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Abstract
Interval-valued systems with the general fractional derivative are defined on closed intervals on the real line R. Func-
tion spaces of the fractional integrals and derivatives are discussed. Then some fundamental theorems of the Caputo and
Riemann–Liouville derivatives are provided, respectively. Finally, the interval-valued Gronwall inequalities are presented as
one application.
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1 Introduction

Recently, a general fractional integral of real-valued func-
tions (Osler 1970; Kilbas et al. 2006; Samko et al. 1993;
Almeida 2017) was proposed as

I α,g
a+ f (t) = 1

�(α)

∫ t

a
(g(t) − g(s))α−1 g′(s) f (s)ds.

For some specific g, it can be reduced to various well-known
fractional integrals:

• The classical Riemann–Liouville (R–L) integral (Kilbas
et al. 2006) for g(t) = t ;

• The fractional integral of Hadamard type (Kilbas et al.
2006) for g(t) = ln t ;

• The fractional integral of Katugampola type (Katugam-
pola 2011) for g(t) = tσ+1

σ+1 ;
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• The fractional integral of exponential type (Fu et al.
2021a, b) for g(t) = eλt .

In addition, new fractional integrals can be obtained if they
satisfy the boundedness (Fan et al. 2022).Numericalmethods
of general fractional differential equations (Wu et al. 2022),
the physical meaning (Fu et al. 2021a, b) and their applica-
tions on time scales (Song et al. 2022; Wu et al. 2022) were
then discussed. It can be concluded that the general fractional
calculus is well-defined.

Fractional fuzzy and interval-valued equations can be
used to describe nonlinear phenomena with uncertainties
and memory effects. Much effort has been made and rich
results are available now, for example, basic theory (Kara
et al. 2022; Vu et al. 2018; Liu et al. 2017; Ho and Ngo
2021; Lupulescu 2015; Hoa et al. 2017; Shen 2016), numer-
ical methods (Shiri et al. 2021; Alijani and Kangro 2022),
discrete-time systems (Huang et al. 2021) et al. However,
one important problem was still not addressed yet: Many
interval-valued systems were proposed within different frac-
tional derivatives in recent years.Which one is the best for the
specific real-world application? So it is important to define a
general fractional interval-valued system. But first and fore-
most, we need to consider the basics including definitions
with function space and propositions.

We organize the paper as the following: Sect. 2 revis-
its calculus of interval-valued functions. Section3 defines
general fractional integral for interval-valued functions in
L([a, b],K) space. Section4 gives definitions and proper-
ties of the general fractional derivatives in ACδ([a, b],K)
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space. Section5 uses these properties to give a general frac-
tional Gronwall inequality for interval-valued functions. A
conclusion is drawn at the end.

2 Preliminaries

In this section, we mainly introduce concepts of interval
numbers and interval-valued functions (see Lupulescu 2015;
Markov 1979 for more detail).

2.1 Definitions of interval numbers

First consider the set K, which consists of all nonempty
compact intervals on the real line R. For interval numbers
A = [a1, a2] and B = [b1, b2] ∈ K (a1 ≤ a2, b1 ≤ b2), the
operators are defined by

A + B := [a1 + b1, a2 + b2]

and

λA :=
⎧⎨
⎩
[λa1, λa2] if λ > 0
{0} if λ = 0
[λa2, λa1] if λ < 0

respectively.

Definition 1 (Hukuhara 1967) Let A and B ∈ K. If there
exists an interval number C ∈ K such that

A = B + C,

then C is called the Hukuhara difference (or H -difference)
of A and B and it will be denoted by A � B.

Although H -difference can satisfy A � A = 0, it does not
always exists for any two interval numbers. Thereafter, Ste-
fanini (2010) introduced the following general Hukuhara
difference.

Definition 2 (Stefanini 2010) The general Hukuhara differ-
ence (or gH-difference) of A = [a1, a2] and B = [b1, b2] ∈
K is defined as

A �g B = [min{a1 − b1, a2 − b2},
max{a1 − b1, a2 − b2}] . (1)

See (Stefanini 2008, 2010; Tao and Zhang 2015) for more
basic properties of the gH -difference. If we define the width
of an interval A as w(A) = a2 − a1 (Markov 1979). For all
A and B ∈ K, and λ ∈ R, we have

w(A) ≥ 0; w(λA) = |λ|w(A); w(A + B)

= w(A) + w(B); w(A �g B) = |w(A) − w(B)|.

Thus, it is obvious that

A �g B =
{
[a1 − b1, a2 − b2] , if w(A) ≥ w(B),

[a2 − b2, a1 − b1] , if w(A) < w(B).
(2)

It can be seen that the H -difference must be the gH -
difference, and reverse is not true. But in the case of w(A) ≥
w(B), there is A �g B = A � B.

If A, B and C ∈ K, then

A �g B = C ⇔
{
A = B + C, if w(A) ≥ w(B),

B = A + (−C), if w(A) < w(B).
(3)

The Hausdorff–Pompeiu (Moore et al. 2009) metricH in
quasi-linear space K is defined by

H(A, B) = max{|a1 − b1|, |a2 − b2|}. (4)

Then (K,H) is a complete, separable and locally compact
metric space (Li et al. 2013).

Now we define a functional ‖ · ‖ : K → [0,∞) to be
a norm on quasi-linear space K by ‖A‖ = max{|a1|, |a2|}
for every A = [a1, a2] ∈ K, and thus (K, ‖ · ‖) is a com-
pete normed quasilinear space (Markov 2000; Tao 2016).
Furthermore, the following relationships exist between the
Hausdorff-Pompeiu metricH and the norm ‖ · ‖,

‖A‖ = H(A, {0}), H(A, B) = ‖A �g B‖. (5)

2.2 Basics of interval-valued functions

Let F(t) = [ f1(t), f2(t)] be an interval-valued function,
where f1 and f2 are real-valued functions defined on [a, b],
and for any t ∈ [a, b], f1(t) ≤ f2(t) holds. Addition-
ally, it is readily seen that the usual metric: H(F,G) =
supa≤t≤b max {| f1(t) − g1(t)|, | f2(t) − g2(t)|} is associated
with the norm by H(F, {0}) = supa≤t≤b ‖F(t)‖ and
H(F,G) = supa≤t≤b

∥∥F(t) �g G(t)
∥∥, which ‖F(t)‖ =

max{| f1(t)|, | f2(t)|} is a function on [a, b]. We now can
consider the concepts of limit, continuity, differentiability
and integrability of interval-value functions by use of the
metricH(·, ·) as follows.

(i) (Lupulescu 2015) We recall that limt→t0 F(t) exists
if and only if limt→t0 f1(t) and limt→t0 f2(t) exist as finite
numbers. In this case, we have

lim
t→t0

F(t) =
[
lim
t→t0

f1(t), lim
t→t0

f2(t)

]
. (6)

In particular, F is continuous if and only if f1 and f2 are
continuous.

It is easy to know that continuity of F and G imply con-
tinuity of F + G, λF , and also holds true for F �g G from
(Markov 1979).
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(ii) (Definition 6 of Markov (1979)) If the functions f1
and f2 are Lebesgue integrable on [a, b], then F is Lebesgue
integrable on [a, b]. In this case we have
∫ b

a
F(t)dt =

[∫ b

a
f1(t)dt,

∫ b

a
f2(t)dt

]
. (7)

(iii) (Proposition 4ofLupulescu (2015)) F(t) is absolutely
continuous if and only if f1(t) and f2(t) are both absolutely
continuous.

Definition 3 (Lupulescu 2015) The derivative of interval-
valued function F on t ∈ [a, b] (provided it exists) is

d

dt
F(t) = lim

h→0

F (t + h) �g F (t)

h
.

Remark 1 d
dt F(t) is the general Hukuhara derivative (or gH -

derivative) of F at t ∈ [a, b], and at the end points of [a, b],
we consider only the one sided gH -derivatives. F is called
general Hukuhara differentiable (or gH -differentiable) on
[a, b] if d

dt F(t) ∈ K exists at each point t ∈ [a, b].
Next, we introduce δ derivative of interval-valued func-

tions.

Definition 4 (Borges 2004; Cankaya 2021) (Interval-valued
gHδ-derivative) Suppose g ∈ C1([a, b],R) is a strictly
increasing real-valued function with g(a) > 0 and g′(t) >

0 throughout this paper, and F : [a, b] → K is an
interval-valued function. The δ general Hukuhara derivative
(gHδ-derivative for short) of F on t ∈ [a, b] is defined as
follows:

δF(t) := lim
h→0

F(t + h) �g F(t)

g(t + h) − g(t)
. (8)

Remark 2 We say that F is gHδ-differentiable on [a, b] if
δF(t) ∈ K exists at each point t ∈ [a, b]. It is easy to verify
that if the interval-valued function F is gH -differentiable,
then F is also gHδ-differentiable, and we have

δF(t) := 1

g′(t)
d

dt
F(t), (9)

which d
dt F(t) refers to the derivative of the interval-valued

function F based on the general Hukuhara difference, i.e.
d
dt F(t) = limh→0

F(t+h)�g F(t)
h . For a real-valued function

f , if it is differentiable, then its δ derivative exists and f is
said to be δ-differentiable.

Concerning the definition (8), there are the same way to
define the q-derivative on time scales (Borges 2004; Cankaya
2021). So it is reasonable to define the δ derivative operator
here.

Notice that if the real-valued function w(F(t)) is increas-
ing (decreasing), that is δw(F(t)) ≥ 0 (δw(F(t)) ≤ 0), then
the interval-valued function F is simply referred to as wδ-
increasing (wδ-decreasing) and it is called as wδ-monotone.

Theorem 1 Let F : [a, b] → K be an interval-valued func-
tion as F(t) = [ f1(t), f2(t)]. If real-valued functions f1 and
f2 are δ-differentiable for almost everywhere (a.e.) t ∈ [a, b],
then F is gHδ-differentiable for a.e. t ∈ [a, b] and

δF(t) = [min{δ f1(t), δ f2(t)},max{δ f1(t), δ f2(t)}] . (10)

Moreover, this also has that
(i) δF(t) = [δ f1(t), δ f2(t)] for a.e. t ∈ [a, b], if F is

wδ-increasing;
(ii) δF(t) = [δ f2(t), δ f1(t)] for a.e. t ∈ [a, b], if F is

wδ-decreasing.

Proof By the definition of gHδ-derivative, we have

δF(t)

= lim
h→0

F(t + h) �g F(t)

g(t + h) − g(t)

= lim
h→0

[
min

{
f1(t + h) − f1(t)

g(t + h) − g(t)
,
f2(t + h) − f2(t)

g(t + h) − g(t)

}
,

max

{
f1(t + h) − f1(t)

g(t + h) − g(t)
,
f2(t + h) − f2(t)

g(t + h) − g(t)

}]

= [min{δ f1(t), δ f2(t)},
max{δ f1(t), δ f2(t)}] for a.e. t ∈ [a, b].

If F is wδ-increasing, then δw(F(t)) = δ( f2(t) −
f1(t)) ≥ 0, that is δ f2(t) ≥ δ f1(t). Therefore δF(t) =
[δ f1(t), δ f2(t)]. Otherwise, if F is wδ-decreasing, then
δF(t) = [δ f2(t), δ f1(t)] for a.e. t ∈ [a, b]. The proof is
completed. ��

Usually one only can obtain δ(F+G) ⊆ δF+δG when F
andG are gHδ-differentiable from (10). However, conditions
are needed to guarantee that δ(F + G) = δF + δG. For
convenience, suppose V1(t, h) = F(t + h) �g F(t) and
V2(t, h) = G(t + h) �g G(t).

Theorem 2 The following properties hold:
(i) If F and G are equally wδ-monotonic, then

δ(F + G) = δF + δG (11)

and

δ(F �g G) = δF �g δG. (12)

(ii) If F and G are differently wδ-monotonic, then

δ(F + G) = δF �g (−1)δG (13)
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and

δ(F �g G) = δF + (−1)δG. (14)

Proof (i) Suppose that F and G are wδ-increasing. Hence,
for h > 0, sincew(F(t+h)) ≥ w(F(t)) andw(G(t+h)) ≥
w(G(t)). From (3) we get F(t + h) = F(t) + V1(t, h) and
G(t + h) = G(t) + V2(t, h), and thus

F(t + h) + G(t + h) = F(t) + G(t) + V1(t, h) + V2(t, h).

Since w(F(t + h) + G(t + h)) ≥ w(F(t) + G(t)), we
have

(F(t + h) + G(t + h)) �g (F(t) + G(t))

= V1(t, h) + V2(t, h).

For h < 0, since w(F(t + h)) ≤ w(F(t)) and w(G(t +
h)) ≤ w(G(t)), we obtain F(t) = F(t + h) + (−1)V1(t, h)

and G(t) = G(t + h) + (−1)V2(t, h), and thus

F(t) + G(t) = F(t + h) + G(t + h)

+(−1)(V1(t, h) + V2(t, h)).

Due to w(F(t + h) + G(t + h)) ≤ w(F(t) + G(t)), it
follows that

(F(t + h) + G(t + h)) �g (F(t) + G(t))

= V1(t, h) + V2(t, h).

As a result, for h > 0 and h < 0, the following formula
holds

lim
h→0+−

(F(t + h) + G(t + h)) �g (F(t) + G(t))

g(t + h) − g(t)

= lim
h→0+−

V1(t, h) + V2(t, h)

g(t + h) − g(t)

= δF + δG.

Thus, F + G is gHδ-differentiable and Eq. (11) is true.
Similarly, if F and G are wδ-decreasing, F + G is gHδ-
differentiable and Eq. (11) also holds.

Let

M = (w(F(t + h)) − w(G(t + h)))(w(F(t)) − w(G(t))).

We can obtain M ≥ 0. In fact, the condition M < 0 means
that w(F(t +h)−w(G(t +h)) and w(F(t)−w(G(t)) have
different signs, which is impossible for sufficiently small h
and from the continuous function w(F(t) − w(G(t))).

SinceM ≥ 0,we considerw(F(t+h))−w(G(t+h)) ≥ 0
and w(F(t)) − w(G(t)) ≥ 0. In the case of h > 0. Because

w(F(t + h)) ≥ w(G(t + h)), from (i) of Lemma 2.3 of Tao
(2016) we have

[F(t + h) �g G(t + h)] �g [F(t) �g G(t)]
= F(t + h) �g [G(t + h) + (F(t) �g G(t))]. (15)

Since F(t+h) = F(t)+V1(t, h) andG(t+h) = G(t)+
V2(t, h), and thus (15) is changed to

(F(t) + V1(t, h)) �g [(G(t) + V2(t, h))

+(F(t) �g G(t))]. (16)

Sincew(F(t)) ≥ w(G(t)). Bymeans of the properties (A�g

B) + B = A if w(A) ≥ w(B) (Stefanini 2010), and (A +
B) �g (A + C) = B �g C (see (ii) of Lemma 2.2 of Tao
(2016)). Thus (16) can be rewritten as

(F(t) + V1(t, h)) �g (F(t) + V2(t, h))

= V1(t, h) �g V2(t, h).

In the case of h < 0, considering w(F(t)) ≥ w(G(t)),
from (ii) of Lemma 2.3 of Tao (2016) we have

[F(t + h) �g G(t + h)] �g [F(t) �g G(t)]
= [(F(t + h) �g G(t + h)) + G(t)] �g F(t), (17)

and since F(t) = F(t + h) + (−1)V1(t, h) and G(t) =
G(t + h) + (−1)V2(t, h), substituting them into (17), we
give

[(F(t + h) �g G(t + h)) + G(t + h) + (−1)V2(t, h)]
�g(F(t + h) + (−1)V1(t, h)). (18)

Since w(F(t + h)) ≥ w(G(t + h)), from (vi) on pp. 5 of
Tao (2016), (18) is improved as

(F(t + h) + (−1)V2(t, h)) �g (F(t + h) + (−1)V1(t, h))

= [(−1)V2(t, h)] �g [(−1)V1(t, h)]
= V1(t, h) �g V2(t, h).

As a result, whether h > 0 or h < 0, there are

lim
h→0+−

(F(t + h) �g G(t + h)) �g (F(t) �g G(t))

g(t + h) − g(t)

= lim
h→0+−

V1(t, h) �g V2(t, h)

g(t + h) − g(t)

= δF �g δG.

Thus, F �g G is gHδ-differentiable and Eq. (12) is true.
Similarly, when F and G are wδ-decreasing, one can prove
that F �g G is gHδ-differentiable and Eq. (12) is also true.
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(ii) For the case of F andG are differentlywδ-monotonic,
the proof can be completed in the same way as that in (i). ��

3 Interval-valued functions’ fractional
integral

First, let us revisit the space L p([a, b],K).

Definition 5 (Lupulescu 2015) The space L p([a, b]),K) is
defined to consist of those interval-valued functions F =
[ f1, f2] : [a, b] → K for which ‖F‖p < ∞, with

‖F‖p =
(∫ b

a
‖F(t)‖pdt

) 1
p

(1 ≤ p < ∞)

and

‖F‖∞ = ess sup
a≤t≤b

‖F(t)‖,

where the real-valued function ‖F(t)‖ = max{| f1(t)|, | f2
(t)|}.
Remark 3 An interval-valued function F : [a, b] → K is
said to be L p integrable on [a, b] if and only if f1 and f2 are
L p integrable on [a, b].
In fact, for necessity, since

(∫ b

a
| f1(t)|pdt

) 1
p

≤
(∫ b

a
max{| f1(t)|, | f2(t)|}pdt

) 1
p

and

(∫ b

a
| f2(t)|pdt

) 1
p

≤
(∫ b

a
max{| f1(t)|, | f2(t)|}pdt

) 1
p

,

thus from Definition 5 we know that

‖F‖p =
(∫ b

a
‖F(t)‖pdt

) 1
p

=
(∫ b

a
max{| f1(t)|, | f2(t)|}pdt

) 1
p

< ∞.

Therefore, f1 and f2 are L p integrable on [a, b].
Conversely, if f1 and f2 are L p integrable on [a, b], then

by
(∫ b

a | f1(t)|pdt
) 1

p
< ∞ and

(∫ b
a | f2(t)|pdt

) 1
p

< ∞, we

have

(∫ b

a
max{| f1(t)|, | f2(t)|}pdt

) 1
p

=
(∫

L1

| f1(t)|pdt +
∫
L2

| f2(t)|pdt
) 1

p

< ∞,

where L1 and L2 ⊆ [a, b].
In particular, when p = 1, there is L p([a, b]),K) =

L([a, b],K). It is a normed quasilinear space with respect
to the norm ‖ · ‖p (1 ≤ p ≤ ∞).

Suppose F ∈ L([a, b],K). Then the n-fold integral of F
is given as

I n,g
a+ F(t) =

∫ t

a
g′(t1)dt1

∫ t1

a
g′(t2)dt2 · · ·

∫ tn−1

a
g′(s)F(s)ds

=
∫ t

a
g′(s)F(s)ds

∫ t

s
g′(t1)dt1

∫ t1

s
g′(t2)dt2 · · ·

∫ tn−2

s
g′(tn−1)dtn−1

= 1

�(n)

∫ t

a
(g(t) − g(s))n−1 g′(s)F(s)ds. (19)

Let n be a positive real number α, then an interval-valued
general fractional integral is defined as follows.

Definition 6 Suppose F ∈ L([a, b],K), and g ∈ C1[a, b] is
a strictly increasing real-valued function with g(a) ≥ 0 and
g′(t) > 0. The interval-valued general fractional integral of
order α > 0 is defined by

I α,g
a+ F(t) := 1

�(α)

∫ t

a
(g(t) − g(s))α−1 g′(s)F(s)ds. (20)

If F = [ f1, f2] ∈ L([a, b],K) and α > 0, then

I α,g
a+ F(t) = [I α,g

a+ f1(t), I
α,g
a+ f2(t)].

Lemma 1 (Corollary 2.5 of Fan et al. (2022)) Let f ∈
L p[a, b] and u = g(t)

g(s) , a ≤ s ≤ t , 1 ≤ p ≤ ∞. If there is a

function J ∈ C[1, g(b)
g(a)

] such that g−1(ug(s)) ≤ J (u)s and
d(g−1(ug(s)))

ds ≤ J (u), respectively, then

‖I α,g
a+ f (t)‖p ≤ K‖ f ‖p (21)

where

K =
∫ g(b)

g(a)

1

g(b)α

�(α)

(u − 1)α−1

uα+1 J (u)
1
p du. (22)

Theorem 3 (Boundedness theorem) Let F ∈ L([a, b],K).
Then the interval-valued general fractional integral Iα,g

a+ is
bounded in the space L([a, b],K):

‖I α,g
a+ F‖p=1 ≤ K‖F‖p=1,

where K = ∫ g(b)
g(a)

1
g(b)α

�(α)
(u−1)α−1

uα+1 J (u)du and J is a control
function defined by Lemma 1.
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Proof Since g is strictly increasing on [a, b], we have

‖I α,g
a+ F‖
= max{|I α,g

a+ f1(t)|, |I α,g
a+ f2(t)|}

≤ max{ 1

�(α)

∫ t

a
(g(t) − g(s))α−1g′(s)| f1(s)|ds,

1

�(α)

∫ t

a
(g(t) − g(s))α−1g′(s)| f2(s)|ds}

≤ 1

�(α)

∫ t

a
(g(t) − g(s))α−1g′(s)max{| f1(s)|, | f2(s)|}ds

= I α,g
a+ ‖F‖.

Since ‖F‖ is a real Lebesgue integrable function on [a, b],
by Lemma 1, we get

‖I α,g
a+ ‖F‖‖p=1 ≤ K‖‖F‖‖p=1,

where K = ∫ g(b)
g(a)

1
g(b)α

�(α)
(u−1)α−1

uα+1 J (u)du is a positive constant
(here J (u) see Lemma 1). Therefore, we obtain

∥∥I α,g
a+ F

∥∥
p=1 =

∫ b

a

∥∥I α,g
a+ F

∥∥ dt

≤
∫ b

a
I α,g
a+ ‖F‖dt

≤ K
∫ b

a
‖F‖dt

= K‖F‖p=1.

As a result, the proof is completed. ��
Theorem 4 (Semigroup property) Let α and β > 0. For F ∈
L([a, b],K), the semigroup property holds

Iα,g
a+ I β,g

a+ F(t) = I α+β,g
a+ F(t). (23)

Proof Since I β,g
a+ F(t) =

[
I β,g
a+ f1(t), I

β,g
a+ f2(t)

]
for t ∈

[a, b], by the semigroup property of real-valued functions
(Fu et al. 2021a, b), we get

I α,g
a+ I β,g

a+ F(t) = I α,g
a+

[
I β,g
a+ f1(t), I

β,g
a+ f2(t)

]

=
[
I α,g
a+ I β,g

a+ f1(t), I
α,g
a+ I β,g

a+ f2(t)
]

=
[
I α+β,g
a+ f1(t), I

α+β,g
a+ f2(t)

]

= I α+β,g
a+ F(t),

which completes the proof. ��
Similar as Remark 5 and Theorem 1 of Lupulescu (2015),

we give the following theorem without proof.

Theorem 5 If F and G ∈ L([a, b],K), α > 0, then
(a) I α,g

a+ (F(t) + G(t)) = I α,g
a+ F(t) + I α,g

a+ G(t) for all
t ∈ [a, b].

(b) I α,g
a+ (F(t) �g G(t)) ⊇ I α,g

a+ F(t) �g I α,g
a+ G(t) for all

t ∈ [a, b]. Moreover, if w(F(t)) − w(G(t)) has a constant
sign, that is w(F(t)) ≥ w(G(t)) or w(F(t)) ≤ w(G(t)) on
[a, b], then I α,g

a+
(
F(t) �g G(t)

) = I α,g
a+ F(t) �g I α,g

a+ G(t).

4 Interval-valued functions’ fractional
derivatives

Definition 7 (Function space) In the δ derivative’s sense, a
function space is defined by

ACn
δ ([a, b],K) = {F : [a, b] → K : δn−1F ∈ AC[a, b]}.

Weuse ACδ([a, b], K ) = AC1
δ ([a, b], K ).We note that F ∈

ACδ([a, b],K) if and only if f1 and f2 ∈ ACδ([a, b],R),
where F(t) = [ f1(t), f2(t)], t ∈ [a, b] (similar as that
of Lupulescu (2015)). It is easy to show that if F ∈
ACδ([a, b],K), then δF exists almost everywhere, and δF ∈
L([a, b],K) (see pp. 2 of Kilbas et al. (2006)).

4.1 General Riemann–Liouville derivative

Definition 8 Suppose F = [ f1, f2] ∈ ACδ([a, b],K). The
general fractional R–L derivative of F of 0 < α < 1 order
is given by

Dα,g
a+ F(t) :=δ I 1−α,g

a+ F(t)

= δ

�(1 − α)

∫ t

a
g′(s)(g(t) − g(s))−αF(s)ds

(24)

for a.e. t ∈ [a, b]. For α = 1, D1,g
a+ F(t) = δF(t).

Lemma 2 (Samko et al. 1993) If the real-valued function f ∈
ACδ([a, b],R), then I 1−α,g

a+ f ∈ ACδ([a, b],R).

For the proof of this lemma, the reader can refer to Lemma
2.1 in Samko et al. (1993).

Remark 4 FromLemma2, if F = [ f1, f2] ∈ ACδ([a, b],K),
then I 1−α,g

a+ F ∈ ACδ([a, b],K) and the general R–L deriva-
tive exists almost everywhere on [a, b]. So it is well-defined.
Theorem 6 Let F = [ f1, f2] ∈ ACδ([a, b],K), then

(a) Dα,g
a+ F(t) = [

min
{
Dα,g
a+ f1(t), D

α,g
a+ f2(t)

}
,max{

Dα,g
a+ f1(t), D

α,g
a+ f2(t)

}]
for a.e. t ∈ [a, b].

(b) If I 1−α,g
a+ F is wδ-increasing on [a, b], then

Dα,g
a+ F(t) = [

Dα,g
a+ f1(t), D

α,g
a+ f2(t)

]
for a.e. t ∈ [a, b].
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(c) If I 1−α,g
a+ F is wδ-decreasing on [a, b], then

Dα,g
a+ F(t) = [

Dα,g
a+ f2(t), D

α,g
a+ f1(t)

]
for a.e. t ∈ [a, b].

Proof (a) Since I 1−α,g
a+ F ∈ ACδ([a, b],K), δ I 1−α,g

a+ F(t)
exists for a.e. t ∈ [a, b], then Dα,g

a+ F exists for a.e. t ∈ [a, b].
From (10), we obtain

Dα,g
a+ F(t) = δ I 1−α,g

a+ F(t)

=
[
min

{
δ I 1−α,g

a+ f1(t), δ I
1−α,g
a+ f2(t)

}
,

max
{
δ I 1−α,g

a+ f1(t), δ I
1−α,g
a+ f2(t)

}]

= [
min

{
Dα,g
a+ f1(t), D

α,g
a+ f2(t)

}
,

max
{
Dα,g
a+ f1(t), D

α,g
a+ f2(t)

}]
for a.e. t ∈ [a, b].

(b) Suppose I 1−α,g
a+ F is wδ-increasing on [a, b]. Then

from Theorem 1 it follows that

Dα,g
a+ F(t) = δ I 1−α,g

a+ F(t)

=
[
δ I 1−α,g

a+ f1(t), δ I
1−α,g
a+ f2(t)

]

= [
Dα,g
a+ f1(t), D

α,g
a+ f2(t)

]
for a.e. t ∈ [a, b].

(c) The proof is similar to as that of (b). We do not give
detail here. ��

Next, we consider the following composite properties.

Theorem 7 Let 0 < α ≤ 1. If F = [ f1, f2] ∈ L([a, b],K),
then

Dα,g
a+ I α,g

a+ F(t) = F(t) for t ∈ [a, b]. (25)

Proof Forα = 1. It is obvious that I 1,ga+ F(t) = [∫ t
a g

′(s) f1(s)
ds,

∫ t
a g

′(s) f2(s)ds], then δw(I 1,ga+ F(t)) = δ{∫ t
a g

′(s)( f2(s)−
f1(s))}ds = f2(t) − f1(t) ≥ 0. Thus I 1,ga+ F(t) is wδ-
increasing.

For 0 < α < 1. From Theorem 4 and Theorem 1, we have

Dα,g
a+ I α,g

a+ F(t) = δ I 1−α,g
a+ I α,g

a+ F(t) = δ I 1,ga+ F(t)

= δ[
∫ t

a
g′(s) f1(s)ds,

∫ t

a
g′(s) f2(s)ds]

= [ f1(t), f2(t)]
= F(t)

for t ∈ [a, b]. This completes the proof. ��
Remark 5 More generally, let β > α and 0 < α ≤ 1. By
Theorem 4 and Theorem 7, then

Dα,g
a+ I β,g

a+ F(t) = Dα,g
a+ I α,g

a+ I β−α,g
a+ F(t)

= I β−α,g
a+ F(t)

for t ∈ [a, b].
Theorem 8 Let F ∈ ACδ([a, b],K) and 0 < α ≤ 1. If
I 1−α,g
a+ F(t) is wδ-monotone on [a, b], then

I α,g
a+ Dα,g

a+ F(t) = F(t) �g
I 1−α,g
a+ F(a)

�(α)
(g(t) − g(a))α−1

(26)

for a.e. t ∈ [a, b].
Proof Suppose f ∈ ACδ([a, b],R). By Theorem 2.6 of
Jarad and Abdeljawad (2020), we have I α,g

a+ Dα,g
a+ f (t) =

f (t) − I 1−α,g
a+ f (a)

�(α)
(g(t) − g(a))α−1 for a.e. t ∈ [a, b]. If

I 1−α,g
a+ F is wδ-increasing, from (b) of Theorem 6, then

I α,g
a+ Dα,g

a+ F(t)

= I α,g
a+

[
Dα,g
a+ f1(t), D

α,g
a+ f2(t)

]
= [

I α,g
a+ Dα,g

a+ f1(t), I
α,g
a+ Dα,g

a+ f2(t)
]

=
[
f1(t) − I 1−α,g

a+ f1(a)

�(α)
(g(t) − g(a))α−1,

f2(t) − I 1−α,g
a+ f2(a)

�(α)
(g(t) − g(a))α−1

]

= F(t) �g
I 1−α,g
a+ F(a)

�(α)
(g(t)

− g(a))α−1 for a.e. t ∈ [a, b].

A similar proof can be given if I 1−α,g
a+ F iswδ-decreasing.

So Eq. (26) holds. ��

4.2 General Caputo derivative

Definition 9 Suppose F = [ f1, f2] ∈ ACδ([a, b],K). The
general Caputo fractional derivative of F of order 0 < α < 1
is given by

C Dα,g
a+ F(t) :=I 1−α,g

a+ δF(t)

= 1

�(1 − α)

∫ t

a
g′(s)(g(t) − g(s))−αδF(s)ds

(27)

for a.e. t ∈ [a, b]. For α = 1, C D1,g
a+ F(t) = δF(t) for a.e.

t ∈ [a, b].
Remark 6 Suppose F ∈ ACδ([a, b],K). δF exists for a.e.
t ∈ [a, b] and δF ∈ L([a, b],K). Thus I 1−α,g

a+ δF < ∞ and
the Caputo derivative of F exists a.e. t ∈ [a, b].
Theorem 9 (Hoa et al. 2017) The following properties holds.
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(1) If F ∈ ACδ([a, b],K) and 0 < α ≤ 1, then

C Dα,g
a+ F(x) ⊇

[
min

{
C Dα,g

a+ f1(t),
C Dα,g

a+ f2(t)
}

,

max
{
C Dα,g

a+ f1(t),
C Dα,g

a+ f2(t)
}]

for a.e. t ∈ [a, b].
(2) If F is wδ-increasing, then C Dα,g

a+ F(t) =[
C Dα,g

a+ f1(t), C D
α,g
a+ f2(t)

]
for a.e. t ∈ [a, b].

(3) If F is wδ-decreasing, then C Dα,g
a+ F(t) =[

C Dα,g
a+ f2(t), C D

α,g
a+ f1(t)

]
for a.e. t ∈ [a, b].

Theorem 10 Let F andG ∈ ACδ([a, b],K)bewδ-monotone,
and 0 < α ≤ 1. Then the following properties hold.

(a) If F and G are equally wδ-monotonic on [a, b], then
C Dα,g

a+ (F(t) + G(t))

= C Dα,g
a+ F(t) + C Dα,g

a+ G(t)

and

C Dα,g
a+ (F(t) �g G(t)) ⊇ C Dα,g

a+ F(t) �g
C Dα,g

a+ G(t)

for a.e. t ∈ [a, b]. Moreover, if w(δF(t)) − w(δG(t)) has a
constant sign, then

C Dα,g
a+ (F(t) �g G(t)) = C Dα,g

a+ F(t)

�g
C Dα,g

a+ G(t) f or a.e. t ∈ [a, b]. (28)

(b) If F and G are differently wδ-monotonic on [a, b], then
C Dα,g

a+ (F(t) �g G(t)) = C Dα,g
a+ F(t) + (−C Dα,g

a+ G(t))

and

C Dα,g
a+ (F(t) + G(t)) ⊇ C Dα,g

a+ F(t) �g (−C Dα,g
a+ G(t))

for a.e. t ∈ [a, b]. Moreover, if w(δF(t)) − w(δG(t)) has a
constant sign, then

C Dα,g
a+ (F(t) + G(t)) = C Dα,g

a+ F(t)

�g(−C Dα,g
a+ G(t)) f or a.e. t ∈ [a, b].

Proof (a) If F and G are equally wδ-monotonic on [a, b].
By Theorem 2, it follows that δ(F + G) = δF + δG and
δ(F �g G) = δF �g δG, and from Theorem 5, we obtain

C Dα,g
a+ (F(t) + G(t)) = I 1−α,g

a+ δ(F(t) + G(t))

= I 1−α,g
a+ (δF(t) + δG(t))

= C Dα,g
a+ F(t) + C Dα,g

a+ G(t)

and

Dα,g
a+ (F(t) �g G(t)) = I 1−α,g

a+ δ(F(t) �g G(t))

= I 1−α,g
a+ (δF(t) �g δG(t))

⊇ I 1−α,g
a+ δF(t) �g I 1−α,g

a+ δG(t)

= C Dα,g
a+ F(t) �g

C Dα,g
a+ G(t)

for a.e. t ∈ [a, b]. Moreover, if w(δF(t)) ≥ w(δG(t)) or
w(δF(t)) ≤ w(δG(t)), by Theorem 5, we have

C Dα,g
a+ (F(t) �g G(t)) = C Dα,g

a+ F(t) �g
C Dα,g

a+ G(t).

(b) For the case, F and G are different wδ-monotonic on
[a, b], the proof can be completed similarly. ��

Next, we give the following composite properties.

Theorem 11 Let 0 < α ≤ 1 and F ∈ L([a, b],K). If Iα,g
a+ F

is wδ-increasing, then

C Dα,g
a+ I α,g

a+ F(t) = F(t) for a.e. t ∈ [a, b]. (29)

Proof It is known that by Theorem 9, since I α,g
a+ F is wδ-

increasing on [a, b] and from Corollary 1 of Jarad and
Abdeljawad (2020), we have

C Dα,g
a+ I α,g

a+ F(t) = C Dα,g
a+

[
I α,g
a+ f1(t), I

α,g
a+ f2(t)

]
=

[
C Dα,g

a+ I α,g
a+ f1(t),

C Dα,g
a+ I α,g

a+ f2(t)
]

= [ f1(t), f2(t)] .

��

Remark 7 More generally, let β > α, 0 < α ≤ 1 and F ∈
L([a, b],K) such that I α,g

a+ F is wδ-increasing. By Theorem
4 and Theorem 11, then

C Dα,g
a+ I β,g

a+ F(t) = C Dα,g
a+ I α,g

a+ I β−α,g
a+ F(t)

= I β−α,g
a+ F(t)

for t ∈ [a, b].

Theorem 12 Let 0 < α ≤ 1 and F ∈ ACδ([a, b],K) is a
wδ-monotone interval-valued function. Then

I α,g
a+ C Dα,g

a+ F(t) = F(t) �g F(a) for a.e. t ∈ [a, b]. (30)
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Proof According to Definition 9 and Proposition 6 of
Lupulescu (2015), for a.e. t ∈ [a, b], we obtain

I α,g
a+ C Dα,g

a+ F(t) = I α,g
a+ I 1−α,g

a+ δF(t)

= I 1,ga+ δF(t)

=
∫ t

a
g′(s)δF(s)ds

= F(t) �g F(a).

��

5 Gronwall inequalities

Consider the following interval-valued linear initial value
problem

{C Dα,g
a+ X(t) = λX(t),

X(a) = Xa,
(31)

where X = [x1, x2] ∈ ACδ([a, b],K) is wδ-monotone, 0 <

α ≤ 1, λ ∈ R is a constant, and Xa = [x1(a), x2(a)] is the
initial value.

From Theorem 12, we obtain the following integral equa-
tion

X(t) �g Xa = I α,g
a+ λX(t). (32)

We can say X is a solution of Eq. (31), if and only if it solves
Eq. (32).

If X iswδ-increasing on [a, b], thenEq. (32) can bewritten
as

X(t) = Xa + I α,g
a+ λX(t). (33)

If X is wδ-decreasing on [a, b], then Eq. (32) can be writ-
ten as

X(t) = Xa � (−1)I α,g
a+ λX(t). (34)

Thus, wewill discuss two fractional Gronwall inequalities
for interval-valued functions. Some necessary definitions are
given first.

Definition 10 (Tao 2016) If an interval-valued inequality
X(t) ≤ Y (t) for any t ∈ [a, b], this means

x1(t) ≤ y1(t), x2(t) ≤ y2(t) for any t ∈ [a, b].

Theorem 13 Suppose 0 ≤ λ ≤ 1, an interval number K =
[k1, k2] ≥ 0, and the interval-valued function I α,g

a+ X is wδ-
increasing on [a, b].

(i) If X(t) ≤ K + I α,g
a+ λX(t), then

X(t) ≤ K Eα(λ, (g(t) − g(a))α).

(ii) If X(t) ≤ K � (−1)I α,g
a+ λX(t), then

X(t) ≤ [k1Eα(λ2, (g(t) − g(a))2α) + k2λ(g(t)

−g(a))αE2α,α+1(λ
2, (g(t)

−g(a))2α), k1λ(g(t) − g(a))αE2α,α+1(λ
2, (g(t)

−g(a))2α) + k2Eα(λ2, (g(t) − g(a))2α)].

Proof (i) Let U (t) = K + I α,g
a+ λX(t), then

X(t) ≤ U (t), X(a) ≤ K . (35)

Since I α,g
a+ X is wδ-increasing, we obtain I α,g

a+ λX is wδ-
increasing. Further U is also wδ-increasing. According to
Theorems 10 and 11, fromU (t) = K + I α,g

a+ λX(t)we derive
C Dα,g

a+U = λX ≤ λU . Therefore, we obtain

C Dα,g
a+ u1 ≤ λu1 and

C Dα,g
a+ u2 ≤ λu2.

Let c1(t) ≥ 0 and c2(t) ≥ 0 for any t ∈ [a, b]. Then we
consider the following real-valued equations

{C Dα,g
a+ u1(t) = λu1(t) − c1(t)

u1(a) = k1
(36)

and

{C Dα,g
a+ u2(t) = λu2(t) − c2(t),

u2(a) = k2.
(37)

Then we have

u1(t)

= k1Eα(λ, (g(t) − g(a))α)

−
∫ t

a
Eα,α(λ, ((g(t) − g(s))α))(g(t) − g(s))α−1

g′(s)c1(s)ds ≤ k1Eα(λ, (g(t) − g(a))α).

Similarly, u2(t) ≤ k2Eα(λ, (g(t) − g(a))α). Therefore,
U (t) ≤ K Eα(λ, (g(t) − g(a))α), we arrive at the desired
result.

(ii) Let U (t) = K � (−1)I α,g
a+ λX , then

X(t) ≤ U (t) and X(a) ≤ K . (38)

Thus we haveU (t) = [k1+ I α,g
a+ λx2, k2+ I α,g

a+ λx1]. Since
I α,g
a+ X is wδ-increasing, we obtain that U is wδ-decreasing.

123



7748 Q. Fan et al.

Thus according to Theorem 9, we derive

C Dα,g
a+U = C Dα,g

a+ [k1 + I α,g
a+ λx2, k2 + I α,g

a+ λx1]
= [C Dα,g

a+ (k2 + I α,g
a+ λx1),

C Dα,g
a+ (k1 + I α,g

a+ λx2)]
= [λx1, λx2]
= λX ≤ λU .

Therefore, we have

C Dα,g
a+ u1 ≤ λu2 and

C Dα,g
a+ u2 ≤ λu1.

Suppose c1(t) ≥ 0 and c2(t) ≥ 0 for any t ∈ [a, b]. Then
we consider the following real-valued equation

⎧⎨
⎩

C Dα,g
a+ u1(t) = λu2(t) − c1(t),

C Dα,g
a+ u2(t) = λu1(t) − c2(t),

u1(a) = k1, u2(a) = k2.
(39)

It can be rewritten as

{C Dα,g
a+ u(t) = Au(t) − c(t),

u(a) = k,
(40)

where vector u(t) = (u1(t), u2(t))T, c(t) = (c1(t), c2(t))T,

k = (k1, k2)T, and matrix A =
(
0 λ

λ 0

)
.

It is clear that the solution of Eq. (40) has the following
relationship

u(t) ≤ Eα(A, (g(t) − g(a)α))k.

It is easy to verify that matrix A can be diagonalized,

that is, there is an invertible matrix P =
(
1 1
1 −1

)
, such that

P−1AP =
(

λ 0
0 −λ

)
. Thus A = P

(
λ 0
0 −λ

)
P−1. Further-

more, we can obtain

Eα(A, (g(t) − g(a)α))

= P

(
Eα(λ, (g(t) − g(a)α)) 0

0 Eα(−λ, (g(t) − g(a)α))

)
P−1.

Then

u(t) ≤ P

(
Eα(λ, (g(t) − g(a)α)) 0
0 Eα(−λ, (g(t) − g(a)α))

)
P−1k

=
(
1 1
1 −1

)

(
Eα(λ, (g(t) − g(a)α)) 0
0 Eα(−λ, (g(t) − g(a)α))

)

( 1
2

1
2

1
2 − 1

2

)(
k1
k2

)

Thus, we get the desired result. ��

Conclusion

The general fractional calculus for interval-valued functions
is developed in this study. A general fractional Gronwall
inequalities are given. The general fractional calculus the-
ory of interval-valued functions in this paper will be used in
the existence, uniqueness and stability of solutions to gen-
eral fractional interval-valued differential equations. We will
consider this aspect in future research.
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