
OPTIMIZATION

A new approach based on greedy minimizing algorithm for solving
data allocation problem

Mostafa Mahi1 • Omer Kaan Baykan2 • Halife Kodaz2

Accepted: 2 May 2023 / Published online: 23 May 2023
� The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
Distributed database functionality depends on sites responsible for the allocation of fragments. The aims of the data

allocation problem (DAP) are to achieve the minimum execution time and ensure the lowest transaction cost of queries.

The solution for this NP-hard problem based on numerical methods is computationally expensive. Despite the success of

such heuristic algorithms as GA and PSO in solving DAP, the initial control parameters tuning, the relatively high

convergence speed, and hard adaptations to the problem are the most important disadvantages of these methods. This paper

presents a simple well-formed greedy algorithm to optimize the total transmission cost of each site-fragment dependency

and each inner-fragment dependency. To evaluate the effect of the proposed method, more than 20 standard DAP problems

were used. Experimental results showed that the proposed approach had better quality in terms of execution time and total

cost.

Keywords Data allocation problem � Greedy algorithm � Particle swarm optimization � Distributed databases system �
Site-fragment dependency

1 Introduction

Recently, one of the most attractive applications has been

the development of a distributed database called data

allocation problem (DAP). The aim of DAP is to determine

the fragments placement in various sites to reduce the total

transaction cost when the query is taken from one site to

another one. The optimization algorithms of performance

analysis with special constraints are used for DAP with the

standard test problem (Tosun 2014a; Tosun et al. 2013a).

The problems of data allocation for sites are very difficult.

The data for the locations of the fragments can be changed.

In this situation, the data organization becomes more

important. For instance, some items such as parallel query

executions, network load, and the server load balancing

need to be managed. DAP is an NP-hard problem, without

considering the problems mentioned above. DAP can be

solved by two types of algorithms: dynamic and static. The

static algorithms are implemented based on data allocation

on static transaction execution patterns in the target envi-

ronment. These patterns are changed in the dynamic

algorithm (Tosun et al. 2013a; Gu et al. 2006; Mashwani

and Salhi 2012). DAP has been solved by several algo-

rithms such as Genetic Algorithm (Tosun et al. 2013a;

Mashwani and Salhi 2012), Ant colony optimization

(Tosun 2014b; Adl and Rankoohi 2009), Particle Swarm

Optimization (Mahi et al. 2015, 2018), and Metaheuristic

methods. In this part of the paper, we have reviewed some

studies on the DAP solution. Peng et al. (2022) propose an

allocation scheme for the storage of data in a collaborative

edge-cloud environment, with a focus on enhanced data

privacy. Specifically, they first divide the datasets by fields

& Halife Kodaz

hkodaz@ktun.edu.tr

Mostafa Mahi

mostafamahi@gmail.com

Omer Kaan Baykan

okbaykan@ktun.edu.tr

1 Computer Engineering and Information Technology

Department, Payame Noor University,

PO Box 19395-3697, Tehran, Iran

2 Computer Engineering Department, Engineering and Natural

Sciences Faculty, Konya Technical University, Konya,

Turkey

123

Soft Computing (2023) 27:13911–13930
https://doi.org/10.1007/s00500-023-08452-x(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0001-8602-4262
http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-023-08452-x&domain=pdf
https://doi.org/10.1007/s00500-023-08452-x

to eliminate as much as possible the correlation between

the leaked data.

Anita Brigit Mathew proposed a heuristic algorithm

based on separating a database graph among nodes by

defining all information on the same or adjacent nodes

(Mathew 2018). This heuristic algorithm includes the best-

fit decrease with Ant Colony Optimization, which refers to

the data allocation in the distributed architectures of the

NoSQL database graph (Mathew 2018). An effective data

allocation method, which contemplates static and dynamic

specifications of data centers to make more effectual dat-

acenter resizing, was proposed by Chen et al. (2018); they

used a heuristic algorithm for analyzing the current traffic

in the network of data centers through first transmitting the

data allocation problem into a chunk distribution tree

(CDT). An improved heuristic method based on division

and allocation has been proposed by Amer et al.

(2012, 2017) all of the mentioned methods are combined

into a single, efficient one, which has an effectual solution

for Distributed Database Systems (DDBS). Nashat et al.

(2018) proposed a method based on a complete taxonomy

of the accessible division and allocation in the distributed

database schema. Data division in the DDBS has been

surveyed by Asma et al. (2017) An improved data alloca-

tion through data migration algorithm on task level

(TODMA) has been presented by Du et al. (2017); Mayne

and Satav (2017). Simulated annealing (SA) is done by Sen

et al. to solve DAP (Sen et al. 2016). Radio Frequency

Identification (RFID) tag oriented DAP as a nonlinear

knapsack problem has been modeled by Wang et al. The

heuristic Quadratic Assignment Problem (QAP) was

designed and implemented for DAP by Tusun et al. (2013a)

They proposed a fast and scalable hybrid genetic multi-

start tabu search algorithm that outperformed the other

well-known heuristics in terms of the execution time and

solution quality (Tosun 2014a; Tosun et al. 2013a). Tosun

et al. have presented a set of SA, GA, and fast ACO to

solve DAP (Tosun 2014a). Nasser et al. also proposed an

innovative hybrid method. Differential Evolution and

Variable Neighborhood Search (DEVNS) have also been

offered for solving DAP in distributed database systems

(Lotfi 2019).

ACO-DAP model based on ACO and local search has

been presented by Adl and Rankoohi (2009). In this

approach, overcoming on RAPs has been targeted. Genetic

algorithms were considered in their method and the simu-

lation results demonstrated that its performance was good.

Ulus and Uysal also presented a new dynamic DDBS

called threshold algorithm (Ulus and Uysal 2003). In this

approach, data reallocation has been done by changing the

data access pattern. The obtained results were compared

with the genetic algorithm (Tosun 2014a), Tabu search

(Tosun 2014a), ant colony (Tosun 2014a), and simulated

annealing (Tosun et al. 2013b) in regard to solving 20

problems with various dimensions. The execution time and

the total cost were important factors. The proposed algo-

rithm had suitable and comparable results in time; it could

be inferred that Greedy-DAP execution time, in compar-

ison with other algorithms, could be regarded as the best. In

our work, we want to solve DAP through Greedy-DAP

utilization and adaptation. The execution time and frag-

ment allocation quality are investigated experimentally by

Greedy-DAP. The simulation results reveal that the

Greedy-DAP’s (Mahi et al. 2018) execution time together

with cost could have a suitable performance in comparison

with other algorithms.

Three goals for data allocation are presented, Cao (Cao

2022), minimizing the number of active servers, minimiz-

ing the average number of partitions per data, and bal-

ancing servers’ workload. Li et al. (2022) are proposed

demonstrates that the conventional ‘‘graph data alloca-

tion = graph partitioning’’ assumption is not true, and the

memory access patterns of graph algorithms should also be

taken into account when partitioning graph data for com-

munication minimization. Thalij (2022), a novel high-

performance data allocation approach, is designed using

Chicken Swarm Optimization (CSO) algorithm. Then the

CSO algorithm optimally chooses the sites for each of the

data fragments without creating much overhead and data

route diversions. Then, the CSO algorithm optimally

chooses the sites for each of the data fragments without

creating much overhead and data route diversions. Then,

the CSO algorithm optimally chooses the sites for each of

the data fragments without creating much overhead and

data route diversions. This scenario is formulated using an

optimization problem called the data allocation problem

(DAP). In this paper, in addition to the fact that algorithms

based on randomness are not used, we directly find the best

solution to the problem in each step and refer to the next

steps, and in the new step, we find the best solution and

move to the next step. Of course, at each stage after the

best solution for resource allocation on the site is obtained,

in the matrix of costs, the column in which the part is

selected, we put all the columns of that matrix as a very

large number. Unfortunately, this problem is that in the

next steps, maybe the best answer is again in that column,

where we lose this amount. However, according to the

obtained results, we have the minimum answer compared

to the previous algorithms. The meaning of the best

answer, according to the resource allocation matrix on the

sites, is the minimum value found in the entire cost matrix.

Which is done by replacing the source on the site with the

lowest transaction cost. Finally, after replacing the source

on the site, we put a very large number matrix in the col-

umns of that column, so that in the next steps, the same

minimum will not be found again from that column.

13912 M. Mahi et al.

123

Ta
bl
e
1

D
es
cr
ip
ti
o
n
o
f
n
o
ta
ti
o
n
s
(A

d
l
an
d
R
an
k
o
o
h
i
2
0
0
9
)

S
y
m
b
o
l

D
es
cr
ip
ti
o
n

n
T
h
e
n
u
m
b
er
o
f
si
te
s

m
T
h
e
n
u
m
b
er
o
f
fr
ag
m
en
ts

i
T
h
e
in
d
ex

o
f
si
te
s

j
T
h
e
in
d
ex

o
f
fr
ag
m
en
ts

S
i

T
h
e
it
h
si
te

S
it
eC

ap
i

T
h
e
st
o
ra
g
e
ca
p
ac
it
y
o
f
si
te

S
i

U
C
n
�
n

T
h
e
m
at
ri
x

d
en
o
ti
n
g

th
e
co
st

o
f
u
n
it

d
at
a
tr
an
sm

is
si
o
n

b
et
w
ee
n

ea
ch

tw
o

si
te
s:

u
c i
1
i2

T
h
e
co
st

o
f
se
n
d
in
g

a
u
n
it

d
at
a
it
em

fr
o
m

si
te

S
i1
to

th
e
si
te

S
i2
:

f j
T
h
e
jt
h
fr
ag
m
en
t

fr
ag
S
iz
e j

T
h
e
si
ze

o
f
fr
ag
m
en
t

L
T
h
e
n
u
m
b
er

o
f
co
n
si
d
er
ed

tr
an
sa
ct
io
n
s

t k
T
h
e
k
th

tr
an
sa
ct
io
n

F
R
E
Q

n
�
l

T
h
e
m
at
ri
x

d
en
o
ti
n
g

th
e
ex
ec
u
ti
o
n

fr
eq
u
en
cy

o
f
ea
ch

tr
an
sa
ct
io
n

in
ea
ch

si
te

fr
eq

ik
T
h
e
ex
ec
u
ti
o
n

fr
eq
u
en
cy

o
f
tr
an
sa
ct
io
n
t k
in

si
te
s i

T
R
F
R
l�

m
T
h
e
m
at
ri
x

d
en
o
ti
n
g

th
e
d
ir
ec
t
tr
an
sa
ct
io
n
�
fr
ag
m
en
td
ep
en
d
en
cy

tr
fr
k
j

T
h
e
v
o
lu
m
e
o
f
d
at
a
it
em

s
o
f
fr
ag
m
en
tf

j
th
at
m
u
st
b
e
se
n
t

fr
o
m
si
te
co
n
ta
in
in
g
f j
to
th
e
si
te
ex
ec
u
ti
n
g
tr
an
sa
ct
io
n
t k
;
fo
r
ea
ch

ex
ec
u
ti
o
n
o
f
t k

Q
l�

m
�
m

T
h
e
m
at
ri
x
d
en
o
ti
n
g
th
e
in
d
ir
ec
tt
ra
n
sa
ct
io
n
�
fr
ag
m
en
td
ep
en
d
en
cy

q
k
j1
j2

T
h
e
v
o
lu
m
e
o
f
d
at
a
it
em

s
th
at
m
u
st
b
e
se
n
tf
ro
m

si
te
co
n
ta
in
in
g
fr
ag
m
en
tf

j1
to
th
e
si
te
st
o
ri
n
g
f j
2
;
fo
r
ea
ch

ex
ec
u
ti
o
n
o
f
tr
an
sa
ct
io
n
t k

W
T
h
e
m
el
em

en
tv
ec
to
r
w
h
ic
h
d
en
o
te
s
an

al
lo
ca
ti
o
n
sc
h
em

e

W
j

T
h
e
si
te

to
w
h
ic
h
fr
ag
m
en
t
t k

is
as
si
g
n
ed

in
th
e
al
lo
ca
ti
o
n
sc
h
em

e

C
O
S
T
ðW

Þ
T
h
e
co
st

o
f
d
at
a
tr
an
sm

is
si
o
n
in

an
al
lo
ca
ti
o
n
sc
h
em

e
W

C
O
S
T
1
ðW

Þ
T
h
e
co
st

o
f
d
at
a
tr
an
sm

is
si
o
n

in
an

al
lo
ca
ti
o
n

sc
h
em

e
W
re
su
lt
in
g

fr
o
m

d
ir
ec
t
tr
an
sa
ct
io
n
�
fr
ag
m
en
t
d
ep
en
d
en
ci
es

C
O
S
T
2
ðW

Þ
T
h
e
co
st

o
f
d
at
a
tr
an
sm

is
si
o
n

in
an

al
lo
ca
ti
o
n

sc
h
em

e
W
re
su
lt
in
g

fr
o
m

in
d
ir
ec
t
tr
an
sa
ct
io
n

fr
ag
m
en
td
ep
en
d
en
ci
es

S
T
F
R
n
�
m

T
h
e
m
at
ri
x

d
en
o
ti
n
g

th
e
si
te
�
fr
ag
m
en
t
d
ep
en
d
en
cy

st
fr
ij

T
h
e
v
o
lu
m
e
o
f
d
at
a
it
em

s
fr
o
m

fr
ag
m
en
t
f j
ti
m
e
ða
cc
o
rd
in
g

to
th
e
si
te
�
fr
ag
m
en
t
d
ep
en
d
en
cy
Þ
w
h
ic
h
ar
e
ac
ce
ss
ed

b
y

si
te

s i
in

u
n
it

P
A
R
T
IA

L
C
O
S
T
1
n
x
m

T
h
e
m
at
ri
x

d
en
o
ti
n
g

th
e
C
O
S
T
1
ðW

Þi
n
cu
rr
ed

b
y
al
lo
ca
ti
n
g

ea
ch

fr
ag
m
en
t
to

ea
ch

si
te

p
ar
ti
al
co
st
1
ij

T
h
e
co
st

in
cu
rr
ed

b
y
f
j
al
lo
ca
te
d

to
si
te
s i
as

a
re
su
lt

o
f
d
ir
ec
t
tr
an
sa
ct
io
n

fr
ag
m
en
t
d
ep
en
d
en
cy

Q
F
R
l�

m
�
m

T
h
e
m
at
ri
x

d
en
o
ti
n
g

th
e
in
d
ir
ec
t
tr
an
sa
ct
io
n

fr
ag
m
en
t
d
ep
en
d
en
cy

ta
k
in
g

th
e
ex
ec
u
ti
o
n

fr
eq
u
en
ci
es

o
f

T
h
e
tr
an
sa
ct
io
n
s
in
to

ac
co
u
n
t

q
fr
k
j1
j2

T
h
e
v
o
lu
m
e
o
f
d
at
a
n
ee
d
ed

to
b
e
se
n
t
fr
o
m

si
te

st
o
ri
n
g

fr
ag
m
en
t
f j
1
to

th
e
si
te

h
av
in
g

fr
ag
m
en
t
f j
2
in

u
n
it

ti
m
e
ta
k
in
g

in
to

ac
co
u
n
t
th
e
tr
an
sa
ct
io
n

fr
eq
u
en
cy

o
f
t k

F
R
D
E
P
m
�
m

T
h
e
m
at
ri
x

d
en
o
ti
n
g

th
e
in
te
r
fr
ag
m
en
t
d
ep
en
d
en
cy

fr
d
ep

j1
j2

T
h
e
v
o
lu
m
e
o
f
d
at
a
it
em

s
n
ee
d
ed

to
b
e
se
n
t
fr
o
m

si
te

h
av
in
g
fr
ag
m
en
t
f j
1
to

th
e
si
te

h
av
in
g

fr
ag
m
en
t
f j
2

d
ep
en
d
en
cy

in
u
n
it

ti
m
e
d
u
e
to

th
e
in
d
ir
ec
t
tr
an
sa
ct
io
n

fr
ag
m
en
t

P
ar
ti
cl
eN

u
m
b
er

T
h
e
n
u
m
b
er

o
f
P
ar
ti
cl
e

A new approach based on greedy minimizing algorithm for solving data allocation problem 13913

123

Section 1 serves as the introduction and the rest of the

paper is structured as follows; Sect. 2 contains materials

and methods of the background information for the greedy

algorithm and introduces the proposed method (Greedy-

DAP). Comparisons and the experimental results are pre-

sented in Sect. 3. Finally, Sect. 4 will conclude the paper.

2 Materials and methods

A greedy algorithm is a simple and intuitive algorithm used

in optimization problems. It has a function that calculates

the optimal choice made at each step along with finding the

overall optimal method to solve the entire problem. Two

examples of the problems which can be solved successfully

using greedy algorithms including Huffman encoding and

Dijkstra’s algorithm; these are used to compress data and

find the shortest path through a graph, respectively. The

greedy algorithm operates in a way that takes all of the data

to a certain problem and sets a rule for the elements to add

solution at each step of the algorithm (Astrachan, et al.

2002). Kadam and Kim (2022) show that it is NP-Complete

and propose a greedy algorithm to solve it. Table 1 refers to

the notations.

2.1 Data allocation problem

The purpose of DAP is to find the location of fragments in

the best sites, to alleviate the total cost of a transaction

when the query is taken from one site to another one (Adl

and Rankoohi 2009; Mahi et al. 2018; Mamaghani, et al.

2010). Figure 1 shows the dependencies among sites,

fragments, and transactions (Adl and Rankoohi 2009). For

example, to get a query from S1 to S2 for obtaining the

fragment j, the transaction k is necessary. Transaction

access to the website is done the through site Fragment

Frequency (FREQ) matrix, which included frequency val-

ues among sites transactions. Transactions to fragmenta-

tions achievements are done through the Transactions to

Fragmentations (TRFR) matrix. Evaluating the amount of

data transactions for fragments dependency is done through

the TRFR matrix, which has some parameters. The Q

matrix refers to the data between two fragments of one

transaction. The size of each fragment is at interval
c
10
; 20�c

10

� �
, which is chosen randomly. In this range, c is a

value at the interval [101,000] (Adl and Rankoohi 2009).

The size of each fragment is calculated by Eq. (1) (Adl

and Rankoohi 2009).

Xn

i¼1

pi ¼ m

 !

; rf i ¼ m�
Xi

q¼1

pq ð1Þ

Ta
bl
e
1
(c
o
n
ti
n
u
ed
)

S
y
m
b
o
l

D
es
cr
ip
ti
o
n

V
T
h
e
v
el
o
ci
ty

o
f
P
ar
ti
cl
e

X
T
h
e
p
o
si
ti
o
n

o
f
P
ar
ti
cl
e

T
o
ta
lC
ap

i
T
h
e
cu
rr
en
t
ca
p
ac
it
y
o
f
si
te

S
i

It
er
at
io
n
N
u
m
b
er

T
h
e
n
u
m
b
er

o
f
it
er
at
io
n

W
In
er
ti
a
w
ei
g
h
t

S
T
h
e
co
u
n
t
n
u
m
b
er

o
f
p
lu
s
si
g
n
s

X
s

T
h
e
m
ea
n

o
f
th
e
b
in
o
m
ia
l
d
is
tr
ib
u
ti
o
n

r
s

T
h
e
st
an
d
ar
d

d
ev
ia
ti
o
n

o
f
th
e
b
in
o
m
ia
l
d
is
tr
ib
u
ti
o
n

Z
T
es
t
st
at
is
ti
c

H
0

T
h
er
e
is

n
o
si
g
n
if
ic
an
t
d
if
fe
re
n
ce

b
et
w
ee
n

th
e
tw
o

al
g
o
ri
th
m
s

H
1

T
h
er
e
is

a
si
g
n
if
ic
an
t
d
if
fe
re
n
ce

b
et
w
ee
n

th
e
tw
o
al
g
o
ri
th
m
s

M
ax

M
ax
im

u
m

el
em

en
t
in

th
e
C
o
st

m
at
ri
x

13914 M. Mahi et al.

123

Also, the site capacity site is calculated by Eq. (2) (Adl

and Rankoohi 2009).

siteCapi ¼ pi � max1� j�mðfragSizejÞ ð2Þ

The site capacity should not be more than fragSizej � xij
during the fragments replacement on the site, as calculated

by Eq. (3) (Adl and Rankoohi 2009).

Xm

j¼1

fragSizej � xij � siteCapii ¼ 1; 2; . . .; n ð3Þ

COST1 is calculated from the allocation of the frag-

ments on sites according to Eq. (4)) (Adl and Rankoohi

2009). According to fragment size and site capacity, frag-

ments are allocated to sites and the vector is created.

partialcost1ij ¼
Xn

q¼1

uciq � stfrqj ð4Þ

Vector (Eq. (5)) (Adl and Rankoohi 2009) is related to

the COST1 calculation.

COST1 wð Þ ¼
Xm

j¼1

partialcost1wjj ð5Þ

COST2, the parameter calculated as the query from the

site j1 to j2, has been taken. The COST parameter is cal-

culated through the matrix q. The matrix is calculated

through multiplying the sum of the column with the ele-

ment of the freg matrix by the matrix (Eq. (6)) (Adl and

Rankoohi 2009).

qfrkj1j2 ¼ qkj1j2 �
Xn

r¼1

freqkr ð6Þ

FRDEP matrix is calculated based on the accumulation

of the transaction cost between fragments (Eq. (7)) (Adl

and Rankoohi 2009).

frdepj1j2 ¼
Xl

k¼1

qfrkj1j2 ð7Þ

COST2 is achieved through the FRDEP matrix and

vector, as shown by Eq. (8) (Adl and Rankoohi 2009),

through multiplying.

COST2 wð Þ ¼
Xm

j1¼1

Xm

j2¼1

frdepj1j2 � ucwj1wj2
ð8Þ

Finally, the sum of COST1 and COST2 is related to the

COST according to the vector produced as Eq. (9) (Adl and

Rankoohi 2009). The vector which is created to allocate

fragments on sites to get the query for the algorithm in this

paper is the best. The mentioned aim will be pursued by

our new method, as discussed in the next section.

COSTðwÞ ¼ COST1ðwÞ þ COST2ðwÞ ð9Þ

2.2 The proposed method (Greedy-DAP)

DAP solution based on greedy algorithm utilization and

adaptation is the aim of this study. The method presented

can be called Greedy-DAP. It is an innovative approach to

solve DAP. Due to the fewer control parameters of the

greedy algorithm, some parameters such as speed conver-

gence specifications, low consuming time, and robustness

against the solution space of the optimization problems are

rarely used to solve the optimization problems with the

same characteristics by the vector p (Deng et al. 2012; Bai

Fig. 1 The dependences among sites, transactions and fragments (Adl and Rankoohi 2009)

A new approach based on greedy minimizing algorithm for solving data allocation problem 13915

123

2010). To achieve this goal, the cost must be low; then, to

reduce the cost of transactions, fragments must be imple-

mented in the sites. Vectorp is used to compute the cost of

fragments replacement in DAP. In the Greedy-DAP, the

size of the vector p is 1 � m and its structure is as follows:

1 2 … j … m Fragment number

Vector

p:

2 3 … i … n Site number of the

fragment

Vectorp is an array, indicating that the fragment is

located on the site. For example, fragment 1 is located on-

site 2, fragment 2 is located on-site 3, etc. Vectorp shows

which fragment will be placed on which site. Fragments

placement on the best site to alleviate the total transaction

cost is our aim. This greedy algorithm, which considers the

total cost, is used to evaluate the process of fragment

allocation to the sites. Fitness calculation is done by cost

function in the greedy algorithm, as described in Sect. 2.1.

Determination of the cost values of the vectors is done by

Eq. (10), and the Max number is equal to the value of the

maximum element in the Cost matrix.

Cost i; j½ � ¼ ððpartial Cost i; k½ � � frdep k; j½ �ð Þ
� Uc k; j½ �ð ÞÞ;Max number

¼ maximumCost½i; j� ð10Þ

Site capacity is one of the parameters in Greedy-DAP;

so, a counter is determined for each site to check the

capacity of the site. Cost matrix has n rows and m columns,

where each row and column represent a site and fragment,

respectively. Firstly, the minimum value of the cost matrix

is found in the Cost i; j½ �. If the fragment size j is greater

than the capacity site i, we should find a second minimum

element in the Cost matrix. We should continue finding the

k � th minimum until the fragment size j is less than site

capacity i and update the site capacity by reducing the site

capacity from fragment size. Secondly, if the above

Table 2 Cost matrix representation

Table 3 Updated cost matrix

13916 M. Mahi et al.

123

Fig. 2 Pseudo-code of the

Greedy-DAP

Fig. 3 The scripting chart of the Greedy-DAP

A new approach based on greedy minimizing algorithm for solving data allocation problem 13917

123

condition is true in the Cost i; j½ �; then we can put j into

index i in the vector p. After that, the column j from the

Cost matrix is filled with the Max number. The Cost matrix

is given in Table 2.

Then we will find the next minimum of the matrix; we

will continue this process until all elements in the matrix

are filled up to maximum value. Replace the values of the

column j in a maximal matrix. The updated Cost matrix is

given in Table 3.

Greedy-DAP pseudo-code and consequently its scripting

chart are shown in Figs. 2 and 3, respectively.

Table 4 Input parameters for

PSO-DAP (Mahi et al. 2018)
Parameter description Parameter Name Value

Approximation of the average fragment size C 10

Unit transmission cost between two neighbor sites UCN [0–1]

Number of transactions L 20

Probability of a transaction being requested at a site RPT 0.7

Probability of a fragment being accessed by a transaction APF 0.4

Probability of a transaction necessitates data transaction between two sites

ðOther than theoriginating siteÞ
APFS 0.025

Number of particle P 30

Learning factors c1; c2 2

Number of iteration K 500

Inertia weight W 0,5

Maximumvelocity Vmax N

Generate randomnumber rand1, rand2 [0–1]

Table 5 Generate cost and execution time for increasing site numbers (n) and fragment number is fixed by 48

n Cost 9 109 Time (s) n Cost 9 109 Time (s)

3 0.002 0.902 26 0.192 8.093

4 0.004 1.164 27 0.223 8.470

5 0.005 1.488 28 0.232 9.236

6 0.009 1.909 29 0.247 9.330

7 0.015 2.275 30 0.236 10.254

8 0.025 2.450 31 0.262 10.297

9 0.019 2.750 32 0.300 10.175

10 0.030 3.166 33 0.324 10.692

11 0.043 3.498 34 0.301 11.845

12 0.036 4.069 35 0.330 12.273

13 0.047 4.158 36 0.384 11.525

14 0.056 4.264 37 0.347 11.640

15 0.042 4.662 38 0.427 13.358

16 0.075 5.216 39 0.414 13.810

17 0.082 5.464 40 0.468 14.476

18 0.099 5.567 41 0.527 13.810

19 0.110 6.143 42 0.544 13.892

20 0.085 6.073 43 0.522 14.702

21 0.104 7.674 44 0.565 16.328

22 0.142 6.941 45 0.639 15.306

23 0.151 7.816 46 0.597 16.405

24 0.167 8.070 47 0.619 17.472

25 0.128 8.092 48 0.671 15.557

13918 M. Mahi et al.

123

3 Experimental results

The original data set has been produced based on the cost

formulation in Sect. 2.2, in order to compare DAP with

other algorithms. The proposed algorithm was evaluated

using three cases of comparisons in various fragments and

site sizes. In the first case, the number of fragments was

equal, but the number of sites was variable. In the second

case, the number of sites was equal, but the number of

fragments was different. The third case contained the same

size of fragments and sites. It is worth noting that the

proposed algorithm is a deterministic one; therefore, the

results of the iterations of the algorithm were the same.

However, due to using a random dataset, the cost and

execution time of other algorithms are different. In order to

get the minimum number of results, the program was tested

in 20 iterations of executions in PSO-DAP, whereas in the

case of Greedy-DAP, due to obtaining the same results in

all executions, only one iteration of execution was done.

PSO-DAP iteration was done in 500. Computer parameters

for comparing PSO-DAP and Greedy-DAP based on an

algorithm presented for DAP can be listed as follows:

CPU: 1.6 GHZ, memory: 4 GB, Windows 7, and C# pro-

gramming language.

3.1 State 1

The first state refers to increasing the site size from 3 to 48

and fixing the number of fragments in 48. The values of the

algorithms in paper (Tosun et al. 2013a) have just been

shown in the figure. The results of the cost and execution

time for PSO-DAP and Greedy-DAP are shown in Tables 6

and 7, respectively. In order to compare the obtained

results of the proposed algorithm with a figure in paper

(Tosun et al. 2013a), we have mapped the proposed algo-

rithm results to those charts. Considering that other algo-

rithms used the same approach; forty-six different sites

numbers were taken from the range of 3 to 48 and the

number of fragments were fixed by 48. Input parameters in

Table 4, as shown in bold, refer to PSO-DAP and others are

common in both PSO-DAP and Greedy-DAP.

Table 6 Cost comparison of methods for increasing site numbers (n) and fragment number is fixed by 48 (cost values are column 9 109)

n PSO-DAP Greedy-DAP (Proposed

Method)

n PSO-DAP Greedy-DAP (Proposed

Method)
Average Minimum Standard

deviation

Average Minimum Standard

deviation

3 0.0004 0.0004 0.000 0.0004 26 0.183 0.178 0.008 0.173

4 0.002 0.002 0.000 0.002 27 0.216 0.211 0.020 0.201

5 0.003 0.003 0.000 0.003 28 0.225 0.221 0.025 0.209

6 0.004 0.004 0.000 0.004 29 0.244 0.235 0.016 0.206

7 0.009 0.009 0.000 0.008 30 0.226 0.216 0.022 0.201

8 0.022 0.022 0.000 0.023 31 0.255 0.253 0.019 0.235

9 0.017 0.016 0.004 0.013 32 0.301 0.294 0.012 0.260

10 0.025 0.023 0.005 0.020 33 0.308 0.306 0.030 0.272

11 0.037 0.035 0.001 0.032 34 0.290 0.277 0.044 0.271

12 0.031 0.030 0.001 0.033 35 0.319 0.314 0.028 0.281

13 0.035 0.033 0.000 0.036 36 0.372 0.370 0.048 0.330

14 0.042 0.042 0.001 0.044 37 0.336 0.333 0.051 0.321

15 0.035 0.033 0.001 0.026 38 0.419 0.415 0.078 0.397

16 0.071 0.061 0.002 0.059 39 0.388 0.381 0.078 0.341

17 0.074 0.070 0.002 0.066 40 0.436 0.434 0.113 0.402

18 0.086 0.084 0.003 0.082 41 0.520 0.512 0.069 0.477

19 0.101 0.100 0.004 0.088 42 0.535 0.533 0.077 0.480

20 0.071 0.064 0.002 0.064 43 0.511 0.509 0.116 0.488

21 0.094 0.090 0.005 0.088 44 0.541 0.526 0.111 0.472

22 0.114 0.113 0.002 0.109 45 0.616 0.614 0.109 0.585

23 0.137 0.134 0.006 0.121 46 0.579 0.561 0.163 0.502

24 0.158 0.156 0.017 0.138 47 0.621 0.616 0.166 0.565

25 0.125 0.123 0.005 0.119 48 0.641 0.634 0.109 0.590

A new approach based on greedy minimizing algorithm for solving data allocation problem 13919

123

Samples of the DAP cost and execution time values are

shown in Table 5. The obtained results of the Greedy-DAP

algorithm were compared with the other methods in the

literature, namely Ant c Algorithm (Adl and Rankoohi

2009), Ant b Algorithm (Adl and Rankoohi 2009), Ant a
Algorithm (Adl and Rankoohi 2009), Evolutionary (Adl

and Rankoohi 2009) and PSO-DAP minimum.

Tables 6 and 7 contain the cost and execution time

values, respectively; the best results are shown in bold.

A comparison of the obtained results demonstrated that

Greedy-DAP had less cost and was a less time-consuming

process in comparison with PSO-DAP. DAP samples were

created randomly and Greedy-DAP and PSO-DAP used

them to solve problems in this paper. Datasets were created

randomly according to the formula described in Sect. 2.2

for the purpose of comparison with the previous algo-

rithm’s datasets. The results demonstrated that, among 46

obtained results, 39 were the best in terms of cost, and they

were almost similar to our compared algorithm’s results in

Tables 6 and 8, thereby showing that the proposed algo-

rithm was statistically different from other methods. Con-

sequently, PSO-DAP would consume less time than other

algorithms, as shown in Table 7 (Mahi et al. 2018).

Here, to show the accuracy of our method, we used the

sing test (Mann 2013; Lurie et al. 2011). This test sign was

done for three states. There was no significant difference

between the two algorithms as the H0 hypothesis and there

was a significant difference between the two algorithms as

the H1 hypothesis. All calculations were implemented at a

significance level of five percent. Table 8 contains the sign

test results. The H1 hypotheses were accepted because the

computed Z values were outside the range in all tests. The

proposed algorithm and other alternatives related to com-

parison results are shown in the last two rows of Table 8.

In Figs. 4, 5, 6, 7, we plot the Greedy-DAP cost and the

time results from comparisons with other approaches such

as Ant c Algorithm (Adl and Rankoohi 2009), Ant b
Algorithm (Adl and Rankoohi 2009), Ant a Algorithm (Adl

and Rankoohi 2009), Evolutionary (Adl and Rankoohi

2009) and PSO-DAP minimum (Mahi et al. 2018).

3.2 State 2

The second state of the algorithm refers to increasing the

fragment size from 20 up to 50 by step 1 and fixing the

number of sites in 20 (Table 9). The obtained results of the

Table 7 Execution time (s) comparison of methods for increasing site numbers (n) and fragment number is fixed by 48

n PSO-DAP Minimum Greedy-DAP (Proposed method) n PSO-DAP Minimum Greedy-DAP (Proposed method)

3 15.466 0.366 26 18.158 7.956

4 16.021 0.069 27 16.910 8.767

5 15.538 0.133 28 17.082 9.438

6 15.007 0.210 29 16.942 10.296

7 15.694 0.299 30 16.630 10.967

8 15.772 0.455 31 16.973 11.872

9 15.787 0.608 32 16.770 12.683

10 15.818 0.718 33 16.942 13.603

11 16.006 0.905 34 17.176 15.803

12 15.928 1.061 35 17.035 16.068

13 15.694 1.232 36 17.082 16.520

14 15.694 1.498 37 17.410 17.456

15 15.803 1.685 38 17.098 19.578

16 15.678 1.950 39 19.016 20.608

17 17.690 2.200 40 16.957 23.026

18 17.893 2.761 41 16.957 24.508

19 18.174 3.635 42 17.534 25.802

20 17.612 3.635 43 17.300 27.035

21 18.580 4.664 44 18.143 28.548

22 19.781 5.320 45 18.923 30.420

23 19.687 5.897 46 17.160 32.105

24 16.739 6.646 47 16.879 33.680

25 16.926 7.348 48 16.754 33.758

13920 M. Mahi et al.

123

algorithm in paper (Adl and Rankoohi 2009) have not been

shown in the table. The results of the cost and execution

time of PSO-DAP and Greedy-DAP are shown in

Tables 10 and 11. To compare the results of the paper (Adl

and Rankoohi 2009), we mapped our obtained results to

those charts, as shown in Figs. 6 and 7. These figures show

that in comparison with other algorithms, the proposed one

has the lowest cost and time. Greedy-DAP and the

achieved results have been compared with other methods,

such as Ant c Algorithm (Adl and Rankoohi 2009), Ant b
Algorithm (Adl and Rankoohi 2009), Ant a Algorithm (Adl

and Rankoohi 2009), Evolutionary (Adl and Rankoohi

2009) and PSO-DAP (Mahi et al. 2015).

The DAP samples size increment in terms of the cost

values and execution time is shown in Table 9.

Table 10 shows the results related to cost from three

algorithms and also the standard deviation for the proposed

algorithm. Table 11 shows the execution times of different

methods.

The statistical comparison of the proposed method and

the other method is given in the last six rows of Table 12

for increasing the fragment numbers (m) and the fixed site

number, showing the acceptable results.

Table 8 Statistical comparison of the methods using sign test for increasing site numbers (n) with fixed fragment number (48)

n Greedy-DAP (Proposed Method) PSO-DAP minimum Sign n Greedy-DAP (Proposed Method) PSO-DAP minimum Sign

3 441,872 410,603 ? 26 172,615,295 177,702,535 -

4 1,664,678 1,244,572 ? 27 200,975,127 211,071,504 -

5 2,580,880 2,591,430 - 28 208,627,304 221,408,655 -

6 3,918,779 3,898,362 ? 29 205,512,776 234,776,499 -

7 8,475,686 8,892,369 - 30 201,362,336 216,136,938 -

8 22,671,850 21,702,160 ? 31 234,527,270 253,376,973 -

9 12,915,310 16,140,468 - 32 260,187,978 293,588,991 -

10 20,473,330 23,256,179 - 33 272,106,382 306,261,617 -

11 32,423,834 35,198,738 - 34 271,027,460 277,055,891 -

12 33,156,448 30,360,039 ? 35 280,603,467 314,138,626 -

13 35,662,487 33,175,773 ? 36 330,381,584 370,207,013 -

14 44,037,891 41,718,648 ? 37 320,758,035 333,278,681 -

15 26,337,352 32,883,834 - 38 397,051,238 414,989,215 -

16 59,321,311 60,711,667 - 39 341,185,743 381,319,377 -

17 66,032,543 70,417,580 - 40 401,932,655 433,510,525 -

18 82,477,752 84,454,729 - 41 477,285,889 512,475,049 -

19 88,167,561 99,960,603 - 42 479,891,345 532,748,715 -

20 64,205,904 64,473,334 - 43 487,529,241 508,885,582 -

21 87,930,403 89,750,233 - 44 471,533,110 526,005,587 -

22 109,131,359 113,228,406 - 45 585,214,613 614,206,988 -

23 121,130,352 134,426,817 - 46 501,554,620 560,510,603 -

24 138,049,507 156,493,230 - 47 565,195,696 615,874,059 -

25 118,674,870 122,929,074 - 48 590,016,599 633,864,873 -

Statistical

Notations

Greedy-DAP vs PSO-

DAP

7

22.5

3.354

- 4.621

H0 Reject

H1 Accept

A new approach based on greedy minimizing algorithm for solving data allocation problem 13921

123

3.3 State 3

The number of fragments and sites are equal so our pro-

posed algorithm, as implemented on an equal number of

fragments and sites. DAP samples size increment cost

values and execution time generations are shown in

Table 13.

Tables 14 and 15 present the comparison covering the

cost and execution time values, respectively. The best

results are shown in bold. Table 14 shows the cost of the

results, which is much better than the results of the pre-

vious algorithms. In Table 15, the calculation time of

resource allocation on the sites is shown that the more the

number of sites with their resources, the more time it takes

to get them.

Fig. 4 Evaluating the Results achieved by the algorithms in a state 1 comparison for cost (Adl and Rankoohi 2009)

Fig. 5 Evaluating the Computation time of the algorithms in a state 1 comparison for time (Adl and Rankoohi 2009)

13922 M. Mahi et al.

123

The statistical comparison of the proposed method and

the other method is given in the last six rows of Table 16

for increasing the fragment numbers (m) and fixing the site

number, showing that this algorithm has better results. To

better show the results of the presented method, we have

compared three data states. In the first state, we considered

the number of sites varied and the number fragments fixed.

For the second case, we considered the number of

Fig. 6 Evaluating the Results achieved by the algorithms in a state 2 comparison for cost (Adl and Rankoohi 2009)

Fig. 7 Evaluating the Computation time of the algorithms in a state 2 comparison for time (Adl and Rankoohi 2009)

A new approach based on greedy minimizing algorithm for solving data allocation problem 13923

123

fragments varied and the number of sites constant. For the

third state, we considered the number of sites and the

number of fragments to be the same in order to better show

the correct performance of the presented method. In all

three states, the results of the allocated cost and especially

the time consumption of the presented method are much

better than the previous algorithms.

Table 9 Generate cost and execution time for increasing fragment numbers (m) and site number is fixed by 20

m Cost 9 108 Time (s) M Cost 9 108 Time (s)

20 0.268 0.961 36 0.690 5.343

21 0.227 1.215 37 0.686 6.132

22 0.278 1.189 38 0.674 7.018

23 0.254 1.384 39 0.655 7.775

24 0.348 1.566 40 0.758 8.390

25 0.364 1.590 41 0.951 9.807

26 0.342 1.894 42 0.803 10.488

27 0.351 1.864 43 0.823 12.391

28 0.419 2.362 44 0.955 14.276

29 0.523 2.450 45 1.083 14.880

30 0.586 2.721 46 0.978 18.289

31 0.485 3.290 47 1.025 19.571

32 0.515 3.820 48 1.135 20.931

33 0.507 4.167 49 1.114 24.177

34 0.649 4.160 50 1.178 25.570

35 0.621 5.017

Table 10 Cost comparison of methods for increasing fragment numbers (m) and site number is fixed by 20

m PSO-

Ave

PSO-

min

Cost Proposed

Method

Standard

deviation

m PSO-

Ave

PSO-

min

Cost Proposed

Method

Standard

deviation

20 0.252 0.249 0.244 0.035 36 0.600 0.589 0.657 0.059

21 0.220 0.208 0.219 0.030 37 0.606 0.600 0.619 0.010

22 0.277 0.267 0.256 0.047 38 0.664 0.638 0.564 0.028

23 0.250 0.247 0.228 0.033 39 0.616 0.584 0.532 0.033

24 0.334 0.330 0.331 0.013 40 0.694 0.682 0.675 0.023

25 0.307 0.304 0.312 0.041 41 0.923 0.906 0.858 0.037

26 0.316 0.314 0.309 0.027 42 0.763 0.761 0.656 0.066

27 0.354 0.339 0.312 0.029 43 0.720 0.711 0.668 0.053

28 0.373 0.367 0.369 0.034 44 0.839 0.812 0.847 0.004

29 0.482 0.472 0.404 0.042 45 0.985 0.943 0.867 0.053

30 0.566 0.563 0.578 0.041 46 0.848 0.837 0.797 0.033

31 0.463 0.429 0.429 0.039 47 0.866 0.847 0.928 0.066

32 0.483 0.471 0.436 0.015 48 1.061 1.030 0.910 0.105

33 0.480 0.468 0.444 0.048 49 1.121 1.016 1.014 0.070

34 0.583 0.572 0.512 0.030 50 1.029 1.004 1.033 0.200

35 0.575 0.562 0.527 0.041

13924 M. Mahi et al.

123

Table 11 Execution time (s) comparison of methods for increasing fragment numbers (m) and site number is fixed by 20

m PSO-DAP Minimum Greedy-DAP (Proposed Method) m PSO-DAP Minimum Greedy-DAP (Proposed Method)

20 3.111 0.218 36 3.472 2.028

21 3.422 0.203 37 3.686 1.888

22 3.113 0.265 38 4.146 2.168

23 2.814 0.281 39 3.564 2.558

24 3.091 0.374 40 3.741 2.902

25 3.507 0.421 41 3.300 3.370

26 3.197 0.437 42 3.399 3.416

27 3.856 0.499 43 4.352 3.292

28 3.984 0.608 44 3.774 4.243

29 4.593 0.796 45 3.259 5.538

30 4.290 0.764 46 4.037 6.193

31 3.988 0.998 47 3.540 7.004

32 4.678 1.076 48 3.862 7.738

33 3.444 1.030 49 3.372 8.658

34 2.995 1.466 50 3.187 9.142

35 3.532 1.685

Table 12 For increasing fragment numbers (m) and site number is fixed by 20. Obtained results of methods comparisons with sign test

m Greedy-DAP (Proposed method) PSO-DAP minimum Sign m Greedy-DAP (Proposed Method) PSO-DAP minimum Sign

20 24,433,882 24,872,829 ? 36 65,701,506 58,860,638 ?

21 21,919,467 20,829,479 - 37 61,854,394 60,038,953 -

22 25,623,071 26,714,534 ? 38 56,381,250 63,792,446 -

23 22,791,175 24,670,355 - 39 53,194,842 58,383,603 -

24 33,091,691 33,007,551 ? 40 67,450,888 68,192,047 -

25 31,215,154 30,397,092 - 41 85,806,612 90,561,561 ?

26 30,898,685 31,405,235 - 42 65,616,347 76,080,351 -

27 31,228,117 33,875,190 - 43 66,842,906 71,074,916 -

28 36,943,665 36,689,174 - 44 84,666,662 81,243,023 -

29 40,435,858 47,213,491 - 45 86,716,618 94,333,685 ?

30 57,775,641 56,279,930 ? 46 79,691,135 83,669,594 -

31 42,873,844 42,876,940 - 47 92,754,465 84,678,495 -

32 43,620,635 47,103,581 - 48 91,001,545 103,032,353 -

33 44,429,550 46,819,696 - 49 101,370,565 101,586,213 ?

34 51,215,186 57,234,406 - 50 103,267,955 100,401,042 ?

35 52,734,960 56,175,376 -

Statistical

notations

Greedy-DAP vs

PSO

9

15

2.738

- 2.191

H0 Reject

H1 Accept

A new approach based on greedy minimizing algorithm for solving data allocation problem 13925

123

3.4 Discussion

The aims of the data allocation problem (DAP) are to

achieve the minimum execution time and ensure the lowest

transaction cost of queries. The solution for this NP-hard

problem based on numerical methods is computationally

expensive. Despite the success of such heuristic algorithms

as GA and PSO in solving DAP, the initial control

parameters tuning, the relatively high convergence speed,

and hard adaptations to the problem are the most important

disadvantages of these methods. This paper presents a

simple well-formed greedy algorithm to optimize the total

transmission cost of each site-fragment dependency and

each inner-fragment dependency. To evaluate the effect of

Table 13 Generate cost and execution time for increasing DAP instance sizes

Size Cost 9 106 Time (s) Size Cost 9 106 Time (s)

5 0.07 0.14 55 145.23 25.18

10 0.21 0.20 60 212.56 55.97

15 0.55 0.75 65 290.99 147.06

20 2.49 0.89 70 319.86 166.73

25 8.91 1.56 75 430.69 197.95

30 9.65 2.28 80 594.30 253.48

35 25.67 3.17 85 771.51 243.56

40 43.91 6.13 90 1047.78 323.75

45 73.52 10.83 95 1274.53 331.08

50 112.09 21.04 100 1487.04 337.76

Table 14 Cost comparison of methods for increasing DAP instance sizes (cost value is column 9 106)

Size ACO

(Tosun

2014a)

RTS

(Tosun

2014a)

GA1

(Tosun

2014a)

GA2

(Tosun

2014a)

GA3

(Tosun

2014a)

HG-MTS

(Tosun

2014a)

SA (Tosun

et al.

2013b)

PSO-DAP DEVNS

(Lotfi

2019)

Greedy-DAP

(Proposed

Method)Standard

deviation

Average

5 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.0007 0.03 0.03 0.003

10 0.31 0.31 0.32 0.31 0.31 0.31 0.31 0.0130 0.06 0.06 0.04

15 0.98 0.98 0.99 0.98 0.98 0.98 0.98 0.0532 0.52 0.52 0.14

20 2.61 2.61 2.63 2.64 2.64 2.61 2.61 0,0816 1.47 1.47 0.44

25 5.19 5.19 5.25 5.26 5.24 5.19 5.15 1.2826 3.35 3.35 0.60

30 10.27 10.27 10.39 10.42 10.41 10.27 10.27 1.0470 2.98 2.98 1.36

35 16.39 16.39 16.64 16.61 16.66 16.39 16.41 4.5046 8.51 8.51 1.96

40 25.91 25.9 26.28 26.33 26.21 25.92 26.02 8.9307 20.71 20.71 3.51

45 37.28 37.26 37.73 37.8 37.82 37.27 37.40 16.7220 25.56 25.56 5.54

50 53.93 53.89 54.76 54.63 54.69 53.88 54.08 25.6230 29.38 29.38 7.60

55 71.30 71.19 72.72 72.40 72.13 71.21 71.40 37.4836 46.19 46.19 34.91

60 90.35 90.16 91.76 91.49 91.56 90.20 90.50 59.9261 90.2 90.2 44.75

65 112.31 112.13 113.59 113.75 113.84 112.08 112.49 91.0824 113.72 113.72 68.88

70 146.41 146.19 148.48 148.8 148.18 146.15 146.73 109.8225 131.72 131.72 106.34

75 177.90 177.7 180.04 180.75 180.63 177.65 178.16 139.8139 168.34 168.34 163.89

80 219.40 219.26 223.10 222.80 222.96 219.18 219.81 160.2445 234.26 234.26 159.95

85 262.24 261.88 267.04 266.15 266.19 261.99 262.89 240.2334 260.33 260.33 196.66

90 316.11 315.86 320.88 320.93 320.58 315.86 316.81 302.8202 279.49 279.49 265.25

95 370.14 369.92 375.49 375.85 375.29 369.91 371.14 392.3170 355.04 355.04 353.27

100 428.40 428.28 436.19 436.15 434.45 427.98 429.10 459.9464 424.08 424.08 408.62

13926 M. Mahi et al.

123

the proposed method, more than 20 standard DAP prob-

lems were used. Experimental results showed that the

proposed approach had better quality in terms of execution

time and total cost.

4 Conclusion

In this work, we have solved DAP in non-replicated dis-

tributed database systems. The key subjective in DAP is to

decrease the query execution time and the transaction cost.

In this paper, as an approach based on the greedy algo-

rithm, Greedy-DAP has been proposed to optimize query

execution time and the transaction cost in DAP. To eval-

uate the effectiveness of the proposed algorithm, three

states were considered. The first state referred to the set

constant fragment size and variant site size. In addition, in

the second state, the constant size of sites and variant sizes

of fragments were considered. The third state contained a

constant size of sites and fragments. The obtained results of

the proposed algorithm based on these three states

demonstrated that the presented method could have a good

performance. Greedy-DAP was founded on various DAP

samples in several states, obtaining effective results in

comparison with other algorithms. Also, it was evaluated in

terms of the query execution time and transaction cost. The

obtained results demonstrated that Greedy-DAP displayed

better performance in terms of query solution quality and

running time. Due to the solution, space exponentially

grows along with increasing the dimensionality of the

problem; the performance of the approach is decreased.

However, analysis of the results demonstrated that the

presented approach generated results comparable with the

state of art algorithms, especially in terms of execution

time, due to the lower number of computations.

To solve the DAP problem that was previously solved

with the PSO algorithm, it can be solved with a parallel

algorithm, which can get much better results. Also, the

Table 15 Execution time (s) comparison of methods for increasing DAP instance sizes

DAP

Size

ACO

(Tosun

2014a)

RTS

(Tosun

2014a)

GA1

(Tosun

2014a)

GA2

(Tosun

2014a)

GA3

(Tosun

2014a)

HG-MTS

(Tosun

2014a)

SA (Tosun

et al. 2013b)

PSO-

DAP(Mahi

et al. 2018)

DEVNS

(Lotfi

2019)

Greedy-

DAP

(Proposed

Method)

5 9.26 0.83 76.27 56.11 88.11 1.44 130.29 0.74 65 0.004

10 14.52 2.73 87.80 60.37 94.91 2.45 143.84 1.35 60 0.01

15 13.74 5.66 90.76 66.22 104.13 2.65 214.30 2.17 58 0.02

20 17.91 8.89 123.79 84.13 167.22 4.17 243.30 3.65 52 0.08

25 25.86 14.52 131.98 81.96 125.30 5.21 351.23 4.25 42 0.34

30 31.17 20.89 132.46 104.64 137.02 7.38 461.89 6.45 24 5.05

35 43.31 29.06 150.06 111.87 151.02 10.73 393.73 6.81 21 12.89

40 56.59 37.05 166.80 128.75 173.21 15.60 420.65 8.85 30 32.06

45 80.92 48.67 191.93 159.10 202.10 20.80 437.74 8.42 10 67.78

50 105.33 62.74 471.98 207.56 359.57 26.80 511.40 9.60 4 134.00

55 126.00 76.07 268.31 201.43 261.71 27.22 516.86 13.74 3 335.31

60 166.55 91.79 315.31 208.37 290.46 39.56 828.14 16.09 46 659.49

65 204.35 109.20 421.93 284.08 336.01 48.92 1090.77 16.09 51 1015.80

70 320.62 131.54 536.15 344.20 358.03 63.13 1303.21 17.34 8 1868.15

75 309.51 155.31 609.77 379.07 380.81 73.41 976.97 17.01 11 2712.19

80 396.18 193.63 464.17 331.17 416.18 87.84 1234.48 16.29 174 3755.91

85 807.43 195.80 532.05 364.71 586.21 102.79 898.11 18.31 36 5516.20

90 621.55 215.58 563.15 400.37 531.13 123.19 1336.74 20.98 1 7898.36

95 725.93 250.72 629.55 974.24 569.92 143.16 1128.08 18.15 7 11,376.30

100 1203.99 278.63 1236.30 568.73 808.82 179.07 1389.19 20.97 9 15,350.07

A new approach based on greedy minimizing algorithm for solving data allocation problem 13927

123

Table 16 Statistical comparison of the methods using sign test

Greedy-DAP (Proposed

method)

DEVNS (Lotfi

2019)

Sign PSO-DAP (Mahi et al.

2018)

Sign ACO (Tosun

2014a)

Sign RTS(Tosun

2014a)

Sign

0.003 0.03 – 0.02 – 0.04 – 0.04 –

0.04 0.06 – 0.05 – 0.31 – 0.31 –

0.14 0.52 – 0.41 – 0.98 – 0.98 –

0.44 1.47 – 0.77 – 2.61 – 2.61 –

0.6 3.35 – 3.74 – 5.19 – 5.19 –

1.36 2.98 – 3.19 – 10.27 – 10.27 –

1.96 8.51 – 9.04 – 16.39 – 16.39 –

3.51 20.71 – 19.24 – 25.91 – 25.9 –

5.54 25.56 – 27.04 – 37.28 – 37.26 –

7.6 29.38 – 34.43 – 53.93 – 53.89 –

34.91 46.19 – 51.38 – 71.3 – 71.19 –

44.75 90.2 – 97.78 – 90.35 – 90.16 –

68.88 113.72 – 125.01 – 112.31 – 112.13 –

106.34 131.72 – 138.69 – 146.41 – 146.19 –

163.89 168.34 – 171.47 – 177.9 – 177.7 –

159.95 234.26 – 260.86 – 219.4 – 219.26 –

196.66 260.33 – 260.63 – 262.24 – 261.88 –

265.25 279.49 – 287.09 – 316.11 – 315.86 –

353.27 355.04 – 365.06 – 370.14 – 369.92 –

408.62 424.08 – 481.58 – 428.4 – 428.28 –

Statistical

Notations

Greedy-DAPvs.

DEVNS

Greedy-DAPvs.

PSO

Greedy-DAPvs.

ACO

Greedy–

DAPvsRTS

S 0 0 0 0

Xs 10 10 10 10

rs 2.236 2.236 2.236 2.236

Z - 4.472 - 4.472 - 4.472 - 4.472

Z0:05
2

± 1.96 ± 1.96 ± 1.96 ± 1.96

H0 Reject Reject Reject Reject

H1 Accept Accept Accept Accept

Greedy–DAP

(Proposed Method)

GA1(Tosun

2014a)

Sign GA2(Tosun

2014a)

Sign GA3(Tosun

2014a)

Sign HG–MTS (Tosun

2014a) (Tosun 2014a)

Sign SA(Tosun

et al. 2013b)

Sign

0.003 0.04 – 0.04 – 0.04 – 0.04 – 0.04 –

0.04 0.32 – 0.31 – 0.31 – 0.31 – 0.31 –

0.14 0.99 – 0.98 – 0.98 – 0.98 – 0.98 –

0.44 2.63 – 2.64 – 2.64 – 2.61 – 2.61 –

0.6 5.25 – 5.26 – 5.24 – 5.19 – 5.15 –

1.36 10.39 – 10.42 – 10.41 – 10.27 – 10.27 –

1.96 16.64 – 16.61 – 16.66 – 16.39 – 16.41 –

3.51 26.28 – 26.33 – 26.21 – 25.92 – 26.02 –

5.54 37.73 – 37.8 – 37.82 – 37.27 – 37.4 –

7.6 54.76 – 54.63 – 54.69 – 53.88 – 54.08 –

34.91 72.72 – 72.4 – 72.13 – 71.21 – 71.4 –

44.75 91.76 – 91.49 – 91.56 – 90.2 – 90.5 –

68.88 113.59 – 113.75 – 113.84 – 112.08 – 112.49 –

106.34 148.48 – 148.8 – 148.18 – 146.15 – 146.73 –

163.89 180.04 – 180.75 – 180.63 – 177.65 – 178.16 –

13928 M. Mahi et al.

123

gray wolf optimization (GWO) algorithm, the firefly opti-

mization algorithm, the grasshopper optimization algo-

rithm (GOA), the cuckoo optimization algorithm, and the

frog leap optimization algorithm can be used in the future.

Acknowledgements This study has been supported by Payame Noor

University.

Author contributions MM was involved in the conceptualization,

methodology, coding, and writing, OKB contributed to the method-

ology, investigation, writing. HK assisted in the supervision,

methodology, reviewing and editing.

Funding The authors have not disclosed any funding.

Data availability The data that support the findings of this study are

available from the corresponding author on request.

Declarations

Conflict of interest The authors declare that they have no conflict of

interest.

Informed consent Informed consent was obtained from all authors

included in the study. This manuscript does not contain any studies

with human participants or animals performed by any of the authors.

References

Adl RK, Rankoohi SMTR (2009) A new ant colony optimization

based algorithm for data allocation problem in distributed

databases. Knowl Inf Syst 20(3):349–373

Al-Sanhani AH et al. (2017) A comparative analysis of data
fragmentation in distributed database. In: Information technol-

ogy (ICIT), 2017 8th International conference on. 2017. IEEE

Amer AA, Sewisy AA, Elgendy TM (2017) An optimized approach

for simultaneous horizontal data fragmentation and allocation in

distributed database systems (DDBSs). Heliyon 3(12):e00487

Amer AA, Abdalla HI (2012) A heuristic approach to re-allocate data

fragments in DDBSs. In: Information technology and e-services

(ICITeS), 2012 international conference on. 2012. IEEE

Astrachan OL et al. (2002) Active learning in small to large courses.

In: 32nd annual frontiers in education. IEEE

Bai Q (2010) Analysis of particle swarm optimization algorithm.

Comput Infor Sci 3(1):180–184

Cao X (2022) Goals and solutions of data allocation in data center. In:

2022 IEEE 12th annual computing and communication work-

shop and conference (CCWC), IEEE

Chen W et al (2018) A cost minimization data allocation algorithm

for dynamic datacenter resizing. J Parallel Distrib Comp

118:280–295

Deng W et al (2012) A novel parallel hybrid intelligence optimization

algorithm for a function approximation problem. Comput Math

Appl 63(1):325–336

Du J et al (2017) Optimization of data allocation on CMP embedded

system with data migration. Int J Parallel Prog 45(4):965–981

Gu X, Lin WJ, Veeravalli B (2006) Practically realizable efficient

data allocation and replication strategies for distributed data-

bases with buffer constraints. IEEE Trans Parallel Distrib Syst

17(9):1001–1013

Kadam S, Kim DI (2022) Knowledge-aware semantic communication

system design and data allocation. arXiv preprint arXiv:2301.

03468

Li Z, Chen X, Han Y (2022) Optimal data allocation for graph

processing in processing-in-memory systems. In: 2022 27th Asia

and south pacific design automation conference (ASP-DAC),

IEEE

Table 16 (continued)

Greedy–DAP

(Proposed Method)

GA1(Tosun

2014a)

Sign GA2(Tosun

2014a)

Sign GA3(Tosun

2014a)

Sign HG–MTS (Tosun

2014a) (Tosun 2014a)

Sign SA(Tosun

et al. 2013b)

Sign

159.95 223.1 – 222.8 – 222.96 – 219.18 – 219.81 –

196.66 267.04 – 266.15 – 266.19 – 261.99 – 262.89 –

265.25 320.88 – 320.93 – 320.58 – 315.86 – 316.81 –

353.27 375.49 – 375.85 – 375.29 – 369.91 – 371.14 –

408.62 436.19 – 436.15 – 434.45 – 427.98 – 429.1 –

Statistical

Notations

Greedy-DAPvs.

GA1

Greedy-DAPvs.

GA2

Greedy-DAPvs.

GA3

Greedy-DAPvs. HG-

MTS

Greedy-DAPvs.

SA

S 0 0 0 0 0

Xs 10 10 10 10 10

rs 2.236 2.236 2.236 2.236 2.236

Z - 4.472 - 4.472 - 4.472 - 4.472 - 4.472

Z0:05
2

± 1.96 ± 1.96 ± 1.96 ± 1.96 ± 1.96

H0 Reject Reject Reject Reject Reject

H1 Accept Accept Accept Accept Accept

A new approach based on greedy minimizing algorithm for solving data allocation problem 13929

123

http://arxiv.org/abs/2301.03468
http://arxiv.org/abs/2301.03468

Lotfi N (2019) Data allocation in distributed database systems: a

novel hybrid method based on differential evolution and variable

neighborhood search. SN Appl Sci 1(12):1724

Lurie D, Abramson LR, Vail JA (2011) Applying statistics. 2011:
Citeseer

Mahi M, Baykan OK, Kodaz H (2015) A new hybrid method based on

particle swarm optimization, ant colony optimization and 3-Opt

algorithms for traveling salesman problem. Appl Soft Comput

30:484–490

Mahi M, Baykan OK, Kodaz H (2018) A new approach based on

particle swarm optimization algorithm for solving data allocation

problem. Appl Soft Comput 62:571–578

Mamaghani AS et al. (2010) A novel evolutionary algorithm for

solving static data allocation problem in distributed database

systems. In: Network applications protocols and services

(NETAPPS), 2010 Second International Conference on. 2010.

IEEE

Mann PS (2013) Introductory Statistics, 8th edn. Wiley, Hoboken

Mashwani WK, Salhi A (2012) A decomposition-based hybrid

multiobjective evolutionary algorithm with dynamic resource

allocation. Appl Soft Comput 12(9):2765–2780

Mathew AB (2018) Data allocation optimization for query processing

in graph databases using Lucene. Comput Electr Eng

70:1019–1033

Mayne SR, Satav S (2017) Survey on cloud infrastructure resource

allocation for big data applications. Int J Eng Sci 7(1):4008

Nashat D, Amer AA (2018) A comprehensive taxonomy of

fragmentation and allocation techniques in distributed database

design. ACM Comp Surv (CSUR) 51(1):12

Peng C et al. (2022) Optimal data allocation in the environment of

edge and cloud servers. In: 2022 IEEE International conference

on networking, sensing and control (ICNSC)

Sen G et al (2016) Mathematical models and empirical analysis of a

simulated annealing approach for two variants of the static data

segment allocation problem. Networks 68(1):4–22

Thalij SH (2022) Data allocation in distributed database based on

CSO. Tikrit J Pure Sci 27(2):43–51

Tosun U (2014a) Distributed database design using evolutionary

algorithms. J Commun Netw 16(4):430–435

Tosun U (2014b) A new recombination operator for the genetic

algorithm solution of the quadratic assignment problem. Proce-

dia Comp Sci 32:29–36

Tosun U, Dokeroglu T, Cosar A (2013a) A robust island parallel

genetic algorithm for the quadratic assignment problem. Int J

Prod Res 51(14):4117–4133

Tosun U, Dokeroglu T, Cosar A (2013) Heuristic algorithms for

fragment allocation in a distributed database system. Computer

and Information Sciences, vol III. Springer, Berlin, pp 401–408

Ulus T, Uysal M (2003) Heuristic approach to dynamic data

allocation in distributed database systems. Pakistan J Inf Technol

2(3):231–239

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

13930 M. Mahi et al.

123

	A new approach based on greedy minimizing algorithm for solving data allocation problem
	Abstract
	Introduction
	Materials and methods
	Data allocation problem
	The proposed method (Greedy-DAP)

	Experimental results
	State 1
	State 2
	State 3
	Discussion

	Conclusion
	Author contributions
	Data availability
	References

