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Abstract
The creep index plays an important role in calculating the long-term settlement of natural soft clays, so it is vital to

determine the creep index quickly and accurately. However, the prediction accuracy of the existing creep index models is

low. This study presents seven gene expression programming (GEP) models by using different combinations of the liquid

limit wL, plasticity index Ip, void ratio e and clay content CI as input variables for the prediction of creep index. A total of

151 datasets were collected from the available literature for building and testing the GEP models. The proposed GEP

models were compared with two machine learning (ML) models (i.e., back propagation neural network and random forest)

and five conventional empirical models in terms of three statistical indicators. The research results showed that the

prediction performances of the two proposed GEP models (i.e., with combinations CI�wL�e and CI�Ip�wL�e as input,

respectively) surpass those of the five conventional empirical models and two ML-based models, recommended for

predicting the creep index of natural soft clays in engineering practice.
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1 Introduction

For the analysis and design of slope stability or the safety

of tunneling or embankments, the long-term settlement

calculation of these infrastructures is vital in order to

control the post construction settlement within an allowed

range (Shen et al. 2014; Meng et al. 2018; Yang et al. 2019;

Zhang et al. 2020; Zhu et al. 2020). Currently, the most

widely used methods to calculate the long-term settlement

of soft clays is the standard or advanced elastic viscoplastic

models (Yin et al. 2010, 2015; Tan et al. 2018). However,

the determination of viscosity parameters requires a lot of

time for researchers and engineers, which made it difficult

to be used in practice.

Creep index Ca is one of the key parameters when using

the standard or advanced elastic viscoplastic models to

calculate the long-term settlement of soft clays (Karstunen

and Yin 2010; Yin et al. 2017). Although the creep index is

not an intrinsic property of intact clays, it can provide a

help for understanding the creep behaviors of remoulded

clays (Zhang et al. 2020). Therefore, it is very important to

determine the creep index quickly and accurately.

Previous studies have proved that the microstructure of

soft clays has an important effect on its creep property, and

the calculation formula of creep index is usually deter-

mined by regression analysis technology based on experi-

mental data (Yin et al. 2009, 2014a; b). For example,

Nakase et al. (1988) developed an empirical model

involving the plasticity index Ip and the creep index Ca;

Zeng et al. (2012) proposed an empirical model describing

the relationships between the creep index Ca and the void

ratio at liquid limit eL and the void ratio e; Yin et al. (2015)

proposed an elastic-viscoplastic model of natural soft clay,

which takes nonlinear creep into account; Zhu et al. (2016)

further proposed an empirical model considering both the

plasticity index Ip and liquid limit wL. However, the models

proposed by Nakase et al. (1988), Zeng et al. (2012), Yin

(1999), Yin et al. (2015) and Zhu et al. (2016) have fewer

influencing factors and lower prediction accuracy. It cannot

& Xinhua Xue

scuxxh@163.com

1 State Key Laboratory of Hydraulics and Mountain River

Engineering, College of Water Resource and Hydropower,

Sichuan University, Chengdu 610065, People’s Republic of

China

123

Soft Computing (2023) 27:16265–16278
https://doi.org/10.1007/s00500-023-08053-8(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-023-08053-8&amp;domain=pdf
https://doi.org/10.1007/s00500-023-08053-8


provide a very accurate reference for the determination of

creep index Ca.

In recent years, artificial intelligence (AI) methods have

been widely used in the field of geotechnical engineering

(Sharma et al. 2021; Jong et al. 2021; Zhang et al. 2021).

For example, Gordan et al. (2016) investigated the seismic

slope stability by using the hybrid model of artificial neural

networks (ANNs) and particle swarm optimization (PSO).

Koopialipoor et al. (2019) predicted the safety factor (SF)

of slopes by using the PSO-ANN model. Fattahi (2017)

evaluated the slope stability using the adaptive neuro-fuzzy

inference system (ANFIS) model. Previous studies have

shown that the predictive performance of empirical models

is far inferior to that of models proposed based on AI

techniques; however, AI techniques may face some issues

like trapping in local minima (Xiong et al. 2004; Sun et al.

2016; Zhang et al. 2016). The gene expression program-

ming (GEP) was first proposed by Ferreira (2001, 2006) to

solve some problems in genetic programming (GP). The

biggest difference between the two is GEP’s use of linear

fixed length expression tree (ET), which is the key to

GEP’s ability to solve relatively complex problems with

high performance (Jafari and Mahini 2017; Murad et al.

2019).

Considering the lack of prediction accuracy of existing

models and the advantages of AI technologies, the main

purpose of this study is to propose a new creep index model

based on GEP technique. The biggest difference between

GEP technique and most regression technologies is that

when establishing the functional relationship between

creep index and various parameters, GEP technology only

needs to consider the possible parameters in the relation-

ship, and does not need to specify predefined functions.

The main contributions of this study can be clarified as

follows:

(1) To the best of our knowledge, this study is the first

method using GEP technology to predict the creep

index of soft clays in the literature;

(2) In this paper, the influence of different parameter

combinations on the prediction accuracy of the

model is studied, and seven GEP models are

proposed according to the results of seven

combinations;

(3) Compared with the literature models, the GEP model

established in this paper considers more influencing

factors for prediction of the creep index of soft clays;

(4) Compared with other ML-based models (i.e., back

propagation (BP) neural network and random forest

(RF)), GEP model has relatively simple calculation

formula and high prediction accuracy, which is

conducive to popularization and application. In

addition, in order to facilitate the application of

GEP model in engineering, we developed a conve-

nient graphical user interface.

The rest of the paper is organized as follows: Database is

presented in Sect. 2. Methodologies are explained in

Sect. 3. Results and discussion are presented in Sect. 4.

Finally, conclusions are introduced in Sect. 5.

2 Database

The choice of input variables is vital to the accurate pre-

diction of creep index Ca. In this study, four physical

parameters (i.e., liquid limit wL, void ratio e, plasticity

index Ip and clay content CI) of soft clays were taken as the

input variables and the creep index Ca as the output vari-

able. A total of 151 sets of data points collected from the

literature (Shen et al. 2014; Meng et al. 2018; Tan et al.

2018; Yang et al. 2019; Zhu et al. 2020) were used to

establish the GEP model. Figure 1 and Tables 1 and 2 show

the frequency distribution histogram of the four input

parameters, the statistical results of the database and the

Pearson correlation analysis results between different

parameters, respectively. As observed from Fig. 1 and

Table 1, these parameters have a wide range of values,

which is enough to make the proposed GEP model have

better generalization and application. The 151 sets of data

were randomly divided into two parts: training set (120

groups) and test set (31 groups), which were used for

model establishment and evaluation, respectively.

3 Methodology

3.1 GEP

GEP, a machine learning algorithm based on genetic

algorithm (GA) and genetic programming (GP), was first

proposed by Ferreira (2001). Generally speaking, GEP is

mainly composed of five parts: termination condition, fit-

ness function, terminal set, control parameters and function

set. In GEP, a genome or chromosome may contain one or

more genes, and a gene can be divided into a head con-

taining terminals and functions (e.g., variables, mathe-

matical operators and functions) and a tail containing only

terminals (e.g., variables and constants). In this study,

GeneXproTools5.0 software was used to establish the GEP

model. The main steps of GEP establishment are summa-

rized as follows:

(1) Selecting an appropriate fitness function is conducive

to the successful solution of the problem. In this

study, the following equation was used as the fitness

value:
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where fi represents the fitness value and it ranges between 0

and 1000 (ideally, the fitness value is 1000); m represents

the total number of chromosomes; Yi;j and Xi represent the

value predicted by the individual chromosome i for fitness

case j and the monitored value for fitness case i,

respectively.

(2) The sets of functions F and terminals T need to be

selected. Obviously, the set of functions F consists of

all the function symbols that may appear in the

formula, thus giving F = {Inv, X2, 3Rt, *, /, ?, -,

exp, Ln}. The set of terminals T consists of input and

output parameters, thus giving T = {wL,e,Ip,CI,Ca}.

(3) In this study, the optimal value of each parameter in

the GEP model is determined by the trial-and-error

Fig. 1 Histograms of the four input parameters

Table 1 Statistics analysis of datasets

Parameter Min Mean Max Standard deviation

CI 11.5 49.86 83 21.69

wL 40 70.35 98 20.32

Ip 19 43.16 68 18.11

e 0.466 1.18 2.28 0.41

Ca 0.055 0.019 0.0036 0.011

Table 2 Results of Pearson correlation analysis

CI wL Ip e Ca

CI 1

wL - 0.014 1

Ip 0.090 0.985** 1

e 0.260** 0.716** 0.749** 1

Ca - 0.001 0.769** 0.769** 0.850** 1

**Correlation is significant at the 0.01 level (two-tailed)
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strategy, and the selected parameters are listed in

Table 3.

(4) Select the type of linking function. In the GEP

model, there are many linking functions. (e.g.,

multiplication (9), subtraction (-), addition (?),

division (/), Min, Max, CL2D {0,1}, CL2A {- 1,1},

CL3A {- 1,0,1}, CL3B {- 1,0,1}, CL3C {- 1,0,1}

and AMin2 {0,1}). In this study, the linking func-

tions of addition (?) and multiplication (9) are

selected because they can provide better results than

other linking functions.

(5) Select the genetic operators. In this study, the

selection of genetic operators is mainly based on

the research results of Ferreira (2006), and the

selected genetic operators are listed in Table 3.

Figure 2 illustrates the flowchart of GEP model.

3.2 Empirical formulas

According to Zhang et al. (2020), some available empirical

formulas are listed as follows:

(1) Developed by Nakase et al. (1998):

Ca ¼ 0:00168þ 0:00033Ip ð2Þ

(2) Developed by Yin (1999):

Ca ¼ 0:000369Ip � 0:00055 ð3Þ

(3) Developed by Zeng et al. (2012):

Ca ¼ �0:0067þ 0:0115eL � 0:0016 eLð Þ2
� �

1þ eð Þ

ð4Þ

(4) Developed by Zhu et al. (2016):

Ca ¼ 0:0007wL � 0:0223ð Þ wL

w

� �0:23031�0:014978wL

ð5Þ

(5) Developed by Zhu et al. (2020):

Ca ¼ �0:0274þ 0:0011wL � 0:00048Ip
� �

� w

wL

� �0:7872�0:0369wLþ0:0619Ip ð6Þ

Table 3 Optimal parameters of the first GEP model

Parameter Value

Population size 50

Gene recombination rate 0.1

Chromosome length 60

Linking function Multiplication (9)

Mutation rate 0.044

Gene transposition rate 0.1

Head size 12

IS transposition rate 0.1

One-point recombination rate 0.3

RIS transposition rate 0.1

Two-point recombination rate 0.3

Fig. 2 Flowchart of GEP (Ferreira 2006)
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3.3 RF

RF, first proposed by Breiman (2001), is a supervised ML

algorithm composed of decision trees. The following is a

brief introduction to the RF algorithm.

The training data is drawn randomly from the distribu-

tion of the random vector S and T and assuming that

h1 xð Þ,h2 xð Þ,. . .,hk xð Þ are ensemble of classifiers, then the

margin function mg S;Tð Þ can be expressed as (Breiman

2001):

mg S;Tð Þ ¼ I hk Sð Þ ¼ Tð Þvka�max
j 6¼Y

I hk Sð Þ ¼ jð Þvka ð7Þ

where I �ð Þ denotes the indicator function. It should be

noted that the confidence in the classification is propor-

tional to the margin.

The calculation formula of generalization error Ge is

given as follows (Breiman 2001):

Ge ¼ GS;T mg S; Tð Þ\0ð Þ ð8Þ

where the subscripts S,T indicate that the probability is

over the S,T space. More details of RF can be found in

Breiman (2001).

3.4 BP

The BP neural network is generally composed of three

layers of neurons, which are (1) the output layer, (2) the

hidden layer, and (3) the input layer. The gradient descent

algorithm is commonly used to train BP neural network by

adjusting the weights to minimize the total error between

the actual output and the target output. More details of BP

neural network can be found in Xue (2017).

3.5 Evaluation of the proposed creep index
models

In order to evaluate the prediction performance of each

creep index model, three statistical indices, namely, the

root mean squared error (RMSE), mean absolute percent-

age error (MAPE) and mean absolute error (MAE) are used

in this study, and the calculation formulas are as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

n

i¼1

Oi � Pið Þ2

n

v

u

u

u

t

ð9Þ

MAPE ¼ 1

n

X

n

i¼1

Oi � Pi

Pi

	

	

	

	

	

	

	

	

ð10Þ

MAE ¼ 1

n

X

n

i¼1

Oi � Pij j ð11Þ

where Oi and Pi represent the actual and predicted results,

respectively. n is the total number of data (n = 151).

Obviously, the lower values of these three indicators, the

better the prediction performance.

4 Results and discussion

In this study, different combinations of four input variables

were used to obtain seven GEP models for predicting the

creep index Ca of soft clays. The optimal parameters of the

first GEP model are listed in Table 3. Because the setting

parameters of the other six GEP models are fine-tuned on

this basis, they are not listed separately in this study.

4.1 Combination of CI - e

The expression tree of the first established GEP model

consists of five sub-expression trees, as shown in Fig. 3. In

Fig. 3, the constants of the first sub-expression tree (gene)

c6 and c9 are 10.69 and -9.365, respectively. The constant

of the third sub-expression tree c2 is 2.566, and the con-

stants of the fourth sub-expression tree (gene) c6 and c8 are

-0.899 and 4.90, respectively. The linking function of this

model is multiplication ( 9), and the expression of the

model can be written as:

Ca ¼
ffiffiffiffiffiffi

CI
p

þ CI þ e � CI þ 2:566
� �

sin sinCIþCI
CI

� �
 ��1

sinCI þ CI þ 98:415ð Þ 2 sinCI þ CI þ eð Þ e� tanCI � 4:409ð Þ

ð12Þ

4.2 Combination of CI - Ip - e

The expression tree of the second established GEP model

consists of two sub-expression trees, as shown in Fig. 4. In

Fig. 4, the constants of the first sub-expression tree c6 and

c7 are 1.17 and - 9.67, respectively. The constants of the

second sub-expression tree c3 and c9 are 8.69 and - 16.94,

respectively. The linking function of this model is addition

( ?), and the expression of the model can be written as:

Ca ¼
e3

93:559þ 109:661e
þ CI þ 16:934ð ÞIp

e8:679CI
ð13Þ

4.3 Combination of CI -wL - e

The expression tree of the third established GEP model

consists of three sub-expression trees, as shown in Fig. 5.

In Fig. 5, the constants of the first sub-expression tree

c0,c1,c5,c8 and c9 are - 68.312, - 88.91, 87.29, - 59.56

and 75.13, respectively. The constants of the second sub-

expression tree c8 and c9 are 50.21 and 35.14, respectively.

Prediction of creep index of soft clays using gene expression programming 16269

123



The constants of the third sub-expression tree c0,c6 and c9
are - 87.24, - 15.48 and 33.71, respectively. The linking

function of this model is addition ( ?), and the expression

of the model can be written as:

Ca ¼
1:663

62:967� CIð ÞwL
þ 0:173e1:33 eþ wLð Þ � 10�3

þ 0:015wL � 0:032e

wL
� 0:012

ð14Þ

Fig. 3 Expression tree language (5 sub-expression trees) of the first model

Fig. 4 Expression tree language

(2 sub-expression trees) of the

second model
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4.4 Combination of CI -wL - Ip - e

The expression tree of the fourth established GEP model

consists of three sub-expression trees, as shown in Fig. 6.

In Fig. 6, the constants of the first sub-expression tree c0
and c1 are - 3.03 and - 32.22, respectively. The constants

of the second sub-expression tree c5, c6 and c7 are - 63.03,

79.16 and 35.75, respectively. The constant of the third

sub-expression tree c1 is - 6.46. The linking function of

this model is addition ( ?), and the expression of the model

can be written as:

Ca ¼
2ewL þ 158:32eþ 35:752

15892:85� 4CI

þ Tanh 0:25Ip � 0:25e� 1:616þ 1

CI � 6:462ð Þe

� 

þ Tanh 0:5eCI � 0:25Ip � 0:25e� 0:5CI � 30:706
� �

ð15Þ

4.5 Combination of Ip - e

The expression tree of the fifth established GEP model

consists of three sub-expression trees, as shown in Fig. 7.

In Fig. 7, the constant of the first sub-expression tree c6 is

7.20. The constants of the second sub-expression tree c2
and c5 are - 20.10 and 98.72, respectively. The constant of

the third sub-expression tree c6 is 7.20. The linking func-

tion of this model is addition ( ?), and the expression of

the model can be written as:

Ca ¼ 0:193e� 4:91e

Ip
þ 0:019

e1:5Ip
ð16Þ

4.6 Combination of wL - e

The expression tree of the sixth established GEP model

consists of three sub-expression trees, as shown in Fig. 8.

In Fig. 8, the constants of the first sub-expression tree c2
and c6 are - 52.99 and 72.32, respectively. The constants

of the second sub-expression tree c2 and c6 are - 58.88

and 72.32, respectively. The constant of the third sub-ex-

pression tree c6 is 72.32. The linking function of this model

is addition ( ?), and the expression of the model can be

written as:

Ca ¼
52:991� e

5230:139wL � 72:32w2
L

� 0:814e

wL þ e

þ e

1:5e� e2 þ 36:16
ð17Þ

4.7 Combination of wL - Ip - e

The expression tree of the seventh established GEP model

consists of two sub-expression trees, as shown in Fig. 9. In

Fig. 9, the constant of the first sub-expression tree c1 is

- 71.43. The linking function of this model is addition

( ?), and the expression of the model can be written as:

Fig. 5 Expression tree language (3 sub-expression trees) of the third model
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Fig. 6 Expression tree language (3 sub-expression trees) of the fourth model

Fig. 7 Expression tree language (3 sub-expression trees) of the fifth model
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Ca ¼
ewL

e2wL � 71:433e� 71:433
þ e4

4 Ip þ wL

e

� �2
ð18Þ

4.8 Comparison of different GEP models

The prediction accuracy of these seven GEP models in all

data sets, training sets and test sets was compared, as

shown in Fig. 10. As observed from Fig. 10, regardless of

all data or training or test sets, the RMSE, MAE and MAPE

values of the two GEP models (i.e., with combinations

CI � wL � e and CI � wL � Ip � e as input, respectively)

are the lowest among these seven models. For example, the

RMSE, MAE and MAPE values of the GEP models (with

combinations CI � wL � e and CI � wL � Ip � e as input,

respectively) for all data sets are 0.0047, 0.0032 and

0.1783; 0.0045, 0.0029 and 0.1757, respectively, and they

are recommended for the prediction of the creep index Ca

Fig. 8 Expression tree language (3 sub-expression trees) of the sixth model

Fig. 9 Expression tree language (2 sub-expression trees) of the seventh model
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in engineering practice. In addition, it can be seen from

Fig. 10 that different parameter combinations have a sig-

nificant impact on the prediction accuracy of the model.

Therefore, it is necessary to consider the influence of

parameter combinations when using GEP or other neural

networks to build the model.

4.9 Comparison among the proposed models,
ML-based models and existing empirical
models

The prediction results of the existing five empirical models

and two ML-based models (i.e., BP and RF) on all data

samples are plotted in Fig. 11. The prediction performance

comparisons of the two GEP models and the existing five

empirical models and two ML-based models are shown in

Table 4. As can be seen from Fig. 11 and Table 4, the

RMSE, MAE and MAPE values of the two GEP models

are 0.0045, 0.0029 and 0.1757; 0.0047, 0.0032 and 0.1783,

respectively. However, the RMSE, MAE and MAPE values

of the empirical models of Yin (1999), Nakase et al.

(1998), Zeng et al. (2012), Zhu et al. (2020) and Zhu et al.

(2016) are 0.0080, 0.0052 and 0.2497; 0.0079, 0.0053 and

0.2857; 0.0098, 0.0080 and 0.4803; 0.0097, 0.0077 and

0.5569; 0.0102, 0.0078 and 0.4801, respectively. The

RMSE, MAE and MAPE values of BP and RF models are

0.0049, 0.0037 and 0.2483; 0.0056, 0.0032 and 0.2459,

respectively. The above results show that the forecasting

performances of the two GEP models developed in this

study surpass those of the five empirical models and two

ML-based models.

4.9.1 Sensitivity analysis of variables

To study whether the two developed GEP models can

capture the functional relationship between the creep index

Ca and various parameters, and also to compare with the

results of sensitivity analysis in Zhang et al. (2020), a

parametric study was carried out. As such, in the two

developed GEP models, the desired independent variable

Fig. 10 Prediction results of different GEP models
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change within the scope of the database, while the values

of other variables are the same as those in Zhang et al.

(2020). The variations of input variables against the creep

index Ca predicted by the two developed GEP models are

shown in Figs. 12 and 13. As can be seen from Figs. 12 and

13, the creep index Ca increases nonlinearly and mono-

tonically with the increases in the clay content CI, void

ratio e and liquid limit wL. In regard to plasticity index Ip,

the predicted creep index Ca increases initially with an

increase in plasticity index Ip, and when plasticity index Ip
reaches its maximum, the creep index Ca stabilizes as the

plasticity index Ip continues to increase. The evolution of

the predicted value of creep index Ca with the change of

the independent variable is similar at three points, which is

similar to the results of the study in Zhang et al. (2020),

except that the size of the creep index Ca differs. Never-

theless, from the sensitivity analysis results of Zhang et al.

(2020), it can be seen that the prediction performance of

the PSO-RF model largely depends on the quality and size

of the database used, so it is difficult to obtain a completely

smooth correlation between output and input parameters,

which merely reflects a general trend (Zhang et al. 2020).

Fig. 11 Prediction results of different creep index models

Table 4 Prediction performance comparisons of different creep index

models

Model RMSE MAE MAPE

GEP (CI-wL-IP-e) 0.0045 0.0029 0.1757

GEP (CI - wL - e) 0.0047 0.0032 0.1783

Nakase et al. (1998) 0.0079 0.0053 0.2857

Yin (1999) 0.0080 0.0052 0.2497

Zeng et al. (2012) 0.0098 0.0080 0.4803

Zhu et al. (2020) 0.0097 0.0077 0.5569

Zhu et al. (2016) 0.0102 0.0078 0.4801

BP model 0.0049 0.0037 0.2483

RF model 0.0056 0.0032 0.2459

The bold values are used to highlight the model results
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Overall, the correlations presented in Figs. 12 and 13 are

consistent with the physical explanation, which confirms

the reasonableness of the developed GEP model. There-

fore, the GEP models developed in this study can accu-

rately reflect the internal mechanism between the creep

index Ca and various parameters.

4.9.2 Graphical user interface

In order to promote the application of GEP model

(Eq. (15)) in engineering, we developed a convenient

graphical user interface (GUI) based on Visual Basic 6.0

software, as shown in Fig. 14. In Fig. 14, the input

parameters are on the left and the formula calculation

results are on the right.

5 Conclusions

In this study, different combinations of four input variables

were used to predict creep index Ca and seven GEP models

were established. The proposed GEP models are evaluated

by using five empirical models and two ML-based models

(i.e., BP and RF). The following conclusions can be drawn:

(1) The two developed GEP models (i.e., with combi-

nations CI � wL � Ip � e and CI � wL � e as input,

respectively) have higher prediction precision than

the available five regression models in the literature

and two ML-based models (i.e., BP and RF), with the

RMSE, MAE and MAPE values of 0.0045, 0.0029

and 0.1757; 0.0047, 0.0032 and 0.1783, respectively.

(2) The results of parametric analysis of GEP model

show that the creep index Ca increases nonlinearly

and monotonically with the increases in the liquid

limit wL, clay content CI, and void ratio e. In regard

to plasticity index Ip, the predicted creep index Ca

increases initially with an increase in plasticity index

Ip, and when plasticity index Ip reaches its maxi-

mum, the creep index Ca stabilizes as the plasticity

index Ip continues to increase.

(3) The GEP models proposed in this study are only

suitable for prediction of creep index of soft clays,

not for rock-like materials. Therefore, the applica-

bility of the proposed models and the richness of the

Fig. 12 Predicted Ca using GEP model combining CI � wL � e against a CI b wL c e
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database need to be further studied. In addition, GEP

also has some problems, such as slow convergence

rate, premature convergence and easy to fall into

local extreme points, which should be studied in

further research.

Author contributions XX: Methodology, Data acquisition, Writing—

original draft. CD: Software, Numerical analysis.

Funding The authors have not disclosed any funding.

Data availability Data will be made available on reasonable request.

Declarations

Conflict of interest The authors declare that they have no known

competing financial interests or personal relationships that could have

appeared to influence the work reported in this paper.

References

Breiman L (2001) Random forests. Mach Learn 45:5–32

Fattahi H (2017) Prediction of slope stability using adaptive neuro-

fuzzy inference system based on clustering methods. J Min

Environ 8(2):163–178

Ferreira C (2001) Gene expression programming: a new adaptive

algorithm for solving problems. Complex Syst 13(2):87–129

Ferreira C (2006) Gene expression programming: mathematical

modeling by an artificial intelligence. Biswas Hope press,

Canada, pp 223–225

Gordan B, Armaghani DJ, Hajihassani M, Wroblewski P (2016)

Prediction of seismic slope s tability through combination of

particle swarm optimization and neural network. Eng Comput

Ger 32:85–97

Fig. 13 Predicted Ca using GEP model combining CI � wL � Ip � e against a CI b wL c Ip d e

Fig. 14 Graphical user interface

Prediction of creep index of soft clays using gene expression programming 16277

123



Jafari S, Mahini SS (2017) Lightweight concrete design using gene

expression programing. Constr Build Mater 139:93–100

Jong SC, Ong DEL, Oh E (2021) State-of-the-art review of

geotechnical-driven artificial intelligence techniques in under-

ground soil-structure interaction. Tunn Undergr Space Technol

113:103946

Karstunen M, Yin ZY (2010) Modelling time-dependent behavior of

Murro test embankment. Geotechnique 60(10):735–749

Koopialipoor M, Armaghani DJ, Hedayat A, Maarto A (2019)

Applying various hybrid intelligent systems to evaluate and

predict slope stability under static and dynamic conditions. Soft

Comput 23(14):5913–5929

Meng FY, Chen RP, Xin K (2018) Effects of tunneling-induced soil

disturbance on the post-construction settlement in structured soft

soils. Tunn Undergr Space Technol 80:53–63

Murad Y, Ashteyat A, Hunaifat R (2019) Predictive model to the

bond strength of FRP-to concrete under direct pullout using gene

expression programming. J Civ Eng Manag 25(8):773–784

Nakase A, Kamei T, Kusakabe O (1988) Constitutive parameters

estimated by plasticity index. Chin J Geotech Eng

114(7):844–858

Nakase A, Kamei T, Kusakabe O (1998) Constitutive parameters

estimated by plasticity index. J Geotech Eng 114:844–858

Sharma S, Ahmed S, Naseem M, Alnumay W, Singh S, Cho GH

(2021) A survey on applications of artificial intelligence for pre-

parametric project cost and soil shear-strength estimation in

construction and geotechnical engineering. Sensors

21(2):463–506

Shen SL, Wu HN, Cui YJ, Yin ZY (2014) Long-term settlement

behaviour of metro tunnels in the soft deposits of Shanghai.

Tunn Undergr Space Technol 40:309–323

Sun YB, Wendi D, Kim DE (2016) Application of artificial neural

networks in groundwater table forecasting-a case study in a

Singapore swamp forest. Hydrol Earth Syst Sci 20:1405–1412

Tan F, Zhou WH, Yuen KV (2018) Effect of loading duration on

uncertainty in creep analysis of clay. Int J Numer Anal Methods

Geomech 42:1235–1254

Xiong LH, Kieran MO, Guo SL (2004) Comparasion of three

updating schemes using artificial neural network in flow

forecasting. Hydrol Earth Syst Sci 8(2):247–255

Xue XH (2017) Prediction of daily diffuse solar radiation using

artificial neural networks. Int J Hydrog Energy 42:28214–28221

Yang B, Yin K, Lacasse S, Liu Z (2019) Time series analysis and long

short-term memory neural network to predict landslide displace-

ment. Landslides 16:677–694

Yin JH (1999) Properties and behavior of Hong Kong marine deposits

with different clay contents. Can Geotech J 36:1085–1095

Yin ZY, Chang CS (2009) Microstructural modeling of stress-

dependent behavior of clay. Int J Solids Struct 46:1373–1388

Yin ZY, Chang CS, Karstunen M, Hicher PY (2010) An anisotropic

elastic-viscoplastic model for soft clays. Int J Solids Struct

47:665–677

Yin ZY, Xu Q, Yu C (2014a) Elastic-viscoplastic modeling for

natural soft clays considering nonlinear creep. Int J Geomech

15(5):1–10

Yin ZY, Yin JH, Huang HW (2015) Rate-dependent and long-term

yield stress and strength of soft Wenzhou marine clay: exper-

iments and modeling. Mar Georesour Geotechnol 33:79–91

Yin ZY, Zhu QY, Yin JH, Ni Q (2014b) Stress relaxation coefficient

and formulation for soft soils. Geotech Lett 4:45–51

Yin ZY, Zhu QY, Zhang DM (2017) Comparison of two creep

degradation modeling approaches for soft structured soils. Acta

Geotech 12:1395–1413

Zeng LL, Hong ZS, Liu SY, Chen FQ (2012) Variation law and

quantitative evaluation of secondary consolidation behavior for

remolded clays. Chin J Geotech Eng 34:1496–1500

Zhang CS, Ji J, Gui YL, Kodikara J (2016) Evaluation of soil-

concrete interface shear strength based on LS-SVM. Geomech

Eng 11(3):361–372

Zhang P, Yin ZY, Jin YF, Chan THT (2020) A novel hybrid surrogate

intelligent model for creep index prediction based on particle

swarm optimization and random forest. Eng Geol 265:1–12

Zhang WG, Li HR, Li YQ, Liu HL, Chen YM, Ding XM (2021)

Application of deep learning algorithms in geotechnical engi-

neering: a short critical review. Artif Intell Rev 54:5633–5673

Zhu QY, Yin ZY, Hicher PY, Shen SL (2016) Nonlinearity of one-

dimensional creep characteristics of soft clays. Acta Geotech

11:887–900

Zhu QY, Jin YF, Yin ZY (2020) Modeling of embankment beneath

marine deposited soft sensitive clays considering straightforward

creep degradation. Mar Georesour Geotechnol 38(5):553–569

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

16278 X. Xue, C. Deng

123


	Prediction of creep index of soft clays using gene expression programming
	Abstract
	Introduction
	Database
	Methodology
	GEP
	Empirical formulas
	RF
	BP
	Evaluation of the proposed creep index models

	Results and discussion
	Combination of CI \minus e
	Combination of CI \minus I_{p} \minus e
	Combination of CI \minus w_{L} \minus e
	Combination of CI \minus w_{L} \minus I_{p} \minus e
	Combination of I_{p} \minus e
	Combination of w_{L} \minus e
	Combination of w_{L} \minus I_{p} \minus e
	Comparison of different GEP models
	Comparison among the proposed models, ML-based models and existing empirical models
	Sensitivity analysis of variables
	Graphical user interface


	Conclusions
	Author contributions
	Data availability
	References




