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Abstract
Parameter estimation is always the focus of constructing differential equations to simulate dynamic systems. In order to
estimate unknown parameters in multi-factor uncertain differential equations, the definition of residuals is presented and
important properties of residuals are demonstrated. Based on the property that the residuals obey the linear uncertainty
distribution, moment estimation of the unknown parameters in the multi-factor uncertain differential equation is performed
and the reasonableness of the parameter estimation results is verified. Some examples with real data are given to demonstrate
the feasibility of the method.
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1 Introduction

Using observational data to build dynamic models to explore
patterns of development is a common research method.
However, practical situations often involve a lack of data
or difficulties in measurement. To solve this problem, Liu
(2007) proposed to construct dynamic models based on
expert belief degree and constructd a framework of uncer-
tainty theory based on four axioms in 2007. As the research
progressed, Liu (2009) discovered a class of stationary
independent increment process and defined them as Liu pro-
cesses. Uncertainty theory has attracted the interest of many
scholars and has developed rapidly in recent years. In terms
of practical applications, uncertainty theory stands out, such
as modelling infectious diseases (Lio and Liu 2021), predict-
ing stocks (Yao 2015a), optimising logistics networks (Peng
et al. 2022), etc.

Uncertain differential equation (UDE) driven by the Liu
process was proposed by Yao (2016) to model and ana-
lyze dynamical systems subject to uncertain factors. In order
to model complex dynamic systems in different situations,
more and more types of uncertain differential equations are
proposed. Backward uncertain differential equations were
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presented by Ge and Zhu (2013), who also established the
existence theorems for their solutions. Yao (2015b) proved
the completely unique solution of the uncertain differen-
tial equation with jumps driven by the update process and
the Liu process and its uncertainty measure in the sense
of stability. Yao (2016) proposed the high-order uncertain
differential equations with high-order derivatives. Li et al.
(2015) proposed a multi-factor uncertain differential equa-
tion. The focus of this study is on parameter estimation for
multi-factor uncertain differential equations.

Parameter estimation has long been amajor research topic
in the field of differential equations. Various parameter esti-
mation methods for uncertain differential equations have
been proposed in succession. Sheng et al. (2020) presented
a least squares estimation method for estimating unknown
parameters. Yao and Liu (2020) suggested the moment esti-
mation technique based on the difference form. To improve
the situation where the system of moment estimation equa-
tions has no solution, Liu (2021) proposed generalized
moment estimation. In addition, Lio and Liu (2020) pro-
posed the uncertain maximum likelihood method. Sheng and
Zhang (2021) also introduced three methods for parameter
estimation based on different types of solutions. Liu and Liu
(2022) first proposed the definition of residual of uncertain
differential equations and used residual to solve unknown
parameters. Zhang et al. (2021a) also estimated the parame-
ters of high-order uncertain differential equations. Zhang and
Sheng (2022) rewrite the least squares estimation method for
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estimating the time-varying parameters in UDE. In the pro-
cess of parameter estimation, the testing of the estimates is
equally important. Ye and Liu (2023) proposed uncertainty
hypothesis testing for verifying that the uncertain differential
equations are consistent with the observed data. Zhang et al.
(2022) used the uncertainty hypothesis testing to determine
the reasonableness of the parameter estimates. Ye and Liu
(2022) applied uncertainty hypothesis testing to uncertainty
regression analysis.

In the study of unknown parameters of multi-factor uncer-
tain differential equation, Zhang et al. (2021b) proposed a
weighted method for moment estimation and least squares
estimation of unknown parameters. However, that paper
did not give a specific judgment on how to determine the
rationality of the weighting method. In order to avoid com-
plicated weighting and discuss the rationality of weighting,
a new method based on residuals for estimating unknown
parameters of multi-factor uncertain differential equations is
proposed in this paper.

This paper introduces the idea of residuals into parame-
ter estimation of multi-factor uncertain differential equation.
This paper presents the definition of residuals and proves
some properties of residuals. The moment estimation is per-
formed on the unknown parameters from the residuals as
samples from the linear uncertainty distribution. Section2,
some basic definitions and theorems of uncertainty the-
ory are introduced. Section3, the concept of residuals for
multi-factor uncertain differential equations is presented, the
properties of the residuals are proved and analytical expres-
sions for the residuals are derived. Section4, based on the fact
that the residuals follow the linear uncertainty distribution
L(0, 1), moment estimation of the unknown parameters in
the multi-factor uncertain differential equation is performed
and the estimation results are tested. Section5, two examples
with real data are given to verify the reliability of themethod.
Section6 is the summary of this paper.

2 Preliminary

In this section, some necessary definitions and theorems in
uncertainty theory are introduced to help readers understand
what follows.

Definition 1 (Liu 2007, 2009) Let L be a σ -algebra on a
nonempty set �. A set function M : L → [0, 1] is called an
uncertainty measure if the four following axioms are satis-
fied:

Axiom 1 : (normality Axiom) M{�} = 1 for the universal
set �.

Axiom 2 : (duality Axiom) M{�} + M{�c} = 1 for any
event �.

Axiom 3 : (subadditivity Axiom) For every countable
sequence of events �1,�2, . . . , we have

M

{ ∞⋃
i=1

�i

}
≤

∞∑
i=1

M {�i } .

The triplet (�,L,M) is called an uncertainty space.
Besides, the product uncertainmeasure on the prod-
uct σ -algebra L was defined by Liu as follows:

Axiom 4 : (product Axiom) Let (�k,Lk,Mk) be uncertainty
spaces for k = 1, 2, . . ., the product uncertain mea-
sureM is an uncertain measure satisfying

M

{ ∞∏
k=1

�k

}
=

∞∧
k=0

Mk{�k}

where �k are arbitrarily chosen events from Lk for k =
1, 2, . . ., respectively.

Definition 2 (Liu 2009) An uncertain process Ct is called a
Liu process if

(i) C0 = 0 and almost all sample paths are Lipschitz con-
tinuous,

(ii) Ct has stationary and independent increments,

(iii) the increment Cs+t −Cs has a normal uncertainty dis-
tribution

�t (x) =
(
1 + exp

(
− πx√

3t

))−1

, x ∈ �.

Definition 3 (Liu 2007) Let ξ be an uncertain variable and
its uncertainty distribution is defined by

�(x) = M{ξ ≤ x}

for any real number x .

Common uncertainty distributions include linear uncer-
tainty distributions L(a, b), zigzag uncertainty distributions
Z(a, b, c) and normal uncertainty differentialsN (e, σ ). For
example, suppose the uncertain variable ξ(x) = x , it follows
L(0, 1) uncertainty distribution

�(x) =

⎧⎪⎨
⎪⎩

0, i f x ≤ 0

x, i f 0 < x < 1

1, i f x ≥ 1

.
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Definition 4 (Li et al. 2015) Let C1t ,C2t ,. . .,Cnt be inde-
pendent Liu processes, and f and g1, g2, . . . , gn are given
functions. The multi-factor uncertain differential equation
with respect to C jt (i = 1, 2, . . . , n)

dXt = f (t, Xt )dt +
n∑
j=1

g j (t, Xt )dC jt

is said to have an α-path Xα
t if it solves the corresponding

ordinary differential equation

dXα
t = f (t, Xα

t )dt +
n∑
j=1

|g(t, Xα
t )|�−1(α)dt

where

�−1(α) =
√
3

π
ln

α

1 − α
, α ∈ (0, 1).

Theorem 1 (Ye and Liu 2023) Let ξ be an uncertain variable
that follows a linear uncertainty distribution L(a, b) with
unknown parameters a and b. The test for hypotheses

H0 : a = a0 and b = b0 versus H1 : a 	= a0 or b 	= b0

at significance level α is W =
{
(z1, z2, . . . , zn) : there

are at least α of indexes i’s with 1 ≤ i ≤ n such as

zi < �−1
θ0

(α
2 )orzi > �−1

θ0
(1− α

2 )

}
where�−1

θ0
is the inverse

uncertainty distribution of L(a, b), i.e.

�−1
θ0

(α) = (1 − α)a0 + αb0.

3 Residuals of multi-factor uncertain
differential equations

This section presents the definition and two important prop-
erties of residuals for multi-factor uncertain differential
equations. Analytic and numerical examples of residuals are
given.

Consider a multi-factor uncertain differential equation
with n observations (ti , xti ) (i = 1, 2, . . . , n)

dXt = f (t, Xt )dt +
n∑
j=1

g j (t, Xt )dC jt (1)

where f and g j ( j = 1, 2, . . . , n) are given continuous func-
tions and C jt ( j = 1, 2, . . . , n) is the Liu process. From
Eq. (1) and its observations, the i-th corresponding updated

uncertain differential equation can be obtained:

⎧⎪⎪⎨
⎪⎪⎩
dXt = f (t, Xt )dt +

n∑
j=1

g j (t, Xt )dC jt

Xti−1 = xti−1

(2)

where 2 ≤ i ≤ n and xti−1 is the new initial value at the new
initial time ti−1.

Definition 5 For anymulti-factor uncertain differential equa-
tion with discrete observations (ti , xti ) (i = 1, 2, . . . , n), the
i-th residual is defined as εi and can be obtained by the uncer-
tainty distribution �ti (Xti ) of the uncertain variables Xti in
Eq. (2),

εi = �ti (xti )

where 2 ≤ i ≤ n and xti is the observation at the correspond-
ing moment of Xti

Example 1 Consider a multi-factor uncertain differential
equationwith discrete observations (ti , xti ) (i = 1, 2, . . . , n)

dXt = μt Xtdt +
m∑
j=1

σ j t XtdC jt

whereμ andσ j are constants. By solving the i-thmulti-factor
updated uncertain differential equation below (2 < i < n)

⎧⎪⎪⎨
⎪⎪⎩
dXt = μt Xtdt +

m∑
j=1

σ j t XtdC jt

Xti−1 = xti−1

,

we can get

ln Xti = ln Xti−1 + μ(
t2i − t2i−1

2
) +

m∑
j=1

σ j

∫ ti

ti−1

tdC jt .

Since the Liu integral

∫ ti

ti−1

tdC jt ∼ N (0,
t2i − t2i−1

2
)

we can get the uncertainty distribution of Xti

�ti (Xti )

=

⎛
⎜⎜⎜⎝1 + exp

(
π(ln xti−1 + μ(

t2i −t2i−1
2 ) − ln Xti )

√
3

m∑
j=1

σ j (
t2i −t2i−1

2 )

)
⎞
⎟⎟⎟⎠

−1

.
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By Definition 5, we get the i-th residual corresponding to
�ti (xi )

εi = �ti (xti )

=

⎛
⎜⎜⎜⎝1 + exp

(
π(ln xti−1 + μ(

t2i −t2i−1
2 ) − ln xti )

√
3

m∑
j=1

σ j (
t2i −t2i−1

2 )

)
⎞
⎟⎟⎟⎠

−1

.

Example 2 Consider a multi-factor uncertain differential
equationwith discrete observations (ti , xti ) (i = 1, 2, . . . , n)

dXt = μdt + σ1tdC1t + σ2(2 + t)−αdC2t

where μ, σ j and α (0 < α < 1) are constants. By solving
the i-th multi-factor updated uncertain differential equation
below (2 < i < n)

{
dXt = μdt + σ1tdC1t + σ2(2 + t)−αdC2t

Xti−1 = xti−1

,

we can get

Xti = Xti−1 + μ(ti − ti−1) + σ1

∫ ti

ti−1

tdC1t

+ σ2

∫ ti

ti−1

(2 + t)−αdC2t .

Since the Liu integrals

∫ ti

ti−1

tdC jt ∼ N (0,
t2i − t2i−1

2
) and

∫ ti

ti−1

(2+t)−αdC jt ∼ N (0,
(2+ti )1−α−(2+ti−1)

1−α

1−α
)

we can get the uncertainty distribution of Xti

�ti (Xti )

=
⎛
⎜⎝1+ exp

(
π(xti−1+μ(ti−ti−1)−Xti )

√
3(σ1

t2i −t2i−1
2 +σ2

(2+ti )1−α−(2+ti−1)
1−α

1−α
)

)⎞
⎟⎠

−1

.

By Definition 5, we get the i-th residual corresponding to
�ti (xti )

εi = �ti (xti )

=
⎛
⎜⎝1+ exp

(
π(xti−1+μ(ti−ti−1)−xti )

√
3(σ1

t2i −t2i−1
2 +σ2

(2+ti )1−α−(2+ti−1)
1−α

1−α
)

)⎞
⎟⎠

−1

.

3.1 Important properties of residuals

The twoproperties of the residuals provide an important basis
for subsequent processing of the data and parameter estima-
tion.

Property 1 The updated ordinary differential equations can
be obtained by Eq. (2):

⎧⎪⎪⎨
⎪⎪⎩
dXα

t = f (t, Xα
t )dt + |

n∑
j=1

g j (t, X
α
t )|�−1(α)dt

Xα
ti−1

= xti−1

, (3)

where

�−1(α) =
√
3

π
ln

α

1 − α
, α ∈ (0, 1),

and Xα
ti as the α-path of Xti . The residuals εi are equal to the

value of α in Xα
ti .

Proof Since for any α ∈ (0, 1), we have

M{Xti ≤ �−1
ti (α)} = �ti (�

−1
ti (α)) = α,

then there must be an inverse uncertainty distribution �−1
ti

of Xti .
Writing x = �−1

ti (α), we can get α = �ti and

M{Xti ≤ x} = α = �ti (Xti ).

Therefore, εi can be regarded as the value of α in Xα
ti at time

ti . ��
Property 2 The residuals of amulti-factor uncertain differen-
tial equation obey the linear uncertainty distribution L(0, 1).

Proof The uncertainty distribution �ti (Xti ) (2 ≤ i ≤ n) is
also an uncertain variable and 0 ≤ �ti (Xti ) ≤ 1. For any
0 < x < 1, we can always get

M{�ti (Xti ) ≤ x} = M{Xti ≤ �−1
ti (x)}

= �ti (�
−1
ti (x)) = x .

Obviously, the distribution of �ti (Xti ) is as follows

�(x) =

⎧⎪⎨
⎪⎩

0, i f x ≤ 0

x, i f 0 < x < 1

1, i f x ≥ 1

.

Therefore, the uncertain variable �ti (Xti ) follows a lin-
ear uncertainty distribution L(0, 1), and the residuals εi =
�ti (xti ), (i = 2, . . . , n) also follow the linear uncertainty
distribution L(0, 1). ��
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3.2 Approximate analytical expression of residuals

For the general multi-factor uncertain differential equation,
if the uncertainty distribution cannot be obtained by solving
the equation, the approximate expression of the residual can
be obtained by the following method.

According to Eq. (3), Xα
ti can be expressed as

Xα
ti = Xα

ti−1
+ f (t, Xα

ti )(ti − ti−1)

+
∣∣∣∣∣∣

n∑
j=1

g j (t, X
α
ti )

∣∣∣∣∣∣�−1(α)(ti − ti−1), (4)

where

�−1(α) =
√
3

π
ln

α

1 − α
.

Since the α satisfies the following minimization problem

min
α

| Xα
ti − Xti |,

it can be obtained that Xα
ti ≈ Xti .

According to Eq. (3) and Property 1 of the residuals, we can
get

Xα
ti−1

= xti−1 , εi = α.

Therefore the Eq. (4) can be expressed as

Xti = Xti−1 + f (t, Xti )(ti − ti−1)

+
∣∣∣∣∣∣

n∑
j=1

g j (t, Xti )

∣∣∣∣∣∣
√
3

π
ln

εi

1 − εi
(ti − ti−1).

After sorting, the expression for the residuals εi is

εi = 1

−

⎛
⎜⎜⎜⎜⎝1 + exp

(
π(Xti − Xti−1 − f (t, Xt )(ti − ti−1))

√
3

∣∣∣∣∣
n∑
j=1

g j (t, Xt )

∣∣∣∣∣ (ti − ti−1)

)
⎞
⎟⎟⎟⎟⎠

−1

.

Example 3 Assuming a multi-factor uncertain differential
equation,

dXt = 0.0305tdt + 0.7441tdC1t + 0.5000(2 + t)−2dC2t ,

the updated uncertain differential equation can be obtained

{
dXt = 0.0305tdt + 0.7441tdC1t + 0.5000(2 + t)−2dC2t

Xti−1 = xti−1

.

The corresponding updated ordinary differential equation is

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
dXα

t = 0.0305tdt +
∣∣∣0.7441t + 0.5000(2 + t)−2

∣∣∣
√
3

π
ln

εi

1 − εi
dt

Xα
ti−1

= xti−1

.

Using the method described above, we can get

εi = 1

−
(
1+ exp

(
π(xti −xti−1−0.0305ti (ti−ti−1))√

3
∣∣0.7441ti+0.5000(2 + ti )−2

∣∣ (ti−ti−1)

))−1

.

Therefore, when we have observational data, we can substi-
tute it into the solution. The observed data of Example 3 and
its residual calculation results are shown in Table 1.

4 Parameter estimation and result testing

This section presents moment estimates of the unknown
parameters in multi-factor uncertain differential equations
based on residuals and uses uncertainty hypothesis testing
to confirm the accuracy of the estimates. Some numerical
examples are provided to demonstrate the feasibility of the
method.

4.1 Moment estimation based on residual

Assume a multi-factor uncertain differential equation with n
observations (ti , xti ) (i = 1, 2, . . . , n)

dXt = f (t, Xt ;μ)dt +
n∑
j=1

g j (t, Xt ; σ j )dC jt (5)

where μ and σ j ( j = 1, 2, . . . , n) are the parameters to be
estimated.

Based on the observed data and the definition of residuals,
a series of residuals ε2, ε3, . . . , εn canbeobtained andused as
a set of samples for the linear uncertainty distributionL(0, 1).

According to the method of moments, the p-th sample
moments is

1

N − 1

N−1∑
i=1

εi (μ; σ1, σ2, . . . , σn)
p

and the corresponding p-th population moments

1

p + 1
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Table 1 The observed datas and residual result in Example 3

i 0.1169 0.3421 0.4445 0.4697 0.7393 0.8870 0.9491 1.0323 1.0488 1.0499

xti 3.5697 3.7697 3.9586 4.1011 5.0433 5.7954 6.0219 6.5893 6.7863 6.8925

εi 0.4504 0.5217 0.8384 0.5554 0.6118 0.5078 0.6594 0.8521 0.9832

i 1.1867 1.2444 1.2751 1.6349 1.6967 1.7208 1.7555 1.8354 1.9544 2.0314

xti 7.5486 8.0173 8.5121 10.8996 11.3680 12.0230 12.8299 13.4825 14.5079 15.2054

εi 0.5194 0.6580 0.8885 0.5209 0.5450 0.9462 0.9059 0.5442 0.5419 0.5449

i 2.3141 2.3796 2.4114 2.8449 2.9213 3.2041 3.6195 3.6935 3.7154 3.9190

xti 17.0852 19.6936 20.2691 25.2093 27.0489 31.1364 39.5616 41.5116 42.1558 46.0395

εi 0.4503 0.9581 0.7136 0.5181 0.7495 0.5486 0.6130 0.6966 0.7352 0.5700

where p = 1, 2, . . . , K (K is the number of unknown
parameters). According to the principle of moment estima-
tion method, we can obtain the following equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
N−1

N∑
i=2

εi (μ; σ1, σ2, . . . , σn) = 1
1+1

1
N−1

N∑
i=2

(εi (μ; σ1, σ2, . . . , σn))
2 = 1

2+1

. . .

1
N−1

N∑
i=2

(εi (μ; σ1, σ2, . . . , σn))
K = 1

K+1

. (6)

The estimated value (μ̂; σ̂1, σ̂2, . . . , σ̂n) of unknown param-
eters can be obtained by solving the equations.

However, with some observations, the moment estimation
method is no longer applicable when the Equation system
(6) based on moment estimation has no solution. In this
case, the unknown parameters can be obtained by solving
the following minimization problem based on the general-
ized estimation of moments principle:

min
(μ;σ1,σ2,...,σn)

p∑
p=1(

1

N − 1

N∑
i=2

εi (μ; σ1, σ2, . . . , σn)
p − 1

p + 1

)2

. (7)

4.2 Reasonableness test of estimated results

By means of moment estimation, we obtain estimates of the
unknown parameters (μ̂; σ̂1, σ̂2, . . . , σ̂n), and the residual
values which obey a linear uncertainty distribution L(0, 1).
Next, we will test the estimation results using hypothesis
testing methods.

For the residuals ε2, ε3, . . . , εN that follow a linear uncer-
tainty distribution L(0, 1), the test for the hypotheses:

H0 : a = 0 and b = 1 versus H1 : a 	= 0 or b 	= 1

and at significance level α is

W =
{
(ε2, ε3, . . . , εN ) : there are at leastα

of indexes i’s with1 ≤ i ≤ nsuch aszi < �−1(α
2 )orzi >

�−1(1 − α
2 )

}
where the inverse uncertainty distribution of

L(0, 1) is

�−1(α) = α.

If the number of εi satisfying

εi /∈
[
�−1(

α

2
), �−1(1 − α

2
)
]

is at least (N − 1)α, then ε2, ε3, . . . , εN ∈ W . And the orig-
inal hypothesis H0 is rejected, meaning that the parameter
estimate result is erroneous.

Example 4 Consider a multi-factor uncertain differential
equation with parameters μ, σ1 and σ2

dXt = μt Xtdt + σ1t XtdC1t + σ2t XtdC2t .

Then we can get the related updated multi-factor uncertain
differential equation

{
dXt = μtdt + σ1tdC1t + σ2tdC1t Xti−1 = xti−1 .

By solving the uncertain variable Xti and its uncertainty dis-
tribution �(Xti ), the residual can be expressed as

εi (μ, σ1, σ2)

=
⎛
⎝1 + exp

(
π(ln xti−1 + μ(

t2i −t2i−1
2 ) − ln xi )

√
3(σ1(

t2i −t2i−1
2 ) + σ2(

t2i −t2i−1
2 ))

)⎞
⎠

−1

,

and εi ∼ L(0, 1). The observed data are shown in Table 3.
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Table 2 The observed data and
the residuals in Example 4 i 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

xti 2.8674 4.2431 5.9619 7.1445 9.6730 16.7927 18.2922 23.9932 47.1088

εi 0.9730 0.9219 0.6917 0.8156 0.9430 0.4669 0.6850 0.9286

i 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2

xti 47.9922 48.9901 50.0472 52.1650 57.6722 60.9867 61.7666 68.1972 71.2694

εi 0.3702 0.3708 0.3702 0.3859 0.4318 0.3930 0.3603 0.4188 0.3795

i 2.3 2.4 2.5 2.6 2.7 2.8 2.9

xti 80.5489 81.7547 81.8149 85.9442 88.6512 90.4722 97.8681

εi 0.4275 0.3601 0.3519 0.3779 0.3674 0.3615 0.3894

According to the principle of the moment estimation, we
obtain the following equations

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
24

25∑
i=2

εi (μ; σ1, σ2) = 1
2

1
24

25∑
i=2

(εi (μ; σ1, σ2))
2 = 1

3

1
24

25∑
i=2

(εi (μ; σ1, σ2))
3 = 1

4

.

By solving the above system of equations, the unknown
parameter results are obtained

μ̂ = 1.0400, σ̂1 = −47.1746 and Oœ2 = 50.2557.

Therefore the residuals are determined as

εi =⎛
⎝1 + exp

(
π(ln xti−1 + 1.0400(

t2i −t2i−1
2 ) − ln xi )

√
3(−47.1746(

t2i −t2i−1
2 ) + 50.2557(

t2i −t2i−1
2 ))

)⎞
⎠

−1

,

and the values of the residuals are shown in Table 2.
For the residuals ε2, ε3, . . . , ε25, the test for the hypothe-

ses:

H0 : a = 0 and b = 1 versus H1 : a 	= 0 or b 	= 1

at significance level α = 0.05 is W =
{
(ε2, ε3, . . . , ε25):

there are at least 2 of indexes i’s with 1 ≤ i ≤ n such as

zi < �−1(α
2 ) or zi > �−1(1 − α

2 )

}
where

(N − 1)α = 24 ∗ 0.05 = 1.2, �−1
(
0.05

2

)
= 0.025,

�−1
(
1 − 0.05

2

)
= 0.975.

Obviously, any εi ∈ [0.025, 0.975] and (ε2, ε3, . . . , ε25) /∈
W . The original hypothesis H0 holds and (μ̂, σ̂1, σ̂2) is rea-
sonable for the equation.

Therefore, the multi-factor uncertain differential equation
is obtained

dXt = 1.0400t Xtdt − 47.1746t XtdC1t + 50.2557t XtdC2t .

Example 5 Assuming a multi-factor uncertain differential
equation,

dXt = Xt

σ1 + t
dt + t2dC1t + (σ2 + t)−2dC2t ,

where σ1, σ2 are unknown parameter. The observed data are
shown in Table 4.
The updated uncertain differential equation can be obtained

⎧⎨
⎩ dXt = Xt

σ1 + t
dt + t2dC1t + (σ2 + t)−2dC2t

Xti−1 = xti−1

.

The corresponding updated ordinary differential equation is

{
dXα

t = Xα
t

σ1+t dt + ∣∣t2 + (σ2 + t)−2
∣∣ √

3
π

ln α
1−α

dt

Xα
ti−1

= xti−1

and the residual expression is

εi (σ1, σ2)

= 1 −
(
1 + exp

(
π(xti − xti−1 − xti

σ1+ti
)(ti − ti−1))√

3
∣∣t2i + (σ2 + ti )−2

∣∣ (ti − ti−1)

))−1

.

According to the principle of the moment estimation, we
obtain the following equations

⎧⎪⎪⎨
⎪⎪⎩

1
19

20∑
i=2

εi (σ1, σ2) = 1
2

1
19

20∑
i=2

(εi (σ1, σ2))
2 = 1

3

.
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Table 3 The observed data and the residuals in Example 5

i 1 2 3 4 5 6 7 8 9 10

xti 50.6495 51.3515 52.6250 55.4185 56.7131 60.4231 62.2069 64.4992 66.5161 67.2648

εi 0.0001 0.0378 0.2230 0.3257 0.4206 0.4347 0.4592 0.4700 0.4729

i 11 12 13 14 15 16 17 18 19 20

xti 68.5184 69.8204 71.2035 72.8185 73.6952 74.3754 75.0168 76.3934 77.3171 79.7374

εi 0.4814 0.4858 0.4890 0.4917 0.4919 0.4930 0.4941 0.4960 0.4960 0.4982

Table 4 Plasma drug concentration data at each time point in Example 6

n 1 2 3 4 5 6

Time (h) 0.0 0.5 1.0 1.5 2.0 3.0

Drug concentration (ng/ml) 0.0 878.6 1967.2 1783.4 1678.8 1223.5

εi 0.9835 0.9374 0.6605 0.6887 0.4566

Time (h) 4.0 6.0 8.0 12.0 16.0 24.0

Drug concentration (ng/ml) 1109.2 686.7 503.9 438.6 275.3 136.4

εi 0.6602 0.2832 0.4636 0.6264 0.2965 0.1013

By solving the above system of equations, we can obtain the
estimated results of the unknown parameters

σ̂1 = 0.0013 and σ̂2 = 0.0012.

Therefore the residuals are determined as

εi

= 1 −
(
1 + exp

(
π(xti − xti−1 − xti

0.0013+ti
)(ti − ti−1))√

3
∣∣t2i + (0.0012 + ti )−2

∣∣ (ti − ti−1)

))−1

and the values of the residuals are shown in Table 3.
For the residuals ε2, ε3, . . . , ε20, the test for the hypothe-

ses:

H0 : a = 0 and b = 1 versus H1 : a 	= 0 or b 	= 1

at significance level α = 0.1 is

W =
{
(ε2, ε3, . . . , ε20) : there are at least 2 of

indexes i’s with1 ≤ i ≤ nsuch aszi < �−1(α
2 )or zi >

�−1(1 − α
2 )

}
where

(N − 1)α = 19 ∗ 0.1 = 1.9, �−1
(
0.1

2

)
= 0.05,

�−1
(
1 − 0.1

2

)
= 0.95.

Obviously, only ε2 /∈ [0.05, 0.95], thus (ε2, ε3, . . . , ε25) /∈
W . The original hypothesis H0 holds and (σ̂1, σ̂2) is reason-
able for the equation.

Therefore, the multi-factor uncertain differential equation
is determined as

dXt = Xt

0.0013 + t
dt + t2dC1t + (0.0012 + t)−2dC2t .

5 Numerical example

In this section, two examples of multi-factor uncertain dif-
ferential equations with real data are shown to check the
practicability of the parameter estimation method.

Example 6 Considering a multi-factor uncertain pharma-
cokinetic model with unknown parameters proposed by Liu
and Yang (2021) is as follows:

dXt = (k0 − k1Xt )dt + σ1XtdC1t + σ2dC2t

where Xt is the drug concentration at time t and k0, k1, σ1,
σ2 are the unknown constant parameters.

The research data of the JNJ-53718678 drug by Hunt-
jens et al. (2017) was cited as the discrete data for the
model. JNJ-53718678 is a small molecule fusion inhibitor
for the treatment of respiratory diseases. A single injec-
tion of 250mg of JNJ-53718678 was administered, and the
plasma drug concentration was measured before injection
and at 0.5h, 1.0h, 1.5h, 2.0h, 3.0h, 4.0h, 6.0h, 8.0h, 12.0h,
16.0h and 24.0h after injection. The specific data is shown
in Table 4.
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The corresponding updated multi-factor uncertain differ-
ential equation is

{
dXt = (k0 − k1Xt )dt + σ1XtdC1t + σ2dC2t

Xti−1 = xti−1

(8)

and the corresponding updated ordinary differential equation
is⎧⎪⎨
⎪⎩
dXα

t = (k0 − k1X
α
t )dt + |σ1Xα

t + σ2|
√
3

π
ln

α

1 − α
dt

Xα
ti−1

= xti−1

.

(9)

Therefore, the residual expression can be obtained as

εi (k0, k1, σ1, σ2)

= 1 −
(
1 + exp

(
π(xti − xti−1 − k0 + k1xti )(ti − ti−1))√

3
∣∣σ1xti + σ2

∣∣ (ti − ti−1)

))−1

.

According to the principle of the moment estimation, we
obtain the following equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
11

12∑
i=2

εi (k0, k1, σ1, σ2) = 1
2

1
11

12∑
i=2

(εi (k0, k1, σ1, σ2))2 = 1
3

1
11

12∑
i=2

(εi (k0, k1, σ1, σ2))3 = 1
4

1
11

12∑
i=2

(εi (k0, k1, σ1, σ2))4 = 1
5

.

By solving the above system of equations, the moment esti-
mates of the unknown parameters are:

k̂0 = 0.9780, k̂1 = 0.3177, σ̂1 = 0.5830 and

σ̂2 = 0.7134.

The residuals can be obtained as

εi=1−
(
1+ exp

(
π(xti −xti−1−0.9780+0.3177xti )(ti−ti−1))√

3
∣∣0.5830xti +0.7134

∣∣ (ti−ti−1)

))−1

and the values of the residuals are shown in Table 4.
For the residuals ε2, ε3, . . . , ε12, the test for the hypothe-

ses:

H0 : a = 0 and b = 1 versus H1 : a 	= 0 or b 	= 1

at significance level α = 0.1 is W =
{
(ε2, ε3, . . . , ε12) :

there are at least 2 of indexes i’s with1 ≤ i ≤ nsuch aszi <

�−1(α
2 )orzi > �−1(1 − α

2 )

}
where

(N − 1)α = 11 ∗ 0.1 = 1.1, �−1
(
0.1

2

)
= 0.05,

�−1
(
1 − 0.1

2

)
= 0.95.

Obviously, only ε2 /∈ [0.05, 0.95], thus (ε2, ε3, . . . , ε12) /∈
W . The original hypothesis H0 holds and (k̂0, k̂1, σ̂1, σ̂2) is
reasonable for the equation.

Eventually, the multi-factor uncertain pharmacokinetic
model equation is determined as

dXt = (0.9780 − 0.3177Xt )dt + 0.5830XtdC1t

+0.7134dC2t .

Example 7 Considering a multi-factor uncertain stock model
with Alibaba stock price data (Liu and Liu 2022) from Jan-
uary 1 to January 30, 2019 shown in Table 5:

dXt = (m − a)Xtdt + σ1XtdC1t + σ2XtdC2t

where Xt is the stock price at time t and m, a, σ1, σ2 are the
unknown constant parameters.

The corresponding updated multi-factor uncertain differ-
ential equation is

{
dXt = (m − a)Xtdt + σ1XtdC1t + σ2XtdC2t

Xti−1 = xti−1

(10)

and the residual expression can be obtained as

εi (m, a, σ1, σ2)

= (1 + exp

(
π(ln xti − (m − a)(ti − ti−1) − ln xti )√

3(σ1 + σ2)(ti − ti−1)

)−1
.

According to the principle of the moment estimation, we
obtain the following equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
29

30∑
i=2

εi (m, a, σ1, σ2) = 1
2

1
29

30∑
i=2

(εi (m, a, σ1, σ2))
2 = 1

3

1
29

30∑
i=2

(εi (m, a, σ1, σ2))
3 = 1

4

1
29

30∑
i=2

(εi (m, a, σ1, σ2))
4 = 1

5

.

By solving the above system of equations, the moment esti-
mates of the unknown parameters are:

m̂ = 0.4261, â = 0.4371, σ̂1 = 0.4777 and
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Table 5 The stock prices and
the residuals in Example 7 i 1 2 3 4 5 6 7 8 9 10

xti 136.03 148.96 153.60 154.81 163.82 168.87 168.02 172.37 183.66 181.75

εi 0.9852 0.7378 0.4586 0.9165 0.7346 0.3008 0.6825 0.9403 0.2445

i 11 12 13 14 15 16 17 18 19 20

xti 180.61 180.60 178.81 181.47 186.75 185.84 186.66 189.48 181.26 173.52

εi 0.2872 0.3587 0.2494 0.5493 0.7170 0.3026 0.4141 0.5523 0.0517 0.0535

i 21 22 23 24 25 26 27 28 29 30

xti 158.78 151.91 152.29 160.19 165.34 168.65 174.62 167.96 173.66 177.36

εi 0.0052 0.0520 0.3901 0.8890 0.7475 0.6139 0.7774 0.0677 0.7643 0.6295

σ̂2 = −0.4432.

The residuals can be obtained as

εi (m, a, σ1, σ2) = (1 +
exp

(
π(ln xti−1 − (0.4261 − 0.4371)(ti − ti−1) − ln xti )√

3(0.4777 − 0.4432)(ti − ti−1)

)−1

.

and the values of the residuals are shown in Table 5.
For the residuals ε2, ε3, . . . , ε30, the test for the hypothe-

ses:

H0 : a = 0 and b = 1 versus H1 : a 	= 0 or b 	= 1

at significance level α = 0.1 is

W=
{
(ε2, ε3, . . . , ε30) : there are at least 3 of indexes i’s

wi th1 ≤ i ≤ nsuch aszi < �−1(α
2 )orzi > �−1(1 − α

2 )

}
where

(N − 1)α = 29 ∗ 0.1 = 2.9, �−1(
0.1

2
) = 0.05,

�−1(1 − 0.1

2
) = 0.95.

Obviously, ε2 and ε21 /∈ [0.05, 0.95], thus (ε2, ε3, . . . , ε30) /∈
W . The original hypothesis H0 holds and (m̂, â, σ̂1, σ̂2) is
reasonable for the equation.

Eventually, the multi-factor uncertain stock model equa-
tion is determined as

dXt = (0.4261 − 0.4371)Xtdt + 0.4777XtdC1t

−0.4432XtdC2t .

6 Conclusion

This paper presents the definition of residuals formulti-factor
uncertain differential equations and proves two important
properties. Examples of computing residuals demonstrate

how residual expressions can be obtained in various contexts.
Based on the fact that the residuals obey the linear uncer-
tainty distributionL(0, 1), moment estimates of the unknown
parameters in the multi-factor uncertain differential equation
are performed and the estimates are tested. Several numerical
examples are shown to verify the feasibility of the method.
In contrast to previously proposed estimation methods, the
residual-based moment estimation method does not require
weighting and normalisation of the unknown parameters in
the multi-factor uncertain differential equation. The residual
method can also be used for estimationwhen the time interval
is relatively large and the differencemethod is not applicable.
In the future the residual-based moment estimation method
can be used for parameter estimation of high-order uncertain
differential equations or multi-dimensional uncertain differ-
ential equations.
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