2 X coordinate of neighbor node 2

coordinateY2 X coordinate of neighbor node 2

… …
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S1 ! ða1Þ ! S2 ! ða�2Þ ! S3 ! ða
0

3Þ ! S5 ! ða�5Þ ! S7

The backpropagation trajectory of the Q-value error is as

follows:

QðS1; a1Þ  QðS2; a�2Þ  QðS3; a�3Þ  QðS4; a�4Þ

Only greedy actions directly impact Q-value updates;

non-greedy actions’ primary job is exploration, which does

not affect the backpropagation of the current Q-value. A

greedy action chain is a trajectory formed by an agent

which has chosen greedy actions since its beginning. Our

work aims to discover a greedy action chain and store it in

network nodes, allowing error backpropagation over mul-

tiple steps to increase learning efficiency.

5.2 Reinforcement learning routing with tree-
based eligibility traces (RLR-TET)

Wireless sensor nodes communicate with one another and

plan their paths by exchanging control packets before

transmitting data packets along the path. Previously, each

node in a wireless sensor network sent probing information

to surrounding nodes and updated the Q table entries with

feedback response information. Because this probe packet

contains no data elements, it is small in length and uses few

network resources. This probe information must be sent on

a regular schedule, and if the time interval is set to 10 s,

such a period can only learn 1 step every 10 s, resulting in

a learning efficiency that is too low and a convergence

speed that is too slow to cope with the network’s topo-

logical changes over time. If the Q table is not sufficiently

learned, it might result in incorrect packet delivery. To

address this issue, if each node’s probing interval is too

short, it will result in data package congestion and network

energy imbalance.

Using the greedy action chains presented in Sect. 5.1,

we may reverse propagate the learning error of a single

node to many nodes along the greedy action chain in a

triggered manner by computing eligibility traces and

updating Q-values during 10 s. This method can improve

learning efficiency.

As illustrated in Fig. 2, we present a wireless routing

protocol with error backpropagation using eligibility traces,

where the greedy action chains form a tree with sink as the

root. Each node stores the next-hop nodes within the

communication range and their Q-values, from which the

V-values may be derived.

For any node i, there exists the possibility that the node

j’s greedy action is to send data to node i. A set J is formed

by all nodes j that meet the criterion. When node i receives

a V-value update, all the Q-values to node i of nodes in the

set J are updated, then V-values are computed. Subse-

quently, numerous node Q table entries are changed along

the tree in reverse order.

The RLR-TET algorithm improves on the earlier ‘‘probe

and reply’’ strategy, in which each node broadcasts control

information to its neighbors during each control cycle, and

then the neighboring nodes immediately learn and update

the associated Q values upon receiving the control packets.

Each node transmits a control packet message to its

neighboring nodes during a control period Tw. The message

includes the following information: message type, ID

number, control packet ID number, remaining energy, the

minimum number of hops to sink, V value, coordinate

value, and next-hop optimum transmission node.

Setting node i’s neighbors as neighbor (i). Node i

delivers control packets to its neighbor nodes regularly, and

for each node j [ neighbor (i), the neighbor nodes of node i

compute the Q (j, i) value using the information in the

control packets given along.

Corresponding to the Markov decision process, the

information of node j is considered as the agent’s state. If

the data packet is transferred from node j to node i, it is

regarded as the aj;i action which yields the reward value,

including the following five parts.

(1) The reward value r is acquired through the state

transfer. r = 100 if the node transferred to is the sink,

r = -10 if there is no neighbor node to transfer to,

and r = 0 otherwise.

(2) The number of hops between node i and the sink:

minHopCount.

(3) Node i’s remaining energy: eRemain.

(4) Node j’s transmission power: transmissionPower. It

may be calculated using formula (8) based on the

distance between nodes j and i.

Fig. 2 A tree of greedy action chains in wireless sensor networks. The

solid line indicates the direction of packet transmission, and the

dashed line indicates the direction of error propagation. A single

V-value update of a node can be backpropagated through the tree to

multiple nodes

Z. Liu, X. Wang

123



(5) Node i’s received power: receivePower. It is

obtained by a formula (9).

The data packet is sent to node i from node j, as spec-

ified above. Its iterative updating formula for Q value is as

follows:

Q jtþ1; itþ1
� �

¼ 1� að ÞQ jt; itð Þ
þ a w1*rþ w2*minHopCountþ w3*eRemain½
þw4*transmissionPowerþ w5*receivePowerþ cV it

	

ð11Þ

Equation (11) is used to determine the Qðj; iÞ values for
all nodes from node j [ neighbor (i) to node i, where

w1,w2,w3,w4, and w5 are learning parameters.

The V-value of a node is determined from the Q-value

when it receives information from its neighbors. The fol-

lowing formula determines the V-value of any node i:

Vi ¼ max
j2neighbor ið Þ

Q i; jð Þ ð12Þ

Based on the set of Q-values of node i, find and record

the node with the highest Q-value among the neighboring

nodes.

greedyNode ¼ argmax
j2neighbor ið Þ

Q i; jð Þ ð13Þ

Because the sensor network is discrete, each node can-

not acquire the minor hop count to the sink directly, and the

minimum hop count to each node is frequently modified

owing to network topology changes. Each node’s data

structure contains a minHopCount item that records its

minimal hop count to the sink. The sink’s minHopCount

item is set to 0, while the rest of the nodes’ minHopCount

items are initialized to infinity, which is set to 9999 for

convenience of computation. In each cycle, including the

sink, the node broadcasts a control packet to its neigh-

boring nodes, and the neighboring nodes receive the con-

trol packet and calculate the minimum number of hops to

the sink. After several cycles of propagation, each node

acquires a more accurate minHopCount value. The sensor

nodes in the actual environment broadcast information

across the successor nodes and trigger the previous-hop

node to undertake the update action.

The least number of hops to the sink is used in the

reward value computation, which always induces the sys-

tem to send data via the shortest path. In this paper, the

parameter w2 gradually decays with increasing time to

equalize network power, shown in Eq. (14).

w2 tð Þ ¼ w2 t0ð Þ�e�t=s ð14Þ

where w2 t0ð Þ is the initial parameter and s is the period

constant. The smaller the value of s, the quicker w2 tð Þ
decays, while the higher the value of s, the slower w2 tð Þ
decays.

Its iteration mechanism is as follows: for each node

j [ neighbor (i), if the hop count minHopCounti þ 1 from

node i to the sink is less than the hop count

minHopCounti þ 1 from node j to the sink, then set

MinHopCountj ¼ MinHopCounti þ 1.

Nodes in the network use the reinforcement learning

process to compute Q-values from the current node to each

neighboring node, and the greatest value from these Q-

values is obtained as the V-value using Eqs. (12–13). The

optNextNode field keeps track of the nearby node with the

highest Q-value, and if many surrounding nodes have the

same maximum Q-value, one is chosen randomly. In this

manner, greedy action chains connect the whole network

into a tree structure. Thus, through real-time learning, the

challenge of optimizing routing rules for sensor networks is

turned into developing and maintaining one or more effi-

cient trees balanced in power consumption and load. The

optimal routing strategy begins at each node and goes in

the direction of the arrow in Fig. 2. For example, if a data

packet is transferred from node A to the sink, the packet

transmission path is A-B-E-I-L-N, and the packet is then

sent from node N to the sink.

During the learning process, changes in node power and

the minimum number of hops from a node to the sink might

induce variations in the Q value. At this point, the tree

structure is modified by simply changing the value of the

optNextNode field. This process establishes each node’s Q-

value and the computational model of tree-based error

backpropagation. Based on the tree, each node must keep

track of the set of its direct predecessor nodes, which is

referred to as optLastNodes. In Fig. 2, for example, nodes

H, E, and F all point to node I. Nodes H, E, and F are the

node i’s immediate predecessors. Node I then logs the

group of nodes H, E, and F.

If the V-value of a node changes during the reinforce-

ment learning process, the resulting error value will update

the Q-value of its predecessor nodes by using the eligibility

traces in the opposite directions of the arrows in the trees

and then continue to propagate the updates to the previous

level predecessor nodes. The rule of error propagation

states that whichever node refers to this node, this node

propagates the error backward via the eligibility traces to

whomever. The number of error propagation levels should

usually not exceed 4 to 6 levels of the tree, depending on
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the size of the network, in order to keep the amount of

information in the network low.

Individual nodes in a dispersed environment do not need

to know the global state of network nodes; instead, they

must connect with surrounding nodes using the approach

described in this paper to get the optimal data packet

transmission path rapidly. The algorithm for learning

individual node routes is depicted in Algorithm 1.

This work presents an approach for propagating the V-

value errors of nodes through the tree utilizing eligibility

traces in Algorithm 1, and the update is accomplished by

reversing the greedy action chains in a one-to-many error

propagation process. Previous approaches only conduct

one step of learning and updating in one cycle. However,

Algorithm 1 allows many nodes to learn and update in a

triggered way in one cycle through a tree composed of

greedy action chains.

In the backUpdateQ function, the following arguments

are defined: a is the learning rate, c is the discount factor, k
is the eligibility traces factor, e is the eligibility traces, d is

the error caused by the V value in node learning, and

backPropagationLevel is the depth of propagation by error.

The approach imposes several constraints on the propaga-

tion distance and the number of tree propagation layers.

BackPropagationLevel is set to LIMITLEVEL levels in

this work, and the value of LIMITLEVEL ranges from 3 to

5 layers. To explain the algorithm, Algorithm 1 uses a

recursive method.

As the error is backpropagated hierarchically from the

root of the tree, the Q value is updated in a proportionally

decreasing manner due to the eligibility traces. As the error

propagates back one layer, the trace e decreases to acke.
By adjusting the parameters a, c, k, we can control the

reinforcement learning process of the network. If the value

of k is larger, the error value of a node’s V-value will affect

a larger range of nodes; if the value of k is smaller, the

error value of a node’s V-value will affect a smaller range

of nodes.
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Each node is unaware of the network’s global knowl-

edge, and the network can only receive routing decisions

through nodes talking with their neighboring nodes regu-

larly and iterating step by step. Network choices are gen-

erated as a consequence of autonomous learning from each

sensor node, with each node’s algorithm being independent

and identical. Algorithm 2 provides the sensor node routing

algorithm. Each node broadcasts a control packet to its

neighbors regularly, and when one of them gets it, the

neighbor node changes the Q value and the value of min-

HopCount, which is set to one of the reward values. The Q-

value of nodes to their neighbors is then calculated, and the

greatest of them is discovered as the V-value, which con-

tributes to greedy action chains. If the node i’s V value

changes and DVi exceeds the LIMIT threshold, Algorithm

1 is invoked to start the learning process. The flowchart of

the RLR-TET algorithm is shown in Fig. 3.
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network nodes initialize and start working

node i calculates the V value from its saved Q value and calculates the ΔV as the 

increment of the V value

any node i sends a packet m to its neighboring nodes

any neighboring node j of node i receives the packet m

node j calculates Q(j, i) based on the received information while iteratively calculating 

the minimum number of hops from node j to sink nodes

node i gets the next-hop node, greedyNode, with the highest Q value from its neighbours

greedyNode

delete node i from the set of previous-hop nodes of node optNextNode

assign optNextNode to greedyNode

add node i to the set of previous-hop nodes of node optNextNode

ΔV exceeds the threshold LIMIT

traversing the greedy action chain tree from bottom to top by hierarchy, updating the V-

values and eligibility traces of the nodes

true

true

false

false

Fig. 3 Flowchart of the RLR-

TET algorithm
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5.3 Performance analysis of the RLR-TET
algorithm

In a tree of greedy action chains, the root node is A, which

forms the first level of the tree. There are m nodes in the

neighbors of node A that take node A as the optimal next-

hop node, and the set S of these m nodes forms the second

level of the tree. Based on all the nodes in the second level,

the nodes in the third level of the tree are obtained. In the

same way we can get the deeper nodes.

Assume that each node corresponds to a set with a

number of nodes m, while the tree has L levels. Using the

RLR-TET algorithm, during a control packet transmission

cycle, if the V value of the root node A changes, the error is

hierarchically backpropagated, modifying the Q values of

the sensors. The number of sensors updated in this process

is as follows:

mþ m2 þ m3 þ � � � þ mP ¼ 1� mP

1� m
ð15Þ

For the sake of discussion, we set the number of nodes

in the set corresponding to each node to m. In fact, this

number is variable. We assume that m = 3 and P = 3. This

is shown in Fig. 4. By calculation, during a control cycle,

the number of nodes that can update the Q values is 13.

5.4 Reinforcement learning is used in the data
packet transmission process

Fig. 4 A clearer greedy action chain tree structure. The first level

contains A; the second level contains B, C, and D; the third level

contains E, F, G, H, I, J, K, L, and M

Two types of packets are transmitted between nodes in

reinforcement learning-based wireless sensor node routing.

The first type is the control packet, which, as mentioned in

the previous section, has the primary function of con-

structing and updating the Q table to actualize decision and

control of data packet transmission, and this control packet

will not be forwarded and delivered via nodes. The second

type of packet is a data packet delivered between nodes.

Unlike the control packet, the data packet is processed
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completely under the control of the Q table for routing

transmission without the exploration process, and its data

size is substantially bigger than that of the control packet.

Meanwhile, during data packet transmission, if the packet

is sent from the current node to the next-hop node and the

V value of this node is updated, and the |DV| is greater than
the specified threshold, it also triggers the reinforcement

learning process, which propagates the error information

backward through the tree and affects multiple nodes to

complete the Q value update. Control packets are shorter

and cause less energy loss to network nodes; data packets

are the principal component of network information

transmission and have a big data size, which is the leading

cause of energy loss and rough energy usage in network

nodes. Algorithm 3 demonstrates the data packet trans-

mission algorithm for a single sensor node.

In Algorithm 3, a node transmits a packet, where

Q(i,optNextNode) in the greedy action chains tree is the

V value of node i. During the learning process, the node’s

Q-values change, and the node’s V-value is updated using

Algorithm 2, along with the tree structure. During the

transmission process of delivering a data packet to the sink,

the data packet is regarded as an agent whose trajectory is

the data packet’s transmission path, and the agent is also

continually learning from the reply packet. Because of its

vast number of packets, it is the most significant contri-

bution to node energy loss and network congestion in data

transmission. In this paper, we define the maximum num-

ber of hops of packet delivery, after which the network

nodes immediately discard the packet. It can be noticed

that the accuracy of decision knowledge is highly signifi-

cant in the reinforcement learning process, as well as the

efficiency should be high enough to achieve the network

optimization strategy, which is the principal purpose of this

paper’s research.

In wireless sensor networks, a tree composed of greedy

action chains is built by reinforcement learning algorithms

and dynamically modified during the learning process. It

serves two essential functions: first, each node’s packet

directly obtains the optimal next-hop node via its opt-

NextNode term, which points to the node leading to the

root of the tree (sink); Second, the direction of the learning

error update is the opposite direction of the optNextNode

term of each node, which is the set of the optLastNode

term.

6 Simulation results and discussion

We created a simulated environment for wireless sensor

networks and tested the algorithm suggested in this paper.

Although the method validation is done in a simulated

environment, it may also be used in a real-world scenario.

This simulation accurately replicates the physical param-

eters in the actual scenario. However, it is not a problem to

have some deviations in the real scenario of wireless sensor

networks, as the adaptive algorithm using reinforcement

learning will reasonably adjust the parameters to satisfy

such changes. Table 3 shows the physical parameters we

used for the experimental setting.

The RLR-TET method is validated and compared with

other algorithms in this paper. In a 1000m� 1000m region,

98 sensor nodes are randomly and uniformly arranged, and

their initial power is all 10 J; in the meantime, there are

two sinks in the area with unconstrained energy. To vali-

date the algorithm in this paper, we set the sensor nodes to

be stationary during operation. During the continuous

learning process, each node does not know global infor-

mation and only interacts on a limited scale with neigh-

boring nodes to generate optimum routes in the wireless

sensor network. The links between nodes are symmetric,

and there is no case in which node A may receive infor-

mation from node B and node B cannot receive information

from node A. This experiment has two scenarios in which

the data packets are dropped during transmission. The first

scenario is that when the data packet is transmitted with

many hops greater than the allowed number of hops, it will

be deleted by the node because the packet cannot find the

path. The second scenario is that adjacent nodes die due to

power consumption during data packet transmission, and

no node can approach the sinks via data packet commu-

nication. The first issue can be avoided by immediately

determining an optimal path with reinforcement learning

algorithms. The power of network nodes should be adjus-

ted as much as possible so that individual nodes do not die

early, avoiding the second condition. The maximum radius

of a node’s one-hop communication is set at 100 m, as

shown in Table 2

In the experiment, the node communication strategy

must be continually adjusted and optimized based on the

node’s transmission power, receiving power, remaining

power, number of hops, and distance to the sink. Each node

sends a control packet to its neighboring nodes every 10 s

to make communication decisions, which contain V value,

power, and the minimum number of hops known to the

sinks. The neighboring nodes calculate the Q-values after

receiving the control packet. Because the control package

is tiny, it consumes relatively little energy. Every node

learns every 10 s, and the network is continually updated

with the tree built by greedy action chains. The learning

goal is for each node to discover the best route to the sinks.

To assess the algorithm’s performance, nodes 1, 3, 7, 9, 23,

26, 27, 46, 67, 76, 91, 95, 98, and 100 are used as sensing

nodes to generate sensing data for delivery to sinks, while

the other nodes are exclusively responsible for routing
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forwarding. Nodes 49 and 64 are sinks with adequate

power and good communication performance by default.

Set the sensing node to generate a data packet every 10 s,

with a packet size of 512 Bytes, and the sensor node for-

wards data at 0.1-s intervals until it reaches the sinks. The

transmission process of this packet is terminated if the

number of transmission hops is surpassed or if the relay

node lacks sufficient power to advance.

The RLR-TET algorithm, whose aim of path planning

considers not only the short transmission path of data

packets but also the power consumption, assures the power

balance of the whole network while choosing the next-hop

node among neighboring nodes to extend the network’s

working life. The network path diagram after 7 h is shown

in Fig. 5, and the blue line segments with arrows depict

Fig. 5 Network path diagram after 7 h. In learning, each sensor that

can only sense local area nodes is able to route the packet through the

optimal path to the next hop node and eventually to the sinks. Shorter

paths and power balanced routing are achieved

Fig. 6 The number of data packets delivered to sinks varies with time.

Because the RLR-TET algorithm enables the network to achieve

Q-value updates quickly, nodes can quickly adopt optimized data

transmission strategies and the network maintains energy balance for

a longer period of time. As a result, RLR-TET is able to transmit

more packets

Table 3 Parameters setting
Network parameters Values

Network area 1000 m � 1000 m

Number of nodes 98

Number of sinks 2

Initial energy 10 Joules

Eelec 50nJ/bit

efs 10pJ=bit=m2

eamp 0:0013pJ=bit=m4

Control package size 48bits

Packet size 512Bytes

Node transmission radius 100 m

Distance threshold d0 87 m

Control packet sending cycle 10 s

LIMITLEVEL 4

time-to-live (TTL) 8

The cycle of control packets sent by the node 10 s

The interval between packets generated by the source node 10 s

Learning rate a 0.1

Discount factor c 0.85

Eligibility traces factor k 0.6
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node routing. Starting with the sink node, it is evident that

learninSg causes the network to construct a tree comprising

greedy action chains, by which the error propagates

backward. The RLR-TET algorithm is compared to the

Q-routing algorithm, the RLBR algorithm, the R2LTO

algorithm, and the Sarsa(k) algorithm in this research to

validate it. The comparison metrics include the number of

data packets transferred to sinks with time variation, the

number of alive nodes with time variation, and the standard

deviation of the network nodes’ remaining energy with

time variation.

6.1 The number of data packets delivered
to sinks varies with time

The various algorithms are tested until the network cannot

finish any data packet transmissions. As illustrated in

Fig. 6, the number of packets delivered by the various

algorithms was nearly identical from the moment the net-

work went live until 5.2 h later. After 5.2 h, the number of

packets delivered by the Q-routing and Sarsa(k) algorithms

begin to decline because these two algorithms do not

consider energy balancing and only learn by the shortest

path as the goal. These two methods do not uniformly

schedule the energy in the path planning process, causing

the nodes on the shortest path to run out of power pre-

maturely, prompting the network to fail and the sensor

nodes to be unable to discover an appropriate route to reach

the target sinks. The Sarsa(k) method outperforms the

Q-routing algorithm for the following reasons: during the

learning phase, Sarsa(k) is more efficient than Q-routing

and can identify the shortest path faster. The same packet is

transmitted to the sink, where fewer relay nodes are

involved, conserving network node energy and increasing

network lifetime, allowing the network to deliver more

packets to sinks to some extent. However, because both

methods only evaluate the shortest route transmission, the

network cannot work efficiently when more than 30,000

packets have been successfully delivered.

The RLBR and R2LTO algorithms consider the nodes’

remaining energy, the distance between them, and the

number of hops from the nodes to the sink. These two

approaches learn to adapt to changing conditions, resulting

in energy-balanced routing, the prevention of premature

node power depletion, and the extension of network life-

time, which leads to increased packet transmission

quantity.

The residual energy of nodes and the energy consump-

tion of communication between nodes are not considered in

the Sarsa(k) method learning process. The remaining

energy of the node and the energy consumption of node

communication are introduced to the learning process of

the Sarsa(k) method in this paper, which is named Sarsa(k)-

EB (Sarsa(k) with energy balance). Sarsa(k)-EB method

significantly increases network lifetime, increasing the total

number of successful packet transfers. The number of

successfully transferred data packets has been raised

experimentally from 33,395 to 52,397. Considering the

nodes’ residual and communication energy, the RLR-TET

algorithm increases the network’s learning efficiency even

more. The approach propagates the V-value error in node

learning through greedy action chains to multi-layer nodes

in a tree as rapidly as possible to develop an effective

network transmission policy for routing. Several other

energy-based algorithms have worse learning efficiency

than the RLR-TET method. The total number of trans-

mitted packets by the RLR-TET algorithm reaches 60,665,

significantly improving over the Sarsa(k)-EB algorithm.

6.2 The number of alive nodes with the time
variation

Figure 7 shows the number of alive nodes with the time

variation in the network. After running the Q-routing and

Sarsa(k) algorithms in the network for 1.2 and 2.4 h,

respectively, the first node that runs out of power appears in

the network. Both methods always attempt to send packets

through the shortest path, and because the reinforcement

learning process is adaptive, both algorithms can adjust to

find another shortest path when a node runs out of energy

and drops out of the network. When combined with the

results in Fig. 6, the loss of a small number of nodes has

little effect on packet routing in the network. The number

of surviving nodes then begins to drop, and data packets

can no longer reach the sinks after around 5.1 h. At this

point, data packets are still attempting to reach sinks,

draining the energy of the nodes until a significant number

of isolated nodes form and the network’s lifetime ends.

Fig. 7 The number of alive nodes with the time variation. As the

RLR-TET algorithm considers the remaining energy of each node, the

energy consumption is more balanced, so more nodes are kept alive

during the operation of the network
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Using the RLBR and R2LTO algorithms, the first node

that runs out of energy appears around 3.5 h, and the

overall quantity of data transmission begins to inflect about

5.3 h, after which the performance rapidly falls.

Because of the enhanced learning efficiency, the Sar-

sa(k)-EB algorithm demonstrated the first node that ran out

of energy after just 6.5 h, following which the performance

improved significantly due to the achievement of balanced

energy scheduling.

The RLR-TET algorithm has a high learning efficiency

by constructing an error backpropagation tree comprised of

greedy action chains during the network learning process

and dynamically modifying the tree as the nodes’ energy

changes. With this approach, the first node that runs out of

energy appears after 8.3 h, and the network’s lifetime is

considerably increased.

6.3 The standard deviation of the network
nodes’ remaining energy with its time
variation

The standard deviation of the remaining energy in the

nodes accurately measures the network’s energy balance.

Because the energy of sinks is not constrained, it is not

utilized to determine the standard deviation. Furthermore,

the 15 sensor nodes generate detection data and transfer it

every 10 s, consuming energy at regular intervals. To more

precisely assess the influence of various reinforcement

learning algorithms on network performance, these nodes’

electric power is also not considered when calculating

network nodes’ standard deviation. As a result, the standard

deviation is calculated using 83 nodes. As shown in Fig. 8,

the Q-routing algorithm and the Sarsa(k) algorithm, which

do not take into account the electrical energy metrics, show

that the standard deviation of network energy is

continuously increasing from the start of network operators

to 350 min, indicating that the node energy imbalance is

becoming more apparent. The standard deviation of the

network learned using the RLBR algorithm, and the

R2LTO algorithm is lower than that of the Q-routing

algorithm and the Sarsa(k) algorithm, indicating that the

system tends to adjust to the standard deviation automati-

cally. The standard deviation of the Sarsa(k)-EB algorithm

is generally less than 1.5, which shows that the error multi-

step backpropagation reinforcement learning algorithm has

a significant effect on balancing the node energy. The

RLR-TET algorithm’s standard deviation has always been

less than 1.0. The standard deviation has been effectively

controlled in Fig. 8, revealing that the method in this paper

achieves a better network energy balance, which is con-

siderably better than the other five methods.

6.4 Discussion of experimental results

From the analysis of the experimental results, the RLR-

TET algorithm can achieve fast iteration of Q values and

has excellent learning performance. By using the RLR-

TET algorithm, the nodes have a better data delivery

strategy. It has a shorter path while maintaining the energy

balance of the network nodes. This is because our method

propagates the errors generated by nodes in the learning

process backwards to a larger number of nodes with

maximum efficiency, allowing the entire network of nodes

to quickly sense and update their Q values and obtain better

learning results. Figure 8 shows by standard deviation that

the RLR-TET algorithm allows the network nodes to be

energy balanced. This reduces the number of sensors that

run out of energy prematurely, which also maximizes the

connectivity of the network and prevents it from failing

prematurely. A robust network will transmit more packets,

as shown in Fig. 6.

In this algorithm, the sensor node has to send an addi-

tional control packet, which results in additional data

consumption. However, this control packet consumes very

little power compared to the data packet. The lifetime of

the sensor nodes is also significantly increased due to the

fast generation of optimal decisions. If a packet cannot find

a route to the sink and is forced to be dropped, this not only

causes the network to lose data, but also results in higher

power consumption of the sensors.

7 Conclusion

The RLR-TET algorithm improves the energy balancing

problem in wireless sensor network routing, in which

sensor nodes broadcast control packets to neighboring

nodes at regular intervals, and neighboring nodes update

Fig. 8 Standard deviation of the network nodes’ remaining energy

with its time variation. The standard deviation is an ideal indicator of

network balance. The figure shows that the RLR-TET algorithm is

able to keep the standard deviation to a small value
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their Q-values and then V-values after receiving the control

packets. The network gradually builds greedy action chains

during the learning process, which dynamically form a tree

structure in the network and propagate the error backward

along the tree when the node’s V value is updated. Such an

update of a node’s Q or V value causes an update of the

Q values of multiple sub-nodes in the network, resulting in

a rapid update of the network Q table to quickly adapt to

the changing network environment and provide a more

efficient decision-making action for data transmission. The

RLR-TET algorithm updates the network using a periodic

and triggered approach that does not consume too much of

the network’s adequate time. The transmission of network

information includes both the transmission of control

packets and the transmission of data packets, and the

Q value of nodes is updated in both modes. There is no

exploration during data packet transmission, and they are

sent from the child node to the parent node entirely

according to the tree formed by greedy action chains,

avoiding packet loss during the exploration process. The

RLR-TET algorithm improves the reinforcement learning

algorithm and achieves better results by adapting to the

specific situation of wireless sensor networks. The com-

parison algorithms in this paper are the Q-routing algo-

rithm, the Sarsa(k) algorithm, the RLBR algorithm, the

R2LTO algorithm, and the Sarsa(k) -EB algorithm, all of

which are typical routing methods for wireless sensor

networks that use reinforcement learning. The meth-

ods described in this paper compare metrics such as the

total number of packets transmitted to sinks, the number of

surviving nodes, and the standard deviation of node energy.

With the methods described above, it is clear that the RLR-

TET algorithm outperforms the others. In order to validate

the effectiveness of the algorithm and to facilitate com-

parison with other methods, the scenarios of node move-

ment, node data buffer, channel selection, channel

interference, and communication security are not consid-

ered in this paper; however, future work will extend our

research to these scenarios and explore the corresponding

algorithms. Considering these QoS metrics would make the

study more complex, but more realistic. However, we can

expect that the RLR-TET algorithm will still produce good

results, and this is worthy of further research. The sensors

discussed in this article are not rechargeable and their

energy will continue to diminish. Therefore, the aim of our

research is to save battery power and balance network

power. However, if the battery of the sensor node is

rechargeable (Al-Janabi et al. 2020a, 2020b), the research

idea of this paper would not be appropriate and its objec-

tive or reward function would have to be reset.
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