
OPTIMIZATION

An adaptive moth flame optimization algorithm with historical flame
archive strategy and its application

Zhenyu Wang1 • Zijian Cao1 • Haowen Jia1

Accepted: 4 May 2023 / Published online: 22 May 2023
� The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
Moth Flame Optimization (MFO) is a new nature-inspired heuristic algorithm, and has successfully been applied in various

fields of practical engineering. To enhance exploitation of MFO and avoid dropping into local optimal solution, an adaptive

MFO algorithm with historical flame archive strategy is proposed in this paper, which is termed MFO–HFA to avoid

ambiguity. In MFO–HFA, to make full use of population history information, the archive consists of historical optimal

individuals, which is utilized to preserve the information of better historical flame. Besides, to make full use of the

information of top flame information, a top flame randomly matching mechanism is utilized to improve the convergence

ability of population. To demonstrate the advantage of MFO–HFA, it is compared with several well-known variants of

MFO and some state-of-the-art intelligence algorithms on both 25 benchmark functions of CEC 2005. The experimental

results indicate that MFO–HFA outperforms other compared algorithms and has obtained best accuracy. Furthermore,

MFO–HFA is used to generate the rules of IDS by NSL-KDD dataset. The test results demonstrate that MFO–HFA

outperforms compared algorithms and has gained 96.5% accuracy.

Keywords Moth flame optimization � Historical flame archive � Top flame randomly matching mechanism

1 Introduction

To search the optimal solution of the nonlinear, non-dif-

ferentiable and non-separable complex problem, swarm

intelligence algorithms were proposed to simulate the for-

aging behaviors and biological habits of animals, and have

received increasing attention in last several decades (Revay

and Zelinka 2019; Kaur and Kumar 2020; Mehta and

Saxena 2020; Farrag et al. 2019; Kumar 2021, 2019;

Dongoran et al. 2018; Zhang et al. 2018; Kanata et al.

2018; Daylamani-Zad et al. 2017). The classical swarm

intelligence algorithms and variants have Particle Swarm

Optimization (PSO) (Kennedy and Eberhart 1995),

Artificial Bee Colony (ABC) (Karaboga 2005) and Ant

Colony Optimization (ACO) (Dorigo et al. 1991), Cuckoo

Search Algorithm and Hill Climbing (CSAHC) (Shehab

et al. 2018), Cuckoo Search Algorithm by using Rein-

forcement Learning (CSARL) (Shehab et al. 2018),

Cuckoo Search combined with Bat Algorithm (CSBA)

(Shehab et al. 2019), Opposition-based learning in Multi-

Verse Optimizer (OMVO) (Shehab and Abualigah 2022).

MFO is a novel swarm intelligence algorithm, proposed by

Mirjalili in 2015 (2015) and inspired by the transverse

orientation mechanism of moths in nature. Meanwhile,

MFO has successfully been applied in various fields of the

practical engineering, such as breast cancer detection

(Ahmed et al. 2019; Sayed and Hassanien 2017), clustering

for internet of things (Reddy and Babu 2019; Yang et al.

2017; Bharany et al. 2022), feature selection (Sayed and

Hassanien 2017), productivity forecasting (Reddy and

Babu 2019), power dispatch problems (Elsakaan et al.

2018; Mei et al. 2018; Trivedi et al. 2018; Anbarasan and

Jayabarathi 2017) and image segmentation (Khairuzzaman

and Chaudhury 2017; Jia et al. 2019; Abd El Aziz et al.

2017; Said et al. 2017). However, the search performance

& Zijian Cao

bosscao@163.com

Zhenyu Wang

tsingke123@163.com

Haowen Jia

603176912@qq.com

1 School of Computer Science and Engineering, Xi’an

Technological University, Xi’an 710021, China

123

Soft Computing (2023) 27:12155–12180
https://doi.org/10.1007/s00500-023-08416-1(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-7543-1927
http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-023-08416-1&domain=pdf
https://doi.org/10.1007/s00500-023-08416-1

of MFO is extremely influenced by control parameters,

global exploration skill and local exploitation ability. To

further improve the search performance of MFO,

researchers mainly promote the optimization ability of

MFO from the following three aspects: enhancing the

global exploration and local exploitation ability, adjusting

control parameters, and mixing with other algorithms.

In terms of global exploration and local exploitation,

Opposition-based Moth Flame Optimization (OMFO) was

proposed by Apinantanakon et al. (2017), which introduces

the opposite location of moths during the spiral search

process. Li et al. (2020) proposed an Improved Moth Flame

Optimization (IMFO) to improve global optimization

ability of MFO algorithm by using Levy flight mechanism

and dimension-by-dimension evaluation method. Zhao

et al. (2018) proposed an Ameliorated Moth Flame Opti-

mization (AMFO), which not only improves the solution

precision of classic MFO, but also enhances the conver-

gence speed and the stability of MFO. Xu et al. (2019a)

designed an enhanced moth flame optimizer with mutation

strategy for avoiding premature, and it consists of many

mutation strategies, such as Gaussian mutation (GMFO),

Cauchy mutation (CMFO) and Levy mutation (LMFO).

The Gaussian mutation can improve the exploitation ability

of the algorithm, and the Cauchy mutation may guarantee

the population to search in the major area and discard local

optima readily. The Levy mutation can help population to

escape from local optima because of its heavy-tailed

distribution.

The optimized moth flame optimizer based on Gaussian

mutation and cultural learning was proposed in Xu et al.

(2018). Xu et al. (2019b) proposed an improved MFO

algorithm based on the chaotic local search and Gaussian

mutation. Nadimi-Shahraki et al. (2021b) proposed the

migrate-based moth flame optimization (M-MFO) algo-

rithm that uses the migrate operator to improve the position

of unlucky moths. The migrate operator promotes the

diversity of population, so that population can obtain better

search performance. To provide a more efficient tool for

optimization purposes, Shan et al. (2021) proposed a

double adaptive weight mechanism into MFO algorithm,

termed as WEMFO. WEMFO adaptively change the search

strategy in different search periods. To fully utilize the

information of flame population, an enhanced moth flame

optimization with multiple flame guidance mechanism

(EMFO) is proposed in Wang et al. (2022). In EMFO, the

intersection information of multiple flames is used to guide

moth search, which enhances the global diversity of moth

population. Nadimi-Shahraki et al. (2021c) proposed a

multi-trial vector-based moth flame optimization algo-

rithm, named for MTV-MFO. MTV-MFO uses three dif-

ferent search strategies to enhance the global search ability,

and prevents the original MFO’s premature convergence

during the optimization process. Ma et al. (2021) proposed

an improved moth flame optimization algorithm for alle-

viating the premature convergence problem. An inertia

weight of diversity feedback control is utilized to balance

the global explore ability and local exploitation ability.

In terms of hybrid algorithm, Shehab et al. (2021) pro-

posed a hybrid moth flame optimization algorithm by using

new selection schemes, in which hill climbing (HC) is used

to hybrid with moth flame optimization (HC-MFO) for

enhancing the global exploration ability. Mohammad et al.

(Nadimi-Shahraki et al. 2022) proposed an effective

hybridizing of whale optimization algorithm (WOA) and a

modified moth flame optimization algorithm, named for

WMFO to solve the optimal power flow. In WMFO, WOA

and the modified MFO cooperate to effectively discover

the promising areas and provide high-quality solutions.

Sayed et al. (Sayed and Hassanien 2018) proposed the

hybrid MFO and Simulated Annealing (SA), and MFO

comminating with PSO were proposed in Bhesdadiya et al.

(2017); Anfal and Abdelhafid 2017; Jangir 2017). Gravi-

tational Search Algorithm was hybridized into MFO, which

was proposed by Sarma et al. (Sarma et al. 2017). Intelli-

gent facial emotion recognition using the hybrid MFO and

Firefly Algorithm (FA) was proposed by Zhang et al.

(2016).

Regarding control parameters, Emary et al. (2016) put

forward a chaos-based automatic control method on

exploration and exploitation rates against the manual

parameter control of MFO. Wang et al. (2017) proposed a

chaotic strategy to simultaneously perform parameter

optimization and feature selection in MFO. To improve the

exploitation of moth population, Guvenc et al. (2017)

proposed the chaotic moth swarm algorithm, in which ten

chaotic maps were incorporated into MFO algorithm for

finding the best numbers of moths.

Although those variants of MFO have obtained better

performance than classical MFO, they exhibit poor solution

accuracy in solving multi-modal optimization problems. To

alleviate this problem, an adaptive MFO algorithm with

historical flame archive is presented in this paper, inspired

by individual’ optima guided method in PSO.

The main contributions of this paper can be summarized

as follows.

(1) An adaptive historical flame archive strategy is

proposed to enhance the solution precision of

multimodal problems by storing the better historical

flame information.

(2) To accelerate the convergence speed and make full

use of flame information, a top flame randomly

matching mechanism is constructed by randomly

selecting one of top flames to guide moth search.

12156 Z. Wang et al.

123

(3) To systematically verify the superiority of the

proposed MFO–HFA algorithm, 25 complex bench-

mark functions are utilized to estimate the overall

performance of MFO–HFA. Besides, MFO–HFA is

used to generate the rules of IDS by NSL-KDD

dataset.

The rest of this paper is given as follows. In Sect. 2, the

review of original MFO algorithm is summarized. The

adaptive MFO algorithm with historical flame archive is

detailly described in Sect. 3. Section 4 presents the simu-

lation results on the 25 benchmark functions. MFO–HFA is

used to generate the rule of IDS by NSL-KDD dataset in

Sect. 5, followed by conclusions in Sect. 6.

2 Moth flame optimization

MFO is a novel population-based intelligence algorithm,

inspired by the navigation mode of the moths using the

moon light in nature. The transverse orientation of moth is

shown in Fig. 1. Moth flying at a fixed angle around the

moon is an effective method to travel in a straight line for

long distance in night. When moth is flying around an

artificial light, moth will trap into the spiral path and

gradually approach the light. Figure 2 shows that moths

gradually approach the flame during the spiral flight pro-

cess, which is mapped to the spiral search that has the

promising performance in solving practical engineering

optimization problems. The optimization function and the

composition of MFO is described in detail as follows.

2.1 Problem formulation

The problem optimized by MFO algorithm is formulated as

follows.

f X�ð Þ ¼ min f ðXÞ ð1Þ

where Xi ¼ fx1; x2; . . .; xDg is a solution of objective

problem, and D denotes the number of dimensions. f ðXÞ is
fitness value of variable X, and is a minimizing problem.

X� is the global optimal solution.

2.2 Generating the initial population of moths

The moth population of MFO algorithm can be described

as follows.

M ¼

m11 m12 � � � m1D

m21 m22 � � � m2D

..

. ..
. . .

. ..
.

mN1 mN2 � � � mND

2
6664

3
7775 ð2Þ

where N is the number of moths.

The fitness values of all moths are listed in a matrix as

follows.

OM ¼

OM1

OM2

..

.

OMN

2
6664

3
7775 ð3Þ

Fig. 1 Transverse orientation of moths

Fig. 2 Spiral flight of moths

An adaptive moth flame optimization algorithm with historical flame archive strategy… 12157

123

Another essential component in the MFO algorithm is

flame. An array similar to the moth matrix is given as

follows.

F ¼

F11 F12 � � � F1D

F21 F22 � � � F2D

..

. ..
. . .

. ..
.

FN1 FN2 � � � FND

2
6664

3
7775 ð4Þ

For the flames, the matrix of fitness values also is key

and represented as follows.

OF ¼

OF1

OF2

..

.

OFN

2
6664

3
7775 ð5Þ

2.3 Operators of MFO

MFO has three main operators described detailly as

follows.

MFO ¼ ðI;P; TÞ ð6Þ

where I is the initialization function that generates a group

unfirmly random solution (moths) in optimization space

Fig. 3 Updating mechanism of

historical flame archive

Fig. 4 Schematic diagram of updating flame (The peak value is the

worst fitness value of the functions, and the depression value

represents the optimal value of fitness value)

12158 Z. Wang et al.

123

and corresponding to fitness values (I : ; ! fM;OMg). P
stands for spiral search function that is the main operator

ðP : M ! MÞ, and moves the moths around the flames for

searching optimal solution. T refers to whether to satisfy

the optimization process ðT : M ! true; falseÞ.
The following equation represents I operator, which is

used to generate initial moth population.

Mi;j ¼ rand � ubj � lbj
� �

þ lbj ð7Þ

where Mi;j denotes j th dimension of i th moth, ubj and lbj
represent the upper bounds and lower bounds, respectively.

rand is the random in range [0,1]. The moths fly in the

search space by using the transverse orientation mecha-

nism. There are three conditions that should be complied

with when utilizing a spiral search. Firstly, the position of

the moth should be the starting point of the spiral search.

Subsequently, the position of the flame should be the

ending point of the spiral search. Finally, the scope of

spiral search should be in the search space.

Thus, the logarithmic spiral search of the MFO algo-

rithm can be represented as follows.

mothi;tþ1 ¼ Dij � ebb � cos 2pbð Þ þ Fj ð8Þ

Dij ¼ jFj � mothi;tj ð9Þ

where Fj is jth flame, and mothi;t denotes ith moth at t

generation. Meanwhile, Dij stands for the distance between

jth flame and ith moth, and b is the spiral constant and

defines the shape of the logarithmic spiral. In addition, b
represents the random in interval [r, 1], where r is linearly

decreased from - 1 to - 2.

As it can be seen in Eq. (9), the next position of a moth

is determined by the corresponding flame, and it is not

necessarily in the space between them. Therefore, the

exploration ability and the exploitation capacity of the

population can be guaranteed.

2.4 Updating the number of flames

The balance between local search ability and global

exploration ability is achieved by the original time-varying

mechanism (i.e., the number of flames gradually decrease)

that is defined as follows.

Flame no ¼ roundðN � N � 1ð Þ � gen=genMaxÞ ð10Þ

where Flame no is the number of flames. gen denotes

genth iteration, and genMax is the maximal generation.

Besides, round stands for the rounding function.

2.5 Flame matching mechanism

How to choose the flame for moths is a crucial problem that

decides the performance of the algorithm. In MFO algo-

rithm, the flames are sorted based on their fitness values

after updating the matrix of flames in each iteration. Then,

the flame select method is executed to improve the con-

vergence ability of the population, listed as follows.

MFi ¼
Fi; if i�Flame no
FFlame no; otherwise

�
ð11Þ

where ith moth fly around MFith flame of sorted flame

matrix.

2.6 Process of spiral search of MFO

To sum up, the search process of MFO can be described as

follows. Moths are randomly generated in the search space,

and the fitness value of each moth individual is calculated.

Some top positions found so far are viewed as flames and

added to flame population. Subsequently, control parame-

ter flame no and decrease factor r are updated according to

the time-varying mechanism, respectively. The positions of

moths are renewed by the spiral search function to find

Begin

Initializing moth population and calculating fitness values

Initializing the flame archive.F and the fitness value
archive.OF of flame

Meeting terminational
criteria ?

End

Randomly choose one of top q% flames from sorted
archive.F

Calculating distance D for the corresponding moth by using
Eq. (9)

Updating the position of moths by using Eq.(8)

Calculating the fitness value (OM) of moths

OMi < OpFi ?

pFi = Mi, OpFi = OMi

Y

N

Sort the flames population archive.F according to the
fitness values of archive.OF

Updating parameter r

Y

N

Output: Optimal
solution from archive.F

Fig. 5 Flowchart of MFO–HFA

An adaptive moth flame optimization algorithm with historical flame archive strategy… 12159

123

Table 1 Results of solution accuracy obtained by six compared algorithms

Func Results MFO–HFA AMFO GMFO CMFO LMFO OMFO

F1 Mean 2.11E217 8.22E?03� 7.26E-11� 1.53E-10� 9.80E-11� 8.39E-11�

Std 3.76E217 1.30E?03 1.05E-10 3.29E-10 1.11E-10 7.62E-11

P value – 8.35E-34 1.15E-03 2.39E-02 6.06E-05 1.41E-06

H value – 1 1 1 1 1

F2 Mean 1.27E100 1.96E?04� 3.52E?01� 2.88E?01� 3.79E?01� 3.62E?01�

Std 1.87E100 3.56E?03 2.44E?01 1.65E?01 2.90E?01 2.21E?01

P value – 4.45E-31 9.52E-09 8.58E-11 8.43E-08 3.22E-10

H value – 1 1 1 1 1

F3 Mean 2.31E106 1.30E?08� 3.44E?06� 4.12E?06� 3.92E?06� 3.92E?06�

Std 1.18E106 2.03E?07 1.46E?06 1.79E?06 1.56E?06 1.41E?06

P value – 1.41E-33 4.13E-03 1.17E-04 1.52E-04 6.90E-05

H value – 1 1 1 1 1

F4 Mean 9.69E101 2.54E?04� 3.18E?03� 2.70E?03� 2.78E?03� 2.77E?03�

Std 1.41E102 3.66E?03 2.08E?03 1.78E?03 1.63E?03 1.57E?03

P value – 1.47E-35 1.70E-09 2.86E-09 1.09E-10 4.79E-11

H value – 1 1 1 1 1

F5 Mean 2.90E?04 2.83E?04 * 2.72E?04n 2.28E104n 2.28E104n 2.74E?04n

Std 3.53E?01 2.84E?03 2.77E?03 4.84E102 4.31E102 2.64E?03

P value – 2.10E-01 1.97E-03 4.56E248 1.41E250 4.39E-03

H value – 0 1 1 1 1

F6 Mean 1.02E?02 6.22E?08� 9.52E101 ~ 2.32E?02� 2.32E?02� 1.54E?02�

Std 1.79E?02 1.52E?08 1.09E102 4.16E?02 5.14E?02 2.75E?02

P value – 2.01E-25 8.64E201 1.58E-02 2.40E-03 4.37E-05

H value – 1 0 1 1 1

F7 Mean 4.70E?03 4.57E?03n 4.67E?03 * 3.91E103n 3.93E?03n 4.68E?03 *

Std 2.53E-12 1.43E?02 9.60E?01 1.88E102 1.50E?02 1.02E?02

P value – 7.97E-05 1.98E-01 7.73E226 1.86E-29 3.22E-01

H value – 1 0 1 1 0

F8 Mean 2.10E?01 2.09E101 ~ 2.10E?01 * 2.10E?01 * 2.09E101n 2.09E101 ~

Std 4.58E-02 5.82E202 4.27E-02 4.29E-02 5.89E202 5.06E202

P value – 9.63E202 9.81E-01 8.71E-01 3.25E202 5.59E201

H value – 0 0 0 1 0

F9 Mean 2.42E101 2.32E?02� 5.02E?01� 5.19E?01� 5.92E?01� 4.50E?01�

Std 6.66E100 1.28E?01 1.76E?01 1.88E?01 1.48E?01 9.30E?00

P value – 1.57E-50 1.08E-08 9.31E-09 1.91E-14 5.77E-12

H value – 1 1 1 1 1

F10 Mean 6.73E101 2.97E?02� 1.27E?02� 1.12E?02� 1.13E?02� 1.07E?02�

Std 5.40E101 1.25E?01 4.38E?01 2.90E?01 3.32E?01 2.71E?01

P value – 1.28E-25 8.69E-05 6.95E-04 7.66E-04 2.13E-03

H value – 1 1 1 1 1

F11 Mean 1.10E101 3.88E?01� 2.62E?01� 3.99E?01� 2.87E?01� 2.50E?01�

Std 1.99E100 1.12E?00 4.80E?00 6.92E-01 8.37E?00 3.04E?00

P value – 4.32E-47 2.77E-19 1.59E-49 9.26E-14 2.99E-24

H value – 1 1 1 1 1

F12 Mean 9.83E?05 1.02E?06 * 1.34E?04n 9.17E?05 * 3.41E?04n 1.12E104n

Std 1.30E?05 1.09E?05 9.83E?03 2.08E?05 6.13E?04 6.25E103

P value – 2.49E-01 4.17E-37 1.82E-01 1.05E-34 3.46E237

H value – 0 1 0 1 1

12160 Z. Wang et al.

123

Table 1 (continued)

Func Results MFO–HFA AMFO GMFO CMFO LMFO OMFO

F13 Mean 2.85E100 3.15E?01� 7.34E?00� 6.57E?00� 7.15E?00� 6.50E?00�

Std 4.11E201 2.52E?00 2.23E?00 1.68E?00 2.31E?00 2.23E?00

P value – 1.91E-45 3.61E-13 2.33E-14 3.82E-12 1.85E-10

H value – 1 1 1 1 1

F14 Mean 1.31E?01 1.34E?01� 1.27E101n 1.32E?01� 1.28E?01n 1.31E?01 *

Std 2.12E-01 1.31E-01 3.00E201 1.84E-01 3.53E-01 2.21E-01

P value – 4.29E-09 1.21E206 3.47E-02 7.10E-04 9.20E-01

H value – 1 1 1 1 0

F15 Mean 3.85E?02 5.71E?02� 3.78E?02 * 2.62E102n 3.38E?02 * 3.84E?02 *

Std 6.28E?01 3.84E?01 6.61E?01 8.10E101 1.15E?02 8.53E?01

P value – 6.39E-17 6.99E-01 2.64E207 8.06E-02 9.75E-01

H value – 1 0 1 0 0

F16 Mean 1.01E102 3.28E?02� 1.67E?02� 1.65E?02� 1.95E?02� 1.47E?02�

Std 8.00E101 2.61E?01 6.18E?01 8.26E?01 8.81E?01 3.46E?01

P value – 5.46E-18 1.82E-03 7.11E-03 2.51E-04 1.07E-02

H value – 1 1 1 1 1

F17 Mean 1.16E102 3.62E?02� 1.59E?02� 1.92E?02� 1.75E?02� 1.56E?02�

Std 8.12E101 1.46E?01 9.15E?01 1.20E?02 9.22E?01 7.45E?01

P value – 1.20E-19 8.86E-04 1.21E-02 1.99E-02 2.38E-02

H value – 1 1 1 1 1

F18 Mean 9.05E102 1.01E?03� 9.12E?02� 9.12E?02� 9.11E?02� 9.12E?02�

Std 1.21E100 8.37E?00 3.72E?00 3.11E?00 3.60E?00 3.48E?00

P value – 7.26E-47 6.38E-12 1.08E-15 8.05E-12 6.47E-14

H value – 1 1 1 1 1

F19 Mean 9.04E102 1.01E?03� 9.12E?02� 9.11E?02� 9.11E?02� 9.12E?02�

Std 6.22E201 7.99E?00 3.56E?00 3.52E?00 2.91E?00 4.15E?00

P value – 6.37E-48 1.04E-13 1.91E-13 1.23E-15 4.99E-12

H value – 1 1 1 1 1

F20 Mean 9.04E102 1.00E?03� 9.13E?02� 9.11E?02� 9.11E?02� 9.14E?02�

Std 3.53E201 8.72E?00 4.29E?00 3.81E?00 2.59E?00 4.45E?00

P value – 7.96E-46 1.66E-13 2.98E-12 1.14E-17 1.97E-14

H value – 1 1 1 1 1

F21 Mean 5.00E102 1.13E?03� 5.24E?02� 5.00E?02 * 5.89E?02� 5.39E?02�

Std 2.24E213 2.14E?01 8.31E?01 1.65E-11 1.99E?02 1.46E?02

P value – 1.57E-65 1.55E-06 2.55E-05 2.93E-02 1.86E-03

H value – 1 1 1 1 1

F22 Mean 8.94E102 1.07E?03� 9.64E?02� 9.52E?02� 9.65E?02� 9.57E?02�

Std 1.34E101 2.02E?01 4.42E?01 3.14E?01 3.76E?01 4.03E?01

P value – 1.91E-36 8.10E-10 3.82E-11 9.63E-12 1.31E-09

H value – 1 1 1 1 1

F23 Mean 5.50E?02 1.13E?03� 5.50E?02 * 5.76E?02 * 5.36E?02 * 5.34E102 ~

Std 8.07E?01 3.01E?01 8.08E?01 1.48E?02 6.07E?00 1.32E202

P value – 4.56E-35 9.99E-01 4.54E-01 3.79E-01 3.23E201

H value – 1 0 0 0 0

F24 Mean 2.00E102 1.12E?03� 2.00E102 ~ 2.00E102 ~ 2.00E102 ~ 2.00E102 ~

Std 8.67E213 2.84E?01 3.48E210 6.24E211 2.51E210 6.07E211

P value – 1.77E-67 1.05E202 5.66E205 5.56E202 8.54E205

H value – 1 1 1 0 1

An adaptive moth flame optimization algorithm with historical flame archive strategy… 12161

123

better solution. The above process will be repeated until the

termination criteria are met.

3 Adaptive moth flame optimization
with historical flame archive strategy

The main advantage of original MFO algorithm is that the

spiral search mechanism is simple and efficient to optimize

some practical problems. However, for some complex

problems, especially the multi-modal and high dimensional

problems, it may be premature and the obtained solution

precision will be poor. The flame population in MFO

algorithm increases the risk of premature. Besides, the

classical flame matching mechanism in MFO is inefficient

and does not make use of information of top flame. To

solve above problems, this paper proposes two effective

mechanisms (adaptive historical flame archive strategy and

new flame number updating mechanism) described in

detail as follows.

3.1 Adaptive historical flame archive strategy

The effect of the flame population that is composed of the

best flame found so far, is crucial to guarantee the search

ability of MFO. However, in the later stage of evolutionary

search, the diversity of flame population is very poor so

that moth population easy to fall into the trap of local

optimal solution. In order to enhance the diversity of flame

population, an adaptive historical flame archive strategy is

designed to avoid moth population premature. This flame

archive is described as follows.

F ¼

pF1

pF2

..

.

pFN

2
664

3
775 ð12Þ

where pFi denotes the personal historical optimal solution

of the ith moth.

The updating strategy of historical flame archive can be

described by Fig. 3, and it can be formulated as follows.

pFi ¼
Mi; if OMi\OpFi

pFi; otherwise

�
ð13Þ

where OpFi is the fitness value of the historical optimal

solution of ith moth.

The advantage of the historical flame archive will be

clearly illustrated in Fig. 4. The labels 1, 2 and 3 in the Fig. 4

denote the positions of index 1, 2 and 3 flames, respectively.

Meanwhile, labels 10, 20 and 30 are the positions of index 1, 2
and 3 moths after an update, respectively. Based on the

definition of MFO algorithm, flames are the best position

found so far. Therefore, the new flames will be the positions

labeled 30, 3 and 10, which will make the population lose the

information of the global optimal solution and trap into the

local optima. The adaptive historical flame archive strategy

described above is used to ensure that the information of the

global optima can be maintained in the process of search,

because the ith flame will be replaced by the ith moth only

when the fitness value of the ithmoth is better than that of the

ith flame. In the above example, the positions of index 2, 3

and 10 will be viewed as the new flames so that index 2 with

the information of global optima is kept.

3.2 Top flame randomly matching mechanism

The flame matching mechanism in the original MFO is

inefficient and does not make use of information of top

flame, because many moths of the population in the middle

and later stage of search are searching around the

Flame noth flame and the Flame noth flame not provide

the best direction information (i.e., the Flame noth flame is

not the best individual of flame population). To solve the

problem, each moth randomly chooses one of top q%

flames for searching the solution space, which is defined as

follows.

SF ¼ sortðFÞ ð14Þ
Fi ¼ SFrand�q%�N ð15Þ

Table 1 (continued)

Func Results MFO–HFA AMFO GMFO CMFO LMFO OMFO

F25 Mean 9.84E102 1.27E?03� 9.88E?02� 9.86E?02 * 9.88E?02 * 9.86E?02 *

Std 5.46E100 8.56E?00 9.60E?00 1.16E?01 1.04E?01 9.28E?00

P value – 2.27E-64 3.55E-02 3.86E-01 5.11E-02 1.95E-01

H value – 1 1 0 0 0

�/n/ * – 21/1/3 16/3/6 16/3/6 16/5/4 16/2/7

12162 Z. Wang et al.

123

Table 2 Results of solution accuracy obtained by six compared algorithms

Func Results MFO–HFA MFO PSO CLPSO DE ACoDE

F1 Mean 2.11E-17 1.71E-23n 3.40E?03� 1.55E-10� 8.08E230n 2.12E-10�

Std 3.76E-17 8.03E-23 1.69E?03 4.92E-11 4.04E229 6.68E-11

P value – 7.19E-03 2.28E-13 1.23E-20 7.19E203 1.05E-20

H value – 1 1 1 1 1

F2 Mean 1.27E?00 6.84E-02n 7.66E?02� 3.95E?03� 2.15E205n 4.73E-02n

Std 1.87E?00 7.24E-02 8.28E?02 6.77E?02 1.61E205 3.78E-02

P value – 2.33E-03 2.91E-05 3.46E-32 1.36E203 1.97E-03

H value – 1 1 1 1 1

F3 Mean 2.31E?06 2.36E?06 * 8.37E?06� 2.21E?07� 4.01E?05n 9.99E104n

Std 1.18E?06 9.53E?05 1.00E?07 6.40E?06 2.38E?05 1.10E105

P value – 8.80E-01 4.14E-03 6.04E-20 3.08E-10 2.65E212

H value – 0 1 1 1 1

F4 Mean 9.69E?01 1.15E?03� 1.48E?03� 1.08E?04� 7.74E203n 3.10E?00n

Std 1.41E?02 1.13E?03 1.45E?03 1.84E?03 6.51E203 2.33E?00

P value – 2.60E-05 1.94E-05 4.75E-32 1.22E203 1.69E-03

H value – 1 1 1 1 1

F5 Mean 2.90E?04 2.68E104n 3.11E?04� 2.91E?04� 2.90E?04 * 2.90E?04 *

Std 3.53E?01 2.88E103 1.83E?03 2.73E?01 1.98E-09 9.78E-01

P value – 4.27E204 6.80E-07 3.05E-13 1.52E-06 1.11E-05

H value – 1 1 1 1 1

F6 Mean 1.02E?02 1.22E?02� 2.73E?08� 2.85E?01n 3.69E202n 2.40E?01n

Std 1.79E?02 2.31E?02 3.82E?08 1.14E?01 5.07E202 1.48E?00

P value – 7.34E-06 7.92E-04 4.46E-02 6.19E203 3.32E-02

H value – 1 1 1 1 1

F7 Mean 4.70E?03 4.65E103 ~ 4.85E?03� 4.70E?03 * 4.70E?03 * 4.70E?03 *

Std 2.53E-12 1.42E102 2.62E?02 3.56E-08 1.34E-12 2.13E-10

P value – 1.48E201 4.64E-03 1.74E-22 1.00E?00 2.27E-31

H value – 0 1 1 0 1

F8 Mean 2.10E?01 2.02E101n 2.09E?01n 2.09E?01n 2.09E?01 * 2.09E?01 *

Std 4.58E-02 7.14E202 5.77E-02 5.58E-02 5.35E-02 6.74E-02

P value – 8.15E242 1.92E-03 4.22E-02 2.89E-01 4.11E-01

H value – 1 1 1 0 0

F9 Mean 2.42E?01 4.92E?01� 5.87E?01� 3.08E204n 1.10E?02� 6.13E-04n

Std 6.66E?00 1.74E?01 1.86E?01 1.24E204 2.62E?01 2.77E-04

P value – 2.12E-08 1.73E-11 3.42E223 8.74E-21 3.42E-23

H value – 1 1 1 1 1

F10 Mean 6.73E101 1.11E?02� 1.00E?02� 1.34E?02� 1.77E?02� 1.62E?02�

Std 5.40E101 3.69E?01 2.44E?01 1.12E?01 7.38E?00 1.56E?01

P value – 1.48E-03 7.91E-03 2.23E-07 2.11E-13 5.50E-11

H value – 1 1 1 1 1

F11 Mean 1.10E101 2.53E?01� 2.07E?01� 2.71E?01� 3.96E?01� 3.30E?01�

Std 1.99E100 4.07E?00 2.98E?00 1.30E?00 8.24E-01 1.68E?00

P value – 1.16E-20 5.89E-18 4.10E-35 7.00E-49 1.47E-39

H value – 1 1 1 1 1

F12 Mean 9.83E?05 5.40E103n 7.46E?03n 1.18E?05n 9.32E?05 * 1.55E?05n

Std 1.30E?05 4.66E103 8.40E?03 1.50E?04 1.08E?05 1.87E?04

P value – 2.56E237 3.02E-37 9.72E-35 1.38E-01 8.46E-34

H value – 1 1 1 0 1

An adaptive moth flame optimization algorithm with historical flame archive strategy… 12163

123

Table 2 (continued)

Func Results MFO–HFA MFO PSO CLPSO DE ACoDE

F13 Mean 2.85E100 7.10E?00� 2.97E?00� 3.14E?00� 1.51E?01� 7.72E?00�

Std 4.11E201 2.04E?00 7.30E-01 3.22E-01 1.06E?00 5.58E-01

P value – 1.40E-13 4.90E-02 8.71E-03 1.33E-44 6.64E-36

H value – 1 1 1 1 1

F14 Mean 1.31E?01 1.34E?01� 1.20E101n 1.29E?01n 1.32E?01� 1.33E?01�

Std 2.12E-01 2.46E-01 6.12E201 1.51E-01 2.41E-01 1.07E-01

P value – 2.06E-05 6.16E211 1.17E-02 1.47E-02 3.62E-04

H value – 1 1 1 0 1

F15 Mean 3.85E?02 3.72E?02 * 5.10E?02� 1.02E102n 3.80E?02 * 4.08E?02�

Std 6.28E?01 1.00E?02 1.06E?02 2.84E101 1.04E?02 2.77E?01

P value – 5.92E-01 5.91E-06 2.01E225 8.51E-01 9.46E-12

H value – 0 1 1 0 0

F16 Mean 1.01E102 1.60E?02� 3.49E?02� 1.91E?02� 2.05E?02� 1.83E?02�

Std 8.00E101 6.67E?01 1.89E?02 2.64E?01 2.97E?01 2.02E?01

P value – 6.83E-03 2.02E-07 2.22E-06 1.55E-07 8.55E-06

H value – 1 1 1 1 1

F17 Mean 1.16E102 1.78E?02� 2.84E?02� 2.62E?02� 2.30E?02� 2.30E?02�

Std 8.12E101 1.04E?02 1.64E?02 2.65E?01 4.67E?01 8.83E?00

P value – 2.26E-02 3.26E-05 3.35E-11 1.76E-07 8.78E-09

H value – 1 1 1 1 1

F18 Mean 9.05E?02 9.11E?02� 9.40E?02� 9.11E?02� 9.03E102n 9.06E?02�

Std 1.21E?00 3.74E?00 2.59E?01 9.33E-01 1.27E201 1.56E-01

P value – 4.29E-11 1.72E-08 2.05E-24 1.08E205 2.17E-07

H value – 1 1 1 1 1

F19 Mean 9.04E?02 9.10E?02� 9.42E?02� 9.11E?02� 9.03E102n 9.06E?02�

Std 6.22E-01 2.30E?00 2.34E?01 9.25E-01 2.50E201 2.71E-01

P value – 3.25E-15 2.34E-10 5.15E-32 6.69E207 4.66E-18

H value – 1 1 1 1 1

F20 Mean 9.04E?02 9.08E?02� 9.46E?02� 9.11E?02� 9.03E102n 9.06E?02�

Std 3.53E-01 2.27E?01 3.04E?01 7.55E-01 1.57E201 3.13E-01

P value – 4.01E-02 1.24E-08 4.66E-39 8.48E211 4.48E-26

H value – 1 1 1 1 1

F21 Mean 5.00E102 5.12E?02� 1.06E?03� 5.00E102 ~ 5.00E102 ~ 5.00E102 ~

Std 2.24E213 6.00E?01 1.01E?02 3.24E208 9.91E214 4.56E211

P value – 3.22E-02 3.43E-31 2.22E203 2.72E205 1.07E211

H value – 1 1 1 1 1

F22 Mean 8.94E?02 9.58E?02� 9.14E?02� 9.54E?02� 8.73E102n 9.03E?02�

Std 1.34E?01 3.42E?01 4.99E?01 9.87E?00 1.41E101 1.03E?01

P value – 1.53E-11 5.18E-07 5.20E-23 2.51E206 7.90E-03

H value – 1 1 1 1 1

F23 Mean 5.50E?02 5.67E?02� 1.10E?03� 5.34E102 ~ 5.34E102 ~ 5.34E102 ~

Std 8.07E?01 1.14E?02 5.73E?01 1.45E204 3.52E204 2.02E204

P value – 5.51E-03 3.66E-31 3.22E201 3.22E201 3.22E201

H value – 1 1 0 0 0

F24 Mean 2.00E102 2.00E102 ~ 9.52E?02� 2.00E102 ~ 2.00E102 ~ 2.00E102 ~

Std 8.67E213 1.41E212 4.20E?01 2.33E203 2.90E214 1.81E210

P value – 1.10E201 4.56E-55 1.53E202 5.47E222 5.31E211

H value – 0 1 1 1 1

12164 Z. Wang et al.

123

where sortðFÞ refers that the flames of flame population are

ranked from small to large according to their fitness value,

and Fi denotes the flame corresponding to the ith moth.

rand is a random in range [0, 1], and q is a control

parameter that defines the number of top flames. N stands

for the size of flame population.

3.3 Flowchart and pseudo-code of MFO–HFA

The pseudo-code of the MFO–HFA is summarized in

Algorithm 1, where the modification of MFO–HFA is bold

to show clearly.

As previously analyzed, the complete flowchart of the

MFO–HFA algorithm is given in Fig. 5, where the modi-

fication of MFO–HFA is bold for clarity.

Table 2 (continued)

Func Results MFO–HFA MFO PSO CLPSO DE ACoDE

F25 Mean 9.84E?02 9.82E102 ~ 1.17E?03� 1.01E?03� 9.89E?02� 1.00E?03�

Std 5.46E?00 7.51E100 6.23E?01 5.17E?00 3.61E?00 3.93E?00

P value – 5.30E201 2.92E-19 2.33E-24 2.00E-04 1.77E-19

H value – 0 1 1 1 1

�/n/ * – 15/5/5 22/3/0 15/4/6 8/9/8 10/6/9

An adaptive moth flame optimization algorithm with historical flame archive strategy… 12165

123

(F1) (F2)

(F3) (F4)

(F5) (F6)

Fig. 6 Convergence performance of the six compared algorithms (i.e., MFO–HFA, CMFO, GMFO, LMFO, AMFO and OMFO) on 25 functions

12166 Z. Wang et al.

123

(F7) (F8)

(F9) (F10)

(F11) (F12)
bFig. 6 continued

An adaptive moth flame optimization algorithm with historical flame archive strategy… 12167

123

(F13) (F14)

(F15) (F16)

(F17) (F18)
bFig. 6 continued

12168 Z. Wang et al.

123

(F19) (F20)

(F21) (F22)

(F23) (F24)
bFig. 6 continued

An adaptive moth flame optimization algorithm with historical flame archive strategy… 12169

123

4 Benchmark function optimization
problems

The numerical benchmark functions of CEC 2005

(Suganthan et al. 2005) are used to test the performance of

MFO–HFA compared with classic MFO algorithm, other

variants of MFO and some state-of-the-art optimization

algorithms (i.e., DE, adaptive CoDE (ACoDE) (Wang et al.

2011), PSO and comprehensive learning particle swarm

optimizer (CLPSO) (Liang et al. 2006)). For a fair com-

parison, all simulations are carried out on the same phys-

ical environment with MATLAB 2018b, and each

algorithm is independently run 25 times with D*10,000

function evaluations (FES) for reducing statistical errors.

The Wilcoxon’s rank sum test at a 5% significance level

was used to calculate statistically reliable results.

4.1 Benchmark functions

The 25 benchmark functions are used to test the perfor-

mance of the MFO–HFA proposed by this paper, proposed

in the CEC2005 (Suganthan et al. 2005) special session on

real-parameter optimization. F1–F5 of CEC 2005 are

continuous unimodal functions while F6–F14 are multi-

modal and have a significant number of local minima.

Besides, F15–F25 are hybrid composition functions.

The dimension of the problems (i.e., decision variables)

is set to 30 for all the 25 functions. In this experiment, the

mean value and standard deviation of the function error

value (f gbestð Þ � f ðX�Þ) are recorded for testing the per-

formance of each algorithm, where gbest is the best solu-

tion found by the algorithm in a run and X� is the

theoretical global optimum of the benchmark functions.

4.2 Parameter settings of comparative
algorithms

MFO–HFA is compared with five other variants of MFO

algorithm, i.e., AMFO (Zhao et al. 2018), GMFO (Xu et al.

2019a), CMFO (Xu et al. 2019a), LMFO (Xu et al. 2019a),

OMFO (Apinantanakon and Sunat 2017). Besides, classic

MFO (Mirjalili 2015), PSO (Kennedy and Eberhart 1995),

ACoDE (Wang et al. 2011), CLPSO (Liang et al. 2006) and

DE (Storn and Price 1997) are used as a comparison

algorithm to evaluate the effect of MFO–HFA algorithm.

The parameters of the MFO–HFA algorithm are set as

follows. The size of moth population is 100, and the size of

the historical flame archive equal to the size of population.

The parameter q is set as 0.2, according to the sensitivity

analysis of the parameter q in Sect. 4.5. The population

size of other algorithms also is 100, and other parameters

of comparison algorithms are the same with their original

papers.

4.3 Experimental results

4.3.1 Comparisons on solution accuracy

The results of solution accuracy are shown in both Tables 1

and 2 in terms of the mean optimal solutions and the

standard deviation of the solutions, which are obtained by

each algorithm with 25 independent runs and 300,000

times fitness evaluation on 25 benchmark functions.

In each row of Tables 1 and 2, the average values over

25 independent runs are listed in the first line, and the

standard deviations are given in the second line. The

P value and H value of nonparametric statistical test with a

significance level a = 0.05 are presented in the third and

fourth lines. The symbol ‘�’ is tagged in the back of the

mean value yielded by the algorithm that is significantly

worse than MFO–HFA algorithm. If MFO–HFA is worse

than other algorithms, a ‘n’ is added in the back of the

mean value of corresponding algorithm. The symbol ‘ * ’

indicates that there is no significant difference between

MFO–HFA and the compared algorithm. At the last row of

the table, a summary of total number of ‘�’, ‘n’ and ‘ * ’

is presented. In addition, the best results are bold to show

clearly.

It can be seen from the Table 1 that MFO–HFA obtains

the best performance on 17 test functions, and is poor on 9

functions (F5–F8, F12, F14, F15 and F23). AMFO yields

the best results on function F8, and GMFO obtains the best

results on 3 functions (F6, F14 and F24). CMFO gains the

best results on 4 functions (F5, F7, F15 and F24), and

LMFO obtains the best results on 3 functions (F5, F8 and

(F25)
bFig. 6 continued

12170 Z. Wang et al.

123

(F1) (F2)

(F3) (F4)

(F5) (F6)

Fig. 7 Convergence performance of the six compared algorithms (i.e., MFO–HFA, MFO, ACoDE, DE, CLPSO and PSO) on 25 functions

An adaptive moth flame optimization algorithm with historical flame archive strategy… 12171

123

(F7) (F8)

(F9) (F10)

(F11) (F12)
bFig. 7 continued

12172 Z. Wang et al.

123

(F13) (F14)

(F15) (F16)

(F17) (F18)
bFig. 7 continued

An adaptive moth flame optimization algorithm with historical flame archive strategy… 12173

123

(F19) (F20)

(F21) (F22)

(F23) (F24)
bFig. 7 continued

12174 Z. Wang et al.

123

F24). OMFO gets best performance on 4 functions (F8,

F12, F23 and F24).

It can be clearly observed from Table 2 that the original

MFO algorithm has the best performance on 6 functions

(F5, F7, F8, F12, F24 and F25), compared with MFO–

HFA, PSO, CLPSO, DE and ACoDE. Furthermore,

CLPSO algorithm obtains the best performance on five

functions, i.e., F9, F15, F21, F23 and F24. The state-of-the-

art DE algorithm outperformances other algorithms on 9

benchmark functions which are 3 unimodal functions (F1,

F2 and F4), 1 multimodal function (F6) and 5 hybrid

Table 3 Average rankings

obtained by four algorithms on

25 benchmark functions of

CEC2005

Algorithm Ranking

MFO 3.14

MFO-A 2.24

MFO-T 2.44

MFO–HFA 2.18

Table 4 Average rankings

obtained by the MFO–HFA with

different q value on 25

benchmark functions of

CEC2005

Algorithm Ranking

q = 0.1 3.26

q = 0.2 2.82

q = 0.3 3.7

q = 0.4 4.66

q = 0.5 4.66

q = 0.6 5.4

q = 0.7 6.2

q = 0.8 7.64

q = 0.9 7.9

q = 1.0 8.76

Fig. 8 Mean CPU time of compared algorithms on 25 benchmark

functions of CEC2005

Table 5 Evaluation of all algorithms on NSL-KDD dataset

Algorithms Precision Recall F1-Score Accuracy

MFO–HFA 0.97553 0.947999 0.961561 0.964725

OMFO 0.969173 0.943619 0.955977 0.959657

GMFO 0.972536 0.93225 0.951889 0.956203

LMFO 0.972799 0.930962 0.951364 0.955743

CMFO 0.972099 0.928318 0.94966 0.954228

MFO 0.970228 0.929192 0.949151 0.953675

AMFO 0.806304 0.938296 0.851649 0.823173

Fig. 9 Convergence performance of the seven algorithms on network

intrusion detection

(F25)
bFig. 7 continued

An adaptive moth flame optimization algorithm with historical flame archive strategy… 12175

123

composition functions (F18–F24). The ACoDE gains the

best results on 3 standard functions (F3, F21 and F24). The

MFO–HFA obtains the best performance on 7 benchmark

functions that are 3 multimodal functions (F10, F11 and

F13) and 4 hybrid composition functions (F16, F27, F21

and F24).

Compared with MFO, PSO and CLPSO, MFO–HFA has

achieved an overwhelming advantage. Meanwhile, the

performance of MFO–HFA is similar to that of DE on 25

benchmark functions. Based on the above analysis, MFO–

HFA significantly improves the solution accuracy and

exploration ability of MFO. The main reason is the adap-

tive historical flame archive strategy of MFO–HFA has

stronger ability to jump out of local optimum compared

with PSO, CLPSO, DE and ACoDE.

4.3.2 The comparison results of convergence speed

In Figs. 6 and 7, the vertical axis is the natural logarithm of

the mean value over independent 25 runs, and the hori-

zontal axis is the sampling point where 31 sampling points

are taken from FES = 1000 and mod (FES, 10,000) = 0.

It can be clearly seen from the Fig. 6 that MFO–HFA

obtains better convergence speed and solution accuracy

than other 5 variants of MFO on four unimodal functions

(F1–F4), three multimodal functions (F9, F10, F11 and

F13) and seven hybrid composition functions (F16–F20,

F22 and F24). It proves that the methods proposed by this

paper improve the convergence speed of original MFO and

MFO–HFA has strong convergence ability. In addition, in

early stage of evolution search, although MFO–HFA has a

slower convergence speed than other five algorithms on

some functions, it has strong exploration ability and has

achieved better solution accuracy. It indicates that the

historical flame archive strategy can improve the explo-

ration capacity of MFO and make the moth population

escapes the local optimal trap. MFO–HFA does not have a

best convergence speed on five functions (F5, F7, F8, F12,

F15 and F23), this may be because the local exploration

ability of MFO–HFA is slightly poor.

It can be seen from Fig. 7 that MFO–HFA gains the

highest convergence speed on four functions (F10, F11,

F16 and F17), and MFO obtains the highest convergence

speed on three functions (F5, F8 and F12). DE gets the

highest convergence speed on eight benchmark functions

(F1, F2, F4, F6 and F21-F24). Meanwhile, PSO only has

the best convergence speed on test function F14, and

CLPSO has obtained the best convergence speed on two

functions (F9 and F15). These above analyses show that

MFO–HFA has promising convergence speed in solving

some complex problems.

4.4 Component analysis of MFO–HFA

To verify the effectiveness of the component of MFO–

HFA, adaptive historical flame archive strategy is embed-

ded in MFO (named for MFO-A), and MFO with top flame

randomly matching mechanism is named for MFO-T.

Meanwhile, MFO is utilized to optimize 25 benchmark

functions of CEC2005, compared with MFO–HFA, MFO-

A and MFO-T. The average ranking of the Friedman test of

above algorithms is shown in Table 3. Friedman test (Das

et al. 2011) is a non-parametric statistical test for com-

parison of more than two algorithms, utilized to show the

differences in compared algorithms. All compared algo-

rithms are ranked according to their average performance

for each test function. It is worth noting that the KEEL

software (Dukic and Dobrosavljevic 1990) is used to cal-

culate the rankings of compared algorithms for all

problems.

Table 3 clearly shows that MFO–HFA gains first per-

formance, and its average rankings is 2.18. MFO-A obtains

the second performance, and its average rankings is 2.24.

Meanwhile, MFO-A is better than MFO, which indicate

that adaptive historical flame archive strategy is effective.

In addition, MFO-T is also better than MFO, and gains

third performance. Those show that top flame randomly

matching mechanism can fully use the information of top

flames for improving the search ability of population.

Finally, MFO–HFA is better than MFO-A and MFO-T,

which demonstrate that adaptive historical flame archive

strategy and top flame randomly matching mechanism are

effectively integrated into MFO.

4.5 Sensitivity of the parameter q

The parameter q is a threshold to determine whether the

flame is top flame. The choice of parameter q will influence

the diversity of top flames, and then affect the performance

of algorithms. To find out a good choice of the parameter q,

MFO–HFA with different parameter q = {0.1, 0.2, …, 1}

is used to optimize 25 benchmark problems of CEC2005.

The other parameter settings of the algorithm are same as

the settings described earlier.

Table 4 summarizes the results of average rankings of

Friedman test. It clearly shows that 0.2 is best and a

boundary. In the range [0.1, 0.2], the larger the q value, the

better the ranking of the algorithm. In the range [0.2, 1.0],

the larger the q value, almost, the worse the ranking of the

algorithm. Therefore, we suggest q = 0.2 for the MFO–

HFA.

12176 Z. Wang et al.

123

4.6 Comparison results of time complexity

The total comparisons of average time complexity of 25

functions in one iteration about compared algorithms are

shown in Fig. 8 in the form of bar plot. In Fig. 8, it is

clearly shown that the mean CPU time of both MFO–HFA

and MFO is similar. Additionally, MFO–HFA is further

better than PSO, ACODE, CLPSO and DE, which indicate

that the time complexity of MFO–HFA is acceptable.

5 Rule-based network intrusion detection
problem

Network Intrusion Detection System (NIDS) is designed to

identify and prevent the misuse of the computer networks.

Most of the current IDSs are rule-based, and their perfor-

mance significantly depends on sets of pre-defined rule that

are provided by experts or automatically created by system.

Therefore, the update of rule is critical to rule-based IDS.

However, the update of rule is a nonlinear, non-differen-

tiable and non-separable complex problem. To verify the

performance of MFO–HFA on real-world engineer opti-

mization problems, MFO–HFA is utilized to optimize the

rule updating of network intrusion detection. In this sec-

tion, NSL-KDD dataset (Meena and Choudhary 2017;

NSL-Kdd dataset) is used to train individuals and test

individuals of MFO–HFA and the compared intelligence

algorithms.

5.1 Rule-based network intrusion detection
method

The intelligent algorithm-based network intrusion detec-

tion is firstly proposed by Chittur et al. (Chittur 2001),

which is classical rule-based intrusion detection method.

There are two crucial points when using intelligent algo-

rithms to solve the problem of rule updating.

Firstly, the rule provided by intelligent algorithms is

based on data analysis for the network intrusion detection

problem. Each attribute in the rule is designed to preserve a

randomization parameter for each data, and this parameter

multiplied by the data would obtain a weight value for the

determinacy of whether a certain data is an attack or not.

The determinacy formula, Ci, of whether record R is

classified as an attack by rule Xi, is described as follows.

Ci Xið Þ ¼
Xn
j¼1

ðRj � Xi;jÞ ð16Þ

where Xi;j denotes the random parameter for attribute Rj,

and n represents the number of attributes. Furthermore, the

arbitrary threshold value is established, and any

determinacy value which exceeds this threshold value is

regarded as a malicious attack.

Secondly, the fitness of an individual is dependent upon

how many attacks are correctly detected and how many

normal data are viewed as malicious attack. The false

positives are expressed as a positive ratio of total normal

data while correct detections are expressed as a negative

ratio of total attacks. In this experiment, the fitness function

F of specific individual Xi is given as follows.

F Xið Þ ¼ b
B
� a
A

ð17Þ

where a is the number of correctly detected attacks, and A

stands for the number of total attacks. Besides, b is the

number of false positive, and B denotes the total number of

normal data. The fitness value is over the closed interval

[- 1,1] with - 1 being the worst fitness and 1 being the

best fitness.

5.2 NSL-KDD dataset

The KDD dataset was generated via a simulated U.S. Air

Force local-area network set up at Lincoln Labs, which was

operated similarly to a standard Air Force network,

excepting for planned and recorded attacks. In this paper,

an improved KDD dataset (NSK-KDD) is used to test the

performance of MFO–HFA. Although NSL-KDD dataset

may not be a perfect representative of practical networks

because of the lack of public data sets for network-based

IDSs, it still can be used as an effective benchmark dataset

to compare different network intrusion detection methods.

The NSL-KDD dataset does not include redundant records

of the classic KDD99 dataset in the train set, so that the

classifiers will not have a preference on frequent records.

Meanwhile, there are no duplicate records in the test sets,

and the number of selected records from each difficulty

level group is inversely proportional to the rate of records

in the original KDD99 dataset.

The NSL-KDD dataset was split into twin sections, i.e.,

training dataset and testing set. The training set consisted

of 125,973 network connections, and test set compose of

22,544 network connections. Each one of network con-

nection records compose of 41 attributions and a label

attribution. In addition, every string type attribute of orig-

inal records of NSL-KDD are digitized. For example, the

numerical value of the 2th attribute will be 0 when this

attribute is ‘‘TCP’’ type. If the ‘‘protocol_-type’’ is

‘‘ICMP’’, 1 is treated as the value of the 2th attribute.

5.3 Parameter settings of compared algorithms

The parameters of six intelligent algorithms (i.e., MFO–

HFA, MFO (Shehab et al. 2018), AMFO (Zhao et al.

An adaptive moth flame optimization algorithm with historical flame archive strategy… 12177

123

2018), GMFO (Xu et al. 2019a), CMFO (Xu et al. 2019a),

LMFO (Xu et al. 2019a) and OMFO (Apinantanakon and

Sunat 2017)) are set as follows. The size of moth popula-

tion is 100, and the dimension D of individuals is equal to

41. In addition, other parameters of comparison algorithms

are the same with their original paper, and the threshold

value is set to 1. The initial upper boundary of all dimen-

sions of individuals is 1, and the initial lower boundary is

- 1. It is worth noted that there is no boundary in decision

space, and the initial boundary is only used to initialize the

population. Each algorithm is independently run 25 times

with 410,000 function evaluations.

5.4 The results of experiment simulation

The standard metrics of precision, recall, F1-Score and

accuracy are used to evaluate the performance of MFO–

HFA algorithms on NSL-KDD dataset. These metrics can

be realized in terms of TP (True Positive), FP (False Pos-

itive), TN (True Negative) and FN (False Negative). TP

denotes the number of data is classified as an attack, and

which are actual attack. FP implies the number of data that

are detected as an attack, but which are actual normal data.

TN is the number of data that are classified as normal data,

and which are actual normal. FN indicates the number of

data that are classified as normal data, but which are actual

attack. Precision is defined as the proportion of positive

identifications that are actual correct.

Precision ¼ TP

TPþ FP
ð18Þ

Recall denotes the TP rate, i.e., the proportion of correct

predictions to that of actual attack.

Recall ¼ TP

TPþ FN
ð19Þ

F1-Score represents the harmonic mean of precision and

recall.

F1� Score ¼ 2*
Precision � Recall
Precisionþ Recall

ð20Þ

Accuracy is defined as ratio of correct prediction to that

of total amount of data.

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
ð21Þ

The evaluation of all algorithms on NSL-KDD dataset is

listed in Table 5. It can be clearly seen from the Table 5

that MFO–HFA gains 96.47% accuracy and obtains the

highest score on Precision, Recall and F1-Score, compared

with other six algorithms, which indicates that MFO–HFA

exhibits promising performance on the rule-updating of

network intrusion detection.

In the Fig. 9, the vertical axis is the mean value of fit-

ness over independent 10 runs, and the horizontal axis is

the sampling point where 42 sampling points were taken

from FES = 1000 and mod (FES, 10,000) = 0). It can be

seen from Fig. 8 that MFO–HFA obtains the highest con-

vergence speed and the best solution accuracy on first

sampling point. Based on above analysis, it can be con-

cluded that MFO–HFA is effective for rule-based network

intrusion detection and has great potential in solving

practical engineering problems.

6 Conclusions

This paper proposes a variant of MFO algorithm, which is

named MFO with historical flame archive, MFO–HFA for

short. An adaptive historical flame archive strategy and a

top flame randomly matching mechanism are integrated

into MFO. In MFO–HFA, a new flame matrix (historical

flame archive) is applied instead of the old flame matrix in

MFO. The adaptive historical flame archive strategy

adaptively updates flame so that population can keep the

historical optimal solution information. In addition, the top

flame randomly matching mechanism is utilized to accel-

erate the convergence speed and make full use of flame

information. The performance of the MFO–HFA is com-

pared with other variant of MFO, the original MFO and

other state-of-the-art swarm intelligence algorithms on

CEC 2005 benchmark functions and intrusion detection

problem. Although no algorithm is optimal for every

problem according to the theory of no free lunch, MFO–

HFA has really obtained promising performance in solving

complex shifted and rotated multi-modal problems, and

real-world intrusion detection optimization problems.

Funding This research was partially funded by the Shaanxi Natural

Science Basic Research Project (Grant No. 2020JM-565).

Data availability Data sharing not applicable.

Declarations

Conflict of interest The authors have received research grants from

Xi’an Technological University, and declares that they have no

conflict of interest.

Ethical approval This article does not contain any studies with human

participants or animals performed by any of the authors.

Informed consent Informed consent was obtained from all individual

participants included in the study.

12178 Z. Wang et al.

123

References

Abd El Aziz M, Ewees AA, Hassanien AE (2017) Whale optimization

algorithm and moth flame optimization for multilevel threshold-

ing image segmentation. Expert Syst Appl 83:242–256

Ahmed A, Ali M, Selim M (2019) Bio-inspired based techniques for

thermogram breast cancer classification. Int J Intell Eng Syst

12:114–124

Anbarasan P, Jayabarathi T (2017) Optimal reactive power dispatch

using moth flame optimization algorithm. Int J Appl Eng Res

12:3690–3701

Anfal M, Abdelhafid H (2017) Optimal placement of PMUs in

algerian network using a hybrid particle swarm–moth flame

optimizer (PSO-MFO), Electroteh Electron Autom 65

Apinantanakon W, Sunat K (2017) OMFO: a new opposition-based

moth flame optimization algorithm for solving unconstrained

optimization problems. In: International conference on comput-

ing and information technology, pp 22–31

Bharany S, Sharma S, Bhatia S et al (2022) Energy efficient clustering

protocol for FANETS using moth flame optimization. Sustain-

ability 14(10):6159

Bhesdadiya RH, Trivedi IN, Jangir P et al. (2017) A novel hybrid

approach particle swarm optimizer with moth flame optimizer

algorithm. In: Advances in computer and computational

sciences, pp 569–577

Chittur A (2001) Model generation for an intrusion detection system

using genetic algorithms, High School Honors Thesis, Ossining

High School, In Cooperation with Columbia University

Das S, Suganthan PN (2010) Problem definitions and evaluation

criteria for CEC 2011 competition on testing evolutionary

algorithms on real world optimization problems. Jadavpur

University, Nanyang Technological University, Kolkata,

pp 341–359

Daylamani-Zad D, Graham LB, Paraskevopoulos IT (2017) Swarm

intelligence for autonomous cooperative agents in battles for

real-time strategy games. In: 2017 9th international conference

on virtual worlds and games for serious applications, pp. 39–46

Dongoran A, Rahmadani S, Zarlis M (2018) Feature weighting using

particle swarm optimization for learning vector quantization

classifier. J Phys Conf Ser 978:012032

Dorigo M, Maniezzo V, Colorni A (1991) Positive feedback as a

search strategy

Dukic ML, Dobrosavljevic ZS (1990) A method of a spread-spectrum

radar polyphase code design. IEEE J Sel Areas Commun

8(5):743–749

Elsakaan AA, El-Sehiemy RAA, Kaddah SS et al (2018) Economic

power dispatch with emission constraint and valve point loading

effect using moth flame optimization algorithm. Adv Eng Forum

28:139–149

Elsheikh AH, Panchal H, Ahmadein M et al (2021) Productivity

forecasting of solar distiller integrated with evacuated tubes and

external condenser using artificial intelligence model and moth-

flame optimizer. Case Stud Therm Eng 28:101671

Emary E, Zawbaa HM (2016) Impact of chaos functions on modern

swarm optimizers. PLoS ONE 11:e0158738

Farrag AAS, Mohamad SA, Sayed ME (2019) Swarm intelligent

algorithms for solving load balancing in cloud computing. Egypt

Comput Sci J 43:45–57

Guvenc U, Duman S, Hınıslıoglu Y (2017) Chaotic moth swarm

algorithm. In: 2017 IEEE International Conference on INnova-

tions in Intelligent SysTems and Applications, pp 90–95

Jangir P (2017) Optimal power flow using a hybrid particle swarm

optimizer with moth flame optimizer. Glob J Res Eng

Jia H, Ma J, Song W (2019) Multilevel thresholding segmentation for

color image using modified moth flame optimization. IEEE

Access 7:44097–44134

Kanata S, Sianipar GH, Maulidevi NU (2018) Optimization of

reactive power and voltage control in power system using hybrid

artificial neural network and particle swarm optimization. In:

2018 2nd international conference on applied electromagnetic

technology, pp 67–72

Karaboga D (2005) An idea based on honey bee swarm for numerical

optimization, Technical report-tr06, Erciyes university, engi-

neering faculty, computer engineering department

Kaur K, Kumar Y (2020) Swarm intelligence and its applications

towards various computing: a systematic review. In: 2020

International conference on intelligent engineering and manage-

ment, pp 57–62

Kennedy J, Eberhart R (1995) Particle swarm optimization. In:

Proceedings of ICNN’95-international conference on neural

networks, vol 4, pp 1942–1948

Khairuzzaman AKM, Chaudhury S (2017) Moth flame optimization

algorithm based multilevel thresholding for image segmentation.

Int J Appl Metaheuristic Comput 8:58–83

Kumar N (2019) A modified particle swarm optimization for task

scheduling in cloud computing. In: Proceedings of 2nd interna-

tional conference on advanced computing and software

engineering

Kumar N (2021) Effect of acceleration coefficient on particle swarm

optimization for task scheduling in cloud computing. In: EAI

endorsed transactions on cloud systems

Li Y, Zhu X, Liu J (2020) An improved moth flame optimization

algorithm for engineering problems. Symmetry 12:1234

Liang JJ, Qin AK, Suganthan PN et al (2006) Comprehensive learning

particle swarm optimizer for global optimization of multimodal

functions. IEEE Trans Evol Comput 10:281–295

Ma L, Wang C, Xie N et al (2021) Moth-flame optimization algorithm

based on diversity and mutation strategy. Appl Intell

51:5836–5872

Meena G, Choudhary RR (2017) A review paper on IDS classification

using KDD 99 and NSL KDD dataset in WEKA. In: 2017

International conference on computer, communications and

electronics, pp 553–558

Mehta D, Saxena S (2020) Swarm intelligence based hierarchical

routing protocols study in WSNs. In: 2020 Sixth international

conference on parallel, distributed and grid computing,

pp 272–277

Mei RNS, Sulaiman MH, Daniyal H et al (2018) Application of moth

flame optimizer and ant lion optimizer to solve optimal reactive

power dispatch problems. J Telecommun Electron Comput Eng

10:105–110

Mirjalili S (2015) Moth flame optimization algorithm: a novel nature-
inspired heuristic paradigm. Knowl-Based Syst 89:228–249

Nadimi-Shahraki MH, Banaie-Dezfouli M, Zamani H et al (2021a)

B-MFO: a binary moth-flame optimization for feature selection

from medical datasets. Computers 10(11):136

Nadimi-Shahraki MH, Fatahi A, Zamani H et al (2021b) Migration-

based moth-flame optimization algorithm. Processes 9(12):2276

Nadimi-Shahraki MH, Taghian S, Mirjalili S et al (2021c) Mtv-mfo:

multi-trial vector-based moth-flame optimization algorithm.

Symmetry 13(12):2388

Nadimi-Shahraki MH, Fatahi A, Zamani H et al (2022) Hybridizing

of whale and moth-flame optimization algorithms to solve

diverse scales of optimal power flow problem. Electronics

11(5):831

NSL-Kdd dataset. [Online], Available: https://www.unb.ca/cic/data

sets/nsl.html

Reddy MPK, Babu MR (2019) A hybrid cluster head selection model

for internet of things. Clust Comput 22:13095–13107

An adaptive moth flame optimization algorithm with historical flame archive strategy… 12179

123

https://www.unb.ca/cic/datasets/nsl.html
https://www.unb.ca/cic/datasets/nsl.html

Revay L, Zelinka I (2019) Swarm intelligence in virtual environment.

J Adv Eng Comput 3:415–424

Said S, Mostafa A, Houssein EH et al. (2017) Moth flame

optimization based segmentation for MRI liver images. In:

International conference on advanced intelligent systems and

informatics, pp 320–330

Sarma A, Bhutani A, Goel L (2017) Hybridization of moth flame

optimization and gravitational search algorithm and its applica-

tion to detection of food quality. In: 2017 Intelligent systems

conference, pp 52–60

Sayed GI, Hassanien AE (2017) Moth flame swarm optimization with

neutrosophic sets for automatic mitosis detection in breast cancer

histology images. Appl Intell 47:397–408

Sayed GI, Hassanien AE (2018) A hybrid SA-MFO algorithm for

function optimization and engineering design problems. Com-

plex Intell Syst 4:195–212

Shan W, Qiao Z, Heidari AA et al (2021) Double adaptive weights for

stabilization of moth flame optimizer: balance analysis, engi-

neering cases, and medical diagnosis. Knowl-Based Syst

214:106728

Shehab M, Abualigah L (2022) Opposition-based learning multi-verse

optimizer with disruption operator for optimization problems.

Soft Comput 26(21):11669–11693

Shehab M, Khader AT, Laouchedi M (2018) A hybrid method based

on cuckoo search algorithm for global optimization problems.

J Inf Commun Technol 17(3):469–491

Shehab M, Alshawabkah H, Abualigah L et al (2021) Enhanced a

hybrid moth-flame optimization algorithm using new selection

schemes. Eng Comput 37:2931–2956

Shehab M, Khader AT, Alia MA (2019) Enhancing cuckoo search

algorithm by using reinforcement learning for constrained

engineering optimization problems. In: 2019 IEEE Jordan

international joint conference on electrical engineering and

information technology (JEEIT). IEEE, pp 812–816

Storn R, Price K (1997) Differential evolution-a simple and efficient

adaptive scheme for global optimization over continuous spaces.

J Glob Optim 11:341–359

Suganthan PN, Hansen N, Liang JJ et al. (2005) Problem definitions

and evaluation criteria for the CEC 2005 special session on real-

parameter optimization, KanGAL report, 2005005

Trivedi IN, Parmar SA, Pandya MH et al. (2018) Optimal active and

reactive power dispatch problem solution using moth flame

optimizer

Wang Y, Cai Z, Zhang Q (2011) Differential evolution with

composite trial vector generation strategies and control param-

eters. IEEE Trans Evol Comput 15:55–66

Wang M, Chen H, Yang B et al (2017) Toward an optimal kernel

extreme learning machine using a chaotic moth flame optimiza-

tion strategy with applications in medical diagnoses. Neurocom-

puting 267:69–84

Wang Z, Cao Z, Liu C et al (2022) An enhanced moth-flame

optimization with multiple flame guidance mechanism for

parameter extraction of photovoltaic models. Math Probl Eng

2022:8398768

Xu L, Li Y, Li K et al (2018) Enhanced moth flame optimization

based on cultural learning and Gaussian mutation. J Bionic Eng

15:751–763

Xu Y, Chen H, Luo J et al (2019a) Enhanced moth flame optimizer

with mutation strategy for global optimization. Inf Sci

492:181–203

Xu YT, Chen HL, Heidari AA et al (2019b) An efficient chaotic

mutative mode-flame-inspired optimizer for global optimization

tasks. Expert Syst Appl 129:135–155

Yang X, Luo Q, Zhang J et al. (2017) Moth swarm algorithm for

clustering analysis. In: International conference on intelligent

computing, pp 503–514

Zhang L, Mistry K, Neoh SC et al (2016) Intelligent facial emotion

recognition using moth firefly optimization. Knowl-Based Syst

111:248–267

Zhang X, Wang Z, Ye YF (2018) Optimization of adaptive cycle

engine performance based on improved particle swarm opti-

mization. In: 2018 Joint propulsion conference

Zhao XD, Fang YM, Ma Z et al. (2018) An ameliorated moth flame

optimization algorithm. In: 2018 37th Chinese control confer-

ence, pp 2372–2377

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

12180 Z. Wang et al.

123

	An adaptive moth flame optimization algorithm with historical flame archive strategy and its application
	Abstract
	Introduction
	Moth flame optimization
	Problem formulation
	Generating the initial population of moths
	Operators of MFO
	Updating the number of flames
	Flame matching mechanism
	Process of spiral search of MFO

	Adaptive moth flame optimization with historical flame archive strategy
	Adaptive historical flame archive strategy
	Top flame randomly matching mechanism
	Flowchart and pseudo-code of MFO--HFA

	Benchmark function optimization problems
	Benchmark functions
	Parameter settings of comparative algorithms
	Experimental results
	Comparisons on solution accuracy
	The comparison results of convergence speed

	Component analysis of MFO--HFA
	Sensitivity of the parameter q
	Comparison results of time complexity

	Rule-based network intrusion detection problem
	Rule-based network intrusion detection method
	NSL-KDD dataset
	Parameter settings of compared algorithms
	The results of experiment simulation

	Conclusions
	Data availability
	References

