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Abstract
Feature selection is an important component of the machine learning domain, which selects the ideal subset of charac-

teristics relative to the target data by omitting irrelevant data. For a given number of features, there are 2n possible feature

subsets, making it challenging to select the optimal set of features from a dataset via conventional feature selection

approaches. We opted to investigate glaucoma infection since the number of individuals with this disease is rising quickly

around the world. The goal of this study is to use the feature set (features derived from fundus images of benchmark

datasets) to classify images into two classes (infected and normal) and to select the fewest features (feature selection) to

achieve the best performance on various efficiency measuring metrics. In light of this, the paper implements and rec-

ommends a metaheuristics-based technique for feature selection based on emperor penguin optimization, bacterial foraging

optimization, and proposes their hybrid algorithm. From the retinal fundus benchmark images, a total of 36 features were

extracted. The proposed technique for selecting features minimizes the number of features while improving classification

accuracy. Six machine learning classifiers classify on the basis of a smaller subset of features provided by these three

optimization techniques. In addition to the execution time, eight statistically based performance metrics are calculated. The

hybrid optimization technique combined with random forest achieves the highest accuracy, up to 0.95410. Because the

proposed medical decision support system is effective and ensures trustworthy decision-making for glaucoma screening, it

might be utilized by medical practitioners as a second opinion tool, as well as assist overworked expert ophthalmologists

and prevent individuals from losing their eyesight.

Keywords Feature selection � Emperor penguin optimization � Bacterial foraging optimization � Hybrid algorithm �
Glaucoma prediction

1 Introduction

A significant amount of high-dimensional data is being

produced through the widespread use of social media and

sensors. There are several features (characteristics) in the

dataset; thus, feature extraction is essential in order to

identify and extract the dataset’s most usable data.

Regression, classification, and clustering become less fea-

sible due to the high-dimensional data’s enormously

increased space and temporal complexity. The high-di-

mensional dataset also includes numerous characteristics,

some of which are superfluous or unimportant. A classi-

fier’s performance suffers as a result of duplicated and

irrelevant features. Therefore, feature selection (FS) tech-

niques that identify the optimal subset of features from
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large-dimensional datasets are often utilized to address this

problem (Mafarja and Mirjalili 2017). FS is essential in

order to identify and extract the dataset’s most usable data.

By reducing redundant and noisy data from the high-di-

mensional dataset, FS enhances the learning accuracy as

well as the clarity of the results (Saraswat and Arya 2014).

Using feature selection, the machine learning algorithm

can be trained more quickly and easily. Additionally, it

reduces the over-fitting issue and complexity of the clas-

sifier, making it simpler to understand (Wei et al. 2017).

Thus, a proper mining technique must be used to fetch the

necessary features from the dataset. To decrease the

dimensionality of the feature space, several meta-heuristic

techniques have been created and applied in the past as

well. FS is an important stage in the design and develop-

ment of data mining and machine learning algorithms. It

facilitates faster calculation and increases classification

accuracy. The performance of the classifiers may be

hampered by feature spaces that include a significant

number of duplicate or irrelevant characteristics. In order

to boost the effectiveness of the classifiers, redundant

features are removed from the original set using feature

selection techniques to choose the best subset of features.

In computer-assisted diagnosis (CAD), FS chooses the

relevant characteristics that have a deeper influence on

classification accuracy and discards the features with a

lower impact since they would negatively affect the per-

formance of the classification subsystem. The classification

of glaucoma is getting more difficult due to the absence of

feature selection in computer-aided diagnostics. This is due

to the fact that it must produce findings with more precision

and that there must be more characteristics available for

analysis. The location, few unpredictable development

patterns, large dataset, and growing number of factors

involved make it difficult to classify glaucoma disorders.

The FS subsystem works to eliminate these duplicate fea-

tures and only chooses the best subsets of features out of all

the features in the dataset. Therefore, feature selection will

significantly improve the accuracy and efficiency of the

CAD system.

Glaucoma, also known as ‘‘silent theft of sight,’’ was

most likely identified as a disease in the early seventeenth

(a) Retinal fundus image (Juneja et al. 2020(a)) (b) Retinal fundus image (Juneja et al. 2020(a))

(c) Retinal image of healthy person (d) Retinal image of glaucomatous(infected) person

Fig. 1 Retinal fundus images
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century when the Greek word glaukEoma, which means

obscurity of the lens or cataract and denotes ignorance of

the condition, was coined. Glaucoma is the second most

common cause of blindness worldwide. After cataracts, it

is the second most frequent cause of permanent blindness,

and if it goes undetected, it might overtake cataracts as the

most prevalent cause. Globally, glaucoma affects around

60 million individuals, and by 2020, that figure is predicted

to increase to 79.6 million (Singh and Khanna 2022a). The

World Health Organization (WHO) reports that glaucoma

is one of the main causes of blindness, which has already

impacted more than 60 million people worldwide and

might reach 80 million very soon. Additionally, 12 million

Indians are thought to be affected. An abrupt visual dis-

ruption, excruciating eye discomfort, impaired vision,

inflamed eyes, and haloes surrounding lights are some of its

typical symptoms. People over the age of 40 are often

affected by this condition. The brain visualizes the outside

world as a consequence of receiving visual information

from the retina through the optic nerve. The optic nerve is

damaged as a result of a rise in intraocular pressure, which

causes the disease to start. Sudden visual disruption,

excruciating eye discomfort, hazy vision, inflamed eyes,

and haloes surrounding lights are some of its typical

symptoms (Singh et al. 2022b). The optic nerve head’s

structure, the thickness of the retinal nerve fiber layer, the

ganglion cell, and the inner plexiform layers all alter as a

consequence of the malfunctioning and loss of ganglion

cells. Glaucoma may permanently damage the optic nerve

if it is not treated, which would result in blindness. As a

result, early detection of glaucoma in its early stages sig-

nificantly reduces the risk of permanent blindness.

An image of the eye taken with a specialized fundus

camera is called a fundus image (Fig. 1). A fundus camera,

which comprises a microscope connected with a flash-en-

abled camera to capture the picture of the internal surface/

back of an eye, is used to obtain the retinal fundus image.

The fundus region’s structural features include the fovea,

macula, optic disc, and optic cup. It is a noninvasive

method that has been shown to be a useful instrument for

assessing a person’s ocular health. The optic disc shows up

as a bright yellowish area in colored fundus imaging, and it

may be further split into two components, the optic cup

(inner portion) and the neuroretinal rim (outer boundary).

The optic nerve cup or the enlargement of the optic cup

may be used to detect glaucoma in an eye. The cup-to-disc

ratio (CDR), which is the ratio of the diameter of the optic

cup to the diameter of the optic disc, is the best diagnostic

for glaucoma identification. According to physicians, an

eye with a CDR value of 0.65 or higher is classified as

having glaucoma (Juneja et al. 2020a). However, the pro-

cedures used by the doctors are exceedingly laborious,

time-consuming, and ineffective since they require manu-

ally separating the discs and cups from individual pho-

tographs. An experienced grader can measure, record, and

ultimately determine whether a patient has glaucoma in

roughly 8 min per eye on average. Additionally, glaucoma

is also diagnosed by ophthalmologists using a variety of

thorough retinal tests, including ophthalmoscopy, tonom-

etry, perimetry, gonioscopy, and pachymetry. Ophthal-

moscopy is the evaluation of the color and form of the optic

Table 1 List of extracted features

S.

No.

Features S.

No.

Features S.

No.

Features

1 CDR (cup–disc ratio) 13 mat0_avg 25 DWT (discrete wavelet

transform)

2 GLCM0 (grey-level co-occurrence

matrix)

14 mat45_avg 26 FOS (First-Order Statistical)

3 GLCM45 15 mat90_avg 27 Cum2est

4 GLCM90 16 mat135_avg 28 Coherence

5 GLCM135 17 GLRM 0 (Grey Level Run Length

Matrix)

29 Bicoherence

6 SRE (Short-Run Emphasis) 18 GLRM 45 30 Spectrum

7 LRE (Long-Run Emphasis) 19 GLRM 90 31 Energy

8 GLU (Grey-Level Uniformity) 20 GLRM 135 32 Homogeneity

9 RLU (Run Level Uniformity) 21 HOS (Higher-Order Spectral) 33 Correlation

10 RPC (Rational Polynomial Coefficient) 22 NRR (Neuro-Retinal Rim) 34 Contrast

11 mat0 23 DDLS (Disc Damage Likelihood Scale) 35 Dissimilarity

12 mat45 24 HOC (Higher Order Cumulant) 36 Entropy
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nerve, while tonometry is the measurement of internal eye

pressure. Perimetry is the examination of the visual field;

gonioscopy is the measurement of the angle between the

iris and cornea; and pachymetry is the measurement of

corneal thickness. However, each of these methods

necessitates human labor and takes time (Juneja et al.

2020b). All of these methods require human labor, take

time, and might result in biased judgments from various

experts (vulnerable to human error). In order to get beyond

the restrictions of classical approaches, an automated

glaucoma diagnostic system is required. Nowadays, com-

puters are used in medical imaging as a noninvasive

Fig. 2 Framework of the suggested study for glaucoma identification
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Fig. 3 Layout of the

preprocessing of the images

(a) Glaucoma fundus image (b) Cropped image (c) Gray Image

(d) Green Channal (e) Histogram equalization (f) Adaptive median filter

(g) Healthy Image (h) Cropped Image (i) Gray Image

(j) Green Channal (k) Histogram equalization (l) Adaptive median filter

Fig. 4 a–f Preprocessing of Glaucoma image and g–l preprocessing of healthy image
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imaging modality to predict abnormalities. Therefore,

automated techniques based on computer-aided detection

and diagnosis (CADe/CADx) systems are preferable for

solving the identification issue. In order to reduce the

computational complexity, a computer-aided diagnostic

system may act as a supportive measure for the first

screening of glaucoma for diagnosis purposes. Conse-

quently, a computer-aided diagnostic (CAD) system that

may serve as a second opinion for clinicians is required to

save valuable time for ophthalmologists. It has the poten-

tial to reduce the likelihood of misclassification, reduce the

burden on physicians, and improve inter- and intra-ob-

servability. CAD systems can use images of the retinal

fundus to predict glaucoma, pull out different kinds of

features, and classify retinal images as ‘‘normal’’ or

‘‘abnormal.’’

A number of individuals experience the retinal illness of

glaucoma each year. Due to increasing intraocular pressure

that damages the eye’s optic nerve, glaucoma is the most

common ocular condition that causes permanent blindness.

An experienced ophthalmologist would often examine the

dilated pupil in the eye to make a diagnosis of glaucoma

progression. However, this method is time-consuming and

difficult; thus, the problem may be handled using

automation that would speed up diagnosis by using the idea

of CAD (in the limelight of machine learning). The only

way to stop it from progressing into irreversible blindness

is through early identification. Treatment is often delayed

by the need for onerous manual input from ophthalmolo-

gists, such as disc and cup size. Therefore, it is crucial to

create quicker and more precise glaucoma diagnostic

techniques. Automation offers a more practical and effi-

cient answer to the glaucoma detection issue.

Any classification system that wants to get rid of

extraneous or redundant features must first pick its best

features. The classifier’s ability to predict outcomes may be

diminished by a feature collection that contains a signifi-

cant number of irrelevant or undesirable features. Because

of this, the best feature selection is crucial. This lowers the

cost of computation and increases the classifier’s predictive

ability. The most crucial phase of glaucoma detection

system design is feature selection. The primary goal of the

suggested technique is to shrink the feature space in order

to boost the classification system’s performance. EPO,

BFO, and their hybrid are the three algorithms used and

employed in this study for the problem at hand. To the best

of our knowledge, these algorithms have rarely been used

in this way in the detection of any human disease. Six

machine-learning classifiers that have been nominated for

evaluation are used to assess the characteristics chosen by

these three methods. Over fundus images from a different

benchmark datasets, the suggested methodology’s effec-

tiveness is evaluated. There have been 24 tests in all. In

many cases, the feature space is reduced to less than 50%.

This reduction may be as high as 86.111% (5 features are

returned from the original 36 features without significantly

compromising accuracy).

To the best of our knowledge, there is presently no

report on glaucoma identification using EPO, BFO, and

their hybrid. One of the objectives of our study is to close

this gap. A hybrid algorithm that combines BFO and EPO

for FS and classification in fundus images is implemented

in order to strike a balance between global and local search,

as well as between exploration and exploitation.

Our presented empirical study attempts to address all of

these issues, beginning with the selection of the best,

smallest, and most efficient features needed for the con-

firmation of this human eye-related, widespread disease,

glaucoma, as a subject and ending with incredible perfor-

mance and results. The primary contribution of this work

may be summed up as follows:

• Through an extensive literature survey, it is observed

that there is a lot of room for feature optimization for

glaucoma identification. Taking into account the ben-

efits of BFO and EPO, a BFOEPO hybrid FS strategy is

proposed. This strategy could get rid of redundant and

unnecessary features from the feature space, improving

classification accuracy and lowering the cost of com-

puting. Finally, we get the best subset of attributes

Table 2 List of parameters used in BFO algorithm

Parameter Description Parameter Description

Q Bacterial number @ j
d

The d th component of the @ j

@ A bacterium on the optimization

domain
@iðk; l;mÞ The j th bacterium in the k th chemotaxis l th elimination-dispersal

procedure

@ j The j th bacterium position DðjÞ A random value on [- 1, 1] for the j th bacterium

rattract and xattract Coefficients of attraction–

repulsion

h1repellant and
xrepellant

Coefficients of repulsion-repulsion

Bccð@;@iðk; l;mÞÞ Cell-to-cell communication value Qr Number of population members, have sufficient nutrients
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(features) from the combination of different standard

datasets. To the best of our knowledge, we are the

frontrunners in applying these algorithms for glaucoma

identification, thus filling a large research gap.

• When compared to recent state-of-the-art studies

discussed in Table 17, our customized dataset is also

one of the largest. Extensive experimentation has been

conducted, which involves the implementation of 24

tests. In addition to demonstrating the applicability of

the proposed method, a comprehensive study of a

number of parameters is presented. Along with ROC

curves, eight efficiency measurement parameters of six

machine learning classifiers have been computed to

indicate their efficient performance. This fivefold and

tenfold approach implementation effort also shows the

time taken by different processes.

• We have also shown the extended results in the form of

three tables depicting the best values generated for eight

efficiency measurement parameters (using six machine

learning classifiers) when the minimum number of

features was selected (in the case of all three algo-

rithms). This type of table is rarely observed in previous

state-of-the-art studies.

• Through this study, we provide the best features to

researchers; an efficient and rapid support system for

ophthalmologists (on which they can rely); and a

software-based tool for the human race to slow down

human eye sight loss by ensuring early, efficient, and

effective identification of this infection. The tool can be

tweaked to work with mobile and wearable medical

equipment, and it can be used in places where there

aren’t enough experienced medical practitioners.

This research study is organized as follows: The review

of the literature is presented in Sect. 2. Section 3 describes

the datasets and algorithms, and Sect. 4 describes the

results. Section 5 is dedicated to analysis of our work along

with findings and comparison with recent state-of-the-art

studies. Limitations and future directions are suggested in

(a) Flowchart of huddling progress    (b) Flowchart of the standard EPO algorithm

Fig. 5 a Flowchart of huddling

progress b Flowchart of the

standard EPO algorithm

Table 3 Experiment settings

Size of the population 5, 10, 15, 20

No. of features 36

No. of samples 3112

Upper Bound 1

Lower Bound 0

Times of elimination 2

Times of reproduction 4

Maximum length of swim 5

Rate of elimination 0.25

Mutation rate 0.08

Selection method Essential selection

Crossover type One-site crossover

Emperor penguin optimization algorithm and bacterial foraging optimization algorithm… 2437
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Sect. 6. Finally, the conclusion of the paper is illustrated in

Sect. 7.

2 Prior studies

The prime goal of FS is to improve the accuracy of a

classifier by minimizing the irrelevant information. Da

Silva et al. (2011) transformed the many-objective fitness

function into single-objective fitness by integrating classi-

fication accuracy and feature quantity. Yang and Honavar

(1998) introduced a single target fitness function in that

maximizes accuracy and lowers costs. Winkler et al. (2011)

have also used several fitness functions to improve classi-

fication accuracy. By using the best characteristics, the data

categorization problem may be solved with the greatest

amount of accuracy (Pandey and Kulhari 2018). Since

there are 2n alternative feature subsets for every n

attributes, choosing a meaningful feature subset from the

dataset is a difficult job (Emary et al. 2016). Consequently,

it might be challenging to identify the optimum feature

subset. It will get much harder as more features are intro-

duced. It is sometimes hard to locate the ideal set of traits

via exhaustive or brute-force search (Xue et al. 2015).

Heuristic search, complete search, random search, and

metaheuristic-based approaches are some alternative FS

methods (Dash and Liu 1997; Liu et al. 2014). Admired

metaheuristic methods like genetic algorithm (GA), dif-

ferential evolution (DE), particle swarm optimization

(PSO), ant colony optimization (ACO), and cuckoo search

(CS) are often employed to find the best feature subset.

Chen and Hsiao (2008) coupled actual GA with a support

vector machine (SVM) classifier to choose the pertinent

features. Derrac et al. (2009) used three distinct popula-

tions to introduce a GA-based cooperative co-evolutionary

method for FS. The focus has been on FS and instance

Table 4 Basic definition of the terminologies used

Term/Notation Basic definition

True positive A true positive is an outcome where the model correctly predicts the positive class

True negative A true negative is an outcome where the model correctly predicts the negative class

False positive A false positive is an outcome where the model incorrectly predicts the positive class

False negative A false negative is an outcome where the model incorrectly predicts the negative class

Sensitivity(Recall) Sensitivity in Machine Learning can be described as the metric used for evaluating a model’s ability to predict

the true positives of each available category

Specificity Specificity itself can be described as the algorithm/model’s ability to predict a true negative of each category

available

Accuracy Accuracy is actually the proportion of true results

Precision It is defined as the ratio of correctly classified positive samples (True Positive) to a total number of classified

positive samples

F1-score The F1 score is defined as the harmonic mean of precision and recall

Matthews correlation

coefficient (MCC)

The Matthews correlation coefficient (MCC) is a statistical rate which produces a high score only if the

prediction obtained good results in all of the four confusion matrix categories (true positives, false negatives,

true negatives, and false positives)

Kappa score Cohen’s kappa is a metric often used to assess the agreement between two raters

Logistic Regression(LR) Using a given collection of independent factors, it is used to predict the categorical dependent variable. It

forecasts the value of a categorical dependent variable. It can be either Yes or No, 0 or 1, true or False, etc.,

and however, probability values between 0 and 1 are shown

Random Forest(RF) It constructs decision trees from data samples, obtains the forecast from each, and then picks the optimal option

by voting. It is an ensemble approach that is superior than a single decision tree since averaging the results

reduces over-fitting

Decision Tree (DT) It displays the predictions generated by a sequence of feature-based splits using a flowchart resembling a tree

structure. It begins with a node at the root and concludes with a choice made by leaves

K-Nearest Neighbor (KNN) It utilizes multiple-class data to predict the categorization of a new sample point. It is nonparametric because it

makes no assumptions about the analyzed data; the model is derived from the data

Support vector machine

(SVM)

A SVM model is essentially a representation of several classes in a hyperplane of multidimensional space.

SVM will create the hyperplane in an iterative way so that the error may be reduced. The objective of SVM is

to partition datasets into classes in order to identify the maximum marginal hyperplane (MMH)

Ensemble It is a machine learning approach that integrates many base models into one best prediction model. Instead of

creating a single model and hope it is the most accurate prediction possible, ensemble approaches take into

account a multitude of models and average them to get a final model

2438 L. K. Singh et al.
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Table 5 Feature selection on population size 5, 10, 15 and 20 for k-fold cross-validation

No. of

features

No. of

iteration

Population

size

Features

selected

Features number Fitness

value

Execution

Time

Experiment 1: Fitness value taken on different iteration interval for population size 5(fivefold)

36 100 5 5 12, 18, 27, 31, 33 0.894 0.574

36 200 5 4 22, 31, 32, 36 1.014 1.108

36 300 5 4 1, 23, 24, 36 1.167 2.073

36 400 5 4 10, 15, 16, 25 1.267 2.506

36 500 5 4 3, 4, 7, 29, 33 0.979 3.184

Experiment 2: Fitness value taken on different iteration interval for population size 5(tenfold)

36 100 5 4 4, 11, 15, 29 1.026 0.309

36 200 5 5 6, 11, 16, 32, 33 1.111 1.414

36 300 5 4 4, 5, 18, 25 1.109 1.744

36 400 5 5 9, 16, 20, 26, 36 1.127 2.570

36 500 5 5 3, 10, 13, 23, 28 0.971 3.479

Experiment 3: Fitness value taken on different iteration intervals for population size 10(fivefold)

36 100 10 10 4,10,14,15,18,19,24,28,33,36 0.009 0.542

36 200 10 9 1,5,8,11,13,19,21,22,25 0.009 2.446

36 300 10 9 7,10,11,13,18,21,25,26,31 0.010 3.026

36 400 10 10 1,2,12,17,18,19,22,31,32,33 0.007 4.539

36 500 10 9 4,7,10,11,13,18,20,25,34 0.009 5.718

Experiment 4: Fitness value taken on different iteration interval for population size 10(tenfold)

36 100 10 8 4,7,8,14,17,20,25,28 0.009 1.247

36 200 10 10 6,7,8,13,14,15,17,21,25,35 0.009 1.095

36 300 10 8 2,8,15,21,22,27,30,35 0.008 3.593

36 400 10 9 6,7,9,12,15,17,20,24,29 0.010 4.540

36 500 10 9 2,6,7,13,27,33,34,35,36 0.009 5.055

Experiment 5: Fitness value taken on different iteration interval for population size 15(fivefold)

36 100 15 14 1,5,7,11,12,13,14,16,17,21,26,31,33,34 0.008 1.487

36 200 15 13 1,3,4,7,8,9,12,17,20,24,27,31,32 0.007 2.948

36 300 15 15 5,9,10,12,14,15,16,22,24,27,29,30,32,34,36 0.009 4.280

36 400 15 15 1,5,7,9,11,13,17,19,21,22,24,26,29,32,34 0.008 8.006

36 500 15 12 3,9,10,11,14,20,22,23,27,28,30,31 0.008 4.914

Experiment 6: Fitness value taken on different iteration intervals for population size 15(tenfold)

36 100 15 12 3,4,5,8,11,12,17,23,27,28,33,35 0.007 1.074

36 200 15 14 2,8,9,12,19,21,23,24,26,27,30,31,34,35 0.008 3.054

36 300 15 13 1,2,4,6,11,21,24,25,26,27,32,34,36 0.009 4.861

36 400 15 13 3,7,12,14,17,18,20,28,29,30,32,35,36 0.008 5.662

36 500 15 13 3,5,12,13,16,20,22,25,29,31,32,34,35 0.008 6.150

Experiment 7: Fitness value taken on different iteration intervals for population size 20(fivefold)

36 100 20 15 3,4,6,10,11,12,15,16,18,20,22,24,28,32,36 0.008 1.026

36 200 20 12 2,4,6,8,10,15,16,20,21,27,28,30 0.008 4.465

36 300 20 15 2,4,8,9,10,11,14,15,18,19,25,27,30,35,36 0.007 5.183

36 400 20 14 1,3,4,7,9,10,13,19,21,26,28,30,31,34 0.009 7.652

36 500 20 15 3,4,5,9,10,17,18,19,21,22,26,27,28,33,34 0.007 7.487

Experiment 8: Fitness value taken on different iteration intervals for population size 20(tenfold)

36 100 20 14 4, 12, 13, 16, 19, 21, 22, 24, 27, 29, 30, 31, 34, 35 0.893 2.235

36 200 20 17 1, 2, 6, 7, 8, 9, 12, 16, 19, 20, 21, 24, 26, 32, 33,

35, 36

1.002 2.462

36 300 20 14 1, 5, 11, 13, 16, 18, 19, 21, 22, 27, 28, 29, 33, 36 0.906 6.715

36 400 20 14 2, 5, 6, 9, 12, 14, 15, 17, 24, 25, 26, 28, 34, 36 1.015 9.227
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utilizing a single process. As a result, it shortens compu-

tation time. Feng and Li (2008) used chaos theory and

evolutionary algorithms to provide highly accurate and

speedy patient information retrieval. Wu et al. (2018)

produced an outcome for the grading of gliomas by using a

semiautomatic segmentation technique. Additionally,

genetic programming (GP) has been used to do FS (Muni

et al. 2006). The majority of GP techniques use a tree-

based representation where the properties of the leaf nodes

are selected. A wrapper-based general purpose strategy that

uses the naive Bayes algorithm for classification has been

published by Neshatian and Zhang (2009). Additionally,

PSO has been used for FS (continuous and binary). In

binary PSO, bit strings 1 and 0 signify the selection and

non-selection of respective features, respectively. The

continuous PSO uses a threshold to determine whether or

not to choose a certain feature (attribute). Lane et al. (2013)

coupled the advantages of PSO with statistical clustering

for FS. Later, they (Lane et al. 2013) enhanced the per-

formance of the preexisting approach by allowing the

selection of several features from the same group. Ke et al.

(2008) used constrained pheromone values to choose rel-

evant parameters while using ACO. O’Boyle et al. (2008)

developed an ACO-based FS method and enhanced the

SVM’s parametric values to identify the best feature sub-

set. The chance that a certain feature would be picked or

not has also been determined using a weighted method.

Khushaba et al. (2008) created a hybrid FS method where

DE selects the ideal feature subset from the output of ACO.

A combined ACO approach with two colonies for attribute

selection has been given by Vieira et al. (2010), in which

the first colony estimates the requisite number of features

and the second colony selects particular features. Ke et al.

(2010) proposed many-objective ACO to hasten the con-

vergence of filter FS. Additionally, an adaptive DE was

used for FS, with parameters that self-adapted to the dif-

ficulties (Ghosh et al. 2013). Rodrigues et al. (2014)

introduced a novel FS method that is based on the binary

version of the bat algorithm and the optimum-path forest.

Using a memetic wrapper and Relief-F algorithm, a two-

stage feature selection technique has graded each feature

(Yang and Deb 2009). Furthermore, a memetic wrapper is

used to choose the ideal combination of traits. Gu et al.

(2018) selected the important features and dimensionality

reduction with competitive swarm optimizer (CSO), a

relatively recent PSO variant. A binary black hole

algorithm (BBHA) was employed to solve the FS in bio-

logical data (Pashaei and Aydin 2017). Additionally,

Emary et al. (2016) developed a binary variant of the grey

wolf optimization (GWO) to increase the efficacy of the

classifier. Mafarja and Mirjalili (2017) suggested a hybrid

meta-heuristic FS strategy based on the whale optimization

algorithm (WOA) and simulated annealing (SA), where SA

method is implemented in WOA, in order to improve the

exploitation process. Tang et al. (2016) devised two FS

selection strategies, namely maximum discrimination

(MD) and MD-2 techniques using Jefreys multi-hypothesis

(JMH) divergence, to prevent the early convergence of

BPSO-SVM FS. Kang et al. (2016) suggested an outlier-

insensitive hybrid approach that both selects the suit-

able feature subset and recognizes outliers in data-driven

diagnostics. Barani et al. (2017) used a binary-inspired

gravitational search algorithm (bGSA) to solve the FS

objective. Mafarja et al. (2018) used binary dragonfly

optimization to choose the ideal subset of features using

time-varying transfer functions. To address the problem of

FS, a novel chaotic salp swarm approach has also been

described (Sayed et al .2018). Shunmugapriya and Kan-

mani (2017) created a hybrid FS approach based on ACO

and bee colony optimization (BCO) to stop ant stagnation

behavior and choose the most excellent features subset.

Jayaraman and Sultana (2019) created a unique hybrid

metaheuristic strategy based on the efficiency of artificial

gravitational cuckoo search and particle Bee optimized

associative memory neural network in order to solve the FS

dilemma. Ibrahim et al. (2019) developed a novel hybrid

metaheuristic method named SSAPSO based on the slap

swarm algorithm (SSA) and particle swarm optimization to

extract the best subset of features from a high-dimensional

dataset (PSO). Prabukumar et al. (2019) presented an

excellent diagnostic model based on cuckoo search char-

acteristics for the early detection of lung cancer. Sayed

et al. (2019) introduced the chaotic crow search algorithm

(CCSA), a novel metaheuristic optimization method, to

extract the best features from a dataset. Mafarja et al.

(2019) presented on a binary version of the grasshopper

optimization approach based on sigmoid and V-shaped

transfer functions for FS. Nematzadeh et al.’s (2019) fre-

quency-based selection technique also uses mutual con-

gestion to identify signals. The binary cuckoo search

approach was developed by Rodrigues et al. (2013) to

choose the ideal set of attributes. The Lévy fight is used in

Table 5 (continued)

No. of

features

No. of

iteration

Population

size

Features

selected

Features number Fitness

value

Execution

Time

36 500 20 13 3, 7, 8, 11, 16, 19, 20, 22, 23, 27, 30, 34, 36 0.830 11.230
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Table 6 Performance of different five classifiers including ensemble on population size 5,10,15,20 (k-fold cross validation approach)

Classifier Specificity Sensitivity Precision F1-

score

Kappa

score

MCC AUC

value

Accuracy Execution

Time

Two tailed test

(p-value)

Experiment1: Using fivefold cross validation measure the classifier performance on 5 selected features of minimum cost 0.89409 (population
size5)

Logistic Regression

(LR)

0.970 0.652 0.927 0.766 0.665 0.687 0.811 0.8545 0.282 0.070141

Random Forest(RF) 0.860 0.782 0.763 0.773 0.639 0.639 0.822 0.8319 9.134 0.068455

Decision Tree(DT) 0.931 0.748 0.862 0.801 0.699 0.703 0.839 0.8644 0.272 0.065915

K-nearest neighbor

(KNN)

0.912 0.722 0.826 0.770 0.652 0.655 0.817 0.8429 0.406 0.069217

Support vector

machine (SVM)

0.950 0.614 0.877 0.723 0.603 0.624 0.802 0.8279 0.741 0.071545

Ensemble 0.948 0.727 0.891 0.801 0.703 0.711 0.838 0.8679 0.483 0.066062

Experiment 2: Using tenfold cross-validation measure the classifier performance on 5 selected features of minimum cost 0.97123 (population
size5)

LR 0.978 0.698 0.950 0.805 0.718 0.736 0.836 0.8765 0.372 0.066358

RF 0.941 0.805 0.888 0.844 0.761 0.763 0.873 0.8916 20.086 0.061068

DT 0.922 0.792 0.854 0.822 0.725 0.727 0.857 0.8748 0.357 0.063311

KNN 0.962 0.782 0.923 0.847 0.770 0.776 0.872 0.8968 0.431 0.061207

SVM 0.942 0.793 0.888 0.838 0.838 0.756 0.868 08,881 1.048 0.061762

Ensemble 0.924 0.846 0.865 0.855 0.774 0.774 0.885 0.8957 0.540 0.05943

Experiment 3: Using fivefold cross-validation measure the classifier performance on 10 selected features of minimum cost 0.00798 (population
size10)

LR 0.968 0.637 0.922 0.753 0.648 0.671 0.803 0.8476 0.805 0.071388

RF 0.883 0.757 0.788 0.772 0.646 0.646 0.820 0.8371 10.737 0.068759

DT 0.869 0.637 0.737 0.703 0.521 0.524 0.813 0.8044 0.278 0.069832

KNN 0.903 0.591 0.769 0.698 0.512 0.545 0.802 0.8080 0.348 0.071545

SVM 0.924 0.602 0.820 0.694 0.557 0.572 0.823 0.8064 0.702 0.068303

Experiment 4: Using tenfold cross-validation measure the classifier performance on 8 selected features of minimum cost 0.00855 (population
size10)

LR 0.959 0.711 0.910 0.798 0.704 0.715 0.835 0.8690 0.567 0.066506

RF 0.950 0.849 0.908 0.877 0.811 0.812 0.900 0.9136 23.358 0.057433

DT 0.946 0.820 0.897 0.857 0.781 0.783 0.883 0.9003 0.357 0.059710

KNN 0.957 0.778 0.914 0.840 0.760 0.765 0.868 0.8922 0.416 0.061762

SVM 0.947 0.778 0.895 0.832 0.746 0.751 0.863 0.8858 1.033 0.062462

Ensemble 0.905 0.730 0.815 0.770 0.690 0.652 0.817 0.8412 0.542 0.069217

Experiment 5: Using fivefold cross-validation measure the classifier performance on 13 selected features of minimum cost 0.0079 (population
size 15)

LR 0.949 0.719 0.891 0.796 0.697 0.706 0.834 0.8655 0.432 0.066654

RF 0.833 0.820 0.740 0.778 0.639 0.642 0.827 0.8290 10.006 0.067701

DT 0.848 0.754 0.741 0.747 0.600 0.600 0.801 0.8140 0.407 0.071703

KNN 0.933 0.765 0.868 0.813 0.716 0.720 0.849 0.8719 0.359 0.064458

SVM 0.926 0.763 0.857 0.808 0.707 0.709 0.845 0.8673 0.629 0.065038

Ensemble 0.871 0.671 0.750 0.709 0.555 0.557 0.802 0.8083 0.403 0.071545

Experiment 6: Using tenfold cross validation measure, the classifier performance on 12 selected features of minimum cost 0.00792 (population
size 15)

LR 0.945 0.738 0.885 0.805 0.708 0.715 0.841 0.8696 2.123 0.065622

RF 0.938 0.843 0.888 0.865 0.790 0.791 0.890 0.9038 22.762 0.058758

DT 0.920 0.740 0.842 0.788 0.678 0.681 0.830 0.8545 0.427 0.06725

KNN 0.953 0.778 0.905 0.837 0.754 0.759 0.865 0.8893 0.775 0.062181

SVM 0.929 0.767 0.862 0.812 0.713 0.716 0.848 0.8702 1.141 0.064608

Ensemble 0.899 0.814 0.823 0.819 0.715 0.715 0.857 0.8684 0.580 0.063311
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the binary cuckoo search method to explore the whole

search space. Lévy fight produces a random walk and

follows the heavy tailed probability distribution. As a

consequence, more iterations result in larger step sizes,

which affect the convergence accuracy. All metaheuristics-

based FS strategies often suffer from stability issues since

different sets of features are selected in different runs. It

was shown that conventional and metaheuristic-based FS

methods suffer from stability issues and are computation-

ally expensive. The metaheuristic FS methods show pre-

mature convergence due to a lack of variance.

The extraction of wavelet features was implemented in

this research (Singh et al. 2016), and then genetic feature

optimization, many learning methods, and different

parameter settings were included. This research uses fea-

ture extraction from the segmented, blood vessel-free optic

disc to increase identification accuracy. They justified that

wavelet characteristics of the segmented optic disc image

are clinically more relevant in comparison with features of

the full or sub-fundus image. In this article (Khan et al.

2022), authors suggested method takes advantage of image

denoising of digital fundus pictures by minimize the

statistics of wavelet coefficients of glaucoma images using

a non-Gaussian bivariate probability distribution function.

The least square support vector machine classifier, which

uses a variety of kernel functions, is then fed the chosen

features. This study makes use of nonparametric GIST

descriptor and optic disc (Raghavendra et al. 2018). After

revolutionary area-based optic disc segmentation, the

Radon transformation was proposed in the approach (RT).

Modified census transformation was used to account for

changes in the light levels of the Radon-converted picture

(MCT). The spatial envelope energy spectrum was then

extracted from the MCT pictures using the GIST descrip-

tor. Utilizing locality-sensitive discriminant analysis

(LSDA), the resultant GIST descriptor dimension was

lowered, and then, different FS and ranking algorithms are

used. In this study (Maheshwari et al. 2017), practitioners

provide an innovative technique for an automated glau-

coma diagnosis using digital fundus pictures. The iterative

variational mode decomposition (VMD) approach is used

for picture decomposition. From VMD components, a

number of properties were retrieved, including fractal

dimensions, Yager entropy, Renyi entropy, and Kapoor

entropy. The discriminating features were chosen using the

ReliefF method, and the least square-SVM uses these

features to classify the data. The approach described in the

study uses information from higher-order spectra (HOS),

trace transform (TT), and discrete wavelet transform

(DWT) (Krishnan and Faust 2013). In this study, the SVM

classifier with a polynomial order 2 kernel function per-

formed well in differentiating between glaucoma and

healthy pictures.

The automated glaucoma diagnosis approach presented

in this work uses quasi-bivariate variational mode decom-

position (QB-VMD) (Agrawal et al. 2019). This approach

is employed to deconstruct 505 fundus pictures altogether,

yielding band-limited sub-band images (SBIs) centered on

a certain frequency. These SBIs are fault-free and have no

issues with mode mixing. The most helpful elements that

effectively acquired the necessary data are what determine

how accurately glaucoma is detected. QB-VMD SBIs are

Table 6 (continued)

Classifier Specificity Sensitivity Precision F1-

score

Kappa

score

MCC AUC

value

Accuracy Execution

Time

Two tailed test

(p-value)

Experiment 7: Using fivefold cross-validation measure, the classifier performance on 15 selected features of minimum cost 0.00715 (population
size 20)

LR 0.939 0.733 0.875 0.798 0.697 0.703 0.836 0.8644 0.523 0.066358

RF 0.858 0.828 0.771 0.799 0.676 0.677 0.843 0.8476 10.588 0.065329

DT 0.789 0.827 0.693 0.754 0.592 0.598 0.808 0.8030 0.308 0.070607

KNN 0.898 0.705 0.800 0.749 0.619 0.622 0.801 0.8279 0.395 0.071703

SVM 0.909 0.765 0.829 0.796 0.686 0.687 0.837 0.8568 0.697 0.06621

Ensemble 0.865 0.706 0.723 0.598 0.502 0.501 0.805 0.8045 0.416 0.071075

Experiment 8: Using tenfold cross validation measure, the classifier performance on 13 selected features of minimum cost 0.8308 (population
size 20)

LR 0.968 0.817 0.938 0.873 0.808 0.813 0.893 0.9136 0.938 0.058358

RF 0.948 0.833 0.903 0.867 0.795 0.797 0.891 0.9067 27.062 0.058624

DT 0.953 0.860 0.914 0.886 0.824 0.825 0.906 0.9194 0.5300 0.05665

KNN 0.960 0.809 0.922 0.862 0.791 0.794 0.885 0.9055 0.5715 0.05943

SVM 0.957 0.841 0.920 0.879 0.814 0.816 0.899 0.9154 1.321 0.057564

Ensemble 0.910 0.885 0.850 0.868 0.789 0.789 0.898 0.9015 0.801 0.057696
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used to extract 70 features. The ReliefF approach selects

the extracted features. The dimensionality of selected

characteristics is then decreased by feeding them through

singular value decomposition. The least square SVM

classifier is then used to classify the reduced features.

Glaucoma detection is performed using time-invariant

feature cup-to-disc ratio and anisotropic dual-tree complex

wavelet transform features (Kausu et al. 2018). Fuzzy

C-Means clustering is employed for optic disc segmenta-

tion, while Otsu’s thresholding is used for optic cup seg-

mentation. The extraction of GIST and PHOG

characteristics from preprocessed fundus pictures was the

main emphasis of this paper (Gour and Khanna 2020). To

choose relevant characteristics, the extracted features are

sorted and chosen using principal component analysis

(PCA).

Super-pixel sorting for glaucoma screening has been

done using center-surround data and histograms (Cheng

et al. 2013). Fractal dimensions (FDs) and power spectral

characteristics were combined with a SVM by Kolar and

Jan (2008). Pixel intensities and the fast Fourier transform

(FFT) were employed by Nyul (2009). Raja and Gan-

gatharan (2013) employed complicated wavelet transform

and higher-order spectra. They employed wavelet packet

decomposition (WPD) together with entropy and energy

geographies as a feature. The DWT and histogram func-

tions have been proposed by Kirar and Agrawal (2018) for

this infection identification. 2D-DWT has been suggested

by Kirar and Agrawal (2019) to separate glaucoma from

healthy pictures, and classification has been carried out

using histogram-based features. Glaucoma fundus pictures

were employed by Yadav et al. (2014) for texture-based

feature extraction and categorization. Maheshwari et al.

(2016) used empirical wavelet transform (EWT) to

deconstruct fundus pictures. The least square-SVM has

been shown to be useful for applying on fundus pictures in

two categories in the newly published research on glau-

coma diagnosis using fundus images (Martins et al. 2020;

Parashar and Agrawal 2020). The dimensions of the optic

disc and optic cup were calculated and used to estimate the

CDR (cup-to-disc ratio) using fundus images in this study

(Shanmugam et al. 2021). The initial step was to segment

the optic disc (OD) and optic cup (OC). The second goal of

the study was to reduce the number of features and errors,

which are two conflicting objectives. Phases such as con-

trast amplification, picture collection, feature extraction,

and glaucoma assessment are included in the suggested

identification system. During the feature extraction phase,

the OD and OC borders were segmented. In order to

evaluate glaucoma in the images, the CDR ratio of an

overused image is then determined. The glaucomatous

photos have then been categorized using a random forest

classifier according to the CDR values. Different versions Ta
bl
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of U-Net that have been tweaked have been used to assess

the performance of the suggested technique. Deformable

U-Net, Full-Deformable U-Net, and Original U-Net have

all been used to assess the performance of the suggested

approach. In this study (Mrad et al. 2022), the authors

reported an automated technique for Smartphone Captured

Fundus Images (SCFIs) glaucoma screening. The installa-

tion of an optical lens for retinal image capture results in a

mobile-assisted glaucoma screening system. The central

idea was based on vessel displacement inside the optic disk

(OD), where the vessel tree is adequately represented using

SCFIs. Within this aim, the most significant contribution

consists of proposing: (1) a robust method for finding

vessel centroids in order to accurately model vessel dis-

tribution and (2) a feature vector that reflects two promi-

nent glaucoma biomarkers in terms of vessel displacement.

In this work (Deperlioglu et al. 2022), explainable artificial

intelligence (XAI) was used to provide a hybrid solution

with image processing and deep learning for Glaucoma

screening. Enhancing colored fundus imaging data were

performed using histogram equalization (HE) and contrast-

limited adaptive HE (CLAHE). An explainable CNN uti-

lized the augmented image data for the diagnosis. The XAI

was accomplished by Class Activation Mapping (CAM),

which enabled heat map-based explanations for the CNN’s

picture interpretation. Using three public retinal image

datasets, the performance of the hybrid approach was

examined. The optic cup (OC) borders in retinal fundus

pictures are not very clear (Haider et al. 2022); as a result,

correct segmentation of the OC is extremely difficult, and

the OD segmentation performance must also be enhanced.

For precise pixel-wise segmentation of the OC and OD,

researchers suggested new networks: separable linked

segmentation network (SLS-Net) and separable linked

segmentation residual network (SLSR-Net). In SLS-Net

and SLSR-Net, it is possible to preserve a big final feature

map, which improves the performance of OC and OD

segmentation by limiting spatial information loss. SLSR-

Net uses external residual connections to enable features.

Both suggested networks have a detachable convolutional

connection to increase computational performance and

decrease network cost. On four publicly accessible retinal

fundus image datasets, the segmentation abilities of the

proposed networks were examined.

In this glaucoma detection approach, Elmoufidi et al.

2022, the Regions of Interest (ROI) were divided into

components (BIMFs ? residue) using the Bi-dimensional

Empirical Mode Decomposition (BEMD) technique. To

extract features from deconstructed BEMD components,

VGG19 was applied. The same ROI features are combined

into a bag of features, and principal component analysis

(PCA) are used to reduce the feature dimension. To SVM,

this condensed subset of characteristics is sent. ACRIMA

and REFUGE were used for training, while RIM-ONE,

ORIGA-light, Drishti-GS1, and sjchoi86-HRF were used

for testing together with a portion of ACRIMA and

REFUGE. An strategy based on the wrapper method

employing soft-computing methods and a Kernel-Extreme

Learning Machine (KELM) classifier were recommended

for glaucoma diagnosis in this study by Balasubramanian

and Ananthamoorthy (2022). The nature-inspired algo-

rithms use a correlation-based feature selection (CFS)

method to extract three feature sub-sets from the prepro-

cessed fundus pictures. The salp-swarm optimization-based

KELM, which determines the ideal parameters of the

KELM classifier network, was trained using the chosen

features. The objective of this study was to develop

machine learning (ML) models with high predictive power

and interpretability for glaucoma diagnosis based on mul-

tiple candidate features extracted from the examination

retinal nerve fiber layer (RNFL) thickness and visual field

(VF) (Kim et al. 2017). Using a process of feature evalu-

ation, they then chose the optimal characteristics for clas-

sification (diagnosis). Authors considered C5.0, random

forest (RF), support vector machine (SVM), and k-nearest

neighbor as ML algorithms (KNN). Using multiple metrics,

we analyzed the models’ quality. They utilized 100 data

cases as the test dataset and 399 data cases as the training

and validation datasets. The random forest model performs

the best. Clinicians may use the prediction findings to make

more informed recommendations. This article examines the

many problems involved with multi-objective optimization

and the current efforts made to overcome these obstacles

(Chand and Wagner 2015). It also describes how the cur-

rent methodologies and body of knowledge have been used

Table 8 The maximum values of the performance metrics (in case of EPO algorithm)

Max

specificity

(Classifier)

Max sensitivity

(Classifier)

Max

precision

(Classifier)

Max F1-

score

(Classifier)

Max Kappa

score

(Classifier)

Max MCC

(Classifier)

Max AUC

value

(Classifier)

Max

accuracy

(Classifier)

Minimum

execution

time

0.978(LR) 0.885(Ensemble) 0.950(LR) 0.886(DT) 0.824(DT) 0.816(SVM) 0.906(DT) 0.9194(DT) 0.272(DT)

Overall summary of feature selection using EPO

This table depicts the best results generated on population size 5, 10, 15 and 20 for K-fold approach (5- and 10-)
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Table 9 Feature selection on population size 5, 10, 15 and 20 for k-fold cross-validation (k = 5 and 10)

No. of

features

No. of

iteration

Population

size

Features

selected

Features number Fitness

value

Execution

time

Experiment 1: Fitness value taken on different iteration intervals for population size 5(fivefold)

36 100 5 7 1,2,8,10,14,27,32 0.01109 3.012

36 200 5 11 1,6,15,20,22,23,24,25,30,31,34 0.00988 2.914

36 300 5 10 6,9,12,18,23,31,32,34,35,36 0.00841 2.847

36 400 5 6 13,14,15,28,31,35 0.00842 2.723

36 500 5 10 4,5,6,14,16,18,23,24,29,35 0.00975 3.028

Experiment 2: Fitness value taken on different iteration interval for population size 5(fivefold)

36 100 5 8 2,5,6,13,21,27,30,35 0.00935 2.950

36 200 5 10 2, 4, 5, 8, 10, 11, 13, 25, 34, 35 0.01033 2.995

36 300 5 6 3,14,17,18,24,27 0.00991 2.824

36 400 5 9 1, 8, 16, 17, 19, 29, 32, 33, 35 0.00999 2.999

36 500 5 6 10, 15, 20, 26, 28, 35 0.00994 3.062

Experiment 3: For population size 10 and on the selected features, different machine learning classifiers using the fivefold cross-validation for
training and testing

36 100 10 14 5,7,8,10,11,14,15,18,21,22,25,26,28,30 0.01000 16.063

36 200 10 14 6,7,10,12,13,19,26,28,29,30,31,33,34,35 0.00988 15.947

36 300 10 17 1,2,4,5,6,8,9,10,11,12,16,18,19,25,26,27,28 0.01071 15.946

36 400 10 16 2,4,5,6,10,12,17,18,19,21,27,31,33,34,35,36 0.00910 15.746

36 500 10 18 1,4,5,6,7,13,14,15,18,20,25,26,27,28,30,32,34,36 0.01080 16.143

Experiment 4: For population size 10 and on the selected features different machine learning classifiers using the tenfold cross-validation for
training and testing

36 100 10 17 2,5,9,10,12,14,17,19,23,27,30,31,32,33,34,35,36 0.00907 15.978

36 200 10 17 1,3,4,11,12,13,14,16,18,19,24,25,26,27,28,34,35 0.00991 15.875

36 300 10 17 2,3,4,6,7,9,12,13,18,19,20,21,24,25,31,32,33 0.00863 16.092

36 400 10 16 3,4,5,10,13,14,16,19,22,23,25,26,27,29,30,34 0.00929 15.955

36 500 10 13 2,4,5,7,8,11,14,23,25,27,28,29,32 0.00894 16.254

Experiment 5: For population size 15 and on the selected features different machine learning classifier using the fivefold cross validation for
training and testing

36 100 15 20 1,2,6,9,10,12,13,16,18,22,24,26,28,29,30,33,34,35,36 0.00956 31.692

36 200 15 20 3,7,8,10,11,12,13,14,17,18,21,22,25,26,28,29,30,31,34,35 0.01055 30.872

36 300 15 20 4,5,6,8,9,11,13,15,16,17,20,21,22,23,27,28,31,33,35,36 0.00954 31.443

36 400 15 23 1,2,3,4,5,6,7,8,12,15,18,19,20,21,22,26,28,29,30,33,34,35,36 0.00912 31.583

36 500 15 23 1,4,9,10,13,15,17,18,19,21,23,25,26,27,28,29,30,31,32,33,34,35,36 0.00857 31.008

Experiment 6: For population size 15 and on the selected features different machine learning classifier using the tenfold cross-validation for
training and testing

36 100 15 20 2,3,4,8,11,13,14,19,20,21,22,23,24,26,27,29,30,31,34,35 0.00853 31.265

36 200 15 19 3,4,5,7,8,13,16,17,18,19,20,25,30,31,32,33,34,35,36 0.01040 32.113

36 300 15 21 1,2,4,5,6,8,14,15,16,18,21,23,24,25,27,28,30,31,32,34,35 0.00880 31.047

36 400 15 22 1,2,3,8,10,12,13,15,17,18,20,21,22,24,25,26,28,30,32,33,34,35 0.00913 30.825

36 500 15 19 1,4,6,7,8,10,11,13,17,18,20,24,25,26,28,31,32,35,36 0.00994 31.595

Experiment 7: For population size 20 and on the selected features different machine learning classifiers using the fivefold cross-validation for
training and testing

36 100 20 26 1,2,3,4,5,6,7,8,9,10,11,16,17,18,19,20,21,25,26,27,,30,31,,33,34,35,36 0.00851 61.385

36 200 20 25 3,4,7,8,9,10,12,13,15,16,17,21,22,23,24,25,26,27,29,30,31,32,33,34,36 0.00883 61.671

36 300 20 26 2,3,6,7,8,9,10,11,12,13,14,15,16,19,20,21,22,23,24,25,27,29,31,32,33,34 0.00922 60.486

36 400 20 26 1,2,3,4,5,6,7,9,10,11,13,14,15,18,19,21,22,24,25,26,27,28,29,31,33,34 0.00997 60.435

36 500 20 25 2,3,5,6,7,8,9,10,11,12,14,17,21,22,25,26,27,28,29,31,32,33,34,35,36 0.00853 60.384
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to meet the many multi-objective situations in the actual

world. The paper concludes by highlighting future research

prospects associated with multi-objective optimization. In

this article, the authors describe what is often used, whether

it algorithms or test issues, so that the reader is aware of the

benchmarks and other possibilities.

Researchers, Maheshwari et al. (2019), present a novel

approach for glaucoma diagnosis based on bit-plane slicing

(BPS) and local binary patterns (LBP). Initially, the

method divides the red (R), green (G), and blue (B) chan-

nels of the input color fundus picture into bit planes. Then,

they extracted LBP-based statistical features from each of

the individual channels’ bit planes. Then, the characteris-

tics of the individual channels are supplied independently

to three distinct SVMs for categorization. Finally, the

decisions from the individual SVMs are combined at the

decision level in order to classify the input fundus image as

either normal or glaucoma. Using tenfold cross validation,

the experimental findings indicate that the suggested

method can distinguish between normal and infected cases

with an accuracy of 99.30%. This paper presents a model

for glaucoma diagnosis that employs multiple features

(such as inferior, superior, nasal, and temporal region areas

and cup-to-disc ratio) to detect glaucoma in retinal fundus

images (Singh et al. 2021). Using support vector machine

(SVM), the proposed model provides a maximum classi-

fication accuracy of 98.60%. In contrast to other existing

models such as SVM, K-nearest neighbors (KNN), and

Naive Bayes, the proposed model combines four machine

learning techniques to achieve a classification accuracy of

98.60%. CAD system utilizing machine learning (ML)

algorithms (for classification) and nature-inspired com-

puting (for feature selection/reduction) resolved glaucoma

detection problems (Singh et al. 2022c). Two novel two-

layered techniques (BA-BCS, BCS-PSO) based on Particle

Swarm Optimization (PSO), Binary Cuckoo Search (BCS),

and the Bat Algorithm (BA) were presented in this rec-

ommended empirical study. In addition, they have inde-

pendently examined the performances of BA, BCS, and

PSO. These five (single- and two-layered) approaches are

used to generate subsets of reduced features that, when

given to three machine learning (ML) classifiers, provide

the maximum accuracy. Using benchmark publicly acces-

sible datasets, ORIGA and REFUGE, as well as their

combinations, the proposed method is validated. In addi-

tion, the researcher’s community is provided with a mul-

titude of different possibilities, including trade-offs.

Following this extensive survey of prior premium

studies, we conclude that there is still a large scope for

working on effective feature selection through soft-com-

puting approaches for glaucoma screening, as very little

work has been implemented in this direction and newly

proposed algorithms are rarely used for this work. Fur-

thermore, our work is novel in that we extracted features

from different classes while also satisfying the subject

image count (selected for training and testing). The subject

images are a combination of different public datasets and

private images taken from the internet and hospitals located

near the authors’ home. This study implements innovative

BFO and EPO techniques and provides a hybrid method to

solve the drawbacks of metaheuristics and other transfor-

mation-based FS techniques. The performance of the pro-

posed approach is assessed using widely established

benchmark fundus pictures. The proposed method is used

to discover the optimal collection of features (characteris-

tics), with the main objective of enhancing classification

accuracy while limiting the number of features chosen and

the error rate. The best subset of features from different

benchmark datasets is created using specified and hybrid

data transformation procedures. We provide the best

qualities to researchers through this study: an efficient and

quick support system for ophthalmologists (that they can

rely on) and a software-based tool for the human race to

slow down human eye sight loss by ensuring early, effi-

cient, and effective diagnosis of this illness. The tool may

be modified to function with mobile and wearable medical

equipment, and it can be utilized in areas where there aren’t

enough skilled medical practitioners.

Table 9 (continued)

No. of

features

No. of

iteration

Population

size

Features

selected

Features number Fitness

value

Execution

time

Experiment 8: For population size 20 and on the selected features different machine learning classifiers using the tenfold cross-validation for
training and testing

36 100 20 23 2,3,5,6,7,9,14,15,16,18,19,22,24,25,26,27,28,29,30,31,33,34,35 0.00859 61.503

36 200 20 24 1,3,4,5,6,8,10,11,14,16,19,20,23,24,26,27,28,29,30,32,33,34,35,36 0.00786 60.646

36 300 20 21 2,4,6,10,11,13,14,16,17,19,21,22,24,28,29,30,31,32,33,34,36 0.00981 60.771

36 400 20 25 1,3,4,6,7,9,11,12,13,14,16,18,19,20,21,22,23,24,25,26,27,28,29,30,32 0.00910 60.632

36 500 20 25 1,5,6,8,9,10,12,13,14,15,16,18,19,20,21,25,26,27,29,30,31,32,34,35,36 0.00876 60.941
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Table 10 Performance of different five classifiers including ensemble on population size 5,10,15,20 (K-fold cross-validation approach)

Classifiers Specificity Sensitivity Precision F1-

score

Kappa

score

MCC AUC

value

Accuracy Execution

time

Two tailed test

(p-value)

Experiment 1: Using fivefold cross-validation measure, the classifier performance on 10 selected features of minimum cost 0.00841 (population
size5)

LR 0.938 0.705 0.869 0.869 0.670 0.679 0.964 0.8534 0.477 0.04953

RF 0.815 0.825 0.720 0.769 0.621 0.625 0.820 0.8192 11.35 0.068759

DT 0.898 0.762 0.812 0.786 0.669 0.670 0.830 0.8487 0.366 0.067251

KNN 0.905 0.729 0.817 0.770 0.649 0.652 0.817 0.8412 0.502 0.069217

SVM 0.932 0.730 0.861 0.790 0.685 0.690 0.831 0.8586 0.739 0.067101

Ensemble 0.847 0.738 0.736 0.737 0.585 0.585 0.803 0.8076 0.476 0.071388

Experiment 2: Using tenfold cross validation measure, the classifier performance on 6 selected features of minimum cost 0.00991 (population
size5)

LR 0.978 0.711 0.949 0.813 0.728 0.744 0.952 0.8806 0.945 0.050938

RF 0.945 0.877 0.902 0.889 0.827 0.828 0.911 0.9206 24.659 0.056005

DT 0.937 0.839 0.886 0.862 0.786 0.787 0.888 0.9020 0.453 0.059026

KNN 0.981 0.741 0.959 0.836 0.759 0.773 0.861 0.8939 0.502 0.062744

SVM 0.984 0.721 0.963 0.825 0.745 0.762 0.852 0.8881 1.269 0.064026

Ensemble 0.957 0.798 0.914 0.852 0.776 0.780 0.877 0.8991 0.691 0.060518

Experiment 3: Using fivefold cross validation measure, the classifier performance on 16 selected features of minimum cost 0.00910 (population
size 10)

LR 0.932 0.708 0.857 0.776 0.665 0.672 0.948 0.8505 0.544 0.051415

RF 0.831 0.801 0.733 0.766 0.621 0.623 0.816 0.8209 11.280 0.06937

DT 0.884 0.741 0.786 0.763 0.633 0.634 0.812 0.8319 0.375 0.06937

KNN 0.916 0.694 0.804 0.703 0.541 0.554 0.805 0.8089 0.477 0.071075

SVM 0.928 0.690 0.838 0.725 0.598 0.610 0.814 0.8232 0.873 0.069678

Ensemble 0.881 0.692 0.760 0.702 0.550 0.554 0.807 0.8077 0.501 0.070762

Experiment 4: Using tenfold cross validation measure, the classifier performance on 17 selected features of minimum cost 0.00863 (population
size 10)

LR 0.951 0.781 0.902 0.837 0.754 0.758 0.964 0.8893 0.986 0.04953

RF 0.948 0.884 0.908 0.906 0.837 0.838 0.916 0.9252 30.556 0.055365

DT 0.959 0.832 0.922 0.875 0.808 0.811 0.895 0.9130 0.4914 0.058092

KNN 0.957 0.795 0.914 0.850 0.773 0.778 0.876 0.8980 0.674 0.060655

SVM 0.960 0.773 0.919 0.839 0.759 0.766 0.867 0.8922 1.285 0.061902

Ensemble 0.977 0.749 0.949 0.837 0.760 0.772 0.863 0.8939 0.795 0.062462

Experiment 5: Using fivefold cross validation measure, the classifier performance on 23 selected features of minimum cost 0.00857 (population
size 15)

LR 0.876 0.729 0.773 0.750 0.613 0.613 0.959 0.8227 0.598 0.050133

RF 0.845 0.852 0.760 0.804 0.680 0.683 0.849 0.8482 13.188 0.064458

DT 0.858 0.708 0.742 0.725 0.572 0.572 0.803 0.8035 0.427 0.071388

KNN 0.904 0.736 0.815 0.774 0.654 0.656 0.820 0.8429 0.620 0.068759

SVM 0.917 0.732 0.836 0.781 0.667 0.671 0.824 0.8499 0.847 0.068152

Ensemble 0.827 0.698 0.690 0.699 0.529 0.529 0.808 0.7694 0.590 0.070607

Experiment 6: Using tenfold cross validation measure, the classifier performance on 20 selected features of minimum cost 0.00853 (population
size 15)

LR 0.952 0.806 0.907 0.854 0.777 0.780 0.953 0.8991 0.944 0.05082

RF 0.947 0.882 0.907 0.894 0.835 0.835 0.915 0.9241 30.104 0.055493

DT 0.968 0.854 0.939 0.894 0.838 0.840 0.911 0.9264 0.540 0.056005

KNN 0.961 0.795 0.922 0.854 0.779 0.784 0.878 0.9009 0.677 0.060381

SVM 0.957 0.798 0.916 0.853 0.777 0.782 0.879 0.8997 1.315 0.060244

Ensemble 0.911 0.871 0.850 0.860 0.778 0.779 0.891 0.8968 0.815 0.058624
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3 Materials and methods

In this section, we have discussed about the datasets

selected for our study and the required details about three

implemented soft-computing-based FS algorithms.

3.1 Dataset

Our dataset consists of mixture of images from 4 standard

benchmark publically available dataset and one private

dataset collected from hospitals located in nearby cities.

The total images considered are 3112 (1226 Glaucomatic

images and 1886 healthy images). These 3112 images are

collected from ACRIMA (396 glaucomatous and 309

healthy images), DRISHTI (16 glaucomatous images),

HRF (15 glaucomatous and 15 healthy images), ORIGA

(168 glaucomatous and 482 healthy images) and PRIVATE

631 glaucomatous images and 1080 healthy images. From

these images, 36 features are retrieved whose list is shown

using Table1. Figure 2 displays the framework of this

glaucoma identification study.

The brief description about these features is given

below:

1. CDR (Cup-to-Disc Ratio): The cup-to-disc ratio

features are defined as ratio of cup diameter and disc

diameter of fundus images.

2. GLCM (Grey Level Co-occurrence Matrix)—It is

used to determine image texture by calculating the

presence of paired pixels with certain values in

spatial relationship inside an image.

3. GLRM (grey-level run length matrix)—It can be

described as a row of identically intense pixels

arranged in a particular orientation. The quantity of

these pixels is known as the grey level run length,

and the occurrences of these pixels are regarded as

the run length value.

4. SRE (Short-Run Emphasis)—It is a measure of the

distribution of short-run lengths. In this case, a

higher SRE score suggests fine texture.

5. LRE (Long-Run Emphasis)—It is a measure of the

distribution of long-run lengths, with greater values

suggesting a coarse texture.

6. GLU (Grey-Level Uniformity)—When determin-

ing the true value of full length uniformity, we must

greatly expand the scale.

7. RLU (Run-Level Uniformity)—In this, we will first

convert the image to grayscale and then determine its

uniformity and the amount to which the entire grey

section is stretched. It will show us where we have

the lightest intensity and where we need less light

density.

8. RPC (Rational polynomial coefficient)—It is uti-

lized to calculate the ratio of items preserved in

space with changes in the regions that appear in other

objects, allowing us to discriminate between them.

9. Mat 0—It is a correlation feature matrix that is used

to extract the greatest degree, which is zero degree,

of the GLCM image’s features.

10. Mat 45—The goal of this feature is the same as the

last one, but there are some differences. For example,

Table 10 (continued)

Classifiers Specificity Sensitivity Precision F1-

score

Kappa

score

MCC AUC

value

Accuracy Execution

time

Two tailed test

(p-value)

Experiment 7: Using fivefold cross validation measure, the classifier performance on 28 selected features of minimum cost 0.00815 (population
size 20)

LR 0.904 0.782 0.824 0.803 0.694 0.695 0.975 0.8597 0.649 0.048268

RF 0.829 0.874 0.746 0.805 0.679 0.685 0.852 0.8458 14.995 0.064026

DT 0.954 0.770 0.906 0.832 0.748 0.754 0.862 0.8870 0.407 0.062603

KNN 0.907 0.735 0.821 0.775 0.657 0.660 0.821 0.8447 0.617 0.068607

SVM 0.941 0.809 0.888 0.847 0.765 0.767 0.875 0.8933 0.837 0.60793

Ensemble 0.859 0.690 0.738 0.714 0.558 0.558 0.805 0.7977 0.616 0.071075

Experiment 8: Using tenfold cross validation measure, the classifier performance on 24 selected features of minimum cost 0.00786 (population
size 10)

LR 0.957 0.812 0.916 0.861 0.788 0.792 0.962 0.9044 0.977 0.049762

RF 0.943 0.881 0.899 0.890 0.828 0.828 0.912 0.9206 30.298 0.055876

DT 0.959 0.860 0.925 0.891 0.832 0.833 0.910 0.9235 0.549 0.056133

KNN 0.961 0.809 0.924 0.863 0.792 0.796 0.885 0.9061 0.713 0.05943

SVM 0.962 0.808 0.925 0.862 0.792 0.796 0.886 0.9062 1.366 0.059295

Ensemble 0.910 0.899 0.851 0.869 0.792 0.792 0.899 0.9026 0.879 0.057564
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we are now looking at a GLCM image of glaucoma

at a 45-degree angle from the origin and on an axis

that is directly opposite the origin.

11. Mat 0_avg—In the feature, we have a correlation

matrix including all the features shared by all the

images.

12. Mat 45_avg—This feature is utilized to determine

the correlation matrix coefficients of the glaucoma

image characteristics. Each image following 45-de-

gree rotation of both matrices.

13. Mat90_avg—This is the average used to determine

the GLCM and correlation matrix characteristics of

each image following 90-degree rotation of both

matrices.

14. Mat135_avg—All of the matrices in our possession

will be rotated by 135 degrees at this place. When

rotate the matrices, the changes that happen will have

an effect on each image.

15. HOS (Higher Order Spectral) —HOS characteris-

tics are also employed to analyze picture attributes

that are non-stationary, non-linear, or non-Gaussian.

16. NRR (Neuro Retinal Rim)—The rim that surrounds

the eye is the neuroretinal rim. We discovered that

the rim of a glaucoma-affected eye is somewhat

larger than the rim of a glaucoma-free eye.

17. DDLS (Disc Damage Likelihood Scale)—The ratio

of the disc’s diameter to its Rim width, or the DDLS,

is used to predict the development of glaucoma.

18. HOC (Higher-Order Cumulant)—Higher-order

statistics based on a picture’s moments and correla-

tion moments are specific weights that are applied to

the pixels or intensities of a picture and assessed by a

function.

19. DWT (Discrete Wavelet Transform)—The sepa-

ration of data, operators, or functions into discrete

frequency components and analysis of each with a

resolution proportional to scale are both carried out

using wavelet transformations.

20. FOS (First-Order Statistical)—These traits are

used to compute an image’s histogram, which shows

the likelihood of an individual pixel occurring in an

image, and use it to analyze the texture of the picture.

21. Cum2est—Cum2est is an eye feature in which we

minimize the area and concentrate on the optic disc

region.

22. Biocoherence—Biocoherence is the bispectrum that

has been normalized. It is the moment spectrum of

the third order.

23. Energy—Energy is a way to measure the size of

voxels in an image. In this case, a higher value of

energy means that the sum of the squares is higher.

24. Homogeneity—It is used for analysis the homo-

geneity of image. Ta
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25. Correlation—Correlation is a way to figure out how

much the grey levels of the pixels at certain positions

depend on each other.

26. Contrast—Contrast is a measure of intensity and

variation. The greater the contrast value, the greater

the discrepancy in image intensity values.

27. Dissimilarity—It is a measure of the relationship

between pairs of similar and dissimilar intensities.

28. Entropy—Low first-order entropy is found in

homogeneous scenes, while high entropy is found

in heterogeneous scenes.

3.2 Preprocessing

The optic disc and optic cup regions in retinal fundus

pictures are a key area for the diagnosis of glaucoma. In the

retinal fundus image, the optic disc—where the location of

the optic cup is in the centre of the optic disc—is the main

area of concern. The picture of the retinal fundus has been

reduced by 230 9 230x3 to allow for additional processing

at the outset. In a picture of a section of the retina, the optic

disc is typically in the centre of the disc. The colors of red,

green, and blue (RGB)—commonly known as red, blue,

and green display formats for three networks—are shown

in fundus images in Fig. 4(a). It could be challenging to

perform a variety of operations on the blue pattern. The

grey image in Fig. 4(c) is used to symbolize the vital part

of our eyes, which houses a vast quantity of information.

Initially, fundus imaging converts a person’s eye scan into

a ‘‘gray-green’’ color box. Equalization is the transforma-

tion or conversion feature that is only used to produce an

output picture with a consistent histogram. Changing the

brightness of the input picture’s histogram’s equalization

procedure is a highly effective method. The input image’s

amplitude is evenly spread over the updated image. The

main focus of this approach is applying strength in a way

that is comparable to the overall image. This provides the

linear trend for the cumulative probability function (cdf).

To further balance the signal, we used an adaptive

median filter. Pulse noise has the potential to alter the

image of the fundus. Impulsive noise is produced as a result

of electromagnetic interference. The adaptive median filter

is a useful filtering technique to minimize the noise of the

impulse in the spatial domain. It compares each pixel with

its immediate neighbors in order to identify the noisy

pixels. The adaptive median filter performs spatial analysis

to determine which pixels in a picture have been impacted

by impulsive noise. The adaptive median filter categorizes

pixels as noise by comparing each pixel in the image to its

immediate neighbors (Fig. 3). Both the reference criterion

and the neighborhood’s size may be altered. A pixel is

referred to as ‘‘impulse noise’’ because it differs from any

of its neighbors and is architecturally inconsistent with the

pixels. The median pixel value of the nearby pixels that

passed the noise marking test will subsequently be used to

replace these noise pixels. Figure 4a–f displays the pre-

processed glaucoma picture, whereas (g)–(l) displays the

preprocessed healthy image. The whole process diagram of

this preprocessing stage is shown below with the help of

Fig. 3.

3.3 Feature selection algorithms

Three algorithms BFO, EPO and their hybrid are short-

listed for this study, whose details are given below. Table 2

depicts the various parameters and their values assigned

during the implementation of these three algorithms.

The Bacteria Foraging Optimization Algorithm (BFO) is

a novel addition to the family of nature-inspired opti-

mization algorithms (Das et al. 2009). A set of tensile

flagella propels the genuine bacterium while foraging.

Flagella assist an E.coli bacterium in its foraging activities

by allowing it to tumble or swim. Each flagellum tugs on

the cell as they spin the flagella clockwise. As a conse-

quence, the flagella move independently, and the bacteria

tumbles with fewer tumblings, while in a hazardous envi-

ronment, it tumbles often to locate a nutritional gradient.

Moving the flagella counterclockwise allows the bacteria to

move extremely quickly. In the algorithm described above,

bacteria engage in chemotaxis, in which they choose to

travel toward a food gradient while avoiding unpleasant

environments. In general, germs migrate further in a wel-

coming environment. When they obtain enough nourish-

ment, they grow in length and, in the presence of an

appropriate temperature; they break in the centre to form

Table 12 The maximum values of the performance metrics (in case of BFO algorithm)

Max

specificity

(Classifier)

Max

sensitivity

(Classifier)

Max

precision

(Classifier)

Max F1-

score

(Classifier)

Max kappa

score

(Classifier)

Max MCC

(Classifier)

Max AUC

value

(Classifier)

Max

accuracy

(Classifier)

Minimum

execution

time

0.984 (SVM) 0.899 (ENS) 0.963 (SVM) 0.906 (RF) 0.838 (DT) 0.840 (DT) 0.975 (LR) 0.9264 (DT) 0.366 (DT)

Overall summary of feature selection using BFO

This table depicts the best results generated on population size 5, 10, 15 and 20 fork-fold approach (5- and 10-)

2450 L. K. Singh et al.

123



an identical clone of themselves. This phenomenon

prompted Passino to include a reproduction event in BFO

algorithm. Because of unexpected environmental changes

or an assault, chemotactic development may be disrupted,

and a group of bacteria may travel to other locations or be

incorporated into the swarm of concern. This is an example

of an elimination-dispersal event in a genuine bacterial

population, in which all of the bacteria in an area are killed

or a group is dispersed into a different portion of the

environment (Das et al. 2009; Chen et al. 2017). Table 2

displays the list of parameters used in this algorithm.

The steps of BFO algorithms are as follows.

The mathematical equations used in the algorithms are

as follows

lðjÞ ¼ DðjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DðjÞMDðjÞ
q ð1Þ

@ jððk þ 1; l;mÞ ¼ @ jðk; l;mÞ þ AðjÞlðjÞ ð2Þ

Bccð@;@iðk; l;mÞÞ

¼
X

o

j¼1
�rattract exp 1 xattract

X

h

s

ð@d � @ j
dÞ

2

 !" #

þ
X

o

j¼1
�h1repellant exp 1 xrepellant

X

h

s

ð@d � @ j
dÞ

2

 !" #

ð3Þ

Fðj; k;m; lÞ ¼ Fðj; k;m; lÞ þ Bcc @;@ jðk; l;mÞ
� �

ð4Þ

Qr ¼
Q

2
ð5Þ

The emperor penguin is one of the biggest penguins,

with male and female having about the same size. An

emperor penguin has a black back, a white belly, golden

ear patches, and grayish-yellow breasts. The emperor

penguin’s wings serve as a fin while swimming. Emperor

penguins move similarly like humans. Their whole exis-

tence is spent in Antarctica, and they are famous for their

capacity to procreate through the brutal Antarctic winter,

which may reach minus 60 �C. Although their unique

feathers and body fat protect them from chilly winds, they

must cluster together to stay warm in severe cold. During

mating season, each female penguin lays a single egg,

which is then passed on to one of the males. Females will

go up to 80 km in the open sea to hunt after the egg

transfer. Male penguins utilize their brood pouches to keep

the eggs warm until they hatch, allowing the eggs to sur-

vive until they hatch. A female emperor penguin normally

returns to the nest after spending approximately two

months in the ocean with food in her stomach, which she

vomits up for the chicks to ingest and take over care of.

Emperor penguins are excellent divers in addition to being

excellent swimmers. They often go foraging and hunting

together. They are the only species that huddle to live

through the Antarctic winter. After dissecting the huddling

behavior of emperor penguins into four stages, a mathe-

matical model was built. To begin, emperor penguins form

their huddle boundaries at random. Second, they calculate

the temperature profile around them. Third, they use this

approach to compute penguin distances in order to simplify

exploring and exploiting emperor penguins. Finally, they

choose the effective mover as the best option and update
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Table 13 Feature selection on population size 5, 10, 15 and 20 using fivefold and tenfold cross-validation

No. of

features

No. of

iteration

Population

size

Features

selected

Features number Fitness

value

Execution

time

Experiment 1: Performance on Population size 5 (fivefold)

36 100 5 8 1, 3, 12, 16, 17, 19, 26, 31 0.999 0.505

36 200 5 9 3, 8, 10, 11, 18, 26, 29, 30, 34 0.829 1.966

36 300 5 7 13, 16, 19, 20, 24, 25, 35 0.867 2.024

36 400 5 8 11, 14, 15, 17, 22, 24, 28, 33 0.888 2.481

36 500 5 9 1, 4, 6, 9, 17, 19, 24, 27, 30 0.996 2.696

Experiment 2: Performance on Population size 5(tenfold)

36 100 5 8 3, 10, 13, 15, 16, 21, 29, 35 0.831 0.528

36 200 5 11 9, 14, 17, 22, 23, 24, 25, 29, 32, 34, 35 1.094 1.693

36 300 5 6 3, 10, 19, 22, 26, 32 1.002 1.870

36 400 5 8 3, 9, 11, 13, 18, 24, 30, 35 0.865 2.378

36 500 5 9 4, 6, 9, 13, 15, 18, 21, 23, 35 0.990 2.740

Experiment 3: Performance on Population Size 10(fivefold)

36 100 10 17 1, 3, 7, 9, 10, 12, 14, 15, 16, 21, 25, 26, 29, 30, 32, 33, 34 0.985 2.058

36 200 10 16 3, 4, 7, 8, 12, 16, 19, 20, 21, 22, 24, 27, 28, 29, 32, 36 1.025 6.447

36 300 10 16 1, 4, 5, 6, 8, 10, 13, 15, 16, 17, 20, 21, 23, 29, 32, 33 0.883 6.573

36 400 10 15 1, 3, 6, 7, 8, 12, 16, 18, 22, 23, 24, 29, 31, 32, 33 0.960 7.346

36 500 10 16 1, 2, 4, 9, 11, 15, 18, 20, 22, 24, 26, 27, 30, 32, 33, 35 0.946 7.775

Experiment 4: Performance on Population Size 10(tenfold)

36 100 10 15 3, 4, 6, 7, 8, 11, 12, 20, 23, 24, 29, 31, 32, 34, 35 1.023 1.891

36 200 10 13 6, 8, 11, 12, 13, 15, 19, 20, 21, 22, 23, 32, 35 0.698 5.730

36 300 10 14 1, 2, 6, 11, 15, 21, 22, 23, 24, 28, 32, 33, 34, 36 1.014 6.547

36 400 10 13 5, 6, 7, 10, 11, 12, 18, 19, 21, 23, 26, 30, 35 0.757 6.686

36 500 10 13 2, 3, 4, 8, 11, 14, 16, 18, 19, 22, 23, 27, 28 1.036 8.460

Experiment 5: Performance on Population Size 15(fivefold)

36 100 15 18 3, 4, 6, 13, 14, 15, 16, 18, 21, 24, 25, 26, 28, 31, 32, 33, 34, 36 0.991 6.032

36 200 15 21 1, 2, 3, 4, 9, 11, 13, 14, 15, 16, 17, 20, 21, 26, 28, 29, 30, 33, 34,

35, 36

0.992 7.915

36 300 15 17 1, 4, 7, 8, 9, 10, 12, 17, 18, 19, 20, 22, 25, 29, 30, 33, 36 0.916 10.05

36 400 15 20 1, 3, 4, 6, 12, 14, 16, 17, 18, 19, 23, 24, 26, 27, 30, 31, 32, 34,

35, 36

0.767 9.314

36 500 15 21 1, 4, 10, 11, 14, 16, 18, 19, 20, 21, 23, 24, 26, 29, 30, 31, 32, 33,

34, 35, 36

0.882 10.95

Experiment 6: Performance on Population Size 15(tenfold)

36 100 15 21 2, 3, 4, 5, 8, 10, 11, 14, 15, 16, 18, 20, 23, 26, 27, 28, 29, 30, 31,

32, 36

0.935 6.959

36 200 15 15 1, 3, 4, 5, 6, 7, 10, 11, 13, 14, 15, 16, 19, 25, 28 0.968 6.752

36 300 15 20 2, 3, 6, 8, 9, 13, 14, 15, 18, 19, 21, 23, 26, 27, 29, 30, 31, 32, 34,

35

0.864 11.135

36 400 15 20 2, 4, 8, 9, 10, 11, 13, 15, 16, 17, 20, 25, 27, 28, 29, 30, 32, 33,

34, 35

0.999 12.619

36 500 15 20 1, 3, 4, 6, 9, 10, 12, 14, 16, 20, 22, 23, 24, 25, 29, 30, 31, 32, 34,

35

0.741 12.264

Experiment 7: Performance on Population Size 20(fivefold)

36 100 20 25 1, 2, 3, 7, 9, 10, 11, 12, 13, 14, 16, 17, 19, 20, 21, 22, 24, 25, 26,

27, 28, 31, 32, 35, 36

0.864 7.909

36 200 20 26 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 13, 15, 16, 17, 18, 20, 22, 24, 26, 27,

28, 30, 31, 33, 34, 35

1.027 8.377

36 300 20 23 1, 2, 3, 4, 5, 8, 9, 10, 14, 16, 18, 19, 21, 22, 24, 25, 27, 28, 29,

31, 32, 34, 36

0.952 16.953
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the emperor penguin placements to recalculate the huddle’s

boundaries. This mathematical process’s main purpose is to

discover the most effective mover. The huddle is consid-

ered to be on a 2D polygonal surface with a L shape. In

reaction to this huddling behavior, the EPO algorithm was

created (Dhiman and Kumar 2018; Khalid et al. 2022).

Figure 5 depicts the flowchart of huddling process of EPO

algorithm and complete EPO algorithm.

The steps of EPO algorithms are as follows.

Step 01: Generate the Emperor Penguins Population.

Step 02: Set Initial Parameters such as Maximum Iter-

ations, Temperature, A,C

Step 03: Calculate the fitness values for all search agent.

Step 04: Determine the Huddle Boundary for Emperor

Penguins Using:

< ¼ rb ð6Þ
x ¼ bþ in ð7Þ

Step 05: Calculate temperature profile (Temp0) around
the Huddle using:

Temp0  Temp� Ziter

w� Ziter

� �

ð8Þ

Temp ¼ 0; if R � [ 1

1; if R �\1

�

ð9Þ

Step 06: Compute the distance between the emperor

penguins using:

Disep
���! ¼ Abs S1ðA!Þ:P1ðx1!Þ � c1

!
:P1epðx1Þ
�����!	 


ð10Þ

Step 07: Update the position of Emperor Penguins

P1ep
��!ðx1þ 1Þ ¼ P1ðxÞ

���!
� o
!
:Dis
�!

ep ð11Þ

Step 08: If any emperor penguin goes beyond the

Huddle Boundary improve its position.

Step 09: Calculate the fitness values for each search

agent and update new optimal solution position.

Step 10: If Stopping Criteria met STOP else Goto Step

05.

Step 11: Return Best Emperor Penguins/Optimal

Solutions.

The mathematical equations applied in the algorithm are

as follows: Let c define the wind velocity and = be the

gradient of c.

= ¼ Dc ð12Þ

Vector < is combined with c to generate the complex

potential

AF ¼ cþ j< ð13Þ

where j denotes the imaginary constant and AF is an ana-

lytical function on the polygon plane.

The temperature profile around the huddle A0 is com-

puted as follows:

A0 ¼ A� Maximumiteration

y�Maximumiteration

� �

ð14Þ

A ¼ 0; if Radius[ 1

1; if Radius\1

�

ð15Þ

Here y define the current iteration,Maximumiteration repre-

sents the maximum number of iteration. A is the time for

finding best optimal solution in a search space.

Disepn
���! ¼ Abs kð A1�!Þ:lðyÞ

�!
� c1
!
:lepnðyÞ
���!	 


ð16Þ

where Disepn
���!

shows the distance between the emperor

Table 13 (continued)

No. of

features

No. of

iteration

Population

size

Features

selected

Features number Fitness

value

Execution

time

36 400 20 24 1, 2, 3, 4, 7, 9, 10, 11, 12, 13, 15, 17, 18, 19, 20, 26, 27, 28, 29,

30, 32, 33, 34, 36

0.920 17.677

36 500 20 24 1, 2, 4, 5, 6, 7, 10, 12, 16, 17, 18, 20, 21, 23, 24, 25, 26, 27, 29,

30, 31, 32, 33, 36

0.970 17.373

Experiment 8: Performance on Population Size 20(tenfold)

36 100 20 26 1, 2, 3, 5, 7, 8, 9, 10, 11, 12, 14, 15, 17, 20, 22, 23, 24, 25, 27,

29, 30, 31, 32, 33, 34, 36

0.814 7.479

36 200 20 24 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 16, 17, 20, 21, 22, 24, 25,

26, 27, 29, 30, 32

0.763 14.575

36 300 20 26 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 16, 17, 18, 19, 20, 22, 23, 25,

26, 27, 28, 31, 34, 36

1.019 14.141

36 400 20 26 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 20, 21, 22, 26,

27, 29, 31, 33, 35, 36

0.945 15.592

36 500 20 21 1, 5, 6, 8, 9, 10, 11, 13, 14, 17, 18, 19, 20, 21, 22, 24, 26, 27, 29,

30, 32

0.836 17.072
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Table 14 Performance of different five classifiers including ensemble on population size 5,10,15,20 (K-fold Cross-Validation Approach)

Classifiers Specificity Sensitivity Precision F1-

score

Kappa

score

MCC AUC

value

Accuracy Execution

Time

Two tailed test

(p-value)

Experiment 1: Using fivefold cross validation measure, the classifier performance on 9 selected features of minimum cost 0.82956 (population
size 5)

LR 0.953 0.801 0.908 0.851 0.774 0.778 0.877 0.9000 0.504 0.060518

RF 0.837 0.827 0.745 0.784 0.649 0.651 0.832 0.8337 12.234 0.066951

DT 0.853 0.805 0.760 0.782 0.650 0.651 0.829 0.8560 0.376 0.0674

KNN 0.902 0.732 0.811 0.769 0.647 0.649 0.817 0.8500 0.445 0.69217

SVM 0.944 0.806 0.892 0.847 0.766 0.768 0.875 0.9039 0.812 0.060793

Ensemble 0.851 0.819 0.737 0.776 0.636 0.638 0.825 0.8373 0.622 0.068001

Experiment 2: Using tenfold cross-validation measure, the classifier performance on 8 selected features of minimum cost 0.83156 (population
size 5)

LR 0.952 0.727 0.898 0.803 0.708 0.717 0.839 0.8702 1.591 0.065915

RF 0.937 0.824 0.884 0.853 0.773 0.774 0.880 0.8962 23.565 0.060108

DT 0.897 0.793 0.817 0.805 0.695 0.696 0.845 0.8697 0.711 0.065038

KNN 0.942 0.814 0.890 0.850 0.771 0.772 0.878 0.9057 0.843 0.060381

SVM 0.951 0.830 0.908 0.867 0.796 0.798 0.891 0.9073 1.613 0.058624

Ensemble 0.863 0.830 0.777 0.803 0.683 0.684 0.846 0.8511 0.717 0.064892

Experiment 3: Using fivefold cross validation measure the classifier performance on 16 selected features of minimum cost 0.88324 (population
size 10)

LR 0.931 0.741 0.861 0.797 0.693 0.698 0.836 0.8621 0.564 0.066358

RF 0.863 0.874 0.786 0.828 0.720 0.723 0.868 0.8673 12.159 0.061762

DT 0.929 0.771 0.863 0.815 0.717 0.720 0.850 0.8719 0.359 0.064314

KNN 0.897 0.746 0.807 0.775 0.654 0.655 0.822 0.8424 0.496 0.068455

SVM 0.941 0.843 0.892 0.867 0.793 0.794 0.892 0.9055 0.768 0.058491

Ensemble 0.870 0.763 0.772 0.768 0.635 0.635 0.817 0.8314 0.614 0.069217

Experiment 4: Using tenfold cross validation measure, the classifier performance on 13 selected features of minimum cost 0.69869 (population
size 10)

LR 0.957 0.803 0.916 0.856 0.781 0.785 0.880 0.9015 0.876 0.060108

RF 0.947 0.934 0.915 0.901 0.875 0.845 0.915 0.9541 28.447 0.055493

DT 0.959 0.858 0.924 0.890 0.831 0.832 0.909 0.9229 0.438 0.056262

KNN 0.961 0.805 0.923 0.860 0.788 0.792 0.883 0.9044 0.591 0.0597

SVM 0.957 0.797 0.916 0.852 0.776 0.780 0.877 0.9091 1.169 0.060518

Ensemble 0.911 0.877 0.850 0.864 0.784 0.784 0.894 0.9091 0.785 0.058225

Experiment 5: Using fivefold cross validation measure, the classifier performance on 20 selected features of minimum cost 0.76739 (population
size 15)

LR 0.871 0.754 0.771 0.762 0.628 0.628 0.812 0.8385 0.634 0.069986

RF 0.828 0.835 0.737 0.783 0.645 0.648 0.831 0.8308 13.94 0.067101

DT 0.863 0.754 0.760 0.757 0.618 0.618 0.808 0.8232 0.406 0.070607

KNN 0.909 0.730 0.823 0.774 0.655 0.658 0.820 0.8441 0.609 0.068759

SVM 0.909 0.740 0.825 0.780 0.664 0.666 0.824 0.8576 0.825 0.068152

Ensemble 0.827 0.668 0.690 0.679 0.519 0.519 0.808 0.8094 0.647 0.070607

Experiment 6: Using tenfold cross validation measure, the classifier performance on 20 selected features of minimum cost 0.74174 (population
size 15)

LR 0.953 0.811 0.909 0.857 0.782 0.785 0.882 0.9015 1.094 0.059836

RF 0.952 0.881 0.914 0.907 0.840 0.840 0.916 0.9364 31.096 0.055365

DT 0.973 0.858 0.931 0.893 0.836 0.837 0.911 0.9252 0.540 0.056005

KNN 0.960 0.816 0.922 0.866 0.796 0.799 0.888 0.9178 0.663 0.059026

SVM 0.957 0.803 0.916 0.856 0.781 0.785 0.880 0.9015 1.235 0.060108

Ensemble 0.930 0.879 0.879 0.879 0.810 0.810 0.905 0.9119 0.854 0.069999
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penguin and best fittest search agent. y shows the current

iteration. A1
�!

and c1
!

are used to avoid the collision

between neighbors. kðÞ defines the social forces of emperor

penguins.

A1
�! ¼ ðMov� ðA0 þ Poly gridðAccÞÞ � RandomðÞÞ � A0

ð17Þ

Poly gridðAccÞ ¼ Abs l
!� lepn

�!	 


ð18Þ

Poly gridðAccÞ defines the polygon grid accuracy by

comparing difference between emperor penguins and ran-

dom function RandomðÞ.

c1
!¼ RandomðÞ ð19Þ

kð A1�!Þ ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi

f :e�x=l
q

� e�xÞ2 ð20Þ

where e defines the expression function. f and l are control

parameters for better exploration.

Table 14 (continued)

Classifiers Specificity Sensitivity Precision F1-

score

Kappa

score

MCC AUC

value

Accuracy Execution

Time

Two tailed test

(p-value)

Experiment 7: Using fivefold cross validation measure, the classifier performance on 25 selected features of minimum cost 0.86435 (population
size 20)

LR 0.884 0.770 0.792 0.781 0.658 0.658 0.827 0.8424 0.748 0.05678

RF 0.840 0.879 0.760 0.815 0.696 0.701 0.859 0.8545 16.951 0.063027

DT 0.954 0.773 0.907 0.834 0.751 0.756 0.863 0.8981 0.455 0.062462

KNN 0.913 0.719 0.826 0.769 0.650 0.654 0.816 0.8424 0.689 0.06937

SVM 0.926 0.744 0.852 0.795 0.689 0.693 0.835 0.8597 1.103 0.066506

Ensemble 0.857 0.716 0.713 0.761 0.588 0.591 0.807 0.8294 0.665 0.070762

Experiment 8: Using tenfold cross validation measure, the classifier performance on 24 selected features of minimum cost 0.76353 (population
size 20)

LR 0.957 0.808 0.917 0.859 0.786 0.789 0.883 0.9032 1.054 0.0597

RF 0.943 0.881 0.899 0.890 0.828 0.828 0.912 0.9206 35.035 0.055876

DT 0.959 0.858 0.944 0.890 0.831 0.832 0.909 0.9229 0.569 0.056262

KNN 0.959 0.797 0.919 0.853 0.778 0.783 0.878 0.9003 0.639 0.060381

SVM 0.957 0.797 0.916 0.852 0.776 0.780 0.877 0.9091 1.433 0.060518

Ensemble 0.920 0.876 0.864 0.870 0.794 0.794 0.898 0.9044 0.892 0.057696

Table 15 The best values of the performance metrics when the minimum number of features was selected (in case of hybrid algorithm)

Case of

minimum

features

extracted

List of

features

Max

specificity

(Classifier)

Max

sensitivity

(Classifier)

Max

precision

(Classifier)

Max F1-

score

(Classifier)

Max

Kappa

score

(Classifier)

Max MCC

(Classifier)

Max AUC

value

(Classifier)

Max

accuracy

(Classifier)

Minimum

execution

time

8 3, 10,

13, 15,

16, 21,

29, 35

0.952 (LR) 0.830

(SVM)

0.908

(SVM)

0.867

(SVM)

0.796

(SVM)

0.798

(SVM)

0.891

(SVM)

0.9073

(SVM)

0.711

(DT)

Table 16 The maximum values of the performance metrics (in case of hybrid algorithm)

Max

specificity

(Classifier)

Max

sensitivity

(Classifier)

Max

precision

(Classifier)

Max F1-

score

(Classifier)

Max Kappa

score

(Classifier)

Max MCC

(Classifier)

Max AUC

value

(Classifier)

Max

accuracy

(Classifier)

Minimum

execution

time

0.973 (DT) 0.934 (RF) 0.944 (DT) 0.907 (RF) 0.840 (RF) 0.840 (RF) 0.916 (RF) 0.9541 (RF) 0.406 (DT)

Overall summary of feature selection using Hybrid

This table depicts the best results generated on population size 5, 10, 15 and 20 for k-fold approach (5- and 10-)
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Table 3 depicts the parameters and their corresponding

values used in the algorithms. The objective function for all

the optimization algorithms is according to Eq. (21).

fitness xi tð Þð Þ ¼
X

xi tð Þð Þ2=105 ð21Þ

Here, Eq. (21) is basically a sphere function, one of

many benchmark optimization functions used for solving

optimization in single variable (Tang et al. 2007). So in the

proposed work we have used single variable sphere func-

tion for updating the cost on different set of population.

The function is suitable for single objective optimization.

This means that it presents one mode and has a single

global optimum. In our case, our objective is to finding the

minimum fitness value and after that pass, we have for-

warded set of features retrieved on minimum fitness value.

The operating system used is Windows 7 Professional.

System type is 64-bit operating system with Intel(R) Core

((TM) i3-4150 CPU @ 3.50 GHz GHz processor and

Python 3.7.15 is the programming language used.

The pseudocode of the hybrid BFOAEPO algorithm is

given below:

4 Results

Tables 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15 assemble

the calculated results in tabular style. Tables 4 and 5 are

devoted to presenting the findings of the EPO algorithm.

Similarly, Tables 8 and 9 are devoted to presenting the

results created by the BFO algorithm, while Tables 12 and

13 are dedicated to presenting the results obtained by the

hybrid method. Apart from this, we have also created two

small tables (per algorithm) depicting vital information

such as what were the values of different performance

measuring metrics (like sensitivity, specificity, accu-

racy,F1-score etc.) when the number of features was at a

minimal during the whole experimentation phase. When

the features were minimal, researchers rarely showed this

type of data (values of various performance measuring

measures) in previous studies. These traits are shown in the

table along with the outcomes they produced (Tables 7, 11,

and 15). If one does not have the time to calculate and

extract all the features, they may still utilize these features

without making too many sacrifices in terms of getting the

best results. The results are quite satisfying, even with a

relatively small number of features. The best value for each

algorithm created throughout the course of all eight tests

with each algorithm is shown in the second table (Tables 8,

12, and 16). Figures 6, 7, and 8 display the collection of

ROC graphs for various experiments performed. Figure 9

depicts the convergence graphs (iteration vs. fitness) of 12

experiments (out of 24 experiments performed) due to

space constraints. Along with this, hypothesis testing was

cFig. 6 ROC curve of different classifiers on k-fold cross-validation,

a For minimum cost 0.89409 (population size 5), b For minimum cost

0.97123 (population size 5), c For minimum cost 0.00798 (population

size 10), d For minimum cost 0.00855 (population size 10), e For

minimum cost 0.00790 (population size 15), f For minimum cost

0.00792(population size 15), g For minimum cost 0.00715(population
size 20), h For minimum cost 0.83086(population size 20)
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(a) For minimum cost 0.89409 (population size 5) (b) For minimum cost 0.97123 (population size 5)

(c) For minimum cost 0.00798 (population size 10) (d) For minimum cost 0.00855 (population size 10) 

(e ) For minimum cost 0.00790 (population size 15) (f) For minimum cost 0.00792(population size 15)

(g) For minimum cost 0.00715(population size 20) (h) For minimum cost 0.83086(population size 20)
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(a) For minimum cost 0.00841 (population size 5) (b) For minimum cost 0.00991 (population size 5)

(c) For minimum cost 0.00910 (population size 10) (d) For minimum cost 0.00863 (population size 10)

(e) For minimum cost 0.00857 (population size 15) (f) For minimum cost 0.00853 (population size 15)

(g) For minimum cost 0.00815 (population size 20) (h) For minimum cost 0.00786 (population size 20)
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also performed in the experiments. To determine statisti-

cally whether one model has a substantially different AUC

from another, we applied DeLong’s test to provide a p-

value (DeLong et al. 1988; Sun and Xu 2014). In our study,

the hypothesis was set up so that, assuming the two models

performed as expected, H0: AUC1 = AUC2. The alterna-

tive hypothesis, H1: AUC1 = AUC2, states that the two

models’ AUCs differ. We computed the z-value and asso-

ciated p-value. The overall ML model’s p-values were less

than 0.05 for all comparisons. After getting the Z-score, we

use the ‘‘two-tailed test’’ to see whether the AUC of model

A is different from the AUC of model B. A brief

description of the terms used in the remainder of the paper

is shown in Table 4.

4.1 Experiment based on the Emperor penguin
optimization (FS using EPO)

4.2 Experiment based on the bacterial foraging
optimization algorithm using K-fold
approach (FS using BFO)

4.3 Experiment based on the hybrid of BFO
and EPO using K-fold approach (FS using
Hybrid approach)

The following convergence graphs (figures) of 12 experi-

ments have been shown here (out of 24 experiments per-

formed), due to space constraints.

5 Discussion and comparison with prior
studies

This section is divided into two subsections. The first is

dedicated to a discussion and findings of our work. In the

later half, we have focused on comparison of our work with

prior state-of-the-art studies.

5.1 Discussion

Three algorithms have been implemented in this proposed

approach: BFO, EPO, and an amalgamation of these two.

The goal of these methods is to divide the set of original

images into two classes. The extracted features were for-

warded to various machine learning classifiers for catego-

rization of the subject fundus images. Twenty-four trials on

these three algorithms were conducted (eight individually).

All of the experiments have a common objective function.

During a specific experiment, the population size remains

constant, and the performance of this population is evalu-

ated by varying the number of iterations from 100 to 500

(with a gap of 100). The case in which we find the mini-

mum value of the objective function is chosen, and the

features returned by this case are forwarded to the classi-

fier; the remaining four cases are discarded and will not be

considered further. The population size is then varied in

fivefold increments from 5 to 20. According to the above

tables, the minimum number of features returned is 5, and

the maximum number of features returned is 26. Thus, the

feature reduction scale ranges from 86.11% (the highest) to

27.77% (the lowest). The execution time is also computed

in two ways: first, we show the iteration time of soft-

computing algorithms; second, we show the training and

testing time of machine learning classifiers. Six machine

learning classifiers were chosen and put into action. The

first five are classical, while the last is an ensemble of these

five. Accuracy, sensitivity, specificity, precision, the F1-

Score, the Kappa-Score, the MCC, and the AUC are all

used to evaluate the performance of these classifiers. All of

these criteria are important in predicting human diseases

using medical pictures. All of these indicators are rarely

computed in a single study.

We know that accuracy is a vital indicator of perfor-

mance, and our findings on this parameter are remarkable;

we were able to get the best accuracy of 0.9541 in the

combination of a hybrid algorithm and a random forest

classifier. In the hybrid example, the least accuracy gen-

erated is 0.8094; similarly, in the BFO scenario, the least

accuracy generated is 0.8035 (and a maximum of

0.9264(with DT)); and finally, in the EPO case, the least

accuracy generated is 0.8030 (and a maximum of 0.9194

(with DT)). As a result, we can conclude that we were

never able to obtain an accuracy of less than 0.80 in any of

the cases, despite using a few selections of features; this

demonstrates that the suggested method is satisfactory.

Another important measurement aspect is sensitivity; a

100% sensitive test will identify all people with the illness

by testing positive. When generated with an ensemble, the

maximum sensitivity for EPO is 0.88589. For BFO, the

best match was BFO-ensemble, which had a maximum

value of 0.89906. Finally, the maximum value for hybrid is

0.93431 when generated with random forest.

Specificity refers to a test’s capacity to correctly exclude

healthy people who are free of a problem. A positive test

result would unequivocally confirm the existence of the

sickness, because a test with 100% specificity would

bFig. 7 Combined ROC curve of different classifiers including

ensemble based on k-fold approach, a For minimum cost 0.00841
(population size 5), b For minimum cost 0.00991 (population size 5),

c For minimum cost 0.00910 (population size 10), d For minimum

cost 0.00863 (population size 10), e For minimum cost 0.00857
(population size 15), f For minimum cost 0.00853 (population size

15), g For minimum cost 0.00815 (population size 20), h For

minimum cost 0.00786 (population size 20)
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(a) For minimum cost 0.82956 (population size 5) (b) For minimum cost 0.83156 (population size 5)

(c) For minimum cost 0.88324 (population size 10) (d) For minimum cost 0.69869 (population size 10)

(e) For minimum cost 0.76739 (population size 15) (f) For minimum cost 0.74174 (population size 15)

(g) For minimum cost 0.86435 (population size 20) (h) For minimum cost 0.76353 (population size 20)

Fig. 8 Combined ROC curve of different classifier including

Ensemble based on 70:30 splitting approach, a For minimum cost

0.82956 (population size 5), b For minimum cost 0.83156 (population

size 5), c For minimum cost 0.88324 (population size 10), d For

minimum cost 0.69869 (population size 10), e For minimum cost

0.76739 (population size 15), f For minimum cost 0.74174 (popula-

tion size 15), g For minimum cost 0.86435 (population size 20), h For

minimum cost 0.76353 (population size 20)
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identify all people who do not have the ailment by testing

negative. The range of results demonstrates the success of

this strategy. The next essential factor that is computed is

specificity. The range for EPO is 0.88378 to 0.97899 (with

BFO algorithm with population size 5(10-fold)(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

BFO algorithm with population size 10(10-fold)

BFO algorithm with population size 10(5-fold) BFO algorithm with population size 20(5-fold)

EPO algorithm with population size 5 (5-fold) EPO algorithm with population size 5 (10-fold)

EPO algorithm with population size 10 (10-fold) EPO algorithm with population size 15 (10-fold)

EPO algorithm with population size 20 (10-fold) Hybrid algorithm with population size 10(5-fold)

Fig. 9 Fitness Vs Iterations graphs of 12 experiments
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LR), the range for BFO is 0.81552 to 0.98447 (with SVM),

and the range for the hybrid method is 0.82739 to 0.97347

(with DT). As a result, we were able to achieve at least

81% specificity in all situations. Because the F1-score is

the harmonic mean of accuracy and recall, it keeps the

classifier in balance. The maximum value of 0.88635 is

determined when using the EPO-DT combination, 0.90638

when using the BFO-RF combination, and 0.90749 when

using the hybrid-RF combination. Precision is defined as

the ratio of true positives to all positives. It is critical that

we do not start treating a patient who does not have a true

glaucoma issue but does according to our model. When we

computed precision, we got the highest value of 0.95043 in

EPO, the highest value of 0.96398 in BFO, and the highest

value of 0.94491 in the hybrid algorithm.

There is a set of diagnostic sensitivity and specificity

values for each cutoff. To make a ROC graph, we plotted

these pairs of values on a graph with specificity on the

x-axis and sensitivity on the y-axis. The area under the

curve (AUC) and the shape of the ROC curve both con-

tribute to establishing a test’s discriminative capacity. As

the curve approaches the upper-left hand corner and the

area under the curve increases, the test performs better at

distinguishing between sick and non-sick situations. The

area under the curve, a trustworthy indicator of how well

the test was performed, can have any value between 0 and

1. The area of a non-discriminatory test is 0.5, whereas the

AUC of a perfect diagnostic test is 1.0. Finally, we gen-

erated AUC scores, and the approach performed admirably

in this situation as well, with a range of 0.80138 to 0.90698

in the EPO algorithm case, 0.80300 to 0.97542 (with LR)

in the BFO algorithm case, and 0.80701 to 0.91567 in the

hybrid scenario (with RF classifier). The closer the value is

to 1.000, the better the outcome. We can see that the EPO

has the best range (up to 0.97542). The results are also

shown to include ROC curves for all cases, selected con-

fusion metrics, and the computation of MCC and Kappa

scores for all experiments.

The created glaucoma assessment pipeline should be

tested, performed offline on mobile devices as well, and the

findings presented in a short amount of time. This is one of

the limitations of this effort. The proposed method must

still be tested on large-scale clinical imaging before it can

be used in real-world circumstances worldwide. Future

studies could include training the proposed model on a

large number of varieties of images in order to improve its

performance on other datasets and generalize it to all

fundus images. Furthermore, as researchers are constantly

proposing new optimization algorithms, in the future we

will try to implement and analyze the performance of these

algorithms on our problem. The same ideology can be

applied to the diagnosis of various disorders such as dia-

betes, retinopathy, fatty liver disease, thyroid cancer, and

ovarian cancer, among others.

5.2 Comparison with prior published literature

A comparison of the suggested approach to the existing

state-of-the-art glaucoma prediction methods is shown in

Table 17. The comparative table suggests the effectiveness

of the implemented approach in glaucoma identification as

compared to previous studies. This table provides

irrefutable evidence that the proposed novel approach is

robust and efficient in categorizing fundus images with an

accuracy of up to 95.410%. The sensitivity and specificity

of the performance are both high, as with other metrics.

Our method (which relies on soft computing and machine

learning) has been shown to outperform deep learning

methods in a few scenarios. However, there may be a few

instances when the datasets on which the other methods

were evaluated are different from ours. We have worked on

several datasets to further investigate the performance of

the technique we created, as previously described, which

indicates the generalizability of our suggested approach.

6 Limitations and future work directions

After 300–400 iterations (or even 200 in some experi-

ments), fitness starts to go down. This is one of the limi-

tations of the proposed study. Also, the results we report

show that the hybrid approach is less effective than at least

Hybrid algorithm with population size 15(10-fold)(k) (l) Hybrid algorithm with population size 20(10-fold)

Fig. 9 continued
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Table 17 Comparison of proposed approach with the existing work

Study Classification method Dataset and/or No. of images Accuracy Sensitivity Specificity

Abad et al.

(2021)

DL-based approach 10,658 images from REFUGE, and

other datasets

0.953 0.841 0.958

Acharya et al.

(2017)

Local Configuration Pattern features

and texton and KNN

702 images 0.957

(Number of

features

required—

6)

0.962

(Number of

features

required—

6)

0.937

(Number

of features

required—

6)

Das et al.

(2016)

Region growing method and

watershed transformation

Images from HRF, MESSIDOR,

DRIONS-DB and DIARETDB1 and

the images from a local eye hospital

(Sri Sankaradeva Netralaya)

0.9385 0.9259 0.9447

Elangovan

et al. (2021)

DL ORIGA 0.7832 0.5806 0.9244

Elmoufidi

et al. (2021)

CNN and SVM ORIGA 0.9667 0.9665 0.9671

Fu et al.

(2019)

DL ORIGA and Singapore Chinese Eye

Study

0.8429 0.8478 0.8380

Gour and

Khanna

(2019)

GIST and PHOG descriptors 60 images of HRF and remaining from

Drishti GS images

0.834

(Number of

features

required- 4

top GIST

and 4 top

PHOG)

Not

Reported

Not

Reported

Guo et al.

(2018)

Convolutional neural network(CNN) ORIGA 0.7690 0.799 0.738

Guo et al.

(2020)

Gradient boosting decision tree

(GBDT)

650 images of ORIGA 0.843

(Number of

features

required—

13 to 17)

0.894

(Number of

features

required—

13 to 17)

0.793

(Number

of features

required—

13 to 17)

Jerith and

Kumar

(2020)

FS through gray wolf algorithm Not Reported 0.9310

(Number of

features

required—

features of

4 classes)

0.916777
(Number of

features

required—

features of

4 classes)

0.94117

(Number

of features

required—

features of

4 classes)

Juneja et al.

(2020b)

DL-based approach; proposed a new

DL model

DRISHTI –DS 0.9751 0.9878 0.9620

Kim et al.

(2017)

Features from the examination of

retinal nerve fiber layer (RNFL)

thickness and visual field

(VF). Classification by RF

500 images from local hospital 0.9800

(Number of

features

required—

7)

0.983

(Number of

features

required—

7)

0.979

(Number

of features

required—

7)

Kirar et al.

(2020)

Discrete wavelet transform and LS-

SVM

505 images of RIM-1 dataset 0.8495

(Number of

features

required—

26)

0.86

(Number of

features

required—

26)

0.8385

(Number

of features

required—

26)

Liu et al.

(2019)

Deep Learning(DL) 650 images of ORIGA dataset and 400

images from REFUGE dataset

ORIGA

(0.7657)

REFUGE

(0.8278)

ORIGA

(0.7273)

REFUGE

(0.7)

ORIGA

(0.8041)

REFUGE

(0.956)

Maheshwari

et al. (2017)

Feature normalization, selection, and

ranking; LS-SVM

488 private images 0.9519

(Number of

features

required—

13)

0.9362

(Number of

features

required—

13)

0.9671

(Number

of features

required—

13)

Emperor penguin optimization algorithm and bacterial foraging optimization algorithm… 2463

123



one of the individual approaches for most of the perfor-

mance metrics we looked at. Another limitation is that the

proposed system still needs to be tested on huge datasets.

That can also be a future direction for the researchers.

Future work could integrate AI-provided data with all other

patient data (presence of a positive family history, medical

history, ethnicity, age, gender). The utilized public datasets

did not contain this information. It would be extremely

intriguing to conduct additional analysis using these vari-

ables to detect relationships. Future work might include

generalizing the suggested model to all fundus pictures,

training it on a wider range of images to increase perfor-

mance on other datasets, and expanding the proposed

model’s use beyond glaucoma to include heart disorders,

lung cancer, and Alzheimer’s disease. To boost the sys-

tem’s performance, several features will be used, such as

extraction and reduction techniques. We will also attempt

to develop another imaging technique for glaucoma

detection called optical coherence tomography, or OCT.

Additionally, it may be expanded for automation in the

near future to increase accuracy using deep learning tech-

niques with more images. In the future, the proposed sys-

tem’s performance can be measured on datasets of other

chronic human diseases like COVID-19 detection, breast

cancer screening, and skin cancer screening. Researchers

are frequently proposing new soft computing algorithms,

so the performance of these new algorithms can be eval-

uated in the future. Moreover, upgrading the proposed

system to an IoT-integrated web-based system can be a

future extension that will be extremely useful for the

human race.

Table 17 (continued)

Study Classification method Dataset and/or No. of images Accuracy Sensitivity Specificity

Maheshwari

et al. (2019)

Bit-plane slicing (BPS) and local

binary patterns (LBP).

Classification by RF

1426 images from local hospital 0.9930

(Number of

features

required—

20)

0.9884

(Number of

features

required—

20)

0.9964

(Number

of features

required—

20)

Martins et al.

(2020)

DL 2482 images from ORIGA and other

datasets

0.88 0.83 0.90

Orlando et al.

(2019)

DL REFUGE Not Reported 0.9752 Not

Reported

Parashar and

Agrawal

(2020)

FS and SVM classifier 941 images of RIM-

ONE ? ORIGA ? DRISHTI ? HRF

0.9076

(Number of

features

required—

24)

0.945

(Number of

features

required—

24)

0.8784

(Number

of features

required—

24)

Raghavendra

et al. (2018)

SVM and 19 features

(Radon ? MCT ? GIST ? LSDA)

1000 Private and Public images 0.9700

(Number of

features

required—

19)

0.9780

(Number of

features

required—

19)

0.9580

(Number

of features

required—

19)

Sreng et al.

(2020)

11 DL models, then SVM and finally

their ensemble

2787 images from REFUGE, ACRIMA,

ORIGA and other datasets

From 0.8000

(ORIGA)

to 0.9559

(REFUGE)

Not

Reported

Not

Reported

Tulsani et al.

(2021)

DL 650 images of ORIGA 0.90 0.87 0.81

Zilly et al.

(2017)

Entropy sampling and ensembles

learning method based on CNN

architecture

50 images of Drishti GS Dataset 0.941 0.923 0.941

Proposed

method

Soft computing and machine learning

approaches

3112 images from the combination of

public Datasets and private images

0.9541

(Number of

features

required—

13

Execution

time—

28.447)

0.934

(Number of

features

required—

13

Execution

time—

28.447)

0.984

(Number

of features

required—

6

Execution

time—

1.269)
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7 Conclusion

The key to preventing this visual degradation is early

identification, which, if left untreated, might go further and

result in irreversible vision loss. Early identification and

diagnosis of this illness are substantially hampered by

standard diagnostic techniques’ laborious and lengthy

approach. Moreover, the most crucial phase in the devel-

opment of a glaucoma detection system is the selection of

the most appropriate features. The primary purpose of the

suggested approach is to reduce the size of the feature

space in order to enhance the classification system’s per-

formance. This article implements three algorithms: EPO,

BFO, and a hybrid of these two algorithms. To the best of

our knowledge, these algorithms have only rarely been

employed in this way for the detection of glaucoma. The

characteristics (features) chosen by these three methods are

assessed using six machine learning classifiers that have

been shortlisted. The performance of the proposed tech-

nique is evaluated using benchmark fundus image datasets.

In total, twelve experiments have been conducted. Typi-

cally, more than 50% of the characteristics are decreased

most of the time. This decrease gets up to 86.11% (five

features are restored from the original 36 features without a

significant compromise in accuracy). In addition to being

computationally efficient, the suggested method requires

relatively little time to process and analyze high-resolution

retinal pictures. Expert ophthalmologists may use the

proposed method as a second opinion when diagnosing

glaucoma. Consequently, the suggested method might be

highly valuable for glaucoma patients’ first screening. The

proposed solution yields trustworthy results and is simple

to implement in medical departments for successful

prediction.
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