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Abstract
This paper introduces a new meta-heuristic technique, named geometric mean optimizer (GMO) that emulates the unique

properties of the geometric mean operator in mathematics. This operator can simultaneously evaluate the fitness and

diversity of the search agents in the search space. In GMO, the geometric mean of the scaled objective values of a certain

agent’s opposites is assigned to that agent as its weight representing its overall eligibility to guide the other agents in the

search process when solving an optimization problem. Furthermore, the GMO has no parameter to tune, contributing its

results to be highly reliable. The competence of the GMO in solving optimization problems is verified via implementation

on 52 standard benchmark test problems including 23 classical test functions, 29 CEC2017 test functions as well as nine

constrained engineering problems. The results presented by the GMO are then compared with those offered by several

newly proposed and popular meta-heuristic algorithms. The results demonstrate that the GMO significantly outperforms its

competitors on a vast range of the problems. Source codes of GMO are publicly available at https://github.com/farshad-

rezaei1/GMO.

Keywords Global optimization � Meta-heuristic technique � Geometric mean optimizer � Fuzzy logic

1 Introduction

Optimization techniques in the field of evolutionary com-

putation can be categorized into two classes: individual-

based versus population-based techniques. Individual-

based techniques are set to begin the process of optimiza-

tion by a single search agent usually generated randomly in

a search space attempting to find the global optimum of the

problem. This category of algorithms benefits from some

advantages and suffers from some disadvantages. The main

shortcoming is premature convergence emerging in solving

problems with unimodal and multi-modal search land-

scapes. In unimodal problems, premature convergence

usually occurs when the algorithm converges to the global

optimum very slowly, while in multi-modal optimization

problems, the local optima entrapment is known as the

main reason for premature convergence (Mirjalili 2015).

Indeed, individual-based algorithms begin the optimization

from an initial random point in the search space and usually

can only search for the optimum solution in the proximity

of that initial random point, without being able of escaping

from that region to search other promising regions in the

search space. On the contrary, population-based techniques

start the optimization process by generating a set of initial
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random solutions and improving their quality by lapse of

iterations. This category of the techniques is of less prob-

ability to be stuck in the local optima in multi-modal

problems and also conducts the search process more

rapidly than the first category when solving the unimodal

problems. However, more computational cost as a result of

evaluating much more objective functions are two sub-

stantial disadvantages this category suffers from as com-

pared to the individual-based problems. Some of the

popular individual-based algorithms include single candi-

date optimizer (Shami et al. 2022).

Moreover, the optimization approaches can also be laid

in two different categories: stochastic versus deterministic

approaches. Stochastic approaches do not need the

derivation of the mathematical functions, as these algo-

rithms frequently change the variables and evaluate the

resulting objective functions to reach the best-fitted vari-

ables at the framework of a solution. Stochastic algorithms

have also lower chances to fall in local optima than the

deterministic algorithms (Paper 2015).

Evolutionary algorithms mainly tend to be stochastic

and population-based, so they are considered to be the best

options to solve any optimization problem with any degree

of complexity in variable domain and in the objective

function. Some of the most popular and widely used evo-

lutionary algorithms are genetic algorithm (GA) (Goldberg

and Holland 1988), and differential evolution (DE) (Storn

and Price 1997). It is worth mentioning that the no free

lunch (NFL) theorem (Wolpert and Macready 1997) let

new evolutionary algorithms be created, since according to

this theory, the performances of all algorithms are the same

when implemented on several optimization problems.

Thus, one algorithm may be highly effective when solving

some optional series of problems but is absolutely inef-

fective on some other series. In the past decade, the

researchers have proposed numerous new evolutionary

algorithms as required by the NFL theorem. These algo-

rithms can be broken down into four main categories:

(1) Swarm-based algorithms: cuckoo search (CS) (Gan-

domi et al. 2013), bat algorithm (BA) (Yang 2010),

grey wolf optimizer (GWO) (Mirjalili et al. 2014),

moth-flame optimization (MFO) [1], Harris Hawks

optimizer (HHO) (Heidari et al. 2019), whale

optimization algorithm (WOA) (Mirjalili and Lewis

2016), gradient-based optimizer (GBO) (Ahmadian-

far et al. 2020), and Aquila optimizer (AO) (Abuali-

gah et al. 2021c).

(2) Physics-based algorithms: gravitational search algo-

rithm (GSA) (Rashedi et al. 2009), galaxy-based

search algorithm (GbSA) (Hosseini 2011), black hole

(BH) algorithm (Hatamlou 2013), colliding bodies

optimization (CBO) (Kaveh and Mahdavi 2014),

equilibrium optimizer (EO) (Faramarzi et al. 2020),

and flow direction algorithm (FDA) (Karami et al.

2021).

(3) Human-based algorithms: group search optimizer

(GSO) (He et al. 2009), interior search algorithm

(ISA) (Gandomi 2014), nomadic people optimizer

(NPO) (Salih and Alsewari 2020), and teaching–

learning-based optimization (TLBO)(Rao et al.

2011).

(4) Evolutionary techniques: gradient evolution (GE)

(Kuo and Zulvia 2015), biogeography-based opti-

mization (BBO) (Simon and Member 2008), and

space transformation search (Wang et al. 2009).

Every optimization algorithm must accomplish two

missions to solve an optimization problem: exploration and

exploitation. At the exploration phase, the positions of the

search agents are frequently varied while kept diversified to

be able of searching as broadly as possible. When transiting

from the exploration to the exploitation stage, the search

agents must gradually avoid further moving in the space

and intensify locally searching their possibly high-fitness

neighborhood. Every evolutionary algorithm must be able

to hold a balance between these two key phases of any

optimization process to make this process be properly and

accurately done without leaving any chance for the pre-

mature convergence to occur (El et al. 2017).

As it is known, in a variety of the other meta-heuristics,

there are two separate mechanisms to do exploration and

exploitation, and thus, these two phases may be inconsis-

tent, as a solution may have high fitness but low diversity

or is of high diversity but low fitness. In this case, deciding

on which particle should be selected as a guide may be very

difficult and even if be done, this selection may disrupt the

exploration–exploitation balance at numerous iterations of

the algorithm. So, there is a need to design an index that is

able to simultaneously evaluate fitness and diversity of the

solutions as two major factors to be considered during the

optimization process. As is clear, the high fitness is a major

player to choose the guide of the search agents in the

exploitation phase of the optimization process, and the

diversity is the major factor helping designate the guide of

the search agents in the exploration step. The integration of

the abilities to evaluate these two major factors can facil-

itate the process of selection of the guides such that the best

possible guides can be selected by the optimizer. The

importance of this issue shows itself better when knowing

that it is impossible to delineate a certain boundary

between the exploration process and the exploitation step

over the course of iterations of an optimization process.

Accordingly, the major motivation of the authors of this

paper is to introduce a new optimization algorithm while
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benefitting from an index evaluating fitness and diversity at

the same time.

As mentioned above, this paper proposes a novel algo-

rithm, called geometric mean optimizer (GMO). The geo-

metric mean operator in mathematics is found so effective

to enhance the abilities which an optimization algorithm

should have. Utilizing this operator, the GMO algorithm

can deal with both diversity of the search agents and the

fitness of them at the same time by evaluating a single

simple index, named dual-fitness index (DFI). This index is

calculated for all agents in the population and used to

define a local guide for each search agent during its search

process. The introduction of the DFI in the proposed GMO

can make knowing the phase of the optimization (explo-

ration or exploitation) unnecessary and neutral during the

optimization process that is being on its right way to be

accomplished despite ambiguity in the boundary between

the exploration and exploitation phases of an optimization

process. Designing the DFI index in GMO is the major

novelty of this algorithm against any other meta-heuristic.

Among the other advantages of the GMO, there are mul-

tiple unique guides designated for the search agents at the

proper distances from them in the GMO to firstly help them

avoid getting trapped in local optima, and secondly not

engaged in a drift causing to lose a large number of good

solutions when fast moving toward their guides. Moreover,

a Gaussian mutation is applied on the guides in the GMO to

further give stochastic nature to the search process of this

algorithm as a way to better explore the search space of any

optimization problem. At last but not least, the GMO has

no parameter to tune, contributing its results to be highly

reliable.

The organization of the rest of this paper can be sum-

marized as follows: Sect. 2 is dedicated to present the

theory of the GMO, its unique properties helping the GMO

to effectively solve the optimization problems, and the

steps to implement GMO in detail. In Sect. 3, the results of

testing the performance of the proposed algorithm and its

rivals on numerous benchmark test functions are intro-

duced. In this section, a statistical analysis is also presented

to benchmark how significant the results the proposed

algorithm presents are when become superior to its com-

petitors. A qualitative analysis is also conducted in this

section to further investigate the convergence behavior of

the GMO. In Sect. 4, the results of solving several engi-

neering problems by the GMO are compared to those

offered by a large number of other optimizers. Section 5

highlights the strengths and weaknesses of the proposed

GMO algorithm. Finally, in Sect. 6, the major conclusions

are introduced.

2 Methodology

2.1 Geometric mean optimizer (GMO)

GMO is a meta-heuristic technique, utilizing the behavior

of several search agents when socially interacting with

each other. The way these agents should interact to yield

the best result must be delineated in any optimization

algorithm. Here, the unique mathematical properties of the

GMO algorithm when handling optimization problems are

first explained and then the detailed formulation by help of

which this algorithm solves the problems is presented.

Assume Xi ¼ ðxi1; xi2; . . .; xiDÞ and Vi ¼ vi1; vi2; . . .; viDð Þ
are the ith agent’s position and velocity, respectively.

According to the requirements mentioned in Sect. 1 for

solving the optimization problems, the GMO can simulta-

neously evaluate the fitness and diversity of the search

agents in the search space by a single index, named the

dual-fitness index (DFI). The way to calculate the DFI is

presented in the remainder of this section in detail.

Referring to the fuzzy logic concepts, first introduced by

Zadeh (Zadeh 1965), the similarity among several variables

can be expressed by multiplying the fuzzy membership

function (MF) values attributed to those variables. This

multiplication is known as the product-based Larsen

implication function, vastly applied in the fuzzy systems.

In contrast, the geometric average of nmembership degrees

(MD) can be expressed by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l1 � l2 � . . .� lnn
p

. As a

result, the multiplication of several MDs, i.e.,

ðl1 � l2 � . . .� lnÞ, can be treated as the geometric

average of them, while not having the nth root, in which li
is the ith MD and i = 1, 2, …, n. The experimental results

that are presented in Sect. 3 of this paper revealed that the

nth root should be neglected in the geometric average

operator employed in the GMO. Therefore, this form of the

geometric average named the pseudo-geometric average

and calculated over the MFs of several variables, can

reflect the average and similarity, simultaneously, among

them.

According to some mathematical underpinnings men-

tioned above, the structure of GMO is to be explained here.

In GMO, the comprehensive fitness of a search agent can

be calculated with regard to its opposites’ finesses. Here,

the ‘‘opposite’’ agents of a certain agent are referred to as

the set of individuals forming the whole population of

agents/elite agents excepting the certain agent itself. At

each iteration, the personal best-so-far agent position (the

position identified to be the best position that agent has

experienced till that iteration) is selected. Then, for all

opposite personal best-so-far agents of a certain agent, the

multiplication of the objective values, transformed into the

fuzzy MFs, is calculated. It is noteworthy that in the
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implementation of GMO, the fuzzy membership functions

must be directly proportional to the fuzzified variables and

thus must be ascending in the domain. In a minimization

process, the larger the pseudo-geometric average of the

MFs obtained for the opposite agents of a focused agent,

the more fitted that agent will be. This is because in this

case, two tasks are simultaneously fulfilled for the focused

agent:

(1) The opposite agents’ MF values are averagely larger,

revealing that the focused agent is of relatively less

MF and thus the less objective value.

(2) The similarity among the opposite agents’ MFs/

objectives is at a higher level, meaning that these

agents are gathered in a closed region and thus, the

diversity of them is at a lower level. Consequently,

the focused agent is located in a relatively more

diversified region in the search space.

Both these highlight the capability of the focused agent

to have a more suitable situation in terms of both fitness

and diversity together in a minimization process, as com-

pared to another agent having less pseudo-geometric

average on its opposite agents. To define the MFs, we have

used the following formula.

f xð Þ ¼ 1

1þ ea x�cð Þ ; a\0 ð1Þ

In Eq. (1), a and c stand for the parameters of the sig-

moidal MF. Indeed, this function assigns an MD to ‘‘high x

values’’ set to the variable x. Since the parameters a and c

of Eq. (1) are unknown in each fuzzification effort, there is

a need to tune these parameters via a trial-and-error tech-

nique. The trial and error procedure has been demonstrated

to be an inexact and time-consuming process for parameter

tuning in fuzzy systems. Hence, it is better to determine

these parameters via other efficient methods. One of these

methods can be making the fuzzy membership functions’

parameters such as a and c in Eq. (1) dependent on the

statistical parameters. Considering this idea, Rezaei et al.

(Rezaei et al. 2017) proved that in an ascending sigmoidal

MF, c ¼ l and a ¼ �4
r
ffiffi

e
p ; where l and r represent the mean

and standard deviation of the x values, respectively. Also, e

is Napier’s constant. Substituting x by the objective func-

tion value calculated for a personal best-so-far search

agent, the fuzzy MF value of this agent can be calculated

according to Eq. (2).

MFtj ¼
1

1þ exp � 4
rt
ffiffi

e
p � Zt

best;j � lt
� �h i ; j ¼ 1; 2; . . .;N

ð2Þ

where Zt
best;j is the objective function value of the jth per-

sonal best-so-far agent at the tth iteration; lt and rt are the

mean and standard deviation of the objective function

values of all personal best-so-far agents at the tth iteration,

respectively; MFtj is the MF value of the jth personal best-

so-far agent, and N is the population size. Then, a novel

index, we name the dual-fitness index (DFI), can be cal-

culated for a search agent as follows:

DFIti ¼ MFt1 � � � � �MFti�1 �MFtiþ1 � � � � �MFtN

¼
Y

N

j ¼ 1

j 6¼ i

MFtj ð3Þ

where N is the population size and DFIti is the dual-fitness

index of the ith agent at the tth iteration. For making all

personal best-so-far agents contribute to generating a

unique global guide agent for each agent, a weighted

average of all opposite personal best-so-far agents are

defined whose weights are the DFI values that are assigned

to them. Equation (4) indicates the mentioned relation:

Yt
i ¼

PN

j ¼ 1

j 6¼ i

DFItj � Xbest
j

PN
j¼1 DFI

t
j þ e

ð4Þ

where Yt
i is the position vector of the unique global guide

agent calculated for the agent i at iteration t, Xbest
j stands for

the personal best-so-far position vector of the jth search

agent, and DFItj is the dual-fitness index of the jth search

agent at the tth iteration. Moreover, e is a very small pos-

itive number added to the denominator of Eq. (4) to avoid

singularity. It is noteworthy that the e is necessary to be

added here only when solving the simple problems espe-

cially the problems with the optimum at the center of their

domains. However, adding the e is unnecessary when

solving the more complicated problems, especially the

problems with the optimum at a position away from the

center of the domain. If there is no prior information about

the problem decided to be solved, it is recommended not to

add the e to the denominator of Eq. (4) and consequently

Eq. (5). For making the algorithm search process more

effective as well as alleviating the computational burden of

performing the algorithm, it is recommended to involve

only the elite personal best-so-far agents in the calculation

of each guide agent. For this purpose, all personal best-so-

far agents are sorted from the highest DFI to the lowest

DFI and the first Nbest personal best-so-far agents are

selected as the elite agents. As a simple way to set the

number of Nbest, it can be linearly decreased over the

course of iterations, such that it is equal to the population

size at the first iteration and is equal to 2 at the final iter-

ation. Considering the value of 2 for Nbest at the final

iteration mainly helps make the elite agents always change
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their positions to further keep diversity. Thus, Eq. (4) can

be transformed to Eq. (5) when elitism is addressed in

finding the guide agents.

Yt
i ¼

P

j2Nbest;j 6¼i DFI
t
j � Xbest

j
P

j2Nbest DFI
t
j þ e

ð5Þ

To make the Yt
i more stochastic in nature which can help

diversity of the guide agents be better preserved, these

agents are mutated in GMO. The mutation scheme is

considered to be a Gaussian mutation. The equation

imposing this form of mutation on the guide agents is as

follows:

Yt
i;mut ¼ Yt

i þ w� randn� Stdtmax � Stdt
� �

ð6Þ

where randn is a random vector generated from the stan-

dard normal distribution; Stdt is the standard deviation

vector calculated for the personal best-so-far agents at the

tth iteration; Stdtmax is a vector consisting of the maximum

standard deviation values of the personal best-so-far

agents’ dimensions at the tth iteration, and w is a parameter

decreasing the mutation step size by lapse of iterations and

calculated through Eq. (9). Finally, Yt
i;mut is the mutated Yt

i

used to guide the search agents. As can be seen, the more

the standard deviation of a dimension in the search space,

the smaller the mutation step of the guide agents to

maintain the existing high diversity among the best agents,

contributing to keep the whole population diversified in the

search space. On the other hand, the less the standard

deviation of a dimension in the search space, a larger step

is taken in the mutation mechanism, to broaden the search

space and enhance the diversity of the agents in the certain

dimension.

Finally, the updating equations can be formulated for

each search agent according to Eqs. (7) to (9):

Vtþ1
i ¼ w� Vt

i þ u� Yt
i;mut � Xt

i

� �

;u

¼ 1þ 2� rand � 1ð Þ � w ð7Þ

Xtþ1
i ¼ Xt

i þ Vtþ1
i ð8Þ

w ¼ 1� t

tmax

ð9Þ

where w is a control parameter, t is the number of current

iteration, and tmax is the maximum number of iterations. Vt
i

is the velocity vector of the ith search agent at the tth

iteration, Vtþ1
i is the velocity vector of the ith search agent

at t þ 1ð Þ th iteration, Yt
i;mut is the position vector of the

unique global guide for the agent i at iteration t and Xt
i is

the ith agent’s position vector at iteration t. In addition, u is

a scaling parameter vector, delineating the steps the agent i

takes toward its guide; and rand is a random number

generated in [0, 1]. As can be seen, the length of the vector

of u is decreasing, as it is varied in the ranges [0, 2], [0.1,

1.9], [0.2, 1.8],…, [0.8, 1.2], [0.9, 1.1], and [1, 1] = 1f g, as
the iterations go on. This decreasing order considered for

the u ranges is able of enhancing the exploration capability

of the GMO at the initial iterations as well as highly

increasing the focus on the exploitation at the final itera-

tions to help make the exploration–exploitation transition

well-balanced. Figure 1 illustrates the flowchart of the

GMO.

2.2 Differences between GMO and PSO

Within this section, we are willing to compare the strate-

gies used by each of the GMO and PSO algorithms to solve

the optimization problems to disambiguate the possible

similarities between these two methods. To do so, we first

explain the search process of the PSO and then mention

several substantial differences there are between the two

algorithms. Assume that Xi ¼ xi1; xi2; . . .; xiDð Þ and Vi ¼
vi1; vi2; . . .; viDð Þ are the vectors containing the position and

velocity of the ith particle in each dimension, respectively,

and D is the dimensionality of the search space. If Pbestti ¼
pi1; pi2; . . .; piDð Þ is the ith personal best (Pbest) position

and Gbestt ¼ pg1; pg2; . . .; pgD
� �

represents the global best

(Gbest) position of the whole swarm, the velocity- and

position-updating procedure of the particles in PSO are

illustrated in Eqs. (10) and (11), respectively (Eberhart and

Kennedy 1995).

Vtþ1
i ¼ wVt

i þ c1r1 Pbestti � Xt
i

� �

þ c2r2 Gbestt � Xt
i

� �

ð10Þ

Xtþ1
i ¼ Xt

i þ Vtþ1
i ð11Þ

where i

”

{1, 2, …, N}; N is the population size; t is the

current number of iteration; w is the inertia weight; r1 and

r2 are two random vectors in the interval [0, 1], and c1 and

c2 are two tunable parameters, usually set to 2. As can be

inferred from the updating procedure of the PSO, each

particle has some tendency to move toward both its Pbest

and Gbest. The mission of the Pbests is maintaining the

particles diversified to do exploration, while the role of the

Gbest is providing the particles with the access to the high-

fitness regions to do exploitation. There are many sub-

stantial discrepancies between the GMO and PSO algo-

rithms that are briefly listed below.

(1) In GMO, a novel single index, named dual-fitness

index (DFI), is defined to simultaneously evaluate

the fitness and diversity of the agents. While, in a

variety of the other meta-heuristics including the

PSO, there are two separate mechanisms to do so,

and thus, the exploration and exploitation phases

may be inconsistent, as a particle may have high
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Fig. 1 Steps of GMO
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fitness but low diversity or is of high diversity but

low fitness. In this case, deciding on which particle

should be selected as a guide may be very difficult

and even if be done, this selection may disrupt the

exploration–exploitation balance at numerous itera-

tions of the algorithm. Designing the DFI index in

GMO is the major novelty of this developed

algorithm against the PSO and any other meta-

heuristic.

(2) In PSO, each particle has two guides (Pbest and

Gbest), attracting it toward themselves. As these

guides may be occasionally conflicting in attracting

the particles, the particles’ movements may be biased

to one of these two guides and thus get unbalanced,

contributing them to be stuck in local optima when

the Gbest is too near to the particles or making them

get into a drift if the Gbest is too far away from the

particles helping numerous optima be missed by the

particles. Both these behaviors can bring about the

premature convergence in the PSO, while, in GMO,

each search agent is assigned a single and unique

global guide that is positioned at a proper distance

from each agent, hindering premature convergence.

(3) In PSO, there are two control parameters (c1 and c2)

in the velocity updating procedure of the algorithm

with two random numbers to be generated and

assigned to each one, while in GMO, there is a single

control parameter (u) which requires only one

random number to be generated to calculate its

value. As a result, the complexity of the GMO can be

less than that of the PSO, making the GMO a faster

algorithm than the PSO.

(4) In PSO, there is no interaction between the particles,

whereas, in GMO, the unique guide of each search

agent is obtained as the average of several elite

agents exchanging their information with that guide

and thus can positively affect the search process of

each search agent.

(5) In PSO, there is a single guide (Gbest) to impede the

particles to be trapped in local optima especially

when solving the multi-modal problems, while in

GMO, multiple guides attempt to make the search

agents escape from the local.

(6) In GMO, a Gaussian mutation strategy is carefully

set at the body of the algorithm to impart a more

uncertain nature to the guides, especially at the initial

stages of the optimization, while in PSO, there is no

mutation imposed on the guide particles and thus,

there is no enforcement for the particles to escape

from the local optima, if trapped in them.

(7) In GMO, a smooth transition is conducted from the

exploration to the exploitation, as the search agents

are gradually approaching their guides, while in

PSO, the tendency of the particles to their Pbests and

Gbest is always the same over the course of

iterations. This fact means that a particle may

completely focus on its guides (Pbest and/or Gbest)

at the initial iterations of the PSO, while distancing

itself from its guides and searching for the possible

good positions within this distance at the final

iterations. In this case, the exploration and exploita-

tion procedures are not properly performed through-

out the optimization process.

2.3 The potential merits of GMO and its
computational complexity

The GMO has the ability to integrate the evaluation pro-

cedure for the fitness and diversity of the existing solutions

in the search space to delineate the guide agents. This is a

unique ability that discriminates this algorithm from any

other meta-heuristic and is proposed to use in this algo-

rithm for the first time. Since the measurement of the fit-

ness and diversity follow two completely different and

independent mechanisms in the meta-heuristics, there may

be always a chance to choose inappropriate guide agents,

leading the other agents in an unbalanced and ineffective

way. If the algorithm is in the exploration phase that entails

the search agents to be scattered as much as possible, the

different mechanisms to lead the search agents may take

effect in a way that agents are so far from the high-fitness

area and their movement toward this area is retarded. In the

multi-modal problems, this method to excessively stress

the exploration process may prompt the agents to get

trapped in local optima. Taking highly different mecha-

nisms to lead the search agents may also gather these

agents in a highly closed and densely populated region

nearby the high-fitness area at the exploitation phase of the

search process, speeding up the convergence but at the

same time, leading to premature convergence.

The GMO attempts to change this commonly followed

way to guide the search agents by defining a novel index

representing the fitness and diversity of each search agent

in an integrated way, thus impeding the possible disrup-

tions in the exploration and exploitation phases of the

algorithm to more effectively accomplish the optimization

process. In GMO, there are multiple guide agents calcu-

lated at each of the iterations helping better keep the

diversity among the solutions found during the search

process. Although these guides are computed so precisely

by an integrated index, their merits are still uncertain. As a

solution, a Gaussian mutation procedure is applied to them

GMO: geometric mean optimizer for solving engineering… 10577
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to promote their role as the guide agents. As the explo-

ration and exploitation abilities of the search agents are

made balanced in the GMO, these agents are set to grad-

ually approach their guides, in contrast to some other meta-

heuristics allowing the agents to always have a stochastic

movement around their guide search agents, disregarding if

the algorithm is at its early or late iterations. An elitism

mechanism is also incorporated into the GMO to improve

its performance and speed up its convergence to the opti-

mum. These potential merits are quantitatively evaluated

through conducting numerous comparisons between the

GMO and a vast range of the other newly proposed and

widely used meta-heuristic algorithms. A schematic way to

conduct the optimization process in the GMO is illustrated

in Fig. 2. It is worth mentioning that in this figure, the

average fitness of the four separate regions is different such

that: fitnessR1 � fitnessR2 � fitnessR3 � fitnessR4, in which

R denotes the Region. Accordingly, we have a relation as

follows: DFIt1 [DFIt3 [DFIt5.

Computation complexity of the GMO depends on the

complexity of four main sections in the algorithm: (1) fit-

ness evaluations, (2) sorting mechanism of the elite solu-

tions, (3) guide solution computation mechanism, and (4)

updating procedure of the solutions. The computational

complexity of the fitness evaluations is OðM � NÞ, and the

computational complexity of the sorting mechanism of the

elite solutions and the guide solution computation mecha-

nism is both OðM � N2Þ. Finally, the complexity of the

updating procedure of the solutions is OðM � N � DÞ.
Consequently, the computational complexity of the GMO

is O M � N � ðN þ DÞð Þ. It is worth mentioning that M is

the maximum number of iterations, N is the number of

search agents, and D is the number of decision variables.

3 Results and discussion

3.1 Test problems

To investigate how eligible the GMO algorithm is when

solving the optimization problems, it is implemented on 52

benchmark functions including 23 widely used classical

benchmark test problems, and 29 CEC2017 test function

suite (Yao et al. 1999; Wu et al. 2017). The aim is to

minimize these benchmark functions. D is set to 30 for the

classical benchmark functions and is assumed to 50 for all

the functions included in the CEC2017 test suite.

3.2 Comparison with other well-known
algorithms

3.2.1 Preparation of the algorithms

To investigate the competence of the GMO to tackle a

variety of difficulties included in the optimization prob-

lems, the GMO was compared with six popular and newly

proposed algorithms as the first set of the examinees. These

methods include: (1) Harris Haws optimizer (HHO) (Bui

et al. 2019); (2) arithmetic optimization algorithm (AOA)

(Abualigah et al. 2021a); (3) Aquila optimizer (AO)

Fig. 2 Schematic updating

procedure of the search agents

at the tth iteration of GMO

10578 F. Rezaei et al.
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(Abualigah et al. 2021c), (4) gradient-based optimizer

(GBO) (Ahmadianfar et al. 2020); (5) flow direction

algorithm (FDA) (Karami et al. 2021); and (6) equilibrium

optimizer (EO) (Faramarzi et al. 2020). The parameter

settings of these algorithms as well as the proposed GMO

are presented in Table 1. The population size and the

maximum number of iterations of all algorithms imple-

mented on first 23 test problems were set to 50 and 1000,

except for the fixed-dimensional multi-modal problems

(F14-F23), the maximum number of iterations of which

was set to 500. Moreover, the number of solutions and

maximum iterations was assumed to be 50 and 1000 for all

algorithms when applied to the CEC2017 functions. All

methods were run for 30 independent times. The final

experimental results are shown in Tables 2, 3 and 4. The

results corresponding to the best-performing algorithms are

emboldened in these tables. The abbreviations ‘‘Ave’’ and

‘‘Std’’ in these tables stand for the average and standard

deviation of the final results achieved during all runs. The

convergence curves of the algorithms plotted for the clas-

sical benchmark functions are shown in Figs. 3 and 4.

3.2.2 Comparative results on the unimodal functions

The experimental results obtained from running algorithms

on the unimodal problems indicate that GMO significantly

outperforms all the comparative algorithms on 10 out of 14

(71%) of all the performance criteria. This desirable per-

formance indicates the supreme ability of GMO to do

exploitation, as having proper exploitation ability is the

most important challenge in solving unimodal functions.

Since strong exploration ability can also speed up the

convergence to the optimal point when an algorithm

attempts to solve the unimodal functions, the remarkable

performance of GMO to solve this category of the bench-

mark functions also represents its ability to perfectly

explore the search space of these functions. The assignment

of the unique and diversified guide agents to each agent and

taking the diversity of the solutions into account as a major

player to delineate the competence of the guide agents are

among the other major factors holding diversity among the

search agents and enhance the exploration capability of the

proposed GMO algorithm.

The convergence curves depicted for the competitive

algorithms are shown in Fig. 3. As can be inferred, the

GMO algorithm is significantly faster when converging to

the optimal point of all of the functions falling in this

category. On F1, F3, and F4, the GMO is still willing to

converge to the optimal point even after the stopping cri-

terion is fulfilled, while its competitors seem to be stag-

nated at the late iterations. Furthermore, the GWO shows

the fastest convergence behavior on the F6 and is the only

algorithm reaching the optimal objective.

3.2.3 Comparative results on the multi-modal functions

The results received upon applying the algorithms to these

problems indicate that the GMO is superior to the other

competing methods on 7 out of 12 (58%) of the quality

criteria, behaving similar to the GBO and slightly better

than the AO and HHO each of which outperforms the other

algorithms on 7, 6 and 6 out of 12 (58, 50, and 50%) of the

criteria. It is clear that making the diversity be integrated

into the main fitness of the solutions to enable the algo-

rithm to assign the appropriate weights to each agent dur-

ing the calculation of the unique guide agents could be very

effective to help premature convergence have a little

chance to occur when solving the multi-modal functions

comprising a large number of local optima in their search

space. In addition, imposing the mutation on the guide

agents could further contribute the search agents to avoid

local optima. The results of solving these functions are

included in Table 2. The convergence curves are plotted in

Fig. 4. This figure indicates the significantly faster con-

vergence of the GMO to the optimal solution on both F10

and F13 functions, on which the GMO reaches the best

solution at the end of the search process. On F9 and F11,

the GMO reaches the zero value as the analytical optimal

objective value of these problems, just like its competitors

except for FDA and AOA on F11 and FDA on F9. The

convergence rate of the GMO seems to be slightly less than

the other algorithms on all the unimodal and multi-modal

test problems at the early iteration; however, this rate is

gradually boosted as the optimization process approaches

its final stages. This behavior of the GMO is related to its

high ability to diversify the search agents at the early

iterations, which in turn can provide the bed to more

accurately converge to the optimal point at the end of the

optimization process.

Table 1 Parameter settings of the GMO and the first set of its com-

petitive algorithms

Algorithm Parameter settings

HHO No parameter to tune

AOA a ¼ 5; l ¼ 0:5

AO r1 2 1; 20½ �;U ¼ 0:00565;
D1 ¼ D;x ¼ 0:005; a ¼ d ¼ 0:1;
G2 ¼ 2; 0½ �; D = number of dimensions

GBO bmin ¼ 0:2;bmax ¼ 1:2; pr ¼ 0:5

FDA b ¼ 1

EO a1 ¼ 2; a2 ¼ 1;GP ¼ 0:5

GMO No parameter to tune

GMO: geometric mean optimizer for solving engineering… 10579
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3.2.4 Comparative results on the fixed-dimension multi-
modal functions

The results of applying the comparative algorithms to this

category of the classical benchmark functions suggest that

the proposed GMO is superior to its rivals only on 3 out of

10 (30%) of the benchmark functions. While the FDA,

GBO, and EO show better performance on these problems,

outperforming their competitors on 5, 4, and 4 out of 10

(50, 40, and 40%) of the test functions. The HHO and AO

behave similar to the GMO, and AOA shows the worst

performance among the other algorithms. As can be

inferred, the proposed GMO algorithm is not so suit-

able for solving simple and/or low-dimensional optimiza-

tion problems. Accordingly, it is recommended to employ

this algorithm to solve complex, high-dimensional, and

practical problems to receive the most desirable results that

the other optimizers are unable to offer.

3.2.5 Comparative results on the CEC2017 benchmark
functions

This set of the functions is a very challenging and hard-to-

handle one for any optimization algorithm. The functions

included in this set seem more realistic as compared to

those included in the 23 classical benchmark functions, as

the CEC2017 test suite comprises a variety of the com-

position, hybrid, unimodal, and multi-modal functions.

Among these functions, the composite ones are the com-

bination of various shifted, rotated, and biased multi-modal

functions and provide a challenging environment for

investigating the eligibility of the proposed algorithm in

solving optimization problems. Here, all the functions

included in the CEC2017 test suite are set to be 50-di-

mensional to further challenge the capabilities of the pro-

posal to handle such large-scale and complex optimization

problems. As the results suggest, the proposed algorithm

performs far better than the other competitors on this test

bed, such that the GMO can achieve the best performance

criteria on 23 out of 58 (40%) of all cases, along with

reaching the best averaged final results on 12 out of 29

(41%) of all cases. In detail, the GMO outperforms half of

the composite functions, 2 out of 10 hybrid functions, and

half of the unimodal and multi-modal functions. While

only FDA has better performance than that of the GMO on

the hybrid problems, outperforming the other competitors

on 4 out of 10 hybrid functions. The HHO, AOA, and AO

show the worst performance among the others, being able

to outperform none of their rivals on the CEC2017 test

suite.

The major characteristic making the proposed GMO the

leading algorithm to solve such a challenging test suite is

hidden in its highly enhanced exploration capability.Ta
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Table 3 Minimization results of the first set of the algorithms implemented on the CEC2017 test suite

Criteria HHO AOA AO GBO FDA EO GMO

F1 Ave 1.2471E ? 08 1.1127E ? 11 1.6838E ? 09 7.2920E ? 03 3.8818E ? 04 5.9034E ? 03 4.2020E 1 03

Std 2.9145E ? 07 8.9943E ? 09 6.2457E ? 08 8.4348E ? 03 5.6460E ? 04 4.0853E 1 03 4.1389E ? 03

F3 Ave 9.8478E ? 04 1.7460E ? 05 2.0248E ? 05 3.9352E ? 04 2.7778E 1 04 8.1382E ? 04 1.3609E ? 05

Std 2.2600E ? 04 1.7459E ? 04 4.4288E ? 04 9.7975E ? 03 9.1622E 1 03 1.2685E ? 04 1.7457E ? 04

F4 Ave 7.6510E ? 02 3.3253E ? 04 1.0630E ? 03 5.5786E ? 02 5.3390E ? 02 5.3319E 1 02 5.8965E ? 02

Std 8.6911E ? 01 5.8561E ? 03 1.9549E ? 02 5.3041E ? 01 4.8907E ? 01 4.4751E ? 01 4.3998E 1 01

F5 Ave 9.0007E ? 02 1.1490E ? 03 8.6665E ? 02 8.1004E ? 02 8.3679E ? 02 6.7857E ? 02 6.2615E 1 02

Std 3.2695E ? 01 4.4583E ? 01 3.3186E ? 01 4.9971E ? 01 5.2911E ? 01 3.2609E ? 01 2.9495E 1 01

F6 Ave 6.7481E ? 02 6.9431E ? 02 6.6537E ? 02 6.3725E ? 02 6.5672E ? 02 6.0158E 1 02 6.1310E ? 02

Std 4.5326E ? 00 5.6010E ? 00 5.3658E ? 00 9.7671E ? 00 8.1625E ? 00 1.1725E 1 00 6.8630E ? 00

F7 Ave 1.8318E ? 03 1.9330E ? 03 1.5161E ? 03 1.2644E ? 03 1.3949E ? 03 9.7215E ? 02 8.8476E 1 02

Std 9.1764E ? 01 7.2198E ? 01 1.2247E ? 02 9.4996E ? 01 1.0256E ? 02 7.8489E ? 01 3.7289E 1 01

F8 Ave 1.1852E ? 03 1.4682E ? 03 1.1804E ? 03 1.1110E ? 03 1.1360E ? 03 9.8236E ? 02 9.5240E 1 02

Std 3.5456E ? 01 4.7037E ? 01 3.4016E 1 01 5.6324E ? 01 5.4639E ? 01 4.1611E ? 01 8.4595E ? 01

F9 Ave 2.6187E ? 04 2.9297E ? 04 2.1934E ? 04 7.4002E ? 03 1.0338E ? 04 2.4907E ? 03 1.5896E 1 03

Std 2.7992E ? 03 3.5386E ? 03 3.8379E ? 03 2.4743E ? 03 2.2436E ? 03 2.1668E ? 03 1.4550E 1 03

F10 Ave 9.2152E ? 03 1.3223E ? 04 9.1459E ? 03 7.8672E 1 03 8.7429E ? 03 8.2564E ? 03 8.7748E ? 03

Std 9.3959E ? 02 8.2921E 1 02 9.7917E ? 02 9.4913E ? 02 1.0974E ? 03 1.1778E ? 03 2.5236E ? 03

F11 Ave 1.5752E ? 03 2.2166E ? 04 2.2437E ? 03 1.3879E ? 03 1.3733E ? 03 1.3187E 1 03 1.3630E ? 03

Std 7.4192E ? 01 3.4432E ? 03 2.7895E ? 02 8.3613E ? 01 8.8692E ? 01 6.5704E ? 01 4.3463E 1 01

F12 Ave 1.3152E ? 08 6.7197E ? 10 6.1213E ? 08 2.6664E ? 06 2.3629E 1 06 3.4670E ? 06 3.3511E ? 07

Std 7.8725E ? 07 1.0985E ? 10 4.0105E ? 08 2.2857E ? 06 1.5430E 1 06 1.9766E ? 06 2.1415E ? 07

F13 Ave 2.9929E ? 06 3.4176E ? 10 2.3863E ? 07 1.2570E ? 04 7.0098E 1 03 8.5108E ? 03 5.8217E ? 04

Std 8.5038E ? 05 1.0233E ? 10 3.8111E ? 07 9.9819E ? 03 6.4160E ? 03 5.4644E 1 03 3.0336E ? 04

F14 Ave 1.6473E ? 06 3.7757E ? 07 4.8743E ? 06 3.9591E ? 04 3.0465E 1 04 1.3926E ? 05 1.1122E ? 05

Std 1.0895E ? 06 3.2667E ? 07 4.3827E ? 06 3.9226E ? 04 3.1819E 1 04 7.8283E ? 04 7.8991E ? 04

F15 Ave 6.4801E ? 05 3.4101E ? 09 6.1620E ? 05 1.2206E ? 04 1.0467E 1 04 1.2769E ? 04 2.9686E ? 04

Std 2.7817E ? 05 2.1087E ? 09 3.6634E ? 05 7.4912E ? 03 6.8212E 1 03 7.2382E ? 03 2.3133E ? 04

F16 Ave 4.5310E ? 03 7.6573E ? 03 4.3612E ? 03 3.4870E ? 03 3.4046E ? 03 2.9975E 1 03 3.0996E ? 03

Std 6.4335E ? 02 1.4310E ? 03 5.3030E ? 02 4.9718E ? 02 3.4684E 1 02 4.5459E ? 02 4.4990E ? 02

F17 Ave 3.7987E ? 03 9.0067E ? 03 3.6432E ? 03 3.0819E ? 03 3.4706E ? 03 2.8709E ? 03 2.7786E 1 03

Std 4.5146E ? 02 2.0948E ? 03 3.8545E ? 02 3.4783E ? 02 3.1650E ? 02 3.3586E ? 02 2.6692E 1 02

F18 Ave 4.3723E ? 06 7.9914E ? 07 9.1232E ? 06 2.1870E 1 05 2.9449E ? 05 1.9514E ? 06 1.2999E ? 06

Std 3.4563E ? 06 4.7896E ? 07 6.4256E ? 06 1.3210E 1 05 2.0203E ? 05 1.4504E ? 06 9.5764E ? 05

F19 Ave 1.1264E ? 06 3.1135E ? 09 2.2803E ? 06 1.8302E 1 04 2.0434E ? 04 1.9484E ? 04 9.0972E ? 05

Std 8.5603E ? 05 1.6281E ? 09 2.1570E ? 06 1.1745E ? 04 1.1714E ? 04 1.1313E 1 04 9.4769E ? 05

F20 Ave 3.5328E ? 03 3.6188E ? 03 3.2709E ? 03 3.2025E ? 03 3.4861E ? 03 2.9766E ? 03 2.9560E 1 03

Std 2.8422E ? 02 3.1895E ? 02 2.6175E 1 02 4.0586E ? 02 3.5025E ? 02 2.9144E ? 02 2.8389E ? 02

Criteria HHO AOA AO GBO FDA EO GMO

F21 Ave 2.8744E ? 03 3.0610E ? 03 2.7043E ? 03 2.5662E ? 03 2.6266E ? 03 2.4414E ? 03 2.4294E 1 03

Std 8.0664E ? 01 7.1074E ? 01 6.3075E ? 01 5.1954E ? 01 6.4578E ? 01 3.2306E 1 01 4.3009E ? 01

F22 Ave 1.1291E ? 04 1.5943E ? 04 1.0965E ? 04 9.4638E 1 03 1.0150E ? 04 9.5673E ? 03 1.0416E ? 04

Std 1.0318E ? 03 6.4563E 1 02 1.6841E ? 03 1.6273E ? 03 1.0895E ? 03 1.8416E ? 03 3.2104E ? 03

F23 Ave 3.8310E ? 03 4.4274E ? 03 3.4393E ? 03 3.0558E ? 03 3.1479E ? 03 2.8742E 1 03 2.8888E ? 03

Std 2.0071E ? 02 2.4540E ? 02 9.2377E ? 01 7.8350E ? 01 1.1024E ? 02 4.6342E 1 01 6.8604E ? 01

F24 Ave 4.2735E ? 03 4.9461E ? 03 3.5218E ? 03 3.1724E ? 03 3.2978E ? 03 3.0284E ? 03 3.0248E 1 03

Std 2.5064E ? 02 2.3884E ? 02 1.2135E ? 02 6.0068E ? 01 8.3941E ? 01 3.8189E ? 01 3.0351E 1 01
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Referring to the structure of this algorithm, the abilities to

evaluate the fitness and diversity of the search agents are

integrated into a single measure which in turn, can help

both these major features of the agents be consistently and

interactively evaluated. This property the GMO benefits

from is a unique one, not allowing the diversity among the

solutions to be lost in favor of achieving the high-fitness

regions at the late iterations, and also not letting the search

agents remain far away from the high-fitness region and get

trapped in local optima at the early iterations. Among the

other strengths of the GMO leading to this performance on

CEC2017 test functions, the mutation mechanism imposed

on the guide agents may be of high importance, since the

guide agents are always uncertain to rely as the best

existing agents in terms of both fitness and diversity. The

elitism mechanism incorporated into the GMO is another

factor helping the convergence of the algorithm get

accelerated. The latter point is especially important when

dealing with the unimodal functions or the small- and

middle-scale optimization problems. As the final point,

having multiple guide agents that are averaged in the

search space can considerably boost the exploratory ability

of the proposal and help the better interactions and infor-

mation exchanges among the search agents during the

optimization process.

3.3 Comparison with other popular algorithms

3.3.1 Preparation of the algorithms

To further investigate the merits of the GMO to compete a

series of classical and popular optimizers as well as a

couple of recently proposed and efficient optimization

algorithms, the GMO was compared with six other algo-

rithms as the second set of the examinees including: (1)

genetic algorithm (GA); (2) particle swarm optimization

(PSO); (3) grey wolf optimizer (GWO), (4) gravitational

search algorithm (GSA); (5) termite life cycle optimizer

(TLCO) (Minh et al. 2023); and (6) K-means optimizer

(KO) (Minh et al. 2022). The parameter settings of these

algorithms are delineated in Table 4. Just like the first

category of the examined algorithms, the population size

and the maximum number of iterations of these algorithms

were set to 50 and 1000, when implemented on the clas-

sical 23 test problems, except for the fixed-dimension

multi-modal problems (F14-F23), the maximum number of

iterations of which was set to 500. In addition, number of

search agents and maximum number of iterations were

assumed to be 50 and 1000 for this set of the algorithms

when applied to the CEC2017 functions. All optimizers

were run for 30 independent times. The final experimental

results are shown in Tables 5, 6 and 7. The results corre-

sponding to the best-performing algorithms are shown in

bold in these tables. The abbreviations ‘‘Ave’’ and ‘‘Std’’ in

Table 3 (continued)

Criteria HHO AOA AO GBO FDA EO GMO

F25 Ave 3.2218E ? 03 1.4965E ? 04 3.4327E ? 03 3.0855E ? 03 3.0746E ? 03 3.0896E ? 03 3.0490E 1 03

Std 4.7421E ? 01 1.6769E ? 03 8.8058E ? 01 2.3553E ? 01 2.9128E ? 01 2.5254E ? 01 2.2310E 1 01

F26 Ave 1.0559E ? 04 1.6721E ? 04 8.6249E ? 03 7.0615E ? 03 8.4098E ? 03 5.4083E ? 03 5.2625E 1 03

Std 1.9144E ? 03 1.4623E ? 03 2.4721E ? 03 2.4977E ? 03 2.4109E ? 03 5.4784E ? 02 4.5503E 1 02

F27 Ave 4.3910E ? 03 6.6280E ? 03 4.0141E ? 03 3.5950E ? 03 3.5422E ? 03 3.3839E 1 03 3.4468E ? 03

Std 4.2369E ? 02 6.2810E ? 02 1.9720E ? 02 1.3302E ? 02 1.0081E ? 02 6.8784E ? 01 5.7254E 1 01

F28 Ave 3.6322E ? 03 1.1991E ? 04 4.2899E ? 03 3.3326E ? 03 3.3361E ? 03 3.3539E ? 03 3.3184E 1 03

Std 1.0426E ? 02 1.5119E ? 03 2.7492E ? 02 2.7941E ? 01 3.7231E ? 01 3.3683E ? 01 2.3001E 1 01

F29 Ave 5.9634E ? 03 3.3009E ? 04 6.1689E ? 03 4.6781E ? 03 4.7818E ? 03 4.0845E 1 03 4.5354E ? 03

Std 5.4130E ? 02 1.6772E ? 04 6.9454E ? 02 3.7906E ? 02 4.8072E ? 02 2.8174E 1 02 3.5989E ? 02

F30 Ave 4.8890E ? 07 6.1577E ? 09 1.2248E ? 08 1.0718E ? 06 1.0221E 1 06 1.1758E ? 06 6.4005E ? 07

Std 1.7314E ? 07 2.5496E ? 09 4.9406E ? 07 2.1165E 1 05 2.3146E ? 05 3.2019E ? 05 1.5360E ? 07

Table 4 Parameter settings of the GMO and the second set of its

competitive algorithms

Algorithm Parameter settings

GA prcrossover ¼ 0:9; prmutation ¼ 1
D ;

D ¼ number of dimensions

PSO c1 ¼ c2 ¼ 2; k ¼ 0:9; 0:4½ �; vmax ¼ 0:1ðUB� LBÞ
GWO a ¼ 2; 0½ �
GSA G ¼ 100;b ¼ 50

TLCO No parameter to tune

KO Threshold ¼ 0:5

GMO No parameter to tune
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(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 3 Convergence curves

plotted for a F1; b F2; c F3;

d F4; e F5; f F6; g F7
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these tables denote the average and standard deviation of

the final results achieved during 30 runs.

3.3.2 Comparative results on the classical benchmark
functions

The results obtained from implementing the above-men-

tioned algorithms on the unimodal problems indicate that

GMO significantly outperforms the GA on 18 out of 23

(78%) of all the performance criteria. The GMO also

dominates PSO on 18 out of 23 (78%) of the criteria over

the entire 23 classical functions. When the GMO is com-

pared with two more recently proposed and well-known

algorithms such as GWO and GSA, the outperformance

rates of the GMO are still extended. The proposal performs

much better than the GWO and GSA on 17 out of 23 (74%)

(a) (b)

(c) (d)

(e) (f)

Fig. 4 Convergence curves plotted for a F8; b F9; c F10; d F11; e F12; f F13
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and 18 out of 23 (78%) of all the performance criteria,

respectively. The noticeable point is that the GMO abso-

lutely dominates the GWO and GSA on all the unimodal

and multi-modal functions and slightly performs worse that

these algorithms on the fixed-dimension functions. This

performance is a sign of the robustness of the GMO in

solving any type of the global optimization problems,

especially when they are high-dimensional in domain.

Also, the results suggest the strong exploration and

exploitation abilities of the GMO when facing the classical

problems, as the high-dimensional problems over which

the GMO is fully dominant, are quite desirable examples to

test these two abilities any user expects any optimizer to be

equipped with. As per the experimental results, the GMO is

also superior to two newly proposed algorithms, namely

TLCO and KO on 9 out of 13 (69%) of all the unimodal

and multi-modal functions included in the examined clas-

sical benchmark functions, while each of these two com-

petitors slightly outperforms the GMO on 8 out of 13

(62%) of the unimodal and multi-modal functions. The KO

is rated as the best-performing algorithm on 10 fixed-di-

mension functions with a dominance rate of 70%, a rate

very close to that the TLCO offers on this test bed. These

results indicate that the GMO is specifically designed to

handle large-scale and so complicated problems. The blunt

reason for this inference is its brilliant performance when

facing the first 13 high-dimensional problems and its slight

weakness in solving the 13 fixed-dimension problems in

the classical test functions. This point also clarifies that the

GMO is of higher convergence accuracy than the conver-

gence speed, contributing such a proposed optimizer to

better tackle the problems with large dimensions, compli-

cated domains, and constraints. It is noteworthy that the

results of solving engineering design problems mentioned

at the end of this paper clearly demonstrate the abilities

asserted that the GMO benefits from when solving com-

plicated problems.

3.3.3 Comparative results on the CEC2017 benchmark
functions

To further examine the real abilities of the proposed

algorithm in solving optimization problems, the perfor-

mance of the GMO and the second set of the optimizers is

all tested on the CEC2017 test suite. Here, the dimensions

of all the CEC2017 benchmark functions are set to be 50 to

challenge the abilities of the proposal to handle such large-

scale and complex optimization problems. As the results

suggest, the proposed algorithm performs far better than

the other competitors on this test bed, such that the GMO

can reach the best performance criteria on 29 out of 58

(50%) of all the problems, while achieving the best average

optimal objective function values on 19 out of 29 (66%) ofTa
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Table 6 Minimization results of the second set of the algorithms implemented on the CEC2017 test suite

Criteria GA PSO GWO GSA TLCO KO GMO

F1 Ave 8.0867E ? 07 4.1183E ? 07 4.5500E ? 09 1.9300E ? 10 3.6093E ? 09 5.1536E ? 06 4.2020E 1 03

Std 2.6283E ? 07 1.8656E ? 08 1.0000E ? 09 2.8500E ? 09 8.3084E ? 08 1.5872E ? 06 4.1389E 1 03

F3 Ave 1.8044E ? 05 1.7274E ? 05 1.2400E ? 05 1.8900E ? 05 9.9179E 1 04 1.1948E ? 05 1.3609E ? 05

Std 2.6345E ? 04 2.9773E ? 04 2.1000E ? 04 5.3300E 1 03 1.4610E ? 04 2.0013E ? 04 1.7457E ? 04

F4 Ave 6.6553E ? 02 7.6603E ? 02 1.3500E ? 03 3.8400E ? 03 1.1118E ? 03 6.2783E ? 02 5.8965E 1 02

Std 4.9498E ? 01 9.5012E ? 01 1.7700E ? 02 6.6000E ? 02 1.4690E ? 02 4.9009E ? 01 4.3998E 1 01

F5 Ave 7.4790E ? 02 6.7990E ? 02 7.3000E ? 02 8.4400E ? 02 8.4861E ? 02 8.0643E ? 02 6.2615E 1 02

Std 2.7413E ? 01 6.3260E ? 01 6.1200E ? 01 2.4800E 1 01 5.5404E ? 01 3.2886E ? 01 2.9495E ? 01

F6 Ave 6.2983E ? 02 6.0654E 1 02 6.1900E ? 02 6.6300E ? 02 6.2837E ? 02 6.5902E ? 02 6.1310E ? 02

Std 5.0762E ? 00 2.7202E 1 00 3.4700E ? 00 3.2300E ? 00 4.8356E ? 00 7.2183E ? 00 6.8630E ? 00

F7 Ave 1.2561E ? 03 1.0670E ? 03 1.0900E ? 03 1.3900E ? 03 1.2716E ? 03 1.1664E ? 03 8.8476E 1 02

Std 6.3194E ? 01 8.4239E ? 01 8.4200E ? 01 6.7600E ? 01 7.6647E ? 01 1.2719E ? 02 3.7289E 1 01

F8 Ave 1.0439E ? 03 1.0106E ? 03 1.0300E ? 03 1.1600E ? 03 1.1239E ? 03 1.1134E ? 03 9.5240E 1 02

Std 2.6439E ? 01 9.1183E ? 01 3.8700E ? 01 2.3800E 1 01 4.2109E ? 01 3.0389E ? 01 8.4595E ? 01

F9 Ave 9.7046E ? 03 2.7450E ? 03 7.2200E ? 03 1.1900E ? 04 1.4020E ? 04 2.4002E ? 04 1.5896E 1 03

Std 1.6566E ? 03 1.0967E ? 03 2.5900E ? 03 5.9100E 1 02 4.4702E ? 03 6.0152E ? 03 1.4550E ? 03

F10 Ave 7.9006E ? 03 1.1106E ? 04 6.5400E 1 03 8.7900E ? 03 8.2371E ? 03 8.8409E ? 03 8.7748E ? 03

Std 8.2855E ? 02 2.1536E ? 03 5.2900E 1 02 1.1200E ? 03 6.3289E ? 02 2.6356E ? 03 2.5236E ? 03

F11 Ave 4.7913E ? 03 1.5600E ? 03 6.2300E ? 03 1.8000E ? 04 2.4557E ? 03 1.4591E ? 03 1.3630E 1 03

Std 1.4843E ? 03 1.2287E ? 02 4.8100E ? 03 2.5900E ? 03 7.8861E ? 02 8.7615E ? 01 4.3463E 1 01

F12 Ave 2.7093E ? 07 1.1365E 1 07 5.4100E ? 08 4.8800E ? 09 1.9559E ? 08 3.8175E ? 07 3.3511E ? 07

Std 1.0509E ? 07 8.4228E 1 06 8.2400E ? 08 3.9900E ? 09 9.6834E ? 07 1.4414E ? 07 2.1415E ? 07

F13 Ave 6.9021E ? 06 1.1554E 1 04 3.7800E ? 08 2.1300E ? 06 1.8269E ? 06 1.0759E ? 05 5.8217E ? 04

Std 3.1719E ? 06 9.4238E 1 03 4.2500E ? 08 3.6100E ? 06 1.2563E ? 06 3.3385E ? 04 3.0336E ? 04

F14 Ave 6.4092E ? 06 2.4573E ? 05 5.7400E ? 05 5.4100E ? 06 1.5204E ? 06 7.8068E ? 05 1.1122E 1 05

Std 4.5298E ? 06 1.6811E ? 05 3.4300E ? 05 5.1600E ? 06 1.4510E ? 06 6.6120E ? 05 7.8991E 1 04

F15 Ave 3.1225E ? 06 3.9651E ? 04 1.0600E ? 05 3.1100E ? 08 9.7781E ? 04 3.4908E ? 04 2.9686E 1 04

Std 1.8305E ? 06 1.4600E ? 05 5.2900E ? 04 2.7600E ? 08 3.6877E ? 05 1.5644E 1 04 2.3133E ? 04

F16 Ave 3.2954E ? 03 3.4038E ? 03 3.1100E ? 03 4.2700E ? 03 3.5440E ? 03 3.5798E ? 03 3.0996E 1 03

Std 4.0332E ? 02 6.9952E ? 02 3.6400E 1 02 5.7000E ? 02 3.7673E ? 02 4.9055E ? 02 4.4990E ? 02

F17 Ave 3.3643E ? 03 2.9902E ? 03 2.8700E ? 03 3.7700E ? 03 3.1667E ? 03 3.4327E ? 03 2.7786E 1 03

Std 3.7884E ? 02 3.3747E ? 02 3.7400E ? 02 3.8400E ? 02 2.6359E 1 02 3.6965E ? 02 2.6692E ? 02

F18 Ave 5.2873E ? 06 5.2811E ? 06 6.8800E ? 06 5.0500E ? 06 5.1842E ? 06 3.7095E ? 06 1.2999E 1 06

Std 2.5971E ? 06 5.1315E ? 06 1.3000E ? 06 1.1000E ? 06 4.8820E ? 06 2.0253E ? 06 9.5764E 1 05

F19 Ave 2.7074E ? 05 9.8542E 1 03 1.3300E ? 07 3.2600E ? 05 2.3925E ? 04 5.4487E ? 05 9.0972E ? 05

Std 2.4735E ? 05 1.2081E ? 04 4.5500E ? 07 1.8700E ? 05 1.0485E 1 04 4.3619E ? 05 9.4769E ? 05

F20 Ave 3.1329E ? 03 3.0089E ? 03 2.8900E 1 03 3.6800E ? 03 2.9847E ? 03 3.0221E ? 03 2.9560E ? 03

Std 3.7542E ? 02 4.0958E ? 02 2.8600E ? 02 2.7800E 1 02 3.6910E ? 02 3.0330E ? 02 2.8389E ? 02

Criteria GA PSO GWO GSA TLCO KO GMO

F21 Ave 2.5731E ? 03 2.4751E ? 03 2.5200E ? 03 2.8600E ? 03 2.6032E ? 03 2.5801E ? 03 2.4294E 1 03

Std 3.6186E ? 01 5.8576E ? 01 6.5800E ? 01 4.1900E ? 01 2.9039E 1 01 3.9696E ? 01 4.3009E ? 01

F22 Ave 1.0224E ? 04 1.4072E ? 04 9.2400E 1 03 1.1600E ? 04 9.8609E ? 03 9.7846E ? 03 1.0416E ? 04

Std 9.5225E ? 02 2.0110E ? 03 2.6000E ? 03 6.1200E 1 02 2.0060E ? 03 2.4253E ? 03 3.2104E ? 03

F23 Ave 3.5242E ? 03 2.9730E ? 03 2.9700E ? 03 4.8600E ? 03 3.1162E ? 03 3.1334E ? 03 2.8888E 1 03

Std 1.0030E ? 02 9.9559E ? 01 7.2700E ? 01 2.0300E ? 02 4.2177E 1 01 1.0472E ? 02 6.8604E ? 01

F24 Ave 3.9360E ? 03 3.2535E ? 03 3.1800E ? 03 4.4900E ? 03 3.3881E ? 03 3.2464E ? 03 3.0248E 1 03

Std 9.9701E ? 01 7.6166E ? 01 1.1900E ? 02 1.1400E ? 02 7.9707E ? 01 1.4563E ? 02 3.0351E 1 01
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all the problems. In detail, the GMO is superior to its

competitors on 7 out of 10 (70%) of the composite func-

tions, 6 out of 10 (60%) of the hybrid functions, and 6 out

of 9 (67%) of the unimodal and multi-modal functions,

while the PSO is the closest rival of the GMO, achieving

the best performance criteria on 10 out of 58 (17%), and

the best average results on 6 out of 29 (21%) of the entire

test problems of the CEC2017 suite. The GWO performs

slightly better than the GSA, reaching the best performance

criteria on 7 versus 6 out of 29 criteria. However, the GWO

offers the best average results on 3 problems as well, while

the GSA yields no best average results against the other

examinees. After the GA that is rated as the worst opti-

mizer, absolutely losing the competition to the other

algorithms, the KO and TLCO stand on the second and

third places as the optimizers not performing desirably on

this test suite. As these two optimizers performed desirably

on the 23 classical benchmark functions, the undesirable

performance of them on the CEC2017 suite clearly indicate

that the convergence speed of these optimizers is much

higher than their convergence accuracy, at least compared

to the other four optimizers examined on this test bed. In

other words, the strength of the TLCO and KO is in their

exploitation ability, while their exploration ability can be

enhanced.

3.4 Statistical analysis

In statistical analysis, the Wilcoxon rank-sum test is used

as a nonparametric test to delineate whether a couple of

sets of solutions are significantly different [43]. When

assuming the results of a series of algorithms as the solu-

tions, the best-performing algorithm is usually compared to

its competitors to benchmark the significance of its domi-

nances over them. The output of this test is a number

named p-value. If the test results in a p-value\ 0.05 for an

algorithm, it is assumed to be statistically significantly

different compared to another algorithm taking part in this

test.

The test results are presented in Tables 8, 9, 10 and 11.

In these tables, the expression N/A mentioned in each row

represents that the algorithm ahead of the corresponding

Table 6 (continued)

Criteria GA PSO GWO GSA TLCO KO GMO

F25 Ave 3.2161E ? 03 3.2043E ? 03 3.5800E ? 03 4.7400E ? 03 3.5552E ? 03 3.1568E ? 03 3.0490E 1 03

Std 2.7174E ? 01 4.5934E ? 01 2.4700E ? 02 3.8800E ? 02 1.2299E ? 02 3.1484E ? 01 2.2310E 1 01

F26 Ave 1.0906E ? 04 5.7138E ? 03 6.3700E ? 03 1.2300E ? 04 6.5533E ? 03 8.1369E ? 03 5.2625E 1 03

Std 7.9498E ? 02 6.4885E ? 02 4.5400E 1 02 8.1000E ? 02 2.2941E ? 03 3.3522E ? 03 4.5503E ? 02

F27 Ave 4.7515E ? 03 3.5528E ? 03 3.6300E ? 03 8.2900E ? 03 3.8153E ? 03 3.8439E ? 03 3.4468E 1 03

Std 2.1918E ? 02 8.1081E ? 01 8.7700E ? 01 6.6900E ? 02 1.2050E ? 02 1.2874E ? 02 5.7254E 1 01

F28 Ave 3.5963E ? 03 3.4180E ? 03 4.1200E ? 03 5.5200E ? 03 4.0776E ? 03 3.4275E ? 03 3.3184E 1 03

Std 6.2885E ? 01 4.9966E ? 01 2.3600E ? 02 1.2700E ? 02 2.0709E ? 02 4.0071E ? 01 2.3001E 1 01

F29 Ave 5.2031E ? 03 4.2722E 1 03 4.5800E ? 03 1.0500E ? 04 4.4246E ? 03 5.0434E ? 03 4.5354E ? 03

Std 3.1439E ? 02 3.3670E ? 02 2.8200E 1 02 5.2300E ? 03 3.4678E ? 02 4.0952E ? 02 3.5989E ? 02

F30 Ave 5.7944E ? 06 4.5049E 1 06 1.0900E ? 08 2.3100E ? 08 1.2469E ? 07 3.5560E ? 07 6.4005E ? 07

Std 2.4707E ? 06 1.5678E 1 06 4.9900E ? 07 6.5300E ? 06 3.2603E ? 06 3.8659E ? 06 1.5360E ? 07

Table 7 p-values calculated for the classical benchmark functions when applying the first set of the optimizers

Algorithms HHO AOA AO GBO FDA EO GMO

HHO N/A

AOA 1.4125E - 04 N/A

AO 9.9683E - 01 2.1185E - 04 N/A

GBO 9.7156E - 01 5.1634E - 04 7.7212E - 01 N/A

FDA 8.2451E - 05 7.7098E - 01 8.4419E - 05 1.0075E - 04 N/A

EO 7.5472E - 01 7.1607E - 04 5.9561E - 01 8.0019E - 01 9.3845E - 05 N/A

GMO 8.8818E - 01 4.4399E - 03 8.4035E - 01 8.5337E - 01 2.0510E - 03 8.9161E - 01 N/A
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row is ‘‘not applicable’’ in the test, meaning that this

algorithm cannot be compared to itself. Also, the p-values

exceeding 0.05 are underlined in these tables. On the

classical benchmark functions, the GMO outperforms the

first set of its competitors on 11 out of 23 (48%) of the

benchmark functions, while GBO outperforms the others

on 8 out of 23 (35%) and the HHO and AO both outper-

form their competitors on 7 out of 23 benchmarks (30%).

The other algorithms show worse performance than the

mentioned algorithms as the leading ones. On the

CEC2017 functions, the GMO dominates its rivals on 12

out of 29 (41%), trailed by the EO and FDA each of which

outperforms the other algorithms on 7, 6, and 4 out of 29

functions, meaning 24, 21, and 14% of all cases. As can be

seen, the GMO shows much better performance on such a

hard-to-solve set of the benchmark functions. However, as

the Wilcoxon test suggests, there is a close competition

among the examined algorithms in this paper on the clas-

sical 23 benchmark test problems, such that the rate of the

significant outperformance is low among the comparative

algorithms. In detail, among the first set of the examinees,

the GMO, GBO, HHO, and AO that were identified to be

the best-performing algorithms among the others to solve

the classical benchmark functions, can only be significantly

superior to two other algorithms among their rivals. While

on the CEC2017 test problems, the GMO and FDA are

significantly superior to all the other algorithms except for

one, while the EO shows significant superiority to all other

algorithms.

On the classical test problems, the GMO outperforms

the second set of its competitors on 9 out of 23 benchmarks

(39%), while the TLCO and KO are superior to the other

competitive algorithms on 14 and 15 out of 23 benchmarks

(61) and (65%), respectively. The other examinees perform

far worse than the GMO, TLCO, and KO, outperforming

their rivals on maximum two test functions included in the

classical functions. On the CEC2017 test suite, the GMO is

superior to the other optimizers on 19 out of 29 (66%) of all

the problems, followed by the PSO as its closest rival

outperforming the other algorithms on 6 out of 29 (21%) of

all the test functions of this suite. As mentioned before, the

other optimizers such as TLCO and KO perform not

desirably on the CEC2017 suite, at least when compared to

their performance on the classical functions and also the

performance of their competitors on the CEC2017 test bed.

As the Wilcoxon test suggests, the TLCO and KO that were

identified to be the best-performing algorithms to solve the

classical problems cannot significantly outperform their

rivals on these functions, such that the TLCO has a sig-

nificant dominance over the all its competitors except for

the GMO, and the KO is significantly superior to the other

algorithms except for the TLCO and GMO. The GMO is

also significantly superior to all its rivals from the second

set of the examined optimizers except for the GSA, TLCO,

and KO. While on the CEC2017 test suite, the GMO is not

only the best-performing algorithm among the other six

ones, but also shows significant superiority to all its com-

petitors, the characteristics that none of the other exami-

nees in the second set benefit from.

The statistical test reveals that the CEC2017 may be a

more appropriate bed for benchmarking the effectiveness

of each of the examined algorithms when evaluated indi-

vidually or as compared to the other examinees, especially

considering the CEC2017 test suite as a more challenging

and more realistic test bed for evaluating the efficiency of

each of the optimizers. Overall, the proposed GMO shows

the best performance whether evaluated in terms of the

dominance over its rivals or examined in terms of the

significance of its dominances when solving both classical

benchmarks and the CEC2017 test bed.

3.5 Qualitative analysis for the convergence
of GMO

In this subsection, we qualitatively analyze the conver-

gence behavior of the proposed GMO algorithm using five

criteria illustrated for several benchmark functions selected

among the 23 classical functions. These functions include a

Table 8 p-values calculated for the CEC2017 benchmark functions when applying the first set of the optimizers

Algorithms HHO AOA AO GBO FDA EO GMO

HHO N/A

AOA 3.0349E - 15 N/A

AO 7.8459E - 01 5.8696E - 15 N/A

GBO 5.4284E - 03 2.4333E - 16 4.1141E - 03 N/A

FDA 1.0965E - 02 5.4227E - 17 1.2798E - 02 1.0000E ? 00 N/A

EO 2.9622E - 07 4.1926E - 19 5.0703E - 08 1.7423E - 02 2.7781E - 02 N/A

GMO 5.8183E - 08 1.9799E - 17 2.3970E - 08 1.9715E - 03 4.1544E - 03 1.9960E - 01 N/A
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variety of unimodal and multi-modal problems adopted in a

2D domain. The detailed analytical results are presented in

Figs. 5 and 6, depicted for unimodal and multi-modal

functions, respectively.

The first column indicates the search history of the

GMO when optimizing each test problem, illustrating the

individual and interactional behavior of the search agents

during the optimization process. As can be seen in Figs. 5

and 6, the search agents are all scattered across the full

domain of all problems, showing the diversity of the

solutions are properly maintained during the search pro-

cess. In addition, the search agents are able to efficiently

explore the search space and find the fittest region of the

search space to focus on this region sufficiently to finally

exploit the optimal or near-optimal solution of each

problem.

The second column illustrates the position of the optimal

solution at its first dimension. As can be seen, the optimal

Table 9 p-values calculated for the classical benchmark functions when applying the second set of the optimizers

Algorithms GA PSO GWO GSA TLCO KO GMO

GA N/A

PSO 3.8076E - 02 N/A

GWO 5.2655E - 03 2.6641E - 01 N/A

GSA 5.7096E - 03 2.2302E - 01 7.2190E - 01 N/A

TLCO 4.0344E - 11 2.1482E - 09 5.2322E - 08 6.2618E - 06 N/A

KO 3.7388E - 10 7.7013E - 08 3.2000E - 06 1.3993E - 04 3.2189E - 01 N/A

GMO 5.2676E - 05 3.0422E - 03 1.2608E - 02 5.6492E - 02 5.8613E - 02 1.8962E - 01 N/A

Table 10 p-values calculated for the CEC2017 benchmark functions when applying the second set of the optimizers

Algorithms GA PSO GWO GSA TLCO KO GMO

GA N/A

PSO 1.5485E - 01 N/A

GWO 5.3249E - 01 8.3459E - 02 N/A

GSA 9.3703E - 06 1.2014E - 05 2.6732E - 04 N/A

TLCO 7.7824E - 01 2.6053E - 01 4.3098E - 01 3.5899E - 06 N/A

KO 8.6407E - 01 1.7635E - 01 5.8597E - 01 1.0244E - 04 8.2301E - 01 N/A

GMO 1.1348E - 07 3.2394E - 04 1.0824E - 06 2.4957E - 11 2.7416E - 06 4.0468E - 07 N/A

Table 11 Results of solving

welded beam design problem
Algorithm x1 x2 x3 x4 fmin

SIMPLEX (Ragsdell and Phillips 1976) 0.279200 5.625600 7.751200 0.279600 2.530700

DAVID (Ragsdell and Phillips 1976) 0.243400 6.255200 8.291500 0.244400 2.384100

APPROX (Ragsdell and Phillips 1976) 0.244400 6.218900 8.291500 0.244400 2.381500

GA (Deb 1991) 0.248900 6.173000 8.178900 0.253300 2.430000

HS (Lee and Geem 2005) 0.244200 6.223100 8.291500 0.240000 2.380700

CSCA (Huang et al. 2007) 0.203137 3.542998 9.033498 0.206179 1.733461

CPSO (He and Wang 2007a) 0.202369 3.544214 9.048210 0.205723 1.728020

RO (Kaveh and Khayatazad 2012) 0.203687 3.528467 9.004233 0.207241 1.735344

WOA (Mirjalili et al. 2016) 0.205396 3.484293 9.037426 0.206276 1.730499

GSA (Abd Elaziz et al. 2017) 0.182129 3.856979 10.000000 0.202376 1.879950

MVO (Mirjalili et al. 2016) 0.205463 3.473193 9.044502 0.205695 1.726450

OBSCA (Abd Elaziz et al. 2017) 0.230824 3.069152 8.988479 0.208795 1.722315

AOA (Abualigah et al. 2021a) 0.194475 2.570920 10.000000 0.201827 1.716400

GMO 0.205420 3.258644 9.036624 0.205730 1.695541
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solution fluctuates at the early iterations of the optimization

process, but soon converges to its optimal position in the

search space. As shown in the second column for all

exemplary test problems, the fluctuation of the optimal

solution’s first position is continued up to 50th iteration and

then, the curve of the best position is flattened. This

behavior of the best (optimal) solution indicates the fast

convergence of the proposed algorithm on all the test

functions.

The third column illustrates the average fitness of the

population depicted iteration-by-iteration. As can be seen,

the average fitness is high at the early iterations, while

slightly fluctuating up to 50th iteration and then converges

to the optimal fitness of each problem. Among the prob-

lems examined in this analysis, F9 has somehow different

behavior, such that the average fitness of each iteration

experiences severe fluctuations at the early iterations, being

continued to the nearby of the final iterations and suddenly

F1

F2

F3

F4

F5

Fig. 5 Qualitative results for the unimodal test problems
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converges to the optimal fitness of the problem. The main

reason explaining this behavior may be hidden in the nature

of this function. The F9 is a highly multi-modal function,

and reaching the optimal solution of this problem is a

difficult task and cannot be soon accomplished. Generally,

the third column again evidences the high convergence rate

of the GMO when solving a variety of the unimodal and

multi-modal optimization problems.

The fourth column illustrates the trajectory of the

position of the first solution at the first dimension of the test

functions. As this column suggests, the fluctuations of the

first solution’s position are high at the early iterations and

are gradually decreased over the course of iterations to

converge to its optimal position as a task fulfilled after 50th

iteration on all problems. It is worth noticing that on the

unimodal functions, the position of the first solution fluc-

tuates just around the optimal solution that is located at the

F9

F11

F12

F13

F18

Fig. 6 Qualitative results for the multi-modal test problems
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center of the domain; however, when dealing with the

multi-modal functions, this position begins the search from

one corner of the domain and gradually finds its right path

to reach its optimal position in the search space. This is

another evidence of difficulty of the multi-modal functions

to be solved as compared to the unimodal ones.

The fifth column illustrates the convergence curve of the

GMO when handling the exemplary test functions. As this

curve displays the best fitness function found iteration-by-

iteration, the convergence behavior of the algorithm can be

easily identified. As can be seen in this column when

depicted for all problems, the high convergence rate of the

proposed algorithm is clearly inferred. Finally, this quali-

tative analysis stresses the abilities of the GMO to both

maintain the diversity of the solutions and helping them

rapidly converge to the optimal point on the optimization

problems.

4 Comparative results on engineering
problems

To validate the proposal to tackle other types of difficulties

an optimization problem may be engaged with, the GMO is

implemented on nine constrained engineering problems.

The penalty functions are added to the cost functions of

these problems for constraint handling. Furthermore, 50

search agents, and 1000 iterations, are set to be used in

GMO. The algorithm is run 30 times, and the best results

achieved are presented versus those reached by its com-

petitors. It is worth noticing that the results corresponding

to the best-performing algorithm are emboldened in the

tables presented for all problems.

4.1 Welded beam design problem

Coello (Coello Coello 2000) first proposed the welded

beam problem which aims to minimize the construction

cost. The main objective function is subject to constraints

on shear stress (s), bending stress (r) in the beam, buckling

load on the bar (P), end deflection of the beam (d), and side

constraints. The problem includes four design variables

consisting of hðx1Þ, lðx2Þ, tðx3Þ, and bðx4Þ, as shown in

Fig. 7. The problem is formulated as follows.

Minimize f x~ð Þ ¼ 1:10471x21x2 þ 0:04811x3x4 14þ x2ð Þ
ð12Þ

Subject to:

g1 x~ð Þ ¼ s xð Þ � smax � 0 ð13Þ
g2 x~ð Þ ¼ r xð Þ � rmax � 0 ð14Þ
g3 x~ð Þ ¼ x1 � x4 � 0 ð15Þ

g4 x~ð Þ ¼ 0:10471x21 þ 0:04811x3x4 14þ x2ð Þ � 5� 0 ð16Þ

g5 x~ð Þ ¼ 0:125� x1 � 0 ð17Þ
g6 x~ð Þ ¼ d xð Þ � dmax � 0 ð18Þ
g7 x~ð Þ ¼ P� Pc xð Þ� 0 ð19Þ
0:1� xi � 2; i ¼ 1; 4 ð20Þ
0:1� xi � 10; i ¼ 2; 3 ð21Þ

where

s xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s0ð Þ2þ2s0s00
x2
2R

þ s00ð Þ2
r

; s0 ¼ P
ffiffiffi

2
p

x1x2
; s00 ¼ MR

J

ð22Þ

M ¼ P Lþ x2
2

� �

;R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x22
4
þ x1 þ x3

2

� �2
r

; J

¼ 2
ffiffiffi

2
p

x1x2
x22
12

þ x1 þ x3
2

� �2
� �	 


ð23Þ

r xð Þ ¼ 6PL

x4x
2
3

; d xð Þ ¼ 4PL3

Ex33x4
;Pc xð Þ

¼
4:013E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x23x
6
4=36

� �

q

L2
1� x3

2L

ffiffiffiffiffiffi

E

4G

r

 !

ð24Þ

Fig. 7 Welded beam scheme (Mahdavi et al. 2007)
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P ¼ 6000lb; L ¼ 14in;E ¼ 30� 106psi;G ¼ 12� 106psi

ð25Þ
smax ¼ 13; 600psi; rmax ¼ 30; 000psi; dmax ¼ 0:25in ð26Þ

Table 11 shows the optimal cost function and design

variables computed by the GMO and the other comparative

algorithms upon solving the problem. As the results sug-

gest, the GMO can reach the minimum cost among the

other algorithms on such a highly constrained and complex

real life problem.

4.2 Tension/compression spring design problem

Arora (Arora 2004) first introduced this problem. This

problem aims to minimize the weight of a tension/com-

pression spring (TCS), shown in Fig. 8, subject to some

constraints. The design variables are wire diameter d x1ð Þ,
mean coil diameter D x2ð Þ, and number of active coils

N x3ð Þ. The problem is formulated as follows.

Minimize f x~ð Þ ¼ x3 þ 2ð Þx2x21 ð27Þ

Subject to:

g1 x~ð Þ ¼ 1� x32x3
71; 785x41

� 0 ð28Þ

g2 x~ð Þ ¼ 4x22 � x1x2

12; 566 x2x
3
1 � x41

� �þ 1

5108x21
� 0 ð29Þ

g3 x~ð Þ ¼ 1� 140:45x1
x22x3

� 0 ð30Þ

g4 x~ð Þ ¼ x1 þ x2
1:5

� 1� 0 ð31Þ

0:05� x1 � 2:00 ð32Þ
0:25� x2 � 1:30 ð33Þ
2:00� x3 � 15:0 ð34Þ

Table 12 indicates the final results the GMO and its

rivals can reach when the problem is solved. As can be

seen, the GMO reaches the minimum weight of the spring,

while not violating any of the constraints. However, the

optimal results of the HS, RO, GSA, and AOA, violate the

constraint g2, and the results of the OBSCA violate the

constraint g1. The constraints violated are underlined in the

table. As can be seen, the optimal objective value achieved

by the OBSCA and AOA are less than that of the proposed

GMO algorithm, however, these values cannot be accepted

as their corresponding optimal variables violate one of the

constraints of the problem. As a result, the GMO outper-

forms all its competitors on this engineering problem as it

Fig. 8 Structure of

tension/compression spring

(Mahdavi et al. 2007)
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could calculate the least weight for the beam while fully

satisfying the constraints of the problem.

4.3 Speed reducer design problem

This problem targets to minimizing the weight of a speed

reducer, subject to numerous constraints (Mezura-Montes

and Coello 2005). A graphical image of the speed reducer

is displayed in Fig. 9. The variables x1 to x7 represent b, m,

z, l1, l2, d1 and d2, respectively, as depicted in Fig. 9.

Having 11 constraints in its structure, this problem is

provided with a high difficulty which can make it much

harder to solve for any algorithm. This problem is for-

mulated as follows.

Minimize f x~ð Þ ¼ 0:7854x1x
2
2

3:3333x23 þ 14:9334x3 � 43:0934� 1:508x1
�

x26 þ x27
� �

þ 7:4777 x36 þ x37
� �

þ 0:7854 x4x
2
6 þ x5x

2
7

� ��

ð35Þ

Subject to:

g1 x~ð Þ ¼ 27

x1x
2
2x3

� 1� 0 ð36Þ

g2 x~ð Þ ¼ 397:5

71; 785x41
� 1� 0 ð37Þ

g3 x~ð Þ ¼ 1:93x34
x2x

4
6x3

� 1� 0 ð38Þ

g4 x~ð Þ ¼ 1:93x35
x2x

4
7x3

� 1� 0 ð39Þ

g5 x~ð Þ ¼
745 x4

x2x3

� �� �2

þ16:9� 106
� �1=2

110x36
� 1� 0 ð40Þ

g6 x~ð Þ ¼
745 x5

x2x3

� �� �2

þ157:5� 106
� �1=2

85x37
� 1� 0 ð41Þ

g7 x~ð Þ ¼ x2x3
40

� 1� 0 ð42Þ

g8 x~ð Þ ¼ 5x2
x1

� 1� 0 ð43Þ

g9 x~ð Þ ¼ x1
12x2

� 1� 0 ð44Þ

g10 x~ð Þ ¼ 1:5x6 þ 1:9

x4
� 1� 0 ð45Þ

g11 x~ð Þ ¼ 1:1x7 þ 1:9

x5
� 1� 0 ð46Þ

2:6� x1 � 3:6 ð47Þ
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0:7� x2 � 0:8 ð48Þ
17� x3 � 28 ð49Þ
7:3� x4 � 8:3 ð50Þ
7:3� x5 � 8:3 ð51Þ
2:9� x6 � 3:9 ð52Þ
5:0� x7 � 5:6 ð53Þ

Table 13 shows the final results calculated by the

algorithms upon solving this problem. As can be seen, the

proposed GMO algorithm reaches the minimum weight of

the speed reducer achieved by all the competitors. The

success of the proposed algorithm in solving such complex

problem confirms the strength of the GMO and the novel

approach it has utilized to effectively explore and inten-

sively exploit the search space when dealing with an

optimization problem.

Fig. 9 Speed reducer

scheme (Abualigah et al. 2021b)

Table 13 Results of solving speed reducer design problem

Algorithm x1 x2 x3 x4 x5 x6 x7 fmin

MFO (Mirjalili 2015) 3.497455 0.700000 17.000000 7.827750 7.712457 3.351787 5.286352 2998.940830

WSA (Baykasoğlu and Akpinar 2017) 3.500000 0.700000 17.000000 7.300000 7.800000 3.350215 5.286683 2996.348225

LGSI4 (Baykasoğlu and Akpinar 2017) 3.501000 0.700000 17.000000 7.300000 7.800000 3.350214 5.286683 2996.348205

AAO (Czerniak et al. 2017) 3.499000 0.699900 17.000000 7.300000 7.800000 3.350200 5.287200 2996.783000

PSO-DE (Liu et al. 2010) 3.500000 0.700000 17.000000 7.300000 7.800000 3.350210 5.286680 2996.348100

LGSI2 (Baykasoğlu and Akpinar 2017) 3.500000 0.700000 17.000000 7.300000 7.800000 3.350215 5.286683 2996.348166

GWO (Mirjalili et al. 2014) 3.501000 0.700000 17.000000 7.300000 7.811013 3.350704 5.287411 2997.819650

APSO (Ben Guedria 2016) 3.501313 0.700000 18.000000 8.127814 8.042121 3.352446 5.287076 3187.630486

CS (Gandomi et al. 2013) 3.501500 0.700000 17.000000 7.605000 7.818100 3.352000 5.287500 3000.981000

FA (Baykaso and Ozsoydan 2015) 3.507495 0.700100 17.000000 7.719674 8.080854 3.351512 5.287051 3010.137492

AOA (Abualigah et al. 2021a) 3.503840 0.700000 17.000000 7.300000 7.729330 3.356490 5.286700 2997.915700

GMO 3.500000 0.700000 17.000000 7.300000 7.727800 3.350200 5.286700 2994.749500

Fig. 10 Pressure vessel scheme (Abualigah et al. 2021b)
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4.4 Pressure vessel design problem

The goal of this problem is to reach the minimum fabri-

cation cost of a pressure vessel depicted in Fig. 10. The

design variables are Ts, Th, R, and L, represented by x1, x2,

x3, and x4, respectively, in the problem formulation which

is presented as follows.

Minimize f x~ð Þ ¼ 0:6224x1x3x4 þ 1:7781x2x
2
3 þ 3:1661x21x4

þ 19:84x21x3

ð54Þ

Subject to:

g1 x~ð Þ ¼ �x1 þ 0:0193x3 � 0 ð55Þ
g2 x~ð Þ ¼ �x2 þ 0:00954x3 � 0 ð56Þ

g3 x~ð Þ ¼ �px23x4 �
4

3
px33 þ 1; 296; 000� 0 ð57Þ

g4 x~ð Þ ¼ x4 � 240� 0 ð58Þ
0� x1 � 99 ð59Þ
0� x2 � 99 ð60Þ
10� x3 � 200 ð61Þ
10� x4 � 200 ð62Þ

The results of solving this problem by several examined

algorithms are shown in Table 14. As can be seen, the

GMO can find the lowest cost among the other competitive

algorithms. As is clear in the problem formulation, this

problem is a highly constrained one and the superiority of

the proposed GMO to its rivals demonstrates its high

competence to solve such problems.

4.5 Three-bar truss design problem

The goal of this problem is minimizing the weight of a

three-bar truss subject to stress, deflection, and buckling

constraints. This truss has three variable cross section areas

marked by A1, A2, and A3. As depicted in Fig. 11, A1 ¼ A3.

Thus, there are only two areas as the decision variables to

be optimized which are denoted by x1 and x2 in the prob-

lem formulation presented below.

Minimize f x~ð Þ ¼ 2
ffiffiffi

2
p

x1 þ x2

� �

� l ð63Þ

Subject to:

g1 x~ð Þ ¼
ffiffiffi

2
p

x1 þ x2
ffiffiffi

2
p

x21 þ 2x1x2
P� r� 0 ð64Þ

g2 x~ð Þ ¼ x2
ffiffiffi

2
p

x21 þ 2x1x2
P� r� 0 ð65Þ

Table 14 Results of solving

pressure vessel design problem
Algorithm x1 x2 x3 x4 fmin

Branch-bound (Sandgren 1990) 1.125000 0.625000 48.970000 106.720000 7982.500000

GA (Coello Coello 2000) 0.812500 0.437500 42.097398 176.654050 6059.946340

HS (Mahdavi et al. 2007) 1.125000 0.625000 58.290150 43.692680 7197.730000

CSCA (Huang et al. 2007) 0.812500 0.437500 42.098411 176.637690 6059.734000

PSO-SCA (Liu et al. 2010) 0.812500 0.437500 42.098446 176.636600 6059.714330

CPSO (He and Wang 2007a) 0.812500 0.437500 42.098400 176.636600 6059.714300

HPSO (He and Wang 2007b) 0.812500 0.437500 42.098087 176.640518 6059.745600

ES (Mezura-Montes and Coello 2008) 0.812500 0.437500 42.098353 176.637751 6059.725800

ACO (Kaveh and Talatahari 2010) 0.812500 0.437500 42.098353 176.637751 6059.725800

WOA (Mirjalili and Andrew 2016) 0.812500 0.437500 42.098270 176.638998 6059.741000

GSA (Rashedi et al. 2009) 1.125000 0.625000 55.988660 84.454203 8538.835900

MVO (Mirjalili et al. 2016) 0.812500 0.437500 42.090738 176.738690 6060.806600

AOA (Abualigah et al. 2021a) 0.830374 0.416206 42.751270 169.345400 6048.784400

GMO 0.8 0.4 41.441252 184.954065 5938.866432

Fig. 11 Three-bar truss structure (Abd Elaziz et al. 2017)
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g3 x~ð Þ ¼ 1
ffiffiffi

2
p

x2 þ x1
P� r� 0 ð66Þ

0� x1; x2 � 1 ð67Þ
where

l ¼ 100cm;P ¼ 2
KN

cm2
; r ¼ 2

KN

cm2
ð68Þ

Table 15 shows the results obtained by numerous

algorithms employed to solve this problem. As this

table suggest, the results found by the first five algorithms

in the table, violate the constraint g1. As a result, their

optimal objective function values are not validated. The

constraints violated are underlined in the table. Among the

remaining four algorithms; the MFO finds the best objec-

tive value, however, it is larger than the value obtained by

the proposed GMO. Accordingly, the GMO is superior to

all its competitors on such a problem with a difficult con-

strained search space.

4.6 Cantilever beam design problem

The objective of this problem is to minimize the weight of

a cantilever beam consisting of five hollow blocks with

variable heights and constant thicknesses, depicted in

Fig. 12. Thus, there are five decision variables needed to be

optimized denoted by x1 to x5 as the blocks’ heights. This

problem is formulated as follows.

Minimize f x~ð Þ ¼ 0:06224 x1 þ x2 þ x3 þ x4 þ x5ð Þ ð69Þ

Subject to:

g x~ð Þ ¼ 61

x31
þ 27

x32
þ 19

x33
þ 7

x34
þ 1

x35
� 1� 0 ð70Þ

0:01� x1; x2; x3; x4; x5 � 100 ð71Þ

As the results obtained by several algorithms including

the GMO suggest in Table 16, the proposed GMO reaches

the minimum weight of the cantilever beam among those

obtained by all the other competitors.

4.7 Gas transmission compressor design
problem

The goal of this problem is to minimize the cost of deliv-

ering 100 million cft gas per a day. The decision variables

x1, x2, and x3 are the gas transmission parameters expressed

as the distance between the two compressors, the com-

pression ratio value, and value of the inside diameter of the

Table 15 Results of solving three-bar truss design problem

Algorithm x1 x2 g1 g2 g3 fmin

DEDS (Zhang et al. 2008) 0.788675 0.408248 1.777971E - 08 - 1.464102 - 0.535898 263.895841

SSA (Mirjalili et al. 2017) 0.788665 0.408276 1.247906E - 08 - 1.464070 - 0.535930 263.895842

MBA (Sadollah et al. 2013) 0.788565 0.408560 1.418869E - 07 - 1.463748 - 0.536252 263.895834

PSO-DE (Liu et al. 2010) 0.788675 0.408248 1.427175E - 07 - 1.464102 - 0.535898 263.895825

Tsa (Tsai 2005) 0.788000 0.408000 1.636731E - 03 - 1.463566 - 0.534798 263.680057

Rai and Saini (Ray and Saini 2001) 0.795000 0.395000 -3.375515E-03 - 1.480901 - 0.522474 264.359956

CS (Gandomi et al. 2013) 0.788670 0.409020 - 5.733901E - 04 - 1.463512 - 0.537062 263.971562

MFO (Mirjalili 2015) 0.788245 0.409467 - 1.190244E - 09 - 1.462717 - 0.537283 263.895980

AOA (Abualigah et al. 2021a) 0.793690 0.394260 - 1.103007E - 05 - 1.480113 - 0.519898 263.915432

GMO 0.788671 0.408261 - 4.678179E - 09 - 1.464088 - 0.535912 263.895844

Fig. 12 Cantilever beam problem (Mahdavi et al. 2007)
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gas pipe, respectively. A schematic image of this problem

is shown in Fig. 13. This problem is formulated as follows.

Minimize f x~ð Þ ¼ 3:69� 104 � x3 þ 7:72� 108x�1
1 x0:2192

� 765:43� 106 � x�1
1 þ 8:61� 105

� x
1
2

1x2 x22 � 1
� ��1

2x
�2

3

3

ð72Þ

Subject to:

10� x1 � 55 ð73Þ
1:1� x2 � 2 ð74Þ
10� x3 � 40 ð75Þ

As can be seen in Table 17, the proposal can calculate

the best objective function value, contributing the GMO to

be superior to all of its rivals taking part in this very close

competition.

4.8 Himmelblau’s nonlinear constrained
optimization problems (version-I)

This problem is a highly constrained engineering problem,

widely used in the literature to examine the eligibility of

the optimization algorithms. The problem has two versions.

The first version of this problem is formulated as follows.

Minimize f x~ð Þ ¼ 0:8356891x1x2 þ 37:293239x1
� 40792:141þ 5:3578547x23 ð76Þ

Subject to:

0� g1 x~ð Þ� 92 ð77Þ
90� g2 x~ð Þ� 110 ð78Þ
20� g3 x~ð Þ� 25 ð79Þ

where

Table 16 Results of solving

cantilever beam design problem
Algorithm x1 x2 x3 x4 x5 fmin

MFO (Mirjalili 2015) 5.98487 5.31673 4.49733 3.51362 2.16162 1.33999

SOS (Cheng and Prayogo 2014) 6.01878 5.30344 4.49587 3.49896 2.15564 1.33996

CS (Gandomi et al. 2013) 6.00890 5.30490 4.50230 3.50770 2.15040 1.33999

MMA (Chickermane and GEA 1996) 6.01000 5.30000 4.49000 3.49000 2.15000 1.34000

GCA1 (Chickermane and GEA 1996) 6.01000 5.30000 4.49000 3.49000 2.15000 1.34000

GCA2 (Chickermane and GEA 1996) 6.01000 5.30000 4.49000 3.49000 2.15000 1.34000

GMO 6.01517 5.30565 4.50197 3.50181 2.14910 1.33652

Fig. 13 Gas transmission

compressor design problem

(Kumar et al. 2021)

Table 17 Results of solving gas

transmission compressor design

problem

Algorithm x1 x2 x3 fmin

ECS-AGQPSO (Kumar et al. 2021) 53.446716 1.190101 24.718579 2,964,375.495330

RCSOMGA (Duary et al. 2020) 53.446827 1.190101 24.718580 2,964,375.495330

SOMA (Duary et al. 2020) 53.347298 1.190142 24.737115 2,964,378.729000

RCGA (Duary et al. 2020) 53.520217 1.190361 24.723656 2,964,375.725000

PSO (PANT et al. 2011) 55.000000 1.195410 24.774900 2,964,460.000000

DE (PANT et al. 2011) 51.985700 1.183350 24.719500 2,964,480.000000

DE-PSO (PANT et al. 2011) 53.447400 1.190100 24.718600 2,964,375.503101

GP (Beightler and Phillips 1976) 52.600000 1.187000 24.800000 2,964,419.625000

GMO 53.446787 1.190101 24.718577 2,964,375.495329
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g1 x~ð Þ ¼ 85:334407þ 0:0006262x1x4 � 0:0022053x3x5
þ 0:0056858x2x5

ð80Þ

g2 x~ð Þ ¼ 80:51249þ 0:0029955x1x2 � 0:0021813x23
þ 0:0071317x2x5 ð81Þ

g3 x~ð Þ ¼ 9:300961þ 0:0012547x1x3 þ 0:0019085x3x4
þ 0:0047026x3x5

ð82Þ
78� x1 � 102 ð83Þ
33� x2 � 45 ð84Þ
27� x3 � 45 ð85Þ
27� x4 � 45 ð86Þ
27� x5 � 45 ð87Þ

Table 18 shows the optimal results each of the examined

algorithms can find when solving this problem. While the

optimal objective values calculated by all the comparative

algorithms are so close to each other, the proposed GMO

algorithm can achieve significantly lowest objective value

compared to the other competitors, demonstrating high

merits of the proposal to solve such problem.

4.9 Himmelblau’s nonlinear constrained
optimization problems (version-II)

A group of researchers used 0.00026 instead of 0.0006262

as the coefficient of the second term in the first constraint,

resulting in the second version of the Himmelblau’s

problem. Table 19 shows the optimal results that several

algorithms can find for this problem. The results of three

algorithms violate the constraint g1 and are invalid. The

constraints violated are underlined in the table. Among all

examined algorithms, the proposed GMO can reach the far

lowest objective value and thus significantly outperforms

all its competitors.

As can be seen, the GMO is superior to the numerous

optimizers when solving all of the engineering problems.

These problems are highly constrained and these con-

straints strongly limit the search space. Since the optimal

solution of these problems must be located in the feasible

region whose boundaries are delineated by the numerous

constraints embedded in the problems’ formulations,

superiority of the proposed GMO in solving these problems

indicates the great and promising performance of this

algorithm. This means that the GMO not only can desirably

solve a variety of the standard benchmark test problems,

Table 18 Results of solving Himmelblau’s problem (version-I)

Algorithm x1 x2 x3 x4 x5 g1 g2 g3 fmin

ECS-AGQPSO

(Kumar et al.

2021)

78.000000 33.000000 29.995256 45.000000 36.775813 92.000000 94.915402 20.000000 - 30,665.538672

T1-AGQPSO

(Kumar et al.

2020)

78.000000 33.000000 29.995250 45.000000 36.775813 – – – - 30,665.538700

GSA-GA (Garg

2019)

77.960999 32.991971 29.992126 45.000000 36.794135 91.999701 94.912286 20.000000 - 30,668.004000

GA-ACO-PSO

(Tam et al. 2019)

78.000000 33.000000 29.995300 45.000000 36.775800 92.000000 98.840500 20.000000 - 30,665.538700

CS (Gandomi et al.

2013)

78.000000 33.000000 29.996160 45.000000 36.776050 91.999960 98.840670 20.000360 - 30,665.233000

Nelder-Mead

(Mehta and

Dasgupta 2012)

78.000000 33.000000 29.995300 45.000000 36.775800 – – – - 30,665.538700

PSOA/PSOStr

(Dimopoulos

2007)

78.000000 33.000000 29.995256 45.000000 36.775813 92.000000 98.840500 20.000000 - 30,665.540000

HM (Lee and

Geem 2005)

78.000000 33.000000 29.995000 45.000000 36.776000 92.000000 98.840500 19.999900 - 30,665.500000

GA (He and Wang

2007a)

– – – – – – – – - 30,665.500000

Himmelblau

(Sharma 2006)

– – – – – – – – - 30,373.949000

GMO 78.000001 33.000000 29.997840 42.803207 37.660825 92.000000 95.123348 20.000000 - 30,910.829843
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but can be noticed as a favorite algorithm to solve engi-

neering problems as the real-world cases in the optimiza-

tion field.

The key factor contributing to such performance of the

GMO may be hidden in the new approach this algorithm

takes when designating the guide search agents. In GMO,

the abilities to measure the fitness and diversity as two key

factors to be focused in selecting or computing the guide

solutions are integrated. This integration is carried out

using the geometric mean operator in mathematics whose

unique properties to compute the mean of a number of

variables are found highly effective in designating a weight

for each solution in the search space to determine its

overall eligibility to guide the other solutions. Presenting

such comprehensive weights can highly assure the algo-

rithm that the most competent search agents are computed

as the guides. These guides are consistently calculated so

throughout the optimization process, whether the GMO is

in the exploration or exploitation phase. Since there is no

boundary between these two major phases of the opti-

mization process in the GMO, there is no chance for the

possible disruptions and interruptions occurring when

needing the algorithm to show more exploration or

exploitation activities in some stages of the optimization,

contributing all the movements of the search agents to be

made balanced and reliable to help the proposal accomplish

the optimization process in the best way. Imposing

mutation on the guides to mitigate their intrinsic uncer-

tainty, embedding an elitism mechanism in the algorithm,

gradually propelling the search agents toward their guides,

and having the efficient computations for this algorithm are

all among the other facilities the proposed algorithm ben-

efits from. Hence, the GMO can be strongly recommended

as one of the best algorithms in the field of meta-heuristic

optimization.

5 The pros and cons of the proposed GMO

As the results of solving global optimization problems

(classical benchmark functions and the CEC2017 test suite)

as well as the constrained engineering design problems

clearly indicated, the high capabilities of the proposed

GMO algorithm to both explore and exploit the search

space of the optimization problems with a variety of search

domains, dimensionality, and difficulties are demonstrated.

Furthermore, the GMO is capable of handling complicated

engineering design problems with a large number of con-

straints, stressing its power to effectively explore the search

space and detect the real position of the optimal solution

wherever it is placed in the domain. Among the advantages

of the proposed GMO, its ability to simultaneously evalu-

ate the fitness and diversity by means of the dual-fitness

index, computational efficiency, having no parameter to

Table 19 Results of solving Himmelblau’s problem (version-II)

Algorithm x1 x2 x3 x4 x5 g1 g2 g3 fmin

ECS-AGQPSO

(Kumar et al.

2021)

78.000000 33.000000 27.071000 45.000000 44.969200 92.000000 97.207700 20.000000 - 31,025.560242

T1-AGQPSO

(Kumar et al.

2020)

78.000000 33.000000 27.071000 45.000000 44.969200 – – – - 31,025.560200

GSA-GA (Garg

2019)

77.961000 32.999500 27.072800 45.000000 44.973900 91.999700 97.204181 20.000000 - 31,027.640800

GA-ACO-PSO

(Tam et al.

2019)

78.000000 33.000000 27.071000 45.000000 44.969200 92.000000 100.404800 20.000000 - 31,025.560200

CODEQ (Omran

and Salman

2009)

78.000000 33.000000 27.071000 45.000000 44.969200 93.285400 100.404800 20.000000 - 31,025.556300

HHSA

(Fesanghary

et al. 2008)

78.000000 33.000000 27.085100 45.000000 44.925300 93.278300 100.396100 20.000000 - 31,024.316600

Coello (COELLO

2000)

78.595800 33.010000 27.646000 45.000000 45.000000 91.956400 100.545100 20.251900 - 30,810.359000

Coello (Coello

Coello 2000)

78.049500 33.010000 27.646000 45.000000 44.940000 93.283800 100.407900 20.001900 - 31,020.859000

GMO 78.000001 33.000000 27.071109 44.998242 44.969608 92.000000 97.207774 20.000000 - 31,805.727802
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tune, and designating multiple and distinct guides for every

solution as a way to help the algorithm avoid premature

convergence, are the most eminent and effective ones.

However, there are some minor weaknesses that can be

handled such as lack of a strategy to set the accurate value

of decrease in the steps of the guides when mutated, lack of

a self-learning mechanism to accurately determine the rate

of decay in the inertia weight multiplied by the velocity

term, and occasional occurrence of singularity when cal-

culating the guide positions that makes the algorithm to add

e to the denominator of the guides when handling the

unimodal or simple problems and not to add e when dealing
with the real-world and more complicated problems.

6 Conclusion

This paper presented a novel meta-heuristic optimization

algorithm, called geometric mean optimizer (GMO),

inspired by the unique properties of the geometric mean

operator in mathematics. The geometric mean operator can

simultaneously represent the average and similarity of

several variables of the same scale. If these variables are

assumed as the normalized objective function values of a

number of the opposites of a focused search agent in the

search space, the geometric mean of these variables can

simultaneously represent the fitness and diversity of the

focused agent. The higher this geometric mean, the higher

the similarity between the opposite agents, and thus, the

higher the density of the area these agents are distributed

in. Simultaneously, the higher the geometric mean of the

opposite agents of an agent, the higher the average objec-

tive values of these agents. In this way, the focused agent

may be more diversified and has the lower objective/higher

fitness value at the same time, in a minimization process.

This geometric mean operator, which is turned into a root-

free form and named the pseudo-geometric mean operator

in the present work, can be employed as a weight assigned

to each personal best-so-far agent found by the GMO

algorithm at each of the iterations. Then, a weighted

averaging process is conducted over the opposite agents of

a focused agent and the resulting average agent is adopted

as the unique and only guide of the focused search agent. In

this algorithm, the guides are all imposed a Gaussian

mutation operator. This act can help further strengthen the

exploration ability of the proposed GMO.

The strengths of the proposed GMO algorithm to handle

the optimization problems can be summarized in five main

points: (1) integrating the abilities to evaluate fitness and

diversity of the search agents to yield them a weight to

better diversify the search space while facilitating access to

the high-fitness areas; (2) mitigating the uncertainty of the

guide agents via mutating them to impede the GMO to get

trapped in prematurely identified local optima while

reducing the possibility of drift occurrence during the

search agents’ movements toward their guides; (3) incor-

porating an elitism mechanism into the GMO to further

enhance the exploitation capability and expedite its con-

vergence to the optimum; (4) considering the velocity for

each search agent to keep pushing the agents to continue

their exploration in the search space; and (5) having no

parameter to tune.

The proposed GMO was then validated via comparison

with two sets of classical, newly proposed and popular meta-

heuristics, with reference to some performance criteria. The

results obtained in solving 52 standard benchmark test prob-

lems and nine engineering problems demonstrated the supe-

riority of the proposal to all its competitors.

As future work, it is suggested to apply GMO to solve

some large-scale and broader engineering problems to

further investigate the strengths and weaknesses of this

algorithm in finding the optimum of such problems to

remove the shortcomings the proposal may suffer from.
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