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Abstract
Production scheduling is a critical factor to enhancing productivity in manufacturing engineering and combinatorial

optimization research. The complexity and dynamic nature of production systems necessitates innovative solutions. The

Job Shop Flexible Programming Problem (FJSP) provides a realistic environment for production, where processing times

are variable and uncertain, and multiple objectives need optimization. To solve the Multi-Objective Flexible Fuzzy Job

Shop problem with partial flexibility (P-MOFfJSP), this paper proposes a hybrid metaheuristic approach that combines the

Teaching–Learning-based Optimization (TLBO) algorithm with a Genetic Algorithm. The proposed algorithm of Adaptive

TLBO (TLBO-A) uses two genetic operators (mutation and crossover) with an adaptive population reconfiguration

strategy, ensuring solution space exploration and preventing premature convergence. We have evaluated the TLBO-A

algorithm’s performance on benchmark instances commonly used in programming problems with fuzzy variables. The

experimental analysis indicates significant results, demonstrating that the adaptive strategy improves the search for suit-

able solutions. The proposed algorithm (TLBO-A) exhibits low variations (around 11%) compared to the best mono-

objective heuristic for the fuzzy makespan problem, indicating its robustness. Moreover, compared with other heuristics

like traditional TLBO, the variations decrease to around 1%. However, TLBO-A stands out as it aims to solve a multi-

objective problem, improving the fuzzy makespan, and identifying good results on the Pareto frontier for the fuzzy average

flow time, all within this low variation margin. Our contribution addresses the challenges of production scheduling in fuzzy

time environments and proposes a practical hybrid metaheuristic approach. The TLBO-A algorithm shows promising

results in solving the P-MOFfJSP, highlighting the potential of our proposed methodology for solving real-world pro-

duction scheduling problems.
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1 Introduction

The production scheduling problem is a common chal-

lenging issue faced by all production systems. It is an

optimization problem that involves decisions making about

machine allocation and job sequencing (Pinedo 2005)

problems. Adequate production scheduling aims to account

for multiple constraints to achieve timely and efficient

production (Lei et al. 2017). Two significant optimization

challenges in manufacturing systems are the job shop

problem and the flexible problem (Zhang et al. 2022). The

job shop problem involves jobs scheduling to be processed

on a collection of machines, each requiring a unique

sequence of machine operations (Brandimarte 1993). On

the other hand, the flexible problem considers jobs

assignment to machines in a way that maximizes the uti-

lization of resources and reduces the overall production

time (Song and Liu 2022).

Flexible production systems can address various com-

plexities identifying job processing times accurately

(Acevedo-Chedid et al. 2021). In this direction, analyzing

uncertainty in processing times in a flexible environment is

essential for optimizing production schedules in production

systems (Acevedo Chedid et al. 2020). Optimal schedulingExtended author information available on the last page of the article
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can determine the success or failure of an organization,

impacting its profitability and quality of services (Kun-

dakcı and Kulak 2016). The flexible job-shop scheduling

problem may involve various constraints like machine

capacity, time lags, holding times, and setup times (Boyer

et al. 2021). These problems have been widely studied in

the academic literature and have numerous practical

applications in the manufacturing industry like assembly

line production, manufacturing cell scheduling, and auto-

mated warehouse management (Boyer et al. 2021).

Although traditional scheduling problems typically

assume that the processing time of each operation is a fixed

value in real-world manufacturing systems, the processing

time can be challenging to determine precisely in advance

(Fazel Zarandi et al. 2020). Additionally, completion times

may be obtained ambiguously, leading to uncertainty in the

scheduling process. As a result, there is a clear need to

incorporate the fuzzy concept into scheduling problems

(Abdullah and Abdolrazzagh-Nezhad 2014). By consider-

ing the fuzziness in both processing time and completion

time, manufacturers can create more robust scheduling

algorithms that better account for the complexities of real-

world production systems (Seyyedi et al. 2021). For

example, considering fuzzy aspects in combination with

hybrid algorithms is one of the new challenges in the lit-

erature (Kisi et al. 2023).

This study aims to explore innovative solutions to tackle

the challenges of production scheduling in flexible pro-

duction systems with potential implications for improving

the efficiency and effectiveness of production processes.

The proposed solution approach is an Adaptive Teaching–

Learning-based Optimization Algorithm (TLBO-A) for

solving the Flexible Job Shop Problem with partial flexi-

bility, focusing on minimizing fuzzy makespan and fuzzy

average flow. This research aims to develop a metaheuristic

approach combining adaptive teaching–learning strategies

with optimization techniques.

The practical relevance of modeling flexible manufac-

turing systems and the problem of production scheduling is

a topic of great interest to researchers, and more and more

manufacturing industries are investing in improving their

production scheduling models. The identified advantages

make it clear that as long as the organization’s strategy can

be visualized and executed effectively in production pro-

gramming, customer loyalty can be achieved, costs can be

reduced, and high-quality products can be guaranteed.

This research presents a multi-objective model that

considers the uncertainty of system processes through

fuzzy processing times. As with any Flexible Job Shop

problem, the routing flexibility associated with the jobs and

heterogeneous characteristics of the machines available in

each job center is considered. The optimization objectives

are expressed in a linear sum of weights, and the objectives

to be evaluated are: Minimize the maximum fuzzy com-

pletion time of all the jobs processed in the system

ðMinCmaxÞ and minimize the average flow time. This

approach guarantees that the assignments of the jobs to the

machines are carried out in a balanced way, simultaneously

minimizing the maximum permanence time of the jobs in

the system.

The rest of the paper is organized as follows: Sect. 2 of

this paper provides a comprehensive literature review of

existing solution methods, followed by a detailed descrip-

tion of the study problem in Sect. 3. Section 4 elaborates

on the design of the proposed metaheuristic algorithm, and

in Sect. 5, the obtained results and managerial implications

are presented. Finally, Sect. 6 will conclude the study and

discuss potential future works in this field of research.

2 Literature review

The Flexible Job Shop Scheduling Problem (FJSP) is an

extension of the classic Job-Shop Scheduling Problem

(JSP), which is commonly encountered in companies and is

known to be an NP-hard problem (Gao et al. 2007;

Kaplanoğlu 2016). The FJSP involves the flexibility of job

routes among the available machines, requiring adequate

sequencing, assignment, and routing of jobs (Chiang and

Lin 2013). The flexibility in FJSP can be categorized as

partial or total. In the case where all operations can be

processed on all machines in the system, it is referred to as

Total Flexible Job Shop Scheduling Problem (T-FJSP);

otherwise it would be considered as a Partial Flexible Job

Shop Scheduling Problem (P-FJSP) (Li et al. 2010).

Various solution methodologies have been proposed for

FJSP, including conventional programming methods like

exact and heuristic approaches, but their effectiveness are

limited due to the combinatorial complexity associated

with the problem (Chen et al. 2012; Jia and Hu 2014). The

FJSP solution methods can be classified into two approa-

ches: integration and hierarchy. The integration approach

involves simultaneous sequencing and assignment, while

the hierarchical approach decomposes the problem.

Although the hierarchical approach may be easier to solve,

the integrative approach often yields better results (Pez-

zella et al. 2008).

Brandimarte (1993) article pioneered a hierarchical

approach to solving the FJSP. Then, various studies have

been conducted to address the challenges of FJSP. Mas-

trolilli and Gambardella (2000) developed a taboo search

heuristic with two neighborhood search functions, while
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Kacem et al. (2002) focused on resource allocation and

used an evolutionary control approach to minimize the

makespan, the flow of the most loaded machine, and the

total flow of machines. Xia and Wu (2005) proposed a

hybrid algorithm that combined PSO and simulated

annealing as a local search algorithm to minimize make-

span. Gao et al. (2007) developed a hybrid genetic algo-

rithm with a local bottleneck search, and Gao et al. (2008)

suggested a hybrid genetic algorithm with a variable

neighborhood search. Xing et al. (2009) proposed a local

search algorithm that combined different dispatch rules for

the multi-objective FJSP with partial and complete flexi-

bility. Finally, Zhang et al. (2011) investigated a tabu

search and particle swarm optimization algorithm to

address the multi-objective FJSP.

The FJSP has been tackled by several researchers using

various metaheuristic algorithms. Wang et al. (2012a, b)

studied an improved Pareto-based artificial bee colony

algorithm, while Chiang and Lin (2013) proposed a multi-

objective evolutionary algorithm that employed the Pareto

approach to minimize the makespan, total flow, and max-

imum flow. Baykasoğlu et al. (2014) presented a solution

approach for the FJSP based on a linguistically-based

metaheuristic model. Li and Gao (2016) employed a hybrid

algorithm that combined guided taboo search and genetic

algorithm techniques. Similarly, Xu et al. (2016) presented

a memetic algorithm that minimized makespan and total

flow. Deng et al. (2017) developed a hybrid evolutionary

bee algorithm with a genetic algorithm that minimized

makespan and total and maximum flow. Gaham et al.

(2018) studied an effective harmonic search which was

permutation-based. Ertenlice and Kalayci (2018) executed

a Kalman multi-objective heuristic algorithm that consid-

ered makespan, total flow, and critical workflow. More

recently, Braune et al. (2022) developed a genetic pro-

gramming approach that considered job sequencing and

machine assignment in the FJSP.

Furthermore, some authors addressed uncertainty in the

FJSP considering random jobs or machine breakdowns.

Zhang et al. (2022) studied the dynamic flexible job shop

problem (DFJSP) and proposed a two-stage algorithm that

reduced makespan and the frequencies of machine break-

downs. Lei et al. (2022) included a Markov Decision

Process approach in Multi-Proximal Policy Optimization

Algorithm (multi-PPO). Basiri et al. (2020) considered a

fuzzy processing times multi-objective model for flexible

job shop scheduling and developed a metaheuristic that

combines a genetic algorithm with SAW/TOPSIS methods.

Generally speaking, the completion of real systems,

processing, and delivery times are often uncertain and

subject to variation is essential. To address these issues, the

Fuzzy Job Shop Programming Problem (fJSP) extends the

JSP by introducing fuzzy variables, such as, processing

times, delivery times, and constraints (Abdullah and

Abdolrazzagh-Nezhad 2014). The fJSP can be divided into

three main categories: the fJSP with fuzzy delivery times,

the fJSP with fuzzy processing times, and the fJSP with

fuzzy processing times and delivery times. Moreover, the

fuzzy Job Shop problem has also been explored in flexible

environments, where additional optimization criteria are

considered.

The Job Shop Flexible programming problem with

fuzzy behavior variables has become an increasingly pop-

ular option for tackling scheduling problems. Researchers

have shown a growing interest in this problem in recent

years and have proposed various solutions, albeit still in the

early stages of study (Liu et al. 2015). Different models

have been proposed from the classification enunciated for

the fJSP, which is considered NP-Hard. The contributions

of several authors in the fJSP research works are summa-

rized in Table 1 as follows.

The current research falls under the programming

environments of production in fuzzy settings for flexible

job-shop scenarios. The structure of the study is detailed

below. The fFJSP assumes that all jobs are initially inde-

pendent and available for processing. Likewise, a machine

can process only one operation, and a job can be processed

by only one machine. Also, setup times are included in the

processing times, and once an operation begins, it cannot

be interrupted.

In this study, an Adaptive Teaching–Learning-based

Optimization Algorithm (TLBO-A) is proposed to address

the P-MOfFJSP with partial flexibility, where the objective

is to minimize both the fuzzy makespan and the fuzzy

average flow. The fuzzy behavior is modeled using Tri-

angular Fuzzy Numbers (TFN). The practical relevance of

modeling flexible manufacturing systems and production

scheduling problems has caught the attention of the

researchers. Many manufacturing industries are improving

their production scheduling models to reduce costs and

guarantee high-quality products and thus are achieving

customer loyalty. Production scheduling models have been

applied in various industries, such as power generation,

food processing, chemical processing, automotive facto-

ries, textile industries, aeronautical industries, and steel

processing (Behnamian 2017).

This study builds upon the models developed by Zhang

et al. (2011), Wang et al. (2017), Kaplanoğlu (2016), Deng

et al. (2017) and Kato et al. (2018), who explored multi-

objective models for the Job Shop flexible scheduling

problem with fuzzy processing times. The proposed models

consider the routing flexibility associated with the jobs and
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Table 1 Studies related to fJSP

Author Applied technique Fuzzy conditions Type objective

Wang et al.

(2012a, b)

Genetic algorithm with efficient crossover and

mutation operators

Dynamic processing

times

Multi-objective

Zheng and Li

(2012)

Artificial bee colony with neighborhood structure based Fuzzy processing

times

Mono-objective (makespan)

Wang et al.

(2012a, b)

An effective bi-population-based estimation of

distribution algorithm (BEDA)

Fuzzy processing

times

Mono-objective (makespan)

Li et al. (2012) Particle swarm optimization with tabu search Fuzzy processing

times

Multi-objective (completion time and

makespan)

Li and Pan

(2013a, b)

Hybrid chemical-reaction optimization (HCRO)

algorithm with Tabu search

Fuzzy processing time

(maintenance

activities)

Mono-objective (makespan)

Li and Pan

(2013a, b)

Particle swarm optimization and Tabu search Fuzzy processing time Multi-objective (completion time and

makespan)

Wang et al.

(2013)

Non–dominated sorting Genetic algorithm Dynamic processing

times

Multi-objective (completion time, average

agreement index and minimal agreement

index)

Engin et al.

(2013)

A Scatter search and hybrid genetic algorithm Uncertain processing

times and due dates

Mono-objective (value of the Agreement

Index)

He et al. (2013) Swarm optimization with genetic algorithm Processing time and

deadline

Mono-objective (makespan)

Palacios et al.

(2013)

Hybrid algorithm with a memetic algorithm Uncertainty in task

durations

Mono-objective (makespan)

Tran et al.

(2014)

Multi-objective genetic algorithm Processing times with

uncertainty

Multi-objective (optimizes durations)

Gao et al.

(2015)

A discrete harmony search (DHS) algorithm Fuzzy processing time Mono-objective (fuzzy completion time)

Thammano and

Teekeng

(2015)

Metaheuristic hybrid algorithm with the Tabu list Fuzzy processing time Mono-objective (fuzzy makespan)

Liu et al.

(2015)

Fast estimation of distribution algorithm Fuzzy processing time Mono-objective (makespan)

Xu et al. (2015) Effective Teaching–learning-based optimization

algorithm

Fuzzy processing time Mono-objective (makespan)

Palacios et al.

(2015)

Co-Evolutionary Cooperative Algorithm Fuzzy processing time Mono-objective (fuzzy termination time)

Gao et al.

(2016a, b)

An improved artificial bee colony (IABC) algorithm Fuzzy processing time Multi-objective (fuzzy completion time

and fuzzy machine workload)

Gao et al.

(2016a, b)

A two-stage artificial bee colony (TABC) algorithm Fuzzy processing time

and new job

Mono-objective (fuzzy completion time)

Wang et al.

(2016)

A hybrid algorithm HICATS combines a discrete

imperialist competition algorithm and Tabu search

Fuzzy processing time

and fuzzy due date

Multi-objective (agreement index—fuzzy

due date and completion time)

Wang et al.

(2017)

Multi-objective Memetic Algorithm Fuzzy processing

times and delivery

times

Mono-objective (fuzzy makespan and

mean compliance rate)

Lin (2019) Backtracking search-based hyper-heuristic Fuzzy processing time Mono-objective (makespan)

Lin et al.

(2019)

Multi-universe optimization algorithm Processing time and

deadline

Mono-objective (fuzzy makespan)

Sun et al.

(2019)

Hybrid cooperative coevolution algorithm (hCEA)

based on particle swarm and genetic algorithm

optimization

Fuzzy processing

times

Mono-objective (minimize the fuzzy

makespan)

Gao et al.

(2020)

Classic differential evolution algorithm Processing time and

deadline

Mono-objective (makespan)
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account for heterogeneous machine characteristics at each

work center. The optimization objectives are expressed as a

linear sum of weights, aiming to minimize the maximum

fuzzy completion time of all processed jobs (Min Cmax)

and the average flow time, ensuring a balanced assignment

of jobs to machines while minimizing the maximum job

processing time in the system. These models account for

process uncertainty, allowing for robust scheduling

solutions.

The multi-objective approach of using a sum or linear

combination of weights is commonly applied to solve the

P-MOFfJSP problem. This technique was first proposed by

Zadeh (1963), who demonstrated that solving a scalar

optimization problem with the objective function as a

weighted sum of the components of the original vector

function can lead to efficient solutions. Reducing the

problem to a single objective function allows for compar-

ing all alternatives, enabling a comprehensive order

framework. Hence, the choice of weight values ai plays a

crucial role in achieving the final decision. It is essential to

perceive how this choice impacts the optimal points in

determining the coefficients.

One of the main advantages of this method is its com-

putational efficiency and ease of use. However, the diffi-

culty of determining appropriate weighting coefficients

without adequate information is a significant drawback.

Properly scaling objectives also require considerable

knowledge about the problem, which may not always be

available and costly. Additionally, this method may fail to

generate certain parts of the Pareto front when its shape is

concave, irrespective of the weight combinations.

Nonetheless, incorporating additional functions may prove

helpful in obtaining an initial sketch of the Pareto front for

a given problem or providing background information to be

used by another approach (Chiandussi et al. 2012; Al-

Janabi and Alkaimi 2020, 2022; Al-Janabi et al.

2020a, 2020b; Al-Janabi et al. 2021; Mohammed and Al-

Janabi 2022). Additionally, TLBO has been used to solve

Table 1 (continued)

Author Applied technique Fuzzy conditions Type objective

Shi et al. (2020) Immune genetic algorithm Fuzzy delivery time

with machine failure

Multi-objective (energy, makespan,

satisfaction)

Basiri et al.

(2020)

A hybrid intelligent genetic algorithm Fuzzy processing time Mono-objective (fuzzy makespan)

Li et al. (2021) The artificial immune system (IAIS) algorithm A type-2 fuzzy logic

system

Mono-objective (fuzzy completion time)

Seyyedi et al.

(2021)

A Non-dominated Sorting Genetic Algorithm II

(NSGA II)

Fuzzy processing time Mono-objective (makespan, machine

workload, and earliness /tardiness

penalty)

Ortı́z-Barrios

et al. (2021)

Dispatching algorithm based on fuzzy AHP (FAHP)

and TOPSIS

Criteria weights under

uncertainty

Throughput products for earlier delivery

Wang et al.

(2022)

A hybrid adaptive differential evolution (HADE)

algorithm

Fuzzy processing time

and completion time

Multi-objective (completion time, delay

time, and energy consumption)

Lei et al. (2022) Multi-Proximal Policy Optimization Algorithm on

Markov Decision Process

Fuzzy processing time Mono-objective (makespan)

Zhang et al.

(2022)

A two-stage algorithm based on a neural network Fuzzy processing time Mono-objective (makespan)

Pan et al.

(2022)

a bi-population evolutionary algorithm with feedback

(FBEA)

Uncertainty into

energy-efficient

Multi-objective (fuzzy makespan, energy

consumption and minimum agreement

index)

Seck-Tuoh-

Mora et al.

(2022)

A global neighborhood with a hill-climbing algorithm

(GN-HC)

Fuzzy processing

times

Mono-objective (makespan)

Li et al.

(2022a, b, c)

A two-stage knowledge-driven evolutionary algorithm

(TS-KEA)

Fuzzy processing

times

Mono-objective (makespan)

Li et al.

(2022a, b, c)

A reinforcement learning (RL)—evolutionary

algorithm based on decomposition MOEA/D

Fuzzy processing time Multi-objective (makespan and machine

workload)

Song and Liu

(2022)

Quantum cat swarm optimization (QCSO) algorithm Processing time and

deadline

Mono-objective (makespan)

Li et al.

(2022a, b, c)

A hybrid self-adaptive multi-objective evolutionary

algorithm based on decomposition (HPEA)

Fuzzy processing

times

Multi-objective (makespan and workload)
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supply chain problems such as inventory optimization and

supplier selection (Baykasoğlu et al. 2014) and to solve

transportation problems such as vehicle routing and

scheduling (Jin et al. 2021). Furthermore, TLBO has shown

promising results in solving complex engineering prob-

lems, such as design of truss structures and optimization of

renewable energy systems (Mane et al. 2020). The versa-

tility of TLBO in solving various optimization problems

demonstrates its potential to be used in various fields.

Overall, TLBO has proven to be a valuable tool in solving

complex optimization problems with high efficiency and

accuracy (Zou et al. 2019). For example, Xu et al. (2022)

proposed a new variant of the Teaching–Learning-Based

Optimization (TLBO) algorithm named Distance-Fitness

Learning TLBO (DFL-TLBO). This variant employs a

distance-fitness learning strategy to enhance search ability

and address premature convergence and local optima

entrapment issues in complex optimization problems.

The proposed methodology combines the Teaching–

Learning-based Optimization (TLBO) algorithm with a

Genetic Algorithm to solve the Multi-Objective Flexible

Fuzzy Job Shop problem with partial flexibility (P-

MOFfJSP). The Adaptive TLBO (TLBO-A) algorithm

addresses the challenges associated with production

scheduling in fuzzy time environments incorporating two

genetic operators (mutation and crossover) with an adap-

tive strategy for population reconfiguration. This method-

ology offers several advantages over traditional

metaheuristic algorithms, like genetic algorithms (Katoch

et al. 2021). Firstly, TLBO-A enhances solution space

exploration, ensuring the search for good solutions and

avoiding premature convergence. Secondly, the

hybridization of TLBO-A and GA promotes the synergy of

these methods, exploiting the best of both techniques.

Finally, the TLBO-A algorithm’s adaptive strategy for

population reconfiguration provides the ability to adapt to

changes in the solution landscape, offering robustness to

the algorithm.

The experimental evaluation of the proposed method-

ology on benchmark instances commonly used in pro-

gramming problems with fuzzy variables demonstrates

significant results, indicating that the TLBO-A algorithm

outperforms among other state-of-the-art metaheuristic

algorithms. The performance of this methodology exceeds

other metaheuristic algorithms in terms of both solution

quality and computational efficiency. Our methodology can

effectively solve real-world production scheduling prob-

lems, such as delivery and availability times, incorporating

fuzzy processing and delivery times. As a whole, our

contribution lies in addressing the challenges associated

with production scheduling in fuzzy time environments and

proposing a practical hybrid metaheuristic approach.

3 Description of the problem

3.1 Multi-objective fuzzy flexible job shop
scheduling problem with partial flexibility

Most research studies on scheduling problems focus on

optimization methods to minimize makespan. However,

processing times are subject to variations due to different

situations. Hence, the makespan and variables associated

with processing time are expected to fluctuate (Pan et al.

2014; Joo et al. 2018; Jin et al. 2021). Some studies have

considered multi-objective optimizations in scheduling

problems, but they have mainly worked with deterministic

processing times. Therefore, the existing optimization

techniques are unsuitable for solving such problems, as

actual start or finish times will oscillate and create signif-

icant deviations between the actual and planned makespan.

Recent research (Jin et al. 2016) has emphasized the need

for optimization techniques that can handle stochastic

processing times to address this issue.

Petrović et al. (2014) proposed fuzzy logic to handle

imprecise information by combining fuzzy sets according

to predetermined rules to generate various output values.

This approach can effectively model uncertainty in real-

world environments. To better represent the uncertainty

inherent in the Flexible Job Shop Problem (FJSP), this

study employs fuzzy sets to represent processing time and

related variables like the start and end times of operations

and jobs, machine utilization time, program completion

time, and job processing time. It should be noted that in

practical situations, the processing time for each job and

operation is estimated based on the nature of the machine

or the variability of personnel involved.

The multi-objective fuzzy flexible job shop scheduling

problem with partial flexibility (P-MOfFJSP) consists of a

set of the n jobs Jiði ¼ 1; 2; 3. . .nÞ and a set of the m

machines MKðk ¼ 1; 2; 3. . .mÞ. Each job Ji consists of ni
Operations. Several machines can process each operation

Oij that indicates the operation j of jobi. The processing

time of the operation Oij on MK is represented as a Tri-

angular Fuzzy Number (TFN), Pijk ¼ a1ijk; a
2
ijk; a

3
ijk

� �

(Zheng et al. 2012).The P-MOfFJSP is characterized by a

finite set of machines M ¼ M1;M2;M3. . .Mmf g with

heterogeneous characteristics and must process n jobs

J ¼ J1; J2; J3. . .Jnf g, each job Ji is composed of ni oper-

ations O ¼ Oi;1;Oi;2;Oi;3. . .Oi;ni

� �
, the total number of

operations N ¼
Pn

i¼1 ni. The processing time of Oi;j on the

machine mk is represented by TFN, pijk ¼ p1ijk; p
2
ijk; p

3
ijk

� �
,

where p1ijk; p
2
ijk and p3ijk represent the best, most likely, and

worst processing times.

1464 M. J. Tovar et al.

123



The transfer and setup time of the jobs between the

different machines is included in the processing times. The

fuzzy makespan of Oi;j is represented by a TFN, eCijk ¼

C1
ijk;C

2
ijk;C

3
ijk

� �
; and the fuzzy total flow time of the

schedule for fFT ¼ FT1;FT2;FT3
� �

, where C1
ijk andFT1,

C2
ijk andFT2, and C3

ijk and FT3; respectively, represent the

best, most probable and worst makespan and total flow

time. The P-MOFfJSP aims to determine the allocation of

machines and the sequencing of operations on all machines

to minimize fuzzy makespan: eCMax ¼ maxi¼1;2;3;...;n
eCi, and

fuzzy average flow time: F ¼ 1
n

Pn
i¼1

eFi, in which eCi is the

fuzzy makespan of job Ji and eFi is the fuzzy flow time of

jobJi, subject to precedence and processing constraints.

• All jobs are available at time zero (0).

• All machines are available at time zero (0).

• Each job can only be executed by one machine at a

time.

• Jobs are independent of each other.

• Jobs consist of dependent operations that cannot be

interrupted. Each operation must be completed before

starting another one.

• Machines are independent (Flexible Job Shop, Hetero-

geneous Machines).

• At any given time, a machine can only run one job and

become available for other jobs once the current job is

finished.

• The processing times of jobs exhibit fuzzy behavior and

are studied within a fuzzy interval defined by a fuzzy

triangular number.

• The flexibility of the system is partial, with not all

machines capable of processing all job operations.

• Setup times between jobs are included in processing

times.

• The completion times of jobs also exhibit fuzzy

behavior.

• Jobs are considered finished once all operations are

executed.

The processing restrictions proposed in this system

allow for flexible modeling of production systems, con-

sidering changes in job assignments and processing times.

This increases efficiency and adaptability in response to

changing customer requirements, leading to improved

customer loyalty, cost reduction, and high-quality product

guarantees. The fuzzy makespan is defined as

eCmax ¼ max
i¼1;:::;n

fCi ; i ¼ 1; 2; 3. . .n, where fCi ¼ c1i ; c
2
i ; c

3
i

� �
is

the fuzzy completion time of job i. The fuzzy average flow

(fFP) is given by the expression

fFP ¼ ðF1 þ 2F2 þ F3Þ= 4 � nð Þ. The P-MOfFJSP involves

fuzzy number operations: addition, maximum, and ranking

operations to establish the objective value and the feasible

schedule. Given two fuzzy triangular numbers,

X ¼ x1; x2; x3ð Þ, Y ¼ y1; y2; y3ð Þ, the operation addition is

expressed asX þ Y ¼ x1 þ y1; x2 þ y2; x3 þ y3ð Þ.
For the ranking operation, different criteria are used to

compare:

• Compare the value of G1 Xð Þ ¼ x1 þ 2x2 þ x3ð Þ=
4 andG1 Yð Þ ¼ y1 þ 2y2 þ y3ð Þ=4. If G1 Xð Þ[G1 Yð Þ,
then X[ Y .

• If both have the same value of G1, then compare the

value G2 Xð Þ ¼ x2 and G2 Yð Þ ¼ y2. If G2 Xð Þ[G2 Yð Þ,
then X[ Y .

• If G1 and G2 are identical, then compare the value of

G3 Xð Þ ¼ x3 � x1 andG3 Yð Þ ¼ y3 � y1: If

G3 Xð Þ[G3 Yð Þ, then X[ Y .

• In the approximate max operation, if X[ Y , then

X
W
Y ¼ X, else X

W
Y ¼ Y .

In this formulation, to obtain the completion time of an

operation based on its start time and processing time, the

max operation is utilized. Additionally, to determine the

fuzzy start time of a job operation on a specific machine

Mk, the ‘‘max’’ operation is employed, considering the

completion time of the previous operation in the job and

the completion time of the previous operation in any job

developed on Mk. Finally, the optimal schedule for the

fuzzy problem is obtained using the ‘‘ranking’’ method to

determine the order of completion time.

In this study, to structure the mathematical model, we

referred to the variable-based precedence model proposed

by Özgüven et al. (2010) for FJSP and the approach

developed by Li and Gao (2016) for fFJSP, which are

adapted to the proposed multi-objective model that con-

siders the uncertainty of the system processes through

fuzzy processing times. The problem considers partial

flexibility in job assignments and heterogeneous charac-

teristics of the available machines at each workstation. The

sets, parameters, and equations are defined as follows.

3.1.1 Sets

J: Set of jobs;J ¼ J1; J2; J3. . .Jnf g.i; h: Index of the job;

i; h ¼ 1; 2; 3:::n:

M: Set of machines; M ¼ M1;M2;M3. . .Mk. . .Mmf g.k:
Index of machine; k ¼ 1; 2; 3. . .m.

O: Set of operations of the job i;

O ¼ Oi;1;Oi;2;Oi;3. . .Oi;ni

� �
.

Oij: Operation j of job i.j; g: Index of operation;

j; g ¼ 1; 2; 3:::ni.
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3.1.2 Parameters

n: Number of jobs. m: Number of machines. ni: Total

numbers of operations of job i.

Mij: Set of machines available for operation; Oij

Mij � Mk

� �
.epijk: Fuzzy processing time of the Oij on the

machine k; ðepijk �ð0; 0; 0ÞÞ.b : Relative importance of

maximum fuzzy completion time on the schedule.

1� b : Relative importance of fuzzy average flow time

on the schedule.

B: A large number.

3.1.3 Decision variables

xijk ¼
1 if the machine k is selected for the run Oij

0 otherwise

�

yijk ¼
1 if the operation Oij precedes operation Ohg on machine k
0 otherwise

�

etijk : Fuzzy start time of the Oij if run on the machine Mk

eCijk : Fuzzy completion time of the Oij on the machine Mk:

eCi : Fuzzy completion time of job i:

eCmax : Maximum fuzzy completion time of jobs:

eFi : Fuzzy flow time of jobi:

fFT : Fuzzy total flow time of schedule:

fFP : Fuzzy average flow time of schedule:

The mathematical model of the MOFfJSP of the

research is:

Min Z1 ¼ eCmax ð1Þ

Min Z2 ¼ fFP ð2Þ
Min Z3 ¼ bZ1 þ 1� bð ÞZ2 ð3Þ

S.t:

eCmax � eCi; 8 ið Þ ð1Þ
eCi �

X
k2Mi;j

eCi;j;k; 8 i; j ¼ Jni ; kð Þ ð2Þ

et i;j;k þ eCi;j;k � xi;j;k � B; 8 i; j; k 2 Mij

� �
ð3Þ

eCi;j;k � et ijk þ epi;j;k � 1� xi;j;k
� �

� B; 8 i; j; k 2 Mij

� �
ð4Þ

et i;j;k � eCh;g;k � yi;j;h;g;k � B; 8 i� h; j; g; k 2 Mij \Mhg

� �

ð5Þ

eth;g;k � eCi;j;k � 1� yi;j;h;g;k
� �

� B; 8 i� h; j; g; k 2 Mij \Mhg

� �
ð6Þ

X
k2Mi;j

et i;j;k �
X
k2Mi;j

eCi;j�1;k; 8 i; j ¼ 2; :::; Jnið Þ ð7Þ

X
k2Mi;j

xi;j;k ¼ 1; 8 i; jð Þ ð8Þ

eFi ¼
Xn
i¼1

eCi;j;k; 8 j; kð Þ ð9Þ

fFT ¼
Xn
i¼1

eFi ð10Þ

fFP ¼ 1

n

Xn
i¼1

eFi ð11Þ

et i;j;k � 0; eCi;j;k � 0; 8 i; j; kð Þ ð12Þ
eCi � 0; 8ðiÞ ð13Þ
xi;j;k 2 0; 1f g; 8 i; j; kð Þ ð14Þ

yi;j;h;g;k 2 0; 1f g; 8 i� h; j; g; k 2 Mij \Mhg

� �
ð15Þ

The proposed model is formulated through constraints to

optimize the flexible job shop problem with fuzzy pro-

cessing times. Constraint (1) establishes the maximum

completion time (fuzzy makespan) of the jobs, while

Constraint (2) determines the fuzzy completion time of the

final operations of the jobs. To ensure proper assignment,

Constraint (3) sets the start and end fuzzy times on machine

Mk to zero when the operation Oij is not assigned to it.

Constraint (4) guarantees that the difference between the

fuzzy starting and completion times is equal to, at least, the

fuzzy processing time on machine Mk. Constraints (5) and

(6) maintain the requirements that the operation Oij and

Ohg cannot be conducted simultaneously on any machine in

the set Mij \Mhg. To avoid violation of precedence rela-

tionships, Constraint (7) ensures that the operations of a job

are developed in the correct order. Similarly, Constraint (8)

confirms that an operation is only performed on a single

machine. Constraint (9) calculates the fuzzy flow time of

the jobs, and Constraint (10) determines the fuzzy total

flow time of the schedule. Furthermore, Constraint (11)

establishes the fuzzy average flow time of the schedule.

Constraints (12) and (13) secure the nonnegativity of the

variables. Constraints (14) and (15) define the binary

variables. Finally, to include all scenarios, the TFN values

are considered individually to represent the best, most

probable, and worst outcomes.
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4 Optimization algorithm based
on adaptive teaching–learning

Teaching Learning-Based Optimization (TLBO) is a

metaheuristic algorithm inspired by the classroom teach-

ing–learning process and individuals’ social behavior

(Baykasoğlu et al. 2014). Rao proposed a relatively new

method that has gained widespread acceptance in solving

engineering problems. The standard TLBO model involves

the influence of teachers on students’ learning levels during

a training process, with the results being evaluated in terms

of grades. In TLBO, the teacher is considered the most

knowledgeable individual in the class (population), which

helps improve the overall knowledge level according to

their ability. The students’ quality is assessed based on the

mean value of the population. Initially, TLBO was

designed for single-objective nonlinear optimization prob-

lems, but it has since proven effective for general engi-

neering problems (Pickard et al. 2016). According to the

study by Rao and Rai (2016), TLBO’s effectiveness has

been extensively verified with various performance criteria,

demonstrating superior performance over other methods

with less computational effort, particularly for large-scale

problems.

Baykasoğlu et al. (2014) and Xu et al. (2015) conducted

a study evaluating and analyzing TLBO’s performance in

solving two well-studied combinatorial optimization

problems in the literature: the Flow Shop Problem and the

Flexible Job Shop Problem. The study demonstrated the

efficiency of TLBO when compared to other metaheuris-

tics. The authors conducted also a literary review to

understand the fundamental characteristics of these

metaheuristics.

Several authors have proposed modifications and addi-

tional stages to TLBO to enhance its efficiency. The

improved TLBO algorithm includes population division

into multiple groups, training tutorials, and self-motivating

learning operators (Yu et al. 2018). These modifications

can be categorized into techniques used to generate the

initial population, which includes learning strategies,

adaptive parameters, genetic operators, neighborhood

management, and population diversification (Zou et al.

2019).

Opposition-Based Learning (OBL) and the Nawaz–

Encore–Ham method have been proposed as alternative

methods for generating the initial population in TLBO by

Shao et al. (2017). Mandal and Roy (2013) and Roy and

Sarkar (2014) proposed a modification of the OBL called

Quasi—Opposition-Based Learning. The adaptive param-

eters have been designed for TLBO. Satapathy et al. (2013)

presented an adaptive weight parameter that decreases

linearly in the teaching and learning phase according to the

number of iterations. This study added the differential

weight vector, inertial weight and acceleration coefficient,

while Bulbul and Roy (2014) proposed a new TLBO

method with an adaptive dynamic control mechanism for

the nonlinear economic load dispatch problem.

The combining of TLBO-A and an evolutionary algo-

rithm presents a promising approach for achieving better-

quality solutions in a shorter computational time. This is

supported by previous literature highlighting both meta-

heuristics’ efficiency in solving complex optimization

problems. By implementing the adaptive phase approach

(as shown in Figs. 1 and 4), the parameterization of fea-

sible solutions can be fine-tuned to produce more effective

results reducing the computational burden. The application

of evolutionary operators in TLBO-A can further enhance

the search for optimal solutions. Overall, this integration of

TLBO-A and evolutionary algorithms offers a powerful

optimization tool that can provide high-quality solutions in

less time.

The optimization algorithm based on Teaching–Learn-

ing-Based Optimization (TLBO) is a powerful and efficient

heuristic for solving complex optimization problems.

TLBO incorporates a particular encoding scheme to rep-

resent solutions and a decoding method to transfer solu-

tions to a feasible schedule in a fuzzy sense (Baykasoğlu

et al. 2014). The algorithm also integrates a two-phase

crossover scheme based on the teaching and learning

mechanism and special local search operators to balance

exploration and exploitation capabilities. TLBO has been

compared with other existing algorithms and demonstrated

superior effectiveness and efficiency. In particular, TLBO

can find high-quality solutions within a reasonable time,

making it competitive in speed and efficiency. The TLBO

can also find optimal or near-optimal solutions in most test

instances, making it a competitive method in accuracy and

convergence (Mane et al. 2020). In summary, TLBO is a

competitive heuristic for solving complex optimization

problems due to its potential for finding high-quality

solutions in a reasonable time and its ability to converge to

optimal or near-optimal solutions in most test instances (Jin

et al. 2021).

The proposed optimization algorithm based on Teaching

Learning (TLBO) is a valuable solution to solve the com-

plex Flexible Job Shop Scheduling problem with fuzzy

processing time. A specific coding scheme is always used

to represent feasible solutions, eliminating the need for an

additional method to decode and transfer solutions to a

feasible program based on the principles of fuzzy logic.
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Two crossing schemes (Bi-Point, POX) and mutation were

integrated through two strategies (Sequence Vector Muta-

tion, Machine Assignment Vector Mutation) to ensure a

balance between exploration and exploitation while

searching for reasonable solutions. Moreover, a novel

adaptation strategy is incorporated to reconfigure a portion

of the population by reassigning operations to machines

with less load assignment when searching for better solu-

tions is trapped in a local optimum. The TLBO-A algo-

rithm is also developed in a multi-objective environment,

making it versatile and suitable for systems with partial or

total flexibility within the work routes and available system

resources. These features make it a better algorithm for

developing programming schemes.

Fig. 1 Evolutionary TLBO phases proposed
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According to Ji et al. (2017), the standard TLBO algo-

rithm is prone to get stuck in local optima when the pop-

ulation’s diversity is lost, posing a significant problem. To

address this issue, the TLBO-A algorithm is developed and

experimentally tested. The tests run for single- and multi-

objective problems, allowing for comparability and the

algorithm’s efficiency validation. In conclusion, TLBO-A

is a hybrid improvement metaheuristic incorporating

genetic operators to optimize non-polynomial problems

such as Multi-objective Flexible Job Shop Scheduling with

fuzzy processing times. TLBO-A includes two new stages:

the Study Phase and the Adaptation Phase. The algorithm

compares and optimizes the makespan and uncertain

average flow time on each machine to obtain the most

promising solution while protecting against uncertainty by

defining different levels of fluctuations in completion

times.

4.1 Adaptive teaching–learning-based
optimization algorithm (TLBO-A)

A new adaptive strategy is proposed below to enhance the

search process for optimal solutions and increase the

likelihood of promising results during its evolution. This

adaptive strategy is designed to improve the global and

local search capacity by exploring new scenarios that

provide the algorithm with greater diversity, thus pre-

venting it from being trapped in suboptimal solutions due

to premature convergence. The proposed Adaptive

Teaching–Learning-based Optimization Algorithm

(TLBO-A) builds on the basic principles of TLBO, incor-

porating two genetic operators (mutation and crossover)

and an adaptive strategy for population reconfiguration,

ensuring enhanced exploration of the solution space and

avoidance of premature convergence. In TLBO-A, each

member of the population is considered a student, repre-

senting a potential solution to the problem. A solution

comprises a sequence of operation vectors and a machine

assignment vector.

The sequence vector in the proposed algorithm repre-

sents the order in which operations of the different jobs are

executed, and its length is equal to the total number of

operations. The job index indicates the operation and its

position in the sequence vector. The operations of each job

are arranged in ascending order in the sequence vector. On

the other hand, the machine allocation vector denotes the

indices of the machines selected to process each job

operation, as shown in Fig. 2.

According to Fig. 2, operation one of job one (O11) will

be processed on machine four (M4). Operation two of job

one (O12) will be processed on machine three (M3).

Operation three of job one (O13) on machine one (M1) and

job one operation four (O14) on machine two (M2).

The TLBO-A is characterized by four key parameters,

namely the population size (i.e., the number of students),

the number of learning levels (i.e., Levels), the percentage

of top-performing students or teachers (i.e., Alpha), and the

mutation percentage. In the initial phase of the algorithm,

the parameters, population, and Beta parameter, which

corresponds to the objective related to the makespan, are

initialized. The individuals are then sorted into different

learning levels, with the top group comprising the Alpha

expression, representing the best students or teachers

within the population. To generate the initial population,

the TLBO-A algorithm considers several strategies. The

sequence vector is randomly generated, while the machine

allocation vector is created using different rules, each with

an associated probability of occurrence. Specifically, Rule

1 involves the random selection of a machine for each

operation. In Rule 2, the machines with the shortest pro-

cessing time are selected from the available machines for

each operation. Conversely, in Rule 3, the machines with

the longest processing time are selected from the available

machines for each operation. Lastly, in Rule 4, the

machines with the minor load are chosen from the available

machines.

Loss of population diversity can cause the traditional

TLBO algorithm to fall into local optima (Ji et al. 2017).

The proposed TLBO algorithm incorporates crossing and

mutation operators to address this issue and enhance search

space exploration. Genetic algorithms commonly use these

basic operators to increase population diversity and prevent

premature convergence. Typical forms of crossing include

PMX (Partially Matched Crossover), OX (Ordered Cross-

over), and CX (Cycle Crossover) (Acevedo Chedid et al.

Fig. 2 Representation of a

feasible solution
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2020). The two-point crossing method is employed at this

stage, as depicted in Fig. 3.

In the proposed TLBO, the Teaching phase involves

crossing each student in the population outside the top

group with a randomly selected teacher to generate two

new solutions using the POX crossing strategy. The first

generated student is then compared to the student selected

for crossing, and if the new solution is better, it replaces the

previous student; otherwise, it is maintained. The exact

process is repeated for the second generated student and the

selected teacher for crossing. In the Learning phase, each

teacher in the population crosses paths with another teacher

to find a new solution using the Bi-point Crossing strategy.

If the resulting solution has a better learning degree (higher

fitness value), the initial teachers are replaced within the

population. Otherwise, the selected individual is

maintained.

The Study phase of the TLBO-A algorithm involves

applying the mutation operator to the population’s students

to enhance their learning degree (Fitness Value). This

process employs both sequence mutation strategy and

machine allocation mutation strategy. The machine allo-

cation vector mutation uses three criteria: selection of the

machine with the shortest time, random selection, and

selection from a machine with a higher load to one with a

lower load. In the Adaptive phase of the TLBO-A algo-

rithm, an adaptive strategy is implemented to reconfigure a

percentage of the current population. This strategy applies

a change criterion when the best result (the best teacher) is

repeatedly obtained at certain levels. The students are

ordered based on their learning degrees during this phase.

Finally, the TLBO-A checks for compliance with the stop

criteria. The TLBO-A metaheuristic’s structure is

explained in Fig. 4.

Using the Java programming language, the TLBO-A

algorithm was implemented in NetBeans IDE 8.2. The

corresponding pseudocodes for each stage are provided in

the annexes, which detail the algorithm coding process.

Appendices 1–22 specifically list the coding process for the

main class, data entry, initial population generation,

sequence mutation operator, assignment mutation operator,

adaptive strategy, and convergence graph generation

method.

The proposed Adaptive Teaching–Learning-based

Optimization Algorithm (TLBO-A) is a novel approach

that enhances the global and local search capacity by

incorporating two genetic operators (mutation and cross-

over) and an adaptive strategy for population reconfigura-

tion. The TLBO-A algorithm is based on the basic

principles of TLBO, but it includes a sequence vector and a

machine allocation vector to represent the order in which

operations of different jobs are executed and the indices of

the machines selected to process each job operation. Using

these vectors in combination with the proposed adaptive

strategy provides a more diverse search space and avoids

premature convergence, resulting in better and more

promising solutions. The TLBO-A algorithm is an effective

and versatile optimization method used in multi-objective

scheduling problems with fuzzy processing times, making

it an ideal choice for developing programming schemes.

4.2 Validation of TLBO-A metaheuristic

For the validation stage of the TLBO-A algorithm, five

were utilized instances developed by Lei (2010), each

containing data on fifteen (15) jobs, ten (10) machines, and

eighty (80) operations. Table 2 provides a summary of the

parameters for each instance.

Fig. 3 Example of crossing a

point and bi-point
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Fig. 4 The framework of the TLBO-A for the FJSPF
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The TLBO-A algorithm is applied to minimize the fuzzy

completion time (fuzzy makespan) to compare its perfor-

mance to other existing algorithms. Subsequently, an

experimental design is developed to analyze the execution

of TLBO-A in solving the P-MOFfJSP. The design is able

to establish the influence of each parameter on the pro-

posed algorithm through the use of an orthogonal design of

Taguchi L16 (4^4), which is applied to the experimental

test data of instance two (2) by Lei (2010). Table 3 sum-

marizes the parameters and corresponding levels for the

Taguchi L16 design.

Table 3 shows the parameters and their respective

levels. In each combination of parameters, 16 replicates are

considered and calculated with the expression 2k where k

represents the factors (k = 4), a sample of 272 data is used

in the design. The fuzzy makespan response variable is

defined as
ðx1þ2x2þx3Þ

4
which corresponds to the weighted

weight of the fuzzy triangular number.

The design of experiments is developed using Stat-

graphics software, and the results indicated that Population,

Alpha, and Levels factors are significant, with P-values less

than 5% (refer to Annexure 8). The population size is the

most significant factor, suggesting that a large population

size allows the TLBO-A to converge slowly and achieve

better results. The Alpha factor is determined to be the

second most significant factor. The levels factor is also

found to be significant, and it is recommended to assign

large values. The mutation factor has small impact on the

algorithm’s functioning; higher or lower intensity values

do not affect the response variable. The parameters

established for the TLBO-A while minimizing the fuzzy

makespan are: Population: 2000; Generations: 2000; P

Mutation: 0.2; Alpha: 0.8.

The size of the population and the levels are the most

significant parameters for the TLBO-A applied to the P-

MOFfJSP. The Alpha factor is also essential for generating

the solution, even though it is insignificant. For each

parameter combination, 16 replications are conducted

using a sample of 272 data. The response variables are

defined as Fuzzy makespan:
ðx1;þ2x2þx3Þ

4
; Fuzzy average flow

ðy1;þ2y2þy3Þ
ð4�NumberofjobsÞ. Where X is a fuzzy triangular number X ¼
ðx1; x2; x3Þ that represents the fuzzy completion time

associated with the job, and Y is another fuzzy triangular

number Y ¼ ðy1; y2; y3Þ that represents the average fuzzy

flow time.

Assigning large values to the population and level fac-

tors is one way to avoid premature convergence. The

behavior data of the diffuse makespan response variable

and diffuse average flow concerning each factor can be

observed in Annex 9, which displays the standardized

effect of each factor for the fuzzy makespan response

variable and the diffuse average flow response variable.

Using the statistical software Statgraphics, the values that

should be assigned to the TLBO-A factors were determined

to minimize the objectives simultaneously, expressed

through the response variables. Based on the results

obtained from the experiment design, the parameterized

values for the P-MOFfJSP are Population: 2000; Genera-

tion: 2000; P. Mutation: 0.4; Alpha: 0.6.

5 Experimental results

The TLBO-A is executed in 18 independent runs using the

instances provided by Lei (2010) and Lin (2002), with the

parameterized factors as the input. For the Total Flexibility

Table 2 Details of the instances with total flexibility by Lei (2010)

Instance Number of jobs Number of machines Total operations

1 10 10 40

2 10 10 40

3 10 10 50

4 10 10 50

5 15 10 80

Table 3 Experimental design parameters for FfJSP

Parameters Factor level

1 2 3 4

Population 500 1000 1500 2000

Generation 500 1000 1500 2000

P. mutation 0.2 0.4 0.6 0.8

Alpha 0.2 0.4 0.6 0.8

Table 4 Algorithms to minimize fuzzy makespan

Algorithm References

BSHH Lin (2019)

HMVO Lin et al. (2019)

HABC Li et al. (2017)

HBBO Lin and Zhang (2016)

DHS Gao et al. (2016a, b)

FEDA Liu et al. (2015)

TLBO Xu et al. (2015)

EDA Wang et al. (2012a, b)

CGA Lei (2012)

BSA Civicioglu (2013)

DIGA Lei (2010)
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Table 5 Results and

comparisons of the instances for

the fuzzy makespan

Instance Algorithm Middle value Best value Worst value

1 BSHH (18.5–26.9–36.0) (18–26–36) (18–27–37)

HMVO (19.9–28.0–38.1) (21–28–37) (19–28–39)

TLBO-A (20.97–30.68–39.22) (19–28–38) (21–32–41)

HABC (21.0–32.0–43.6) (19–30–43) (23–33–46)

HBBO (20.8–28.0–37.2) (21–28–37) (19–28–39)

DHS (19.9–29.6–40.6 (17–29–39 (19–31–44)

FEDA (21.8–32.5–43.8) (20–32–41) (23–34–43)

TLBO (20.3–29.9–40.9 (19–28–39) (21–32–42)

EDA (20.3–30.5–41.6) (20–28–40) (22–32–43)

CGA (23.1–33.1–43.4) (21–29–41) (25–37–47)

BSA (20.3–28.5–39.5) (19–28–40) (23–29–39)

DIGA (22.8–33.4–44.6) (20–31–40) (25–37–49)

2 BSHH (28.8–40.0–52.5) (29–39–51) (32–39–54)

HMVO (30.0–45.0–58.0) (30–45–58) (30–45–58)

TLBO-A (31.25–47.65–58.25) (32–47–57) (33–48–61)

HABC (33.0–47.8–62.2) (33–46–58) (36–48–65)

HBBO (30.0–45.0–58.0) (30–45–58) (30–45–58)

DHS (32.1–46.2–59.3) (30–45–61) (35–46–62)

FEDA (35.7–48.4–59.8) (35–46–57) (36–50–61)

TLBO (32.6–46.4–58.5 (30–45–58) (36–49–63)

EDA (33.7–46.9–57.9) (32–46–57) (34–48–58)

CGA (36.4–50.8–66.0) (34–47–63) (38–53–71)

BSA (31.6–44.7–58.8) (30–45–58) (34–44–59)

DIGA (35.4–48.4–62.3) (33–48–57) (37–50–65)

3 BSHH (29.5–42.5–55.9) (30–42–54) (28–44–56)

HMVO (31.0–43.8–58) (29–44–58) (32–44–59)

TLBO-A (33.81–47.38–59.7) (29–45–59) (33–51–67)

HABC (33.9–50.8–67.3) (33–47–64) (36–54–70)

HBBO (30.2–43.8–58.1) (30–42–60) (31–45–57)

DHS (31.6–45.9–59.9) (31–45–58) (33–48–62)

FEDA (36.8–50-66.2) (37–50-60) (39–54-72)

TLBO (31.5–46.7–62.2) (30–45-60) (33–50–70)

EDA (32.8–47.2–62.9) (31–46–60) (34–49–66)

BSA (31.7–45.4–60.1) (29–44–62) (33–45–62)

CGA (36.4–50.8–66.0) (34–47–63) (38–53–71)

DIGA (37.3–53.0–66.9) (37–49–64) (41–58–75)

4 BSHH (21.5–33.0–46.3) (21–32–47) (24–33–46)

HMVO (22.5–34.0–48.0 (25–33–47) (25–34–48

TLBO-A (24.25–38.343–53.375) (25–37–50) (25–39–56)

HABC (25.5–40.0–56.3) (23–38–53) (25–44–59)

HBBO (22.8–34.0–47.9) (24–33–47) (23–35–48)

DHS (24.1–36.1–50.9) (24–35–48) (26–37–53)

FEDA (27.6–40.8–59.6) (25–39-54) (28–40-59)

TLBO (24.9–36.5–50.8) (21–36-50) (26–40–57)

EDA (32.8–47.2–62.9) (31–46–60) (34–49–66)

CGA (27.4–40.4–55.0) (26–37–51) (29–42–59)

BSA (24.1–35.4–49.1) (26–34–48) (25–36–50)

DIGA (29.2–42.9–57.5) (29–41–56) (29–46–60)
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instances by Lei (2010), the TLBO-A is executed, and the

results are compared with existing algorithms applied to

the production scheduling problem in the FfJSP environ-

ment, considering the minimization of the Cmax fuzzy.

Table 4 compares TLBO-A with other existing algorithms

applied to the fuzzy flexible environment production

scheduling problem, FfJSP, for each of the five instances.

The results are also presented in Table 5 alongside those

obtained with the other algorithms. Table 5 shows the

results, and comparisons of the instances for the fuzzy

makespan obtained with the algorithms are also shown.

When applied to FfJSP, TLBO-A yields better results

than the standard TLBO algorithm in Lei’s (2010) instan-

ces, except for instances 2 and 5, where it does not out-

perform the BSHH algorithm. In comparing the results of

our proposed heuristic TLBO-A to the BSHH algorithm, it

is found that the BSHH algorithm produces the best results

in all instances for the fuzzy makespan problem. However,

the TLBO-A heuristic shows a variation in these best

results ranging from 2 to 11% across all instances. When

comparing the TLBO-A heuristic to the BSHH algorithm,

it outperforms the latter in instances 1, 3, and 4, with an

average fluctuation of only 1% compared to the TLBO

heuristic.

The best solutions obtained with TLBO-A FfJSP for

instances 2 and 5 are presented in Figs. 5 and 6, respec-

tively. Figure 5 shows the best solution, for instance 2

compared with the TLBO-A FfJSP, including the pro-

gramming of the jobs for each one of the ten considered

machines. In the case of job 1, its four operations must be

developed on machines M6, M7, M3 and M4, respectively.

Job 2 is scheduled on machines M3, M6, M9, and M8. Job 3

operations 1, 2 and 4 are produced on machine M10 and

operation three on machine M5. According to the results

presented in Fig. 5, the machine that develops the most

jobs is M1, with six jobs, followed by M3, with five jobs

and M5, with four jobs.

Figure 6 presents the best solution for instance 5,

compared with the TLBO-A FfJSP, including the pro-

gramming of the jobs for each one of the ten considered

machines. In the case of job 1, its five operations must be

developed on machines M2, M10, M2, M1 and M5, respec-

tively. Job 2 is scheduled on machinesM8,M8,M7,M2,M6,

and M5. Job 3 operations 4 and 5 are produced on machine

M9, and operations 1, 2, and 3 on machines M7, M8, and

M3, respectively. According to the results presented in

Fig. 6, the machine that develops the most jobs is M1, with

ten jobs, followed by M5 and M10, with nine jobs and M3

and M6, with eight jobs, respectively.

Figure 7 displays the TLBO-A algorithm’s evolution for

solving instance 2, showing the behavior of the fuzzy

makespan objective against the fuzzy average flow and the

Pareto frontier solutions (non-dominated solutions). The

Pareto optimal solution is represented by the fuzzy trian-

gular number (32–47–58) for the fuzzy makespan, with a

weighted weight of 46.0 and a fuzzy average flow of 38.2.

By varying the Beta parameter of the multicriteria function

between zero (0) and one (1) with successive increments of

0.05, 21 possible solutions were obtained, resulting in the

evolution presented in Fig. 7.

The P-MOFfJSP is solved by applying TLBO-A to the

five instances provided by Lei (2010). Table 6 summarizes

the general results obtained for each instance, including the

mean, best, and worst values achieved for the considered

Table 5 continued
Instance Algorithm Middle value Best value Worst value

5 BSHH (35.3–52.6–73.0) (36–52–69) (33–53–77)

HMVO (36.8–54.3–74.7) (37–53–74) (39–56–72)

TLBO-A (33.5–56.28–73.25) (32–54–72) (38–56–74)

HABC

HBBO (37.2–54.0–74.3) (36–54–70) (37–55–75)

DHS (37.9–55.8–77.8) (36–54–74) (42–59–84)

FEDA (46.2–64.4–90-6) (48–65-88) (48–66-93)

TLBO (36.1–57.5–78.2) (36–55-72) (37–61–82)

EDA (38.6–56.9–78.3) (36–55–73) (40–60–81)

CGA (47.0–65.4–86.0) (42–62–82) (49–70–91)

BSA (39.0–57.7–78.4) (38–56–79) (38–58–82)

DIGA

Numbers in bold correspond to the best results per instance
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Fig. 5 The best solution for instance ‘‘2’’ (Lei (2010)) with the TLBO-A FfJSP

Fig. 6 The Best solution for instance ‘‘5’’ (Lei (2010)) with the TLBO-A FfJSP
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objectives. To evaluate each instance, 18 independent runs

are executed. The Gantt charts with start and end times, the

sequence of operations, and the operations assigned to each

machine for the best results of instances 1 and 2 are pre-

sented in Figs. 8 and 9, respectively.

Figure 8 presents the best solution for instance 1,

compared with the TLBO-A for the P-MOFfJSP, including

the programming of the jobs for each one of the ten con-

sidered machines. In the case of job 1, its five operations

must be developed on machines M6, M3, M4, and M1. Job 2

is scheduled on machines M4, M5, M6, and M9. Job 3 is

scheduled on machines M3, M1, M7, and M2. According to

the results presented in Fig. 8, the machine that develops

the most jobs is M1, with six jobs, followed by M2, M3, M4,

Fig. 7 Evolution of TLBO-A in the best solution for instance 2 (Lei

(2010))

Fig. 8 The best solution for instance 1, obtained with the TLBO-A for the P-MOFfJSP

Table 6 The result of the

TLBO-A applied to the

P-MOFfJSP

Instance Fuzzy makespan Fuzzy average flow

Middle value Best value Worst value Middle value Best value Worst value

1 (21–30–41) (19–29–40) (21–30–41) 27.2 26.7 27.9

2 (31.6–46.8–57.1) (32–47–58) (32–47–57) 38.8 37.8 42.3

3 (32.5–47.8–63.8) (31–45–62) (34–48–77) 41.5 38.6 43.8

4 (27.8–38.2–55.2) (24–38–55) (29–39–57) 36.1 35.7 39.6

5 (35.7–57.5–74.3) (32–55–73) (36–59–75) 51.7 48.1 56.9
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M5, M6, M8, and M9 with four jobs and M7 and M10, with

three jobs, respectively.

Figure 9 presents the best solution for instance 2,

compared with the TLBO-A for the P-MOFfJSP, including

the programming of the jobs for each one of the ten con-

sidered machines. In the case of job 1, its four operations

must be developed on machines M6, M7, and M4. Job 2 is

scheduled on machines M5, M9, and M8. Job 3 is scheduled

on machines M7 and M6. According to the results presented

in Fig. 9, the machine that develops the most jobs is M1,

with six jobs, followed by M10, M2, M3, M4, M5, M6, and

M9, with four jobs and M7 and M8, with three jobs,

respectively.

The performance of TLBO-A in the FfJSP environment

to minimize the fuzzy Cmax was evaluated by conducting

18 experimental runs for the scenario of Total flexibility

with the instances by Lin (2002). The results obtained from

these runs are presented in the following table (Table 7):

The best solution found with the TLBO-A algorithm for

the first instance by Lin (2002) is shown in Fig. 10. The

optimal solution for the fuzzy makespan for this instance

coincides with the best solution. The fuzzy makespan (21-

32-45) is the completion time of the operation O52 assigned

to machine M1.

The adaptive TLBO-A algorithm shows stability in

solving small instances with partial flexibility, as evidenced

by the TLBO-A algorithm’s evolution in Fig. 11, applied

to the first instance by Lin (2002). The figure displays only

three out of the 21 points corresponding to the solution

space, indicating that the solution remains constant once

found. The best solution for this problem is represented by

the fuzzy triangular number (21-32-45), with a weight of

32.5 for the fuzzy makespan and a fuzzy average flow of

29.41.

Fig. 9 The Best solution for instance 2, obtained with the TLBO-A for the P-MOFfJSP

Table 7 Results and comparisons of the instances by Lin (2002) for

the Fuzzy Makespan (FfJSP)

Instance Algorithm Middle value Best value Worst value

1 TLBO-A (21–32–45) (21–32–45) (21–32–45)

HMVO (21–32–45) (21–32–45) (21–32–45)

BAB (21–32–45)

2 TLBO-A (19–26–35) (19–26–35) (19–26–35)

HMVO (18–26–35) (18–26–35) (18–26–35)

BAB (18–26–35)

3 TLBO-A (11–21–29) (11–21–29) (11–21–29)

HMVO (13–20–26) (13–20–26) (13–20–26)

BAB (13–20–26)
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5.1 Managerial implications

Manufacturing systems must establish strategies that gen-

erate agile responses to unexpected orders and product

changes in less time. This can be achieved by using opti-

mization algorithms for flexible Job-Shop problems. These

algorithms can help manufacturers meet variations in

demand and develop products with short cycle times while

providing excellent physical and information integration of

manufacturing system components.

The practical relevance of modeling the flexible manu-

facturing systems and the problem of production schedul-

ing is a topic of great interest to researchers and

manufacturing industries. By enhancing their production

scheduling models, manufacturers can benefit from several

advantages, including the following:

• Visualizing and executing strategies effectively in the

production schedule

• Achieving customer loyalty through faster response

times to orders and product changes.

• Reducing costs through optimized use of resources.

• Guaranteeing high-quality products through efficient

scheduling and production processes.

Optimization algorithms for flexible Job-Shop problems

provide a valuable tool for manufacturers to improve their

production scheduling models and remain competitive in

an ever-changing market.

6 Conclusions

The TLBO-A algorithm outperforms the standard TLBO

algorithm on most instances of the FfJSP, except for

instances 2 and 5, where it does not outperform the BSHH

algorithm. However, when compared to the BSHH algo-

rithm, it was found that the latter produces the best results

in all instances for the fuzzy makespan problem. Despite

this, the TLBO-A algorithm shows promising results

compared to other existing algorithms, with a variation in

the best results ranging from 2 to 11% across all instances.

The proposed TLBO-A algorithm is a novel solution to

optimize non-polynomial problems, such as the Multi-ob-

jective Flexible Job Shop Scheduling problem with fuzzy

processing times. It incorporates genetic operators and an

adaptive strategy for population reconfiguration, which

enhances the search process for optimal solutions and

complements the fuzzy processing time of the FfJSP,

making it suitable for systems with partial or total flexi-

bility within the work routes and available system resour-

ces. The TLBO-A is a hybrid improvement metaheuristic

Fig. 10 The best solution of instance 1 (Lin (2002)) with the TLBO-A for MOFfJSP

Fig. 11 Evolution of the TLBO-A in the best solution for instance 1

(Lin (2002))
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that applies the mutation and crossover genetic operators in

its exploration strategy to enhance and benefit from its

advantages when solving non-polynomial problems such as

the P-MOFfJSP. The proposed approach of the TLBO-A

algorithm is integrative, where the sequence and assign-

ment subproblems are addressed simultaneously. The

multi-criteria optimization technique is used to solve the

objective of the FfJSP and P-MOFfJSP, varying the weight

percentage of the fuzzy makespan in a percentage range

between zero (0) and one (1) to obtain the solutions or

decisions of the problem.

In summary, the proposed TLBO-A algorithm presents a

novel solution to optimize non-polynomial problems and

shows promising results compared to other existing algo-

rithms. It enhances the search process for optimal solutions

and complements the fuzzy processing time of the FfJSP,

making it suitable for systems with partial or total flexi-

bility within the work routes and available system resour-

ces. Finally, one of the limitations of this study is the

comparability with other multi-objective studies. It is

important to note that the instances used in this study were

developed by Lei (2010). To overcome this limitation,

future studies could explore new and more challenging

instances that better reflect real-world scenarios. This

would provide a more comprehensive evaluation of the

proposed TLBO-A algorithm’s performance and its

potential to solve real-world problems.

6.1 Future research

The proposed model for solving the P-MOFfJSP problem

has several potential areas for future research. For example,

include predictive aspects with machine learning for fuzzy

production rescheduling scenarios (Adnan et al.

2018, 2022). The several directions to extending the model

and evaluating its behavior with other optimization and

hybridization techniques to overcome the limitations of the

proposed model are outlines as follows:

Possible extensions:

• Evaluate the performance of TLBO-A with other multi-

objective optimization methods and additional objec-

tives for the P-MOFfJSP problem.

• Investigate the behavior of TLBO-A with other

hybridization techniques and methods to improve its

efficiency.

• Incorporate additional noise factors into the

P-MOFfJSP to make it more representative of real-

world scenarios, such as delivery and availability times.

• Study fuzzy environments by including fuzzy process-

ing and delivery times to improve the model’s practical

applications.

• Use other crossing strategies for the different phases of

the Teaching and Learning phase of the TLBO-A to

enhance its results.

• Analyze the behavior of other criteria, such as a

machine with less load, to generate assignments within

the Adaptive phase.

• Incorporate preventive and corrective maintenance

periods into the schedule to improve the model’s

practicality in real-world applications.

• Combine the TLBO Technique with other metaheuris-

tics that may be different from the evolutionary ones, to

identify potentialities in processing capacity.

Appendix

Appendix 1: TLBO-A: Main Class—
Pseudocode.
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Appendix 2: TLBO-A: Pseudocode
of the Data Entry Method.

Appendix 3: TLBO-A: Pseudocode for Initial
Population Generation.
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Appendix 4: TLBO-A: Pseudocode
for Mutation Operator Sequences.

Appendix 5: TLBO-A Pseudocode
for Mutation Operator of Assignments.
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 Pseudo Operator Code Assignment Mutation
 Entry:Population with mutated sequences;

Exit: mutated assignments

 ProcessOperator_ Mutation _of _Assignments {
Execute Generation_ Initial_ Population ;
// Start Machine Mutation - Less Time

Mutated_Assignments1 = 0, Population_to_mutate = 0, Intensity = 15, Criteriachange = 60;

 Intensity_Mutation1;

While Allocations1_Mutated < Population_to_mutate {
generate Random1_Student ;
Yes MOD (count_BestStudent/changecriterion = 0 ) {

 WhileRandom1_Student = 0

generate Random1_Student;  //Random between 0 and Size_Population

}end while
}End 
While Intensity_Mutation1 < Intensity {

generate Random_Oper1_mutate ; //Random between 0 and Total_Operations

Assignment1_Muted [ Random_Oper1_mutar] = Machine_Timemin_Oper;

Increase Intensity_Mutation1 ++ ;

 }end while
IncreaseAssignments1_Muted ++;

}end while

// Start Machine Mutation - Random

Mutated_Assignments2 = 0, Population_to_mutate = 0, Intensity = 15, Criteriachange = 60;

 Intensity_Mutation2;

While Allocations2_Mutated < Population_to_mutate {
generate Random2_Student ;
Yes MOD (count_BestStudent/changecriterion = 0 ) {

 WhileRandom2_Student = 0 {
generate Random2_Student ; // Random between 0 and Population_Size

} end while
}End yes
While Mutation_Intensity2 < Intensity {

generate Random_Oper2_mutate ; // Random between 0 and Total_Operations

Assignment2_Muted [ Random_Oper2_mutar]= Machine_Random_Oper;

Increase Intensity_Mutation2 ++ ;

} end while
Increase Assignments2_Muted ++;

} end while
// Start Mutation of Machines - Operation in Machine of higher load to one of lower load

Mutated_Assignments3 = 0, Population_to_mutate = 0, Intensity = 15, Criteriachange = 60;

 Intensity_Mutation3;

While Mutated_Assignments3 < Population_to_mutate{
generate Random3_Student ;
Yes MOD (count_BestStudent/criterionchange = 0) {

 WhileRandom3_Student = 0 {
generate Random3_Student ; // Random between 0 and Population_Size

} end while
}End 
While Mutation_Intensity < Intensity {

generate Random_Oper_mutate ; // Random between 0 and Total_Operations

 DetermineMore loaded machines;

 DetermineMachine less loaded;

Yes Assignment [Random_Oper3_mutate] = Maq_most_loaded [] {
Assignment3_Muted [ Random_Oper3_mutate] = Maq_least_loaded;

} End 
Increase Intensity_Mutation3 ++ ;

 }end while
Increase Mutated_Assignments3 ++;

 }end while
}End Process
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Appendix 6: TLBO-A: Pseudocode
for Adaptive Strategy.

Appendix 7: TLBO-A: Pseudocode
for the Convergence graph.
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Appendix 8: Result of the experimental
design of the TLBO-A.

Appendix 9: Result of the experimental
design of the P-MOFfJSP.
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