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Abstract
Solving problems of high dimensionality (and complexity) usually needs the intense use of technologies, like parallelism,
advanced computers and new types of algorithms. MapReduce (MR) is a computing paradigm long time existing in computer
science that has been proposed in the last years for dealing with big data applications, though it could also be used for many
other tasks. In this article, we address big optimization: the solution to large instances of combinatorial optimization problems
by usingMR as the paradigm to design solvers that allow transparent runs on a varied number of computers that collaborate to
find the problem solution. We study and analyze the MR technology, focusing on Hadoop, Spark, and MPI as the middleware
platforms to develop genetic algorithms (GAs). From this, MRGA solvers arise using a different programming paradigm
from the usual imperative transformational programming. Our objective is to confirm the expected benefits of these systems,
namely file, memory, and communication management, over the resulting algorithms. We analyze our MRGA solvers from
relevant points of view like scalability, speedup, and communication vs. computation time in big optimization. The results for
high-dimensional datasets show that theMRGAoverHadoop outperforms the implementations in Spark andMPI frameworks.
For the smallest datasets, the execution of MRGA on MPI is always faster than the executions of the remaining MRGAs.
Finally, the MRGA over Spark presents the lowest communication times. Numerical and time insights are given in our work,
so as to ease future comparisons of new algorithms over these three popular technologies.

Keywords Big optimization · Genetic algorithms · MapReduce · Hadoop · Spark · MPI

1 Introduction

The challenges that have arisen with the beginning of the
era of the Big Data have been largely identified and recog-
nized by the scientific community. These challenges include
dealing with very large data sets, since they may well
limit the applicability of most of the usual techniques.
For instance, evolutionary algorithms, as combinatorial
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optimization problem solvers, do not scale well to high-
dimensional instances (Lozano et al. 2011). To overcome
these limitations, evolutionary developers can employ Big
Data processing frameworks (like Apache Hadoop, Apache
Spark, among others) to process and generate Big Data sets
with a parallel and distributed algorithm on clusters and
clouds (Cano et al. 2017; Ferrucci et al. 2017; Paduraru et al.
2017; Qi et al. 2016; Verma et al. 2010). In this way, the
programmer may abstract from the issues of distributed and
parallel programming, because the majority of the frame-
worksmanages the load balancing, the network performance,
and the fault tolerance. These features made them popular,
creating a new branch of parallel studies where the focus
is on the application and not on exploiting the underlying
hardware.

Awell-known computing paradigm that is used to process
Big Data is MapReduce (MR). It splits the large data set into
smaller chunks in which the map function processes in par-
allel and produces key/value pairs as output. The output of
map tasks is the input for reduce functions in such a way that
all key/value pairs with the same key go to the same reduce
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task (Cano et al. 2017). Hadoop is a very popular framework,
relying in the MR paradigm (Welcome 2014; White 2012),
both in industry and academia. This framework provides a
ready-to-use distributed infrastructure, which is easy to pro-
gram, scalable, reliable, and fault-tolerant (Hashem et al. Oct
2016). Since Hadoop allows parallelism of data and control,
we research for other software tools doing similar jobs. The
MapReduce-MPI (MR-MPI) (Plimpton and Devine 2011) is
a library built on top of MPI, which conforms another frame-
work with a somewhat similar goal. Here you can have more
control of the platform, allowing to improve the bandwidth
performance and reduce the latency costs. Another popular
Big Data framework is Apache Spark (Hamstra et al. 2015)
that is different from Hadoop and MR-MPI, since the com-
putational model of Spark is based on memory. The core
concept in Spark is resilient distributed dataset (RDD) [14],
which provides a general-purpose efficient abstraction for
distributed shared memory. Spark allows developing multi-
step data pipelines using a directed acyclic graph.

Although the three mentioned technologies allow imple-
mentations following theMRparadigm, they have significant
differences. Consequently, they encourage us to carry out
a performance analysis targeted to discover how big opti-
mization can be best implemented onto the MR model that
later is run by any of these three platforms. This comparative
analysis arouses interest for any curious scientist, in order
to offer evidence about their relative performance (advan-
tages and disadvantages). Moreover, the MR paradigm can
contribute to build new optimization and machine learning
models, in particular scalable genetic algorithms (MRGAs),
as combinatorial optimization problem solvers, which are
widely used in the scientific and industrial community. In
the literature, many researchers have reported on GAs pro-
grammed on Hadoop (Cano et al. 2017; Ferrucci et al. 2017;
Di et al. 2012; Verma et al. 2009, 2010) and Spark (Hu et al.
2017; Paduraru et al. 2017; Qi et al. 2016), and a few ones
under MR-MPI (Salto et al. 2018), according to the authors
knowledge. Moreover, these proposals present different GA
parallelmodels for big optimization, but they are specific for a
particularMRframework. Furthermore, these researchworks
mainly focus on the parallelization of highly time-consuming
fitness computation, but not on solving problemswhose com-
plexity is associated with handling Big Data. All this implies
a significant lack of information on the advantages and limita-
tions of each framework to implementMRGA solvers for big
optimization. In this sense, the selection of the most appro-
priate one to implement this kind of algorithm results in a
very complex task. In order to mitigate the lack of informa-
tion about the MRGA scalability on the three most known
MR frameworks (MR-MPI, Hadoop, and Spark), we define
the following research questions:

– RQ1: Can we efficiently design big optimization MRGA
solvers using these frameworks?

– RQ2: Which of the frameworks allows the MRGA solver
to reach its best time performance by scaling to high-
dimensional instances?

– RQ3: Are MRGAs scalable when considering an incre
ased number of the map tasks?

– RQ4: Is the time spent in communication a factor to con-
sider when choosing a solver?

With the first research question, we analyze the usabil-
ity of these frameworks to design MRGAs that solve big
optimization problems. The RQ2 deepens this analysis,
hopefully offering interesting information on theMRGAper-
formance when the instance dimension scales. Furthermore,
the scalability of all the studied approaches is also analyzed
considering the number of parallel process (map tasks), as
RQ3 suggests. Finally, the last research question allows us
to examine which MRGA solver spends more time in com-
munication than in computation.

To address these RQs, we analyze how a simple genetic
algorithm (SGA) (Goldberg 2002) can take advantage of
these Big Data processing frameworks in the optimization of
large instances of a problem.We here decide to use this SGA,
because it is a canonical technique in the core of the evolu-
tionary algorithm (EAs) family, and most things done on it
can be reproduced in other EAs and population-based meta-
heuristics. For the purposes of this analysis, in this research
a SGA design is tailored for the MR paradigm, procuring the
so-calledMRGA (Salto et al. 2018), coming out from a paral-
lelization of each iteration of a SGA under the iteration-level
parallel model (Talbi 2009). The contributions of this work
aremanyfold.Wedevelop the same optimizer (MRGA) using
three open-source MR frameworks. We consider the imple-
mentations made in our previous research (Salto et al. 2018),
MRGA-H for Hadoop and MRGA-M for MR-MPI. More-
over, in this work, theMRGA design is implemented into the
Spark framework, arising the MRGA-S algorithm. Later on,
we analyze and compare these three implementations con-
sidering relevant aspects such as execution time, scalability,
and speedup to solve a large problem size of industrial inter-
est as the knapsack problem (Garey and Johnson 1979). As
to our knowledge, this is the first work considering the same
MRGA solver implemented in the three widely known plat-
forms and pointing out their different features for the benefit
of future researches.

This article is organized as follows: next section dis-
cusses the MR paradigm and Big Data frameworks, showing
their similarities and differences. Section3 presents a brief
state of the art in implementing GAs with the MR paradigm
and contains our proposal. Sections4 and 5 define meaning-
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ful experiments to reveal information on the three systems,
perform them, and give some findings. Finally, Sect. 6 sum-
marizes our conclusions and expected future work.

2 MR paradigm and frameworks

An application in the MR paradigm is arranged as a pair (or
a sequence of pairs) of map and reduce functions (Dean and
Ghemawat 2004). Each map function takes as input a set of
key/value pairs (records) from data files and generates a set
of intermediate key/value pairs. Then, MR groups together
all these intermediate values associated with a same interme-
diate key. A value group and its associated key are the input
to the reduce function, which combines these values in order
to produce a new and possibly smaller set of key/value pairs
that are saved in data files. Furthermore, this function receives
the intermediate values via an iterator, allowing the model to
handle lists of values that are too large to fit into main mem-
ory. The input data are automatically partitioned into a set
of M splits when the map invocations are distributed across
multiple machines, where each input split is processed by a
map invocation. The intermediate key space is divided into
R pieces, which are distributed into R reduce invocations.
The number of partitions (R) and the partitioning function
are user defined.

As previously mentioned, our aim in this work is to per-
form a comparison of the different Big Data frameworks
to develop big optimization MRGA solvers. For that pur-
pose, this section presents three Big Data frameworks, as
the Hadoop (Welcome 2014), the MR-MPI (Plimpton and
Devine 2011), and Spark (Hamstra et al. 2015), with the goal
of identifying the advantages and limitations of each one. In
this process, the focus is on the installation, use, and produc-
tivity characteristics of each framework.

2.1 Hadoop

The Hadoop framework consists of a single master
ResourceManager, one slave NodeManager per
cluster-node, and a MRAppMaster per application, which is
implemented using theHadoopYARN framework (Welcome
2014). In order to meet those goals, the central Scheduler (in
the ResourceManager) responds to a resource request
by granting a container. Essentially, the container is the
resource allocation, which allows to an application the use
of a specific amount of resources (memory, CPU, etc.) on
a specific host. In this context, the Hadoop client submits
the job/configuration to the ResourceManager that dis-
tributes the software/configuration to the slaves, schedules,
andmonitors the tasks, providing status and diagnostic infor-
mation to the client including fault tolerance management.
In this sense, it is noticeable that the installation and the con-

figuration of the Hadoop framework require a very specific
and long sequence of steps, becoming difficult to adapt it to
a particular cluster of machines. Moreover, at least one node
(master) is dedicated to the system management.

To deal with parallel processing applications on large data
sets, Hadoop incorporates the Hadoop distributed file system
(HDFS) andHadoopYARN. The first one handles scalability
and redundancy of data across nodes. The second one is a
framework for job scheduling that executes data processing
tasks on all nodes.

2.2 MR-MPI

MR-MPI is a small and portable C++ library that only uses
MPI for interprocessor communication; thus, the user writes
a main program that runs on each processor of a cluster,
making map and reduce calls to the MR-MPI library. As a
consequence, a new framework arises with no extra instal-
lation and configuration tasks (light management and easy
to program with it), but not fault tolerance. The use of the
MR library within MPI follows the traditional mode to call
the MPI_Send and MPI_Recv primitives between pairs of
processors, using large aggregated messages to improve the
bandwidth performance and reduce the latency costs.

2.3 Spark

Apache Spark has a very powerful and high-level API, which
is built upon the basic abstraction concept of the resilient dis-
tributed dataset (Zaharia et al. 2012). ARDD is an immutable
and a fault-tolerant collection of elements in shared mem-
ory that can be operated on parallel. This kind of datasets is
divided into logical partitions, each one is computed on dif-
ferent nodes of the cluster through operations that transform
a RDD (creating a new one) or perform computations on the
RDD (returning a value).

Spark applications are composed of a single driver
program and multiple workers or executors. The client
process starts the driver program, which orchestrates and
monitors executionof aSpark application and calls to actions.
With each action, the Spark scheduler builds an execution
graph and launches a Spark job. Each job consists of stages,
which are a collection of tasks that represent each parallel
computation and are performed on the executors (Java Vir-
tualMachine, JVM, processes). Eachexecutorhas several
task slots for running tasks in parallel. The physical place-
ment of executor and driver processes depends on the
cluster type and its configuration.

In order to run on a cluster, the SparkContext can con-
nect to several types of cluster managers (either Spark’s own
standalone cluster manager, Mesos or YARN), which allo-
cate resources across applications. In this work, the Hadoop
YARN is adopted as cluster manager, due to their previous
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Table 1 Comparison between
Big Data frameworks

Features

Open-source Yes Yes Yes

Popular for big-data Yes No Yes

Language supported Java, C++, Ruby, Python C, C++, Python Scala, Java, Python, R

Fault-tolerance Yes No Yes

Processing approach Read and write to disk Read and write to disk In-memory

Volume of data sets Huge large (RAM+disk) Quite large (memory sizes)

Processing type batch Batch Near real-time

Iterative processing No Yes Yes

Load balancing Automatic Manual Automatic

Installation Easy Easy Easy

Configuration Relatively difficult Easy Relatively difficult

use with Hadoop. The installation and the configuration of
the Spark framework are not direct, requiring the configura-
tion of many properties that control internal settings. Most of
them have reasonable default values, but others require to be
adjusted to an appropriate values and generally are particular
to the cluster features. These parameters vary from Spark’s
properties to size’s settings of the JVM.

2.4 Final discussion on the platforms

Spark allows a more flexible organization of the processes,
appropriate for iterative algorithms, and eases efficiency due
to the use of in memory data structures (RDDs). But Spark
requires a quite large amount of RAM memory, and it is
quite greedy in the utilization of the cluster resources, while
Hadoop and MR-MPI can be used in low-resource and non-
dedicated platforms. Hadoop is designed mainly for batch
processing, while with enough RAM, Spark may be used for
near real-time processing. Also, many problems in industrial
domains are implemented in C/C++, which are only natively
supported by Hadoop and MR-MPI implementations (and
not in Spark). Therefore, the research on efficient uses of
these first frameworks (as done in this article) is today an
important domain (Cano et al. 2017; Ferrucci et al. 2017).

Hadoop framework stores both the input and the output
of the job in the HDFS, whereas MR-MPI allocates pages
of memory. Spark can also use HDFS to store the data, pro-
viding fault tolerance by the task duplication. In this way,
Hadoop and Spark also supply data redundancy. But the
HDFS creation and its configuration require a careful set-
ting of properties, resulting in a time-consuming process.
Instead, MR-MPI is not able to detect a dead processor and
retrieve the data, being the MPI implementation responsible
for detecting and handling network faults.

Spark uses lazy evaluation to reduce the number of passes
it has to take over our data by grouping operations together. In

platforms like MR-MPI and Hadoop, developers often have
to spend a lot of time considering how to group together
operations to minimize the number of MR passes. In Spark,
there is no substantial benefit to writing a single complex
map instead of chaining together many simple operations.
Thus, users are free to organize their program into smaller,
more manageable operations.

Table 1 shows a comparison between the considered
frameworks taking into account various aspects such as lan-
guage supported, volume of data sets, processing type, easy
configuration, among others.

3 Big optimization with genetic algorithms

In this section, we start with a review of the literature about
how GAs were translated into different Big Data frame-
works. After that, we describe the simple model of SGA
used in this work and how it is adapted to be implemented by
following MapReduce (MRGA). The idea is to implement
the same MRGA using the Hadoop (MRGA-H), MR-MPI
(MRGA-M) and Spark (MRGA-S) frameworks to solve big
optimization problems. This will allow us to compare the
results and to find out their strong and weak features. The
implementations of MRGA-H andMRGA-M algorithms are
obtained from Verma et al. (2009) and own previous work
Salto et al. (2018), respectively. In the case of MRGA-S, its
implementation was developed from scratch.

3.1 Literature review

Some of the most representative works that model GAs
using Big Data frameworks are described in this section.
Verma et al. (2009, 2010) proposed a SGA and a CGA
based on the selecto-recombinative GA, proposed by Gold-
berg (2002), which only use two genetic operators: selection
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and recombination. SGA was developed using the Hadoop
framework. The authors match the map function with the
evaluation of the population fitness, whereas the reduce func-
tion performs the selection and recombination operations.
They proposed the use of a custom-made partitioner func-
tion, which splits the intermediate key/value pairs among the
reducers by using a random shuffle. In Di et al. (2012), the
authors proposed a similar model of GA than Verma et al.
(2009) for software testing. The main difference relays in the
use of only one reducer that receives the entire population.
Thus, the reducer can perform the selection and apply the
crossover and mutation operators to produce a new offspring
to be evaluated in the next MR job. However, different paral-
lelGA’smodelswere proposed byFerrucci et al. (2017) using
Hadoop as distributed infrastructure. The authors propose a
global model, a gridmodel, and finally an islandmodel. They
analyze the proposals in terms of execution time and speedup,
as well as the behavior of the three parallel models in rela-
tion to the overhead produced using Hadoop. Chávez et al.
(2016) introduce changes in ECJ Scott and Luke (2019) to
follow the MP paradigm in order to launch any EA problem
on a big data infrastructure using Hadoop similarly as when
a single computer is used to run the algorithm. Jatoth et al.
(2018) solved the problem of QoS-aware big service com-
position by implementing a MapReduce-based evolutionary
algorithm with guided mutation on a Hadoop cluster, which
use a global model in the MapReduce phase.

An implementation of GAs using Spark can be found in
Paduraru et al. (2017). Their proposal consists in the par-
tition of the population in many worker processes, which
applies the genetic operations and evaluation by the use of
map function, when the stop criterion is met, a reduce func-
tion aggregates the subpopulations to find themost promising
individuals. In the same line of using Spark as parallel plat-
form, Hu et al. (2017) use a SGA as optimizer tool, where the
population is divided into chunks for evaluation purposes by
using amap function. After that, a collect function is used to
gather all the individuals of the population together to apply
genetic operations. More recently, two versions of parallel
GAs were proposed in Alterkawi and Migliavacca (2019)
using Spark framework. The proposals are based on the tra-
ditional master slave model and the island model to solve
large dimensional classifier problems. The first model han-
dles the evolutionary process by the Spark driver, which
sends the individuals across the executors to compute the fit-
ness. In the second one, each island is an executor and
evolves a subpopulation. The proposed models are evaluated
in relation to performance and accuracy over multiple cluster
sizes.

Many of the reviewed works deploy computing -intensive
runs of EAs on the Big Data infrastructures (Ferrucci et al.
2017; Chávez et al. 2016; Jatoth et al. 2018). In particu-
lar, they implement parallel versions of EAs to optimize the

running time for the algorithmic experiments, because the
optimization problems have computationally costly fitness
evaluation functions. As to papers dealing with large data
volume, we can mention the work of Verma et al. (2009,
2010), which involves 10n(n = 4) variables and a popu-
lation of n × logn size. Finally, Chávez et al. (2016) and
Alterkawi and Migliavacca (2019) address large and com-
plex data classification tasks, but the authors do not indicate
the amount of memory usage.

The aforementioned proposals present different GA par-
allel models for big optimization, but they are specific for
a single MR framework. This implies a significant lack of
information on the advantages and limitations of each frame-
work to implement GAs for big optimization. In this sense,
the selection of the most appropriate one to implement this
kind of algorithm results in a very complex task. In order to
mitigate this lack of information, the main objective of our
research is to design and implement a scalable GA on the
three most known MR frameworks: MR-MPI, Hadoop, and
Spark.

Finally, we should comment that this work is based on
the preliminary results presented in Salto et al. (2018). How-
ever, this paper is a massive update to these results. Firstly,
we include a new MRGA solver using SPARK Big Data
framework (this is the first work considering the three most
knownMRframeworks). Secondly, the analysis performed in
Salto et al. (2018) was very reduced, mainly a runtime study,
since only three cases were tested. This new study considers
a comprehensive benchmark with 24 scenarios (eight high-
dimensional instances, each onewith three different numbers
of map tasks). This complete testbed allows us to extensively
research severalmetrics: execution time, scalability, speedup,
and communication vs computation, providing a large body
of knowledge about Big Data Optimization.

3.2 Big optimization MRGA solver

For our study, we will use a simple genetic algorithm, SGA,
whose operations can be found in a great number of evo-
lutionary algorithms in the literature. Our aim is then to
guide future research that is linked to these search operations
when designing other algorithms to MR implementations.
The pseudocode of SGA is presented in Algorithm 1, which
starts by generating an initial population. During the evolu-
tionary cycle, the population is evaluated and then a set of
parents is selected by tournament selection (Miller andGold-
berg 1995). After that, the uniform recombination operator
is applied to them. The recently created offspring conform
the new population for the next generation (using the gen-
erational replacement). The evolutionary process ends when
either the optimum solution to the problem at hand is found
or the maximum number of iterations is reached.
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Algorithm 1 Sequential GA
1: t = 0; {current generation}
2: initialize(Pop(t));
3: evaluate(Pop(t));
4: while (non stop criterion is met) do
5: Pop′(t) = select(Pop(t)); {k-wise tournament selection without replacement}
6: of f spring = recombine(Pop′(t), pc); {uniform crossover}
7: Pop(t + 1) = replace(Pop(t),of f spring);
8: evaluate(Pop(t + 1));
9: t = t + 1
10: end while
11: return (best individual);

Our proposed MRGA algorithm preserves the SGA
behavior, but it resorts to parallelization for some parts: the
evaluation and the application of genetic operators. Although
our technique performs several operations in parallel, its
behavior is equal to the sequential GA.

A key/value pair has been used to represent individuals in
the population as a sequence of bits. To distinguish identical
individuals (with the same genetic configuration), a random
identifier (ID) is assigned in the map function to each one.
The ID prevents that identical individuals were assigned to
the same reduce function, in the phase of shuffling when
the intermediate key/multivalue space are generated. The
sequence of bits together with the ID corresponds to the key
in the key/value pair. The value part is the individual fitness,
which is computed by the map function.

For large problem sizes, the population initialization could
be a time-consuming process. The situation can get worse
with large individual sizes, as the case in thiswork.According
to this situation, this initialization is parallelized in a sepa-
rate MR phase. The map functions are only used to generate
random individuals. After that, the iterative evolutionary pro-
cess begins,where each iteration consists of amap and reduce
functions. The map functions compute the fitness of individ-
uals. As each map has assigned different chunk of data, they
evaluate a set of different individuals in parallel. This fitness
is added as value in the key/value pair. Each map finds their
best individual that is used in the main process to determine
whether the stop criterion is met. The reduce functions carry
out the genetic operations. The binary tournament selection is
performed locally with the intermediate key space, which is
distributed in the partitioning stage after map operation. The
uniform crossover (UX) operator is applied over the selected
individuals. In this work, due to the absence of the muta-
tion procedure, this disruptive operator is essential to keep a
high diversity in the population (Kenneth et al. 1991). The
generational replacement is implemented to build the new
population for the next MR task (a new iteration).

Regardless of the framework used, the key/value pairs,
generated at the end of themap phase, are shuffled and split to
the reducers and converted in an intermediate key/multivalue
space. The shuffle of individuals consists in a random assign-
ment of individuals to reducers instead of using a traditional

hash function over the key. This modification, as suggested
in Verma et al. (2009), responds to avoid that all values corre-
sponding to a same key (identical individuals) will be sent to
the same reduce function, generating a biased partition and
fix assigned of individuals to the same partition through evo-
lution and an unbalance load of reduce functions at the end
of evolution. Therefore, the intermediate key/value pairs are
distributed into R partitions using an uniform distribution.

3.3 MRGA-H algorithm

Some modifications were introduced in the code developed
in Verma et al. (2009). The most important ones are related
to the changes imposed by passing from the oldMRV1 to the
new Java MapReduce API MRV2 (Welcome 2014), because
they are not compatible with each other. These important dif-
ferences involve the new package name, the context objects
that allow the user code to communicate with the MR sys-
tem, the Job control that is performed through the Job class in
the new API (instead of the old one JobClient), and the
reduce() method that now passes values as an Iterable
Object. Also, some modification were required during the
generation of the random individual ID. Finally, the indi-
vidual evaluation was included in the method fitness of the
GAMapper Class. The rest of the code with the function-
ality of theGA remainswithout importantmodifications. The
scheme of MRGA-H is plotted in Fig. 1. Chunks of data read
from HDFS and processed by each map are represented by
shaded rectangles.

3.4 MRGA-M Algorithm

MRGA-M creates the MPI environment for the parallel exe-
cution. Then, the sequence begins with the instantiation of an
MRobject and the setting of their parameters. TheMRGA-M
follows the scheme shown in Fig. 2 where boxes with solid
outlines are files and the chunks of data processed by each
map are represented by shaded rectangles in a hard disk.

The first MR phase consists of only one map function
(calling to a serial I ni tiali ze()) to create the initial pop-
ulation. In our implementation, the main process (process
with MPI id equal to zero) generates a list of filenames. Our
I ni tiali ze() function processes each file to build the initial
population.

The second and following MR phases have a sequence
of map and reduce functions. These map functions receive
a chunk of the large file passed back to our f i tness() and
then split it in M chunks. The f i tness() function processes
each key (an individual) received, evaluates it obtaining the
fitness value and emits key/value pairs. After that, the MR-
MPI aggregate() function shuffles the key/value pairs across
processors by distributing the pairs randomly. Then, theMR-
MPI convert() function transforms a key/value pairs into a
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Fig. 1 MRGA-H scheme

Fig. 2 MRGA-M scheme

key/multivalue pairs. Finally, the Evol() function (from the
reduce method) will be called once for each key/multivalue

pair assigned to a processor. This function selects a pair of
individuals by tournament selection and performs the recom-
bination. The new individuals generated are written into
permanent storage to be read by the map methods in the
following MR phase.
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Fig. 3 MRGA-S scheme

3.5 MRGA-S algorithm

As we have before explained, Spark extends and generalizes
the MR idea with a different implementation. In conse-
quence, we need to introduce changes to the MRGA design
to obtain the MRGA-S, which are detailed in the following.

The proposed MRGA is based on Spark RDDs to store
the population. This RDD is cached in memory to accelerate
the processing instead of using files to store the population,
as in MRGA-H and MRGA-M. However, the MRGA-S also
exploits the parallelism in the evaluation and in the applica-
tion of genetic operators. Consequently, MRGA-S follows
the same logical functionalities than both MRGA-H and
MRGA-M, with respect to the SGA behavior.

In this MRGA implementation, a different conception of
key/value pairs to represent individuals is used. The key rep-
resents the partition were an individual has to be assigned to,
whereas the value corresponds to the individual itself.

Figure 3 presents a scheme of theMRGA-S. The sequence
begins with the creation of a RDD (Stage 1), which is par-
allelized in the main program. The elements of the RDD are
copied to form a distributed dataset that can be operated in
parallel in each worker, which transforms them and returns
the results to the main program. After that, an iterative pro-
cess begins consisting of two Spark stages that are repeated
until the stop criterion is met.

The first step in the main loop (Stage k) assigns a random
value to each individual in the range [1, .., R], by using a spe-
cial version of the map operation (mapToPair() operation).
This conversionprepares aRDDfor the next operation,which

consists in grouping the individuals with the same key. Note
that this step (Stage k) is equivalent to the Partitioner
in the MRGA-H or to the agregate() function in MRGA-M.

The next Stage k + 1 begins with the redistribution of the
individuals across the partitions, by using the groupByKey()
function. After that, a mapToPair() operation is invoked
with the Evolution() function as its parameter, in order to
evaluate the individuals and apply genetic operators into a
partition, generating the new individuals for the next gener-
ation. Although, this is a new difference with MRGA-H and
MRGA-M, MRGA-S maintains the SGA’s underlying idea.
Finally, a new RDD containing the individuals from all the
partitions (the whole population) is obtained to continue with
the first step of Stage k + 1 in this iterative process.

4 Experimental setting

To address the research questions about the efficiency and
scalability presented in Sect. 1, we consider as a bench-
mark the knapsack problem (Kellerer et al. 2004; Pradhan
et al. 2014; Salama et al. 2018; Zhou et al. 2018) to evalu-
ate the proposed algorithms. The choice of this problem was
motivated by the fact that it allows us to assess the MRGA
scalability on different big instance sizes. To carry out the
evaluation of the analysis of our proposals, we use metrics
such as execution time, scalability, speedup, and communi-
cation vs. computation. The problem, the experimentation
methodology, and the evaluation metrics are explained in the
following subsections.
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4.1 Knapsack problem

The 0–1 Knapsack Problem (KP) is a classic NP-complete
problem (Kellerer et al. 2004), which is defined by the task of
taking a set of items, each with a weight and a profit, filling
the knapsack so that the total profit is maximized, but not
exceeding the maximum weight the knapsack can hold. The
KP formulation is shown in Eq.1.

max
Ns∑

i=1

xi pi (1)

subject to

Ns∑

i=1

xiwi ≤ K

where K is the maximum weight the knapsack can hold, and
Ns is the number of items in the set, S. Each item has a
weight wi and a profit pi . Here xi indicates whether an item
i is present or not in the knapsack. Therefore, a KP solution
is represented by a bit string in MRGA, as shown in Fig. 4,
and its implementation is described in Sect. 3.2.

KP is a very well-known problem in computer science. It
occurs in many situations be they in industry, communica-
tion, finance, applied sciences, or in real life (Rui Figueira
et al. 2010; Jenkins 2002; Klamroth and Wiecek 2000;
Quintuna and Laye 2016), being itself a very interesting
combinatorial problem to be dealt using the big optimization
solver presented in this work. In general, the KP literature
solves problem instances that vary between 100 and 10,000
items in the knapsack. In this article, we propose to opti-
mize six different high-dimensional instances with a very
large number of items: 25,000, 50,000, 75,000, 100,000,
125,000, 150,000, 200,000, and 300,000 items. They are
named as 25K, 50K, 75K, 100K, 125K, 150K, 200K, and
300K, respectively. To obtain these big KP instances, we use
the generator described inPisinger (1999) and canbe found in
the repository github.com/GabJL/LargeKPInstances, choos-
ing the uncorrelated data instances type (no correlation
between the weight and the profit of an item). We generate

Fig. 4 Solution representation of the knapsack problem in MRGA

these large datasets because they represent different degrees
of computational and memory load, being also an important
contribution to the state-of-the-art of knapsack problem.

4.2 Experimentationmethodology

Each MRGA’s approach evolves 50,000 randomly initial-
ized individuals. This population size was chosen in order
to increase the memory load that our big optimization solver
has to manipulate. For each generation, these algorithms use
binary tournament selection to choose parents, a probability
of 100% to recombine the parents using the UX operator, and
the generational replacement to obtain the next population.
Let us recall that for each consideredKP instance and number
of map tasks (#map), we execute 30 times the MRGA-M,
MRGA-H, and MRGA-S. The computational environment
used in this work to carry out the experimentation is a cluster
of five nodes with 8 GB RAM.

The sequence of bits of an individual is grouped by arrays
of long ints (64bits), and their lengths dependson the instance
dimension. For example, the individual length for the 25K
instance is 392 long ints (25,000/64) requiring 3.1 KB of
memory, and therefore, the population demands 156.25 MB.
The decision of using long ints was to optimize the bit oper-
ations required by the evolutionary operators. In this way,
the total RAM requirements vary from 150 MB to 1.8 GB,
justifying the use of Big Data frameworks.

Before performing the statistical tests, we first check
whether the data follow a normal distribution by applying
the Shapiro–Wilks test. Where the data are normally dis-
tributed, we later apply an ANOVA test. Otherwise, we use
the Kruskal–Wallis (KW) test. These statistical studies allow
us to assess whether or not there are meaningful differences
between the compared algorithms with α = 0.05. These
pairwise algorithm differences are determined by conduct-
ing a post hoc test, such as the Tukey test for ANOVA or the
Wilcoxon test for the KW one.

4.3 Evaluationmetrics

In the previous section, we explained the methodology for
experimentation, and now we will develop on the strategy
to carry out a fair comparison between the MRGA solvers.
In this way, distinct metrics are considered to evaluate them,
such as execution time, scalability, mean profit values, and
speedup. This becomes as a good practice to report results
in the metaheuristic field (Alba 2005). We also evaluate the
behavior of our proposals considering different number of
maps and reducers in the case of MRGA-H and MRGA-M
andworkers forMRGA-S, in order to assess an analysis of the
implications of the amount of parallelism in the performance
of MRGA approaches.
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Fig. 5 The method to compute
times for MRGA-M and
MRGA-H

ExecutionTime. The execution time (or runtime) achieved
by each MRGA approach is measured in milliseconds using
the system clock. This includes the time between starting and
finishing the whole algorithm. Consequently, we include all
the communication involved in the execution. As a way to
analyze the implications of the amount of parallelism in the
execution of each approach, a comparison among the differ-
ent MRGA solvers is carried out. This is the base metric to
measure the scalability and speedup that are explained below.

Scalability. We analyze the scalability from two differ-
ent dimensions. The first one refers to the algorithm capacity
to solve increasing sizes of the problem. For that reason,
we include six different instances in the study. In this case,
we maintain the number of map tasks constant. The second
one addresses to increase the number of map tasks, whereas
we keep the problem size fixed, considering 4, 8, and 12
map tasks. This study allows us to determine how the exe-
cution times are modified when more resources to solve the
same problem are available. Consequently, we have scala-
bility with an increasing problem size and scalability with a
constant overall load.

Speedup. The speedup (sm) is the ratio between the mean
execution time on one processor and themean execution time
onm processors.Weuse the definition ofweak speedup given
in Alba (2002) that compares the execution time of the paral-
lel algorithm on one processor against the execution time of
the same algorithm onm processors. For this particular study,
the solution quality is taken as the stopping criterion. The
evaluated MRGA solvers should compute solutions having
a similar accuracy. Thus, a relaxation of the optimal fitness
value for each KP instance (e.g., 90%) is considered, but in
any case the samevalue.All these define anorthodox speedup
measure in Alba’s taxonomy (Alba 2002).

Communication vs. Computation. A study about the
communication and computation times of each algorithm
allows us to understand the reasons that causes our proposals
have a slightly improved speedup.We adopt the method used

in Ferrucci et al. (2017), which is proposed for the Hadoop
framework, andwe have extended for the other two ones. Fig-
ure5 illustrates how the communication and computational
times are calculated per generation. This method allows to
isolate the GA execution time (computational time) from the
time spent by each framework to put online and run each
algorithm (communication time).

Mean Profit. The mean profit values consider the average
of the best solutions found by eachMRGA solver to evaluate
their efficacy.

5 Result analysis

In this section, we present the results that allows us to answer
the different RQs formulated in Sect. 1. The comparison
between the MRGA solvers with respect to the scalability
is in Sect. 5.1. The analysis of the speedup is in Sect. 5.2.
In Sect. 5.3, we contrast the communication and computa-
tion times consumed by each MRGA. Finally, the analysis
of mean profit values is presented in Sect. 5.4.

5.1 Scalability

Table 2 and Fig. 6 show the execution times achieved for
each algorithm by increasing the problem dimension. Fur-
thermore, in Table 2, the respective standard deviation values
(±SD) are introduced. In the last column of each sub-table,
the results of the KW test are summarized, where the sym-
bol “+” indicates that the execution times of the MRGA
solvers are statistically similar, while the symbol “-” specifies
these times are significantly different. It is noticeable that the
MRGA-S execution time for the 300K instance is not avail-
able (N/A) because this solver cannot execute such a large
instance in our systems. For every instance, each bar of Fig. 6
represents a different number of map tasks. As expected,
the execution times increase as the problem’s dimensional-
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Table 2 Mean execution times achieved for each MRGA solver and its
respective standard deviation (SD)

Inst. MRGA-M

#maps=4 #maps=8 #maps=12 KW

25K 15,420±38 14,025±25 14,130±10 +
50K 39,039±60 22,424±25 22,710±20 −
75K 66,585±141 36,600±21 36,570±16 −
100K 78,894±177 74,724±19 40,150±17 −
125K 108,645±449 99,390±36 51,810±16 −
150K 136,815±349 118,110±56 113,798±25 −
200K 157,475±270 160,672±49 148,570±17 +
300K 251,028±422 260,218±62 248,944±29 +
Inst. MRGA-H

#maps=4 #maps=8 #maps=12 KW

25K 62,862 ±150 56,798±99 55,979±39 +
50K 42,607 ±164 35,256±68 33,931±54 −
75K 58,440 ±378 48,222±55 47,598±42 −
100K 52,235 ±394 38,542±43 38,479±37 −
125K 118,171±894 94,093±72 89,665±32 −
150K 75,932 ±653 54,267±105 48,066±47 −
200K 79,271 ±523 50,402±95 47,387±33 −
300K 101,026±819 63,380±120 57,806±57 −
Inst. MRGA-S

#maps=4 #maps=8 #maps=12 KW

25K 22,952±58 19,391±26 23,349±49 +
50K 38,108±132 30,232±199 28,033±178 −
75K 51,448±357 40,956±369 37,335±321 −
100K 65,416±465 50,923±404 45,182±376 −
125K 79,799±397 61,932±389 55,904±301 −
150K 94,052±528 73,351±471 66,071±485 −
200K 123,655±897 71,088±754 83,443±768 −
300K N/A 172,853±1023 208,043±548 −

ity grows. This situation is evident in the case of MRGA-M
andMRGA-S.However,MRGA-Hpresents a behaviorwith-
out direct dependence on the problem size. The previous
results allow us to answer the RQ2 since these algorithms
can efficiently solve incremental high-dimensional instances,
becoming scalable big optimization solvers. In particular, the
MRGA-H presents the best performance.

Now, if we analyzed what happens when a same KP
instance is solved by some MRGA and the number of map
tasks is increased, as shown in Fig. 6, we can observe a
decrease in the execution time. This study allows to infer how
is affected theMRGA execution times when the same load is
maintained, but the amount ofmap tasks is augmented. This
suggests that whenmore resources are used to solve the same
problem, we obtain a gain in the time. The KW results sta-

Fig. 6 Mean execution time of MRGA algorithms to solve the KP
instances

tistically support these differences. Being, 12 a good number
ofmap tasks for MRGA-M, while 8map tasks is enough for
obtaining accurate results in both MRGA-H and MRGA-S
and the improvement achieved adding more maps is mean-
ingless.

5.2 Speedup

We analyze the results shown in Fig. 7 by comparing the exe-
cution times of eachMRGA. In this way, we find responses to
the research questions RQ1 and RQ3 about the MRGA effi-
ciency and scalability when more computational resources
to solve the same problem are available. For the smallest
datasets, i.e., instances with less than 100,000 items, we
observe that the execution of MRGA-M is always faster than
the executions of the remaining MRGAs, regardless of the
number of map tasks used. However, for the largest data
sets, MRGA-M is the slowest MRGA solver, mainly when 4
and 8map tasks are employed, while MRGA-H is the fastest
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Fig. 7 Mean execution time of MRGA algorithms for each number of
map tasks to solve the KP instances

one. TheMRGA-Mweak behavior is caused by the hardware
resource limitations to support big instances in a few number
ofmap tasks. Moreover, MRGA-H is the algorithmwith less
time variations than the other two MRGAs for a given map
task number. In the case of MRGA-S, we observe a slight
increasing in the runtimes when instances with more number
of items are solved. Consequently, we can infer that the three
MRGAs present an efficient performance and are scalable,
being MRGA-H the most efficient and scalable solver for
big optimization. This conclusion can also be deduced from
Fig. 6, although it cannot be seen with the naked eye.

Now, we focus on the speedup values to reinforce the
justification of the previous answer to RQ1 from a different
point of view. Figure8 graphically shows the speedup values
for eachKP instance. TheMRGA-Hspeedup is the best of the

three algorithms for the majority of the problem instances.
Although the speedup is sub-linear (sm < m), the MRGA-
H results are quite good because they are approximately at
0.65 from the ideal speedup value for 4 and 8map tasks. Both
MRGA-M and MRGA-S present a poor relation respect to
the ideal value, and this situation becomes worse when larger
number of map tasks is considered (the values are very small,
less than 0.3). These observations are corroborated with the
average speedup values per MRGA solvers that is shown in
Fig. 9.

5.3 Communication vs. computation

Figure 10 shows the communication and computation times
for each MRGA solver taken as reference the instance with
a dimension of 100,000 items. Similar observations can be
done for the other instances. This kind of analysis allows us
to give more details about the execution time achieved by
each approach. The stacked bars represent communication
and computational times for a generation.

On the one hand, it is worth noting that MRGA-S presents
the lowest communication and it goes decreasing as the num-
ber of maps is increased, while the computational time stays
similar. What explains this situation is that the total number
of executors is fixed regardless of the number of map tasks,
consequently the tasks assigned to an executor have to be
executed in a serial way. Another reason is that the available
hardware infrastructure is below the Spark hardware require-
ments.

On the other hand, for MRGA-M and MRGA-H the
communication time surpasses the computation time, but it
remains stable for every number of map tasks. The reasons of
this behavior are the same large dataset size is considered and
always the number of maps is equal to the assigned number
of cores. However, the computation time becomes smaller
when the number of tasks increase because each map task
is assigned to a different core of the cluster. Moreover, MR-
MPI and Hadoop are better suited to low cost commercial
off-the-shelf computers. In the view of these results, we can-
not answer RQ4 clearly. Although the communication time
is an important factor to take into account to chose a MRGA
solver, this kind of time is strongly related to the number of
maps, dataset size, and the hardware infrastructure. There-
fore, the combination of these last factors could lead or not
to a reduction in the communication time.

5.4 Mean profit

Figure 11 shows the mean profit values obtained by each
MRGA solver for each instance. We empirically and statis-
tically verified that no significant differences in the MRGA
efficacy are observed. These are expected results because the
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Fig. 8 Speedup trend per instance

Fig. 9 Mean speedup per MRGA solver

primary goal ofMRGAsolvers is to preserve the SGAbehav-
ior while enabling it to tackle large-scale problem instances.

6 Conclusions

In this article, we have proposed big optimization solvers
based on MR implementations of a simple genetic algo-
rithm in different Big Data processing frameworks. These
allowed us to solve large instances of combinatorial opti-
mization problems, in particular, the knapsack problem that
is important in the industry and academia. In this sense, we
used three open-source frameworks as Hadoop, MR-MPI,

and Spark in order to generate MRGA-H, MRGA-M, and
MRGA-S solvers, respectively. We empirically assessed the
effectiveness of the three MRGA algorithms in terms of
execution time, scalability, speedup, and communication vs.
computation to answer the research questions formulated at
the beginning of this work. This assessment was carried out
by using six big instances with sizes varying from 25,000
to 300,000 items, which were chosen to represent different
degrees of computational and memory load.

Results show that, from a computational point of view,
the execution times of the MRGA solvers increased as the
dimensionality of the problem grew, as it was expected. This
behavior is exhibited byMRGA-M andMRGA-S, but not by
MRGA-H, that is not affected for the instance dimensional-
ity and shows the best speedup values. The MRGA-H then
outperforms the other two in terms of execution time when
the problem size scales to high-dimensional instances. In this
way, RQ1 and RQ2 are satisfactorily answered.

Furthermore, the answer to the question about the scal-
ability of MRGA solvers to an increased number of map
task (RQ3) was that, in fact, a gain in time is observed if
moremap tasks are used to solve the same problem instance.
It is more noticeable for MRGR-M than for the other two
MRGA solvers, due to the growing memory requirements as
a consequence of the increase in the instance sizes. MRGA-
S presents the lowest communication times, but it cannot
exploit the advantage to use the in-memory persistence.
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Fig. 10 The average communication vs. computational times spent by each algorithm per generation

Fig. 11 Mean profit values per MRGA solver

However, no conclusive evidencewas foundwith regard to
the time spent in communication as a factor to choose a par-
ticular MRGA solver, the last research question formulated
(RQ4) in the present study. The communication time seems
to be too much related in an unknown way with the number
of map tasks, dataset size, and the hardware infrastructure.

The differences observed in the behavior of our MRGA
solvers are to some extent explained by the facts that both,
MRGA-M and MRGA-S, keep and manage the population
from memory, while MRGA-H uses HDFS to manage it.
Furthermore, the MRGA-S deserves special attention due to
the lowperformance in its behavior.Given that the population

is updated in each iteration, the contents of its RDD persists
in memory only one iteration. As a consequence, the Spark’s
performance advantage with respect to the use in-memory
persistence cannot be exploited.

Summarizing the above observations, MRGA-H presents
a better performance and scalability than MRGA-M and
MRGA-Swhen high-dimensional optimization problems are
solved. Therefore, theMRGA-H solver continues to perform
adequately as its workload grows as much as the capac-
ity of the containers allows it. Nevertheless, the MRGA-H
and MRGA-S should be positively considered since they are
using frameworks which allow easier programmability. They
also present further advantages, such as inherent support to
node failures and data replication.

In a futurework, othermodels to parallelize the SGA, such
as the island model, using MR paradigm will be considered
on these three frameworks in order to improve the speedup of
the big optimizer and take advantage of the distributed nature
of the new proposals. Also, the sensitivity of the parameter
settings on the proposed algorithm will be addressed. Other
appropriate big optimization problems to analyze the perfor-
mance of these big optimization solvers will be used to give
more insights of their behavior.
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