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Abstract
This paper introduces the notion of k-fuzzy metric spaces, which generalizes and extends the concept of fuzzy metric spaces
due to George andVeeramani in [A. George and P. Veeramani, On some results in fuzzymetric spaces, Fuzzy Sets and Systems
64 (1994), 395-399.] for the fuzzy sets involving more than one (k) parameters. It is shown that the topology generated by the
k-fuzzy metric is first countable, and the k-fuzzy metric space is Hausdorff. Finally, we prove a fixed point theorem, which
generalizes and extends the results of Grabiec [M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems, 27
(1988), 385-389.] into k-fuzzy metric spaces.

Keywords k-fuzzy metric spaces · Hausdorff spaces · Contractions · Fixed points

1 Introduction

The theory of fuzzy sets was introduced by Zadeh (1965)
in 1965. This theory inspires several concepts in mathemat-
ics. One of these concepts is a fuzzy metric space close to
the fixed point theory. The most popular definition of this
space is due to Kramosil and Michalek (1975) ten years later
the appearance of the fuzzy theory. The ideas of Cauchy-
ness, completeness (now known as a G-completeness) and
compactness in fuzzy metric spaces were introduced by Gra-
biec (1988). Furthermore, in his research, fuzzy versions of
two classical results in fixed point theory, including Banach

B Wutiphol Sintunavarat
wutiphol@mathstat.sci.tu.ac.th

Dhananjay Gopal
gopaldhananjay@yahoo.in

Abhay S. Ranadive
asranadive04@yahoo.co.in

Satish Shukla
satishmathematics@yahoo.co.in

1 Department of Mathematics, Guru Ghasidas Vishwavidyalya
Bilaspur, Bilaspur, Chhattisgarh 495009, India

2 Department of Mathematics and Statistics, Faculty of Science
and Technology, Thammasat University Rangsit Center,
Khlong Luang, Pathum Thani 12120, Thailand

3 Department of Mathematics, Shri Vaishnav Institute of
Science, Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore,
M.P. 453331, India

fixed point theorem and Edelstein fixed point theorem, were
proved fuzzy metric spaces in the setting of Kramosil and
Michálek. Based on the fact that R is not complete with the
completeness due to Grabiec (1988), the idea of the Cauchy
sequence in fuzzymetric spaces wasmodified byGeorge and
Veeramani (1994). They also slightly modified the definition
of a fuzzymetric space introduced byKramosil andMichalek
(1975) and defined concepts of Hausdorff topology and first
countable topology. In this setting, it brings to the impressive
fact that fuzzy metrics appear more appropriate for studying
induced topological structures.

The motivation in this paper for inventing a new space,
which is more general than a fuzzy metric space due to
George and Veeramani (1994), is given in this paragraph.
In a fuzzy metric space, the fuzzy distance of two points is
measured by the degree of the nearness of points with respect
to a parameter t ∈ (0,∞). For instance, we can think of t as
the time required to travel between two points x and y in a
space. There is an interesting situation of the degree of near-
ness when we measure this degree with respect to different
(more than one) parameters. For instance, suppose that we
move from India, represented by x , to Thailand, represented
by y, by a plane and measure the degree of the nearness of x
and y with respect to time and fuel consumption with planes
of different fuel efficiency. Then obviously, this degree will
be different for distinct planes even for the same time t , as
well as for the same plane but for different time intervals.
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The mentioned situation in the previous paragraph brings
the inspiration for introducing the notion of k-fuzzy met-
ric spaces, where k ∈ {1, 2, 3, . . .}, which is an extension
and generalization of the concept of fuzzy metric spaces
due to George and Veeramani (1994). In a k-fuzzy metric
space, the fuzzy distance of two points is measured by the
degree of nearness with respect to k parameter(s). Further-
more, fixed point results for contractive mappings in k-fuzzy
metric spaces are proved. These results generalize the fixed
point results of Grabiec (1988) into k-fuzzy metric spaces.

2 Preliminaries

This section presents the needed definitions in the next sec-
tion.

Definition 1 (Schweizer and Sklar (1960)) A binary opera-
tion ∗ : [0, 1] × [0, 1] → [0, 1] is called a triangular norm
(briefly, t-norm) if the following conditions are satisfied for
all a, b, c, d ∈ [0, 1]:

1. ∗(a, b) = ∗(b, a);
2. if a ≤ c and b ≤ d, then ∗(a, b) ≤ ∗(c, d);
3. ∗(∗(a, b), c) = ∗(a, ∗(b, c));
4. ∗(a, 1) = a.

If ∗ is continuous, it is called a continuous t-norm.

For each t-norm ∗ : [0, 1] × [0, 1] → [0, 1] and a, b ∈
[0, 1], instead of ∗(a, b) we will use the infix notation a ∗ b.
Three typical examples of continuous t-norms are a product
t-norm ∗1, a minimum t-norm ∗2 and a Lukasiewicz t-norm
∗3, which are defined for each a, b ∈ [0, 1] by

a ∗1 b = min{a, b},
a ∗2 b = ab

a ∗3 b = max{a + b − 1, 0}.

Remark 2 (George and Veeramani 1994) For each t-norm ∗ :
[0, 1] × [0, 1] → [0, 1], the following assertions hold:

1. for each a, b ∈ (0, 1)with a > b, there is c ∈ (0, 1) such
that a ∗ c ≥ b;

2. for each d ∈ (0, 1), there is e ∈ (0, 1) such that e∗e ≥ d.

Definition 3 (George and Veeramani (1994)) An ordered
triple (X , M, ∗) is called a fuzzy metric space if X is an
arbitrary set, ∗ is a continuous t-norm, M is a fuzzy set on
X2 × (0,∞), and the following conditions are satisfied for
all x, y, z ∈ X and s, t > 0:

(FM1) M(x, y, t) > 0;

(FM2) M(x, y, t) = 1 if and only if x = y;
(FM3) M(x, y, t) = M(y, x, t);
(FM4) M(x, y, t) ∗ M(y, z, s) ≤ M(x, z, t + s);
(FM5) M(x, y, ·) : (0,∞) → [0, 1] is a continuous

mapping.

For a fuzzy metric space (X , M, ∗), M with ∗ is called a
fuzzy metric on X . Moreover, for each x, y ∈ X and t > 0,
M(x, y, t) can be thought of as the definition of nearness
between x and y with respect to t . It is also known that
M(x, y, ·) is non-decreasing. For various examples of fuzzy
metric spaces, we refer to George and Veeramani (1994);
Gregori et al. (2011); Sapena (2001). We state only a partic-
ular example of our interest.

Example 4 (Induced fuzzy metric) Let (X , d) be a metric
space and ∗ be a product t-norm. Define a fuzzy set M on
X2 × (0,∞) by

M(x, y, t) = ktn

ktn + md(x, y)

for all x, y ∈ X and t > 0, where k,m, n > 0. Then,
(X , M, ∗) is a fuzzy metric space called the induced fuzzy
metric (see George and Veeramani 1994).

In the above example, note that

lim
t→∞ M(x, y, t) = 1 for all x, y ∈ X . (1)

As M(x, y, t) represents the degree of the nearness of points
x and y with respect to the parameter t and it is a non-
decreasing function of t for all x, y ∈ X ; therefore, condition
(1) is the most natural condition for the degree of the near-
ness to be perfect (that is, unity). Notice that this is a specific
condition and may not hold in some particular fuzzy metric
spaces, for instance, in stationary fuzzy metric spaces (see
Gregori and Romaguera 2004). This brings to the following
definition:

Definition 5 A fuzzy metric space (X , M, ∗) is called a nat-
ural fuzzy metric space if and only if

lim
t→∞ M(x, y, t) = 1

for all x, y ∈ X .

3 k-fuzzymetric spaces

In this section, we introduce the idea of k-fuzzymetric spaces
and investigate the properties of such spaces. We begin with
the following definition:
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Definition 6 Let X be a nonempty set, ∗ a continuous t-norm,
k a positive integer and M be a fuzzy set on X2 × (0,∞)k .
An ordered triple (X , M, ∗) is called a k-fuzzy metric space
if the following conditions are satisfied for all x, y ∈ X ,
t, s > 0 and t1, t2, . . . , tk > 0:

(kFM1) M(x, y, t1, t2, . . . , tk) > 0;
(kFM2) M(x, y, t1, t2, . . . , tk) = 1 if and only if x = y;
(kFM3) M(·, ·, t1, t2, . . . , tk) is symmetric;
(kFM4) for any l ∈ {1, 2, 3, . . . , k}, we have

M(y, z, t1, t2, . . . , tl−1, t, tl+1, . . . , tk−1, tk)

∗M(y, z, t1, t2, . . . , tl−1, s, tl+1, . . . , tk−1, tk)

≤ M(x, z, t1, t2, . . . , tl−1, t + s, tl+1, . . . , tk);

(kFM5) M(x, y, ·) : (0,∞)k −→ [0, 1] is a continuous
mapping.

Remark 7 For k = 1, the k-fuzzy metric space reduces into
the fuzzy metric space in the sense of George and Veeramani
(1994).

Example 8 Let (X , d) be a metric space, ∗ the product (min-
imum) t-norm, ω > 0 and k be a positive integer. Define a
fuzzy set M on X2 × (0,∞)k by

M(x, y, t1, t2, . . . , tk) = ωt1t2 · · · tk
ωt1t2 · · · tk + d(x, y)

for all x, y ∈ X and and t1, t2, . . . , tk > 0. Then, (X , M, ∗)

is a k-fuzzy metric space.

Example 9 Let (X , d) be a metric space, ∗ the product (min-
imum) t-norm, ω > 0 and k be a positive integer. Define a
fuzzy set M on X2 × (0,∞)k by

M(x, y, t1, t2, . . . , tk) = ω

[
ω +

(
k∑

i=1

1

ti

)
d(x, y)

]−1

for all x, y ∈ X and and t1, t2, . . . , tk > 0. Then, (X , M, ∗)

is a k-fuzzy metric space.

Example 10 Let X = R
k , where k is a positive integer, ω >

0 and ∗ be the product t-norm. Define a fuzzy set M on
X2 × (0,∞)k by

M(x, y, t1, . . . , tk) = ω

[
ω +

k∑
i=1

|yi − xi |
ti

]−1

for all x = (x1, x2, . . . , xk), y = (y1, y2, . . . , yk) ∈ X and
t1, t2, . . . , tk > 0. Then, (X , M, ∗) is a k-fuzzy metric space.

From the application point of view, one should define the
k-fuzzy metric with care to the physical nature of quantities.
For instance, if one considers the degree of the nearness of
two points x and y in a space with respect to time and fuel
consumed inmoving from x to y, one cannot use the formulae
for the degree of the nearness as given in the above examples
due to the different dimensions of these quantities. In the
following example, one such case is presented.

Example 11 Let X = R
3 be the Euclidean space with the

usual distance d on X . Suppose that t is the time and f is
the fuel consumed in moving from a point x to a point y in
X . Then, the degree of the nearness of x and y with respect
to t and f can be measured by the 2-fuzzy metric M on
X2 × (0,∞)2 given by

M(x, y, t, f ) = e
−d(x,y)

(
ω1
t + ω2

f

)
,

for all x, y ∈ X and t > 0, f > 0, where ω1 and ω2 are
constants chosen with suitable physical dimensions.

In the present paper, we restrict ourselves to only mathe-
matical properties of k-fuzzy metric spaces.

Definition 12 A k-fuzzy metric space (X , M, ∗) is called l-
natural k-fuzzy metric space if there exists l ∈ {1, 2, . . . , k}
such that

lim
tl→∞ M(x, y, t1, . . . , tl , . . . , tk) = 1

for all x, y ∈ X .

For the rest of this paper, for a given k-fuzzy metric space
(X , M, ∗), x, y ∈ X and t1, t2, . . . , tk > 0, for simplicity,
we write M(x, y, tk1 ) instead M(x, y, t1, t2, . . . , tk).

Next, we discuss some properties k-fuzzy metric spaces
and establish the topology of such spaces.

Proposition 13 Let (X , M, ∗) be a k-fuzzy metric space,
t, t1, t2, . . . , tk > 0. Suppose that tl < t for some l ∈
{1, 2, . . . , k}. Then,

M(x, y, tk1 ) ≤ M(x, y, t1, . . . tl−1, t, tl+1, . . . , tk)

for all x, y ∈ X.

Proof By using the property of ∗ and (kFM4), for each x, y ∈
X , we obtain

M(x, y, tk1 )

= M(x, y, tk1 ) ∗ 1

= M(x, y, tk1 ) ∗ M(y, y, t1 . . . , tl−1, t − tl , tl+1, tk)

≤ M(x, y, t1, . . . , tl−1, t, tl−1, . . . , tk).

�	

123



11084 D. Gopal et al.

Remark 14 In a k-fuzzy metric space (X , M, ∗), if

M(x, y, tk1 ) > 1 − ε,

where x, y ∈ X , t1, t2, . . . , tk > 0 and 0 < ε < 1, then for
each l ∈ {1, 2, . . . , k}, we can find t ∈ (0, tl) such that

M(x, y, t1, . . . , tl−1, t, tl , . . . , tk) > 1 − ε.

Definition 15 Let (X , M, ∗) be a k-fuzzy metric space. An
open ball with center x ∈ X and radius ε ∈ (0, 1)
with respect to parameters t1, t2, . . . , tk > 0, denoted by
B (x, ε; t1, t2, . . . , tk), is defined by

B (x, ε; t1, t2, . . . , tk) = {y ∈ X : M
(
x, y, tk1

)
> 1 − ε}.

Definition 16 Let (X , M, ∗) be a k-fuzzy metric space. A
subset A of X is called an open set if and only if there is an
open ball B such that B ⊆ A. A subset C of X is called a
closed set if and only if its complement is an open set.

Theorem 17 Every open ball in a k-fuzzy metric space is an
open set.

Proof Let (X , M, ∗) be a k-fuzzy metric space, x ∈ X ,
t1, t2, . . . , tk > 0 and ε ∈ (0, 1). Assume that

y ∈ B (x, ε; t1, t2 . . . , tk) .

Then, we have M
(
x, y, tk1

)
> 1− ε. Therefore, we can find

l ∈ {1, 2, . . . , k} and t ∈ (0, tl) such that

ε0 := M (x, y, t1, . . . , tl−1, t, tl , . . . , tk) > 1 − ε.

Then, we can find δ ∈ (0, 1) such that

ε0 > δ > 1 − ε.

By Remark 2, there is ε1 ∈ (0, 1) such that ε0 ∗ε1 ≥ δ.Now,
we will claim that

B (y, 1 − ε1; t1, t2, . . . , tl , t − tl , tl+1, . . . , tk)

⊆ B (x, ε; t1, t2, . . . , tk) .

Assume that

z ∈ B (y, 1 − ε1; t1, t2, . . . , tl , t − tl , tl+1, . . . , tk) .

Then,

M (y, z, t1, t2, . . . , tl−1, t − tl , tl , . . . , tk) > ε1.

This implies that

M
(
x, z, tk1

)
≥ M (x, y, t1, t2, . . . , tl−1, t, tl+1, . . . , tk)

∗M (y, z, t1, t2, . . . , tl−1, t − tl , tl+1, . . . , tk)

≥ ε0 ∗ ε1

≥ δ

> 1 − ε,

which proves the result. �	

From the above theorem, we can directly get the following
result:

Theorem 18 Let (X , M, ∗) be a k-fuzzy metric space and

τ := {A ⊆ X : x ∈ X if and only if there exist

t1, t2, . . . , tk > 0 and ε ∈ (0, 1) such that

B(x, ε; t1, t2 . . . , tk) ⊆ A} .

Then, τ is a topology on X .

Remark 19 Let (X , M, ∗) be a k-fuzzy metric space and x ∈
X . Since

Bx :=
{
B

(
x,

1

n
; t1, t2 . . . , tk

)
: n ∈ N

}
,

where t1 = t2 = · · · = tk = 1
n , is a local base at a point x ,

the topology τ given in Theorem 18 is first countable.

Theorem 20 Every k-fuzzy metric space is Hausdorff.

Proof Let (X , M, ∗) be a k-fuzzy metric space and x, y ∈ X
with x �= y. Then, for given t1, t2, . . . , tk > 0, we have

0 < M
(
x, y, tk1

)
< 1.

Let ε := M
(
x, y, tk1

) ∈ (0, 1). For each ε0 ∈ (ε, 1), we can
choose ε1 such that ε1 ∗ ε1 ≥ ε0. We will claim that

Bxy := B (x, 1 − ε1; t1, t2, . . . , tl/2, . . . , tk)
∩B (y, 1 − ε1; t1, t2, . . . , tl/2, . . . , tk)

= ∅.
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Assume that Bxy �= ∅, that is, there is z ∈ Bx,y . Then, we
have

ε = M(x, y, tk1 )

≥ M(x, z, t1, . . . , tl/2, . . . , tk)

∗M(z, y, t1, . . . , tl/2, . . . , tk)

≥ ε1 ∗ ε1

≥ ε0

> ε.

This contradiction proves the claim and so the result. �	
Definition 21 Let (X , M, ∗) be a k-fuzzy metric space. A
sequence {xn} in X is said to be convergent and converges
to x ∈ X if and only if for every real ε ∈ (0, 1), there exists
n0 ∈ N such that

M(xn, x, t
k
1 ) > 1 − ε

for all n > n0 and t1, t2, . . . , tk > 0.

The proof of the following lemma is straightforward, so
we will omit the proof.

Lemma 22 Let (X , M, ∗) be a k-fuzzy metric space. A
sequence {xn} in X converges to x ∈ X if and only if

lim
n→∞ M

(
xn, x, t

k
1

)
= 1

for all t1, t2, . . . , tk > 0.

Definition 23 Let (X , M, ∗) be a k-fuzzy metric space and
{xn} be a sequence in X .

1. {xn} is called an M-Cauchy sequence if for every ε ∈
(0, 1), there exists n0 ∈ N such that

M
(
xn, xm, tk1

)
> 1 − ε

for all n,m > n0 and t1, t2, . . . , tk > 0.
2. {xn} is called a G-Cauchy sequence if

lim
n→∞ M

(
xn, xn+p, t

k
1

)
= 1

for all t1, t2, . . . , tk > 0 and p > 0.

Note that the above definitions of Cauchy sequences are
different (for the case k = 1, see Vasuki and Veeramani
2003).

Definition 24 Let (X , M, ∗) be a k-fuzzy metric space.

1. (X , M, ∗) is said to be M-complete if every M-Cauchy
sequence in X converges to some x ∈ X .

2. (X , M, ∗) is said to be G-complete if every G-Cauchy
sequence in X converges to some x ∈ X .

Remark 25 For k = 1, the M-completeness and the G-
completeness of a k-fuzzy metric space reduce to the M-
completeness in the sense of George and Veeramani (1997)
and the G-completeness in the sense of Grabiec (1988) of a
fuzzy metric space, respectively.

4 Fixed point theorems

In this section, we prove many fixed point results in k-fuzzy
metric spaces. For simplicity, for a given k-fuzzy metric
space (X , M, ∗), l ∈ {1, 2, . . . , k}, a > 0, x, y ∈ X and
t1, t2, . . . , tk > 0, we write Ma

l

(
x, y, tk1

)
instead

M (x, y, t1, . . . , tl−1, tl/a, tl+1, . . . , tk) .

Theorem 26 Let (X , M, ∗) be a G-complete k-fuzzy metric
space and T : X → X be a mapping satisfying the following
condition:

M1/λ
l

(
T x, T y, tk1

)
≥ M

(
x, y, tk1

)
(2)

for all x, y ∈ X and t1, t2, . . . , tk > 0, where l ∈
{1, 2, . . . , k} and λ ∈ (0, 1) is a constant. Suppose that
(X , M, ∗) is an l-natural k-fuzzy metric space. Then, T has
a unique fixed point.

Proof First, we will show that if a fixed point of T exists,
then it is unique. Suppose that u and v are fixed points of T .
By (2), we have

M
(
u, v, tk1

)
= M

(
Tu, T v, tk1

)
≥ M (u, v, t1, . . . , tl−1, tl/λ, tl+1, . . . , tk)

= Mλ
l

(
u, v, tk1

)
.

By repeating this process, we obtain

M(u, v, tk1 ) ≥ Mλn

l

(
u, v, tk1

)
(3)

for all n ∈ N. Note that, if {an} be any sequence such that
an > 0 and lim

n→∞ an = 0, then since (X , M, ∗) is l-natural,

we have

lim
n→∞ Man

l

(
x, y, tk1

)
= 1
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for all t1, t2, . . . , tk > 0. Using this fact in (3), we obtain
M(u, v, tk1 ) = 1 for all t1, t2, . . . , tk > 0, that is, u = v.
Therefore, the fixed point of T is unique.

For the existence of a fixed point of T , we choose x0 ∈ X
and define an iterative sequence {xn} by xn = T xn−1 for all
n ∈ N. If xn = xn−1 for some n ∈ N, then xn is the unique
fixed point of T . Therefore, we may assume that xn �= xn−1

for all n ∈ N. For any n ∈ N and t1, t2, . . . , tk > 0, we have

M
(
xn, xn+1, t

k
1

)
= M

(
T xn−1, T xn, t

k
1

)
≥ M (xn−1, xn, t1, . . . , tl−1, tl/λ, tl+1, . . . , tk)

= Mλ
l

(
xn−1, xn, t

k
1

)
.

By repeating this process, we obtain

M(xn, xn+1, t
k
1 ) ≥ Mλn

l

(
x0, x1, t

k
1

)
(4)

for all n ∈ N. For each n ∈ N, t1, t2, . . . , tk > 0 and p > 0,
we have

M
(
xn, xn+p, t

k
1

)
≥ M (xn, xn+1, t1, . . . , tl−1, tl/2, tl−1, . . . , tk)

∗M (
xn+1, xn+p, t1, . . . , tl−1, tl/2, tl , . . . , tk

)
≥ M2

l

(
xn, xn+1, t

k
1

)
∗M

(
xn+1, xn+2, t1, . . . , tl−1, tl/2

2, tl−1, . . . , tk
)

∗M
(
xn+2, xn+p, t1, . . . , tl−1, tl/2

2, tl , . . . , tk
)

≥ M2
l

(
xn, xn+1, t

k
1

)
∗ M22

l

(
xn+1, xn+2, t

k
1

)
∗ · · · ∗ M2p−1

l

(
xn+p−2, xn+p−1, t

k
1

)
∗M2p−1

l

(
xn+p−1, xn+p, t

k
1

)
.

By using (4), we obtain

M(xn, xn+p, t
k
1 ) ≥ M2λn

l

(
x0, x1, t

k
1

)
∗M22λn+1

l

(
x0, x1, t

k
1

)
∗ · · · ∗ M2p−1λn+p−1

l

(
x0, x1, t

k
1

)
.

Since (X , M, ∗) is l-natural, it follows from the above
inequality that

lim
n→∞ M

(
xn, xn+p, t

k
1

)
= 1.

Therefore, {xn} is a G-Cauchy sequence. By the G-
completeness of (X , M, ∗), there exists u ∈ X such that

lim
n→∞ M

(
xn, u, tk1

)
= 1 (5)

for all t1, t2, . . . , tk > 0. We will show that u is a fixed point
of T . For each t1, t2, . . . , tk > 0, we have

M(u, Tu, tk1 ) ≥ M2
l

(
u, xn, t

k
1

)
∗ M2

l

(
xn, Tu, tk1

)
= M2

l

(
u, xn, t

k
1

)
∗ M2

l

(
T xn−1, Tu, tk1

)
≥ M2

l

(
u, xn, t

k
1

)
∗ M2λ

l

(
xn−1, u, tk1

)
.

By using (5) in the above inequality, we obtain M(u, Tu, tk1 )

= 1 for all t1, t2, . . . , tk > 0, that is, Tu = u. Thus, u is the
unique fixed point of T . �	

For k = 1, the above theorem reduces to the following
result of Grabiec (1988).

Corollary 27 (Grabiec (1988)) Let (X , M, ∗)beaG-complete
fuzzy metric space such that

lim
t→∞ M(x, y, t) = 1 for all x, y ∈ X (6)

and T : X → X be a mapping. Suppose that there exists
λ ∈ (0, 1) such that

M(T x, T y, λt) ≥ M(x, y, t) (7)

for all x, y ∈ X. Then, T has a unique fixed point.

Remark 28 Let (X , M, ∗) be a fuzzy metric space and T :
X → X be a mapping. The contractive condition (7) tells
that the mapping T contract the space with respect to the
parameter t in the sense that the degree of the nearness of
images of any two points under T is not less than the degree
of the nearness of corresponding points (obviously in case of
stationery fuzzy metric spaces (see Gregori and Romaguera
2004) it is not applicable). In Theorem 26, the mapping con-
tracts the space with respect to only parameter tl for some
l ∈ {1, 2, . . . , k} and it may not be contractive with respect to
other parameters. Similarly, (X , M, ∗) is assumed l-natural
k-fuzzy metric space for at least one l ∈ {1, 2, . . . , k} only.

The following example verifies the above remark.

Example 29 Let X = [0, 1] × [0, 1] and ∗ be the product
t-norm and the fuzzy set M on X2 × (0,∞)2 be defined by

M(x, y, t1, t2) =
[
1 + |y1 − x1| + |y2 − x2|

t1

]−1
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for all x = (x1, x2), y = (y1, y2) ∈ X and t1, t2 > 0. Then,
(X , M, ∗) is a G-complete 2-fuzzy metric space (k = 2).
Moreover,

lim
t1→∞ M(x, y, t1, t2) = 1 for all x, y ∈ X , t2 > 0,

that is, (X , M, ∗) is a 1-natural 2-fuzzy metric space. Define
a mapping T : X −→ X by

T (x1, x2) =
( x1
2

,
x2
2

)
for all (x1, x2) ∈ X .

For x = (x1, x2), y = (y1, y2) ∈ X and t1, t2 > 0, we have

M(T x, T y, λt1, t2) =
[
1 + |y1 − x1| + |y2 − x2|

2λt1

]−1

≥
[
1 + |y1 − x1| + |y2 − x2|

t1

]−1

= M(x, y, t1, t2)

for λ ∈ [1/2, 1). By Theorem 26, T has a unique fixed point.
In this case, a point (0, 0) ∈ X is a fixed point of T .

In Theorem26, corresponding to condition (2), we assume
that the space (X , M, ∗) is l-natural. Notice that, for the exis-
tence of a fixed point, the l-naturalness cannot be replaced
by the m-naturalness with m �= l. The following example
verifies this fact.

Example 30 Let X = [0, 1] × [0, 1] and ∗ be the product
t-norm and the fuzzy set M on X2 × (0,∞)2 be defined by

M(x, y, t1, t2) =
[
1 + |y1 − x1| + |y2 − x2|

t2

]−1

for all x = (x1, x2), y = (y1, y2) ∈ X and t1, t2 > 0. Then,
(X , M, ∗) is a G-complete 2-fuzzy metric space (k = 2).
Moreover,

lim
t2→∞ M (x, y, t1, t2) = 1 for all x, y ∈ X , t1 > 0,

that is, (X , M, ∗) is a 2-natural 2-fuzzy metric space. Define
a mapping T : X −→ X by

T (x1, x2) = (x1, x2) for all (x1, x2) ∈ X .

Notice that, for any arbitrary λ ∈ (0, 1)

M(T x, T y, λt1, t2) ≥ M(x, y, t1, t2)

for all x, y ∈ X , t1, t2 > 0. But the fixed point of T is not
unique. Indeed, every point (x1, x2) ∈ X is a fixed point of
T .

Finally, we will prove a fixed point result for a k-fuzzy
contraction mapping. We begin with the definition of a k-
fuzzy contraction mapping as follows:

Definition 31 Let (X , M, ∗) be a k-fuzzy metric space. A
mapping T : X → X is called a k-fuzzy contractionmapping
if

1

M
(
T x, T y, tk1

) − 1 ≤ λ

[
1

M
(
x, y, tk1

) − 1

]
(8)

for all x, y ∈ X and t1, t2, . . . , tk > 0, where λ ∈ [0, 1) is a
constant.

Theorem 32 Let (X , M, ∗) be a G-complete k-fuzzy metric
space and T : X → X be a k-fuzzy contraction mapping.
Then, T has a unique fixed point.

Proof Let x0 ∈ X and define a sequence {xn} by xn = T xn−1

for all n ∈ N. We will show that this sequence is aG-Cauchy
sequence. For any n ∈ N, we have

1

M
(
xn, xn+1, tk1

) − 1 = 1

M
(
T xn−1, T xn, tk1

) − 1

≤ λ

[
1

M
(
xn−1, xn, tk1

) − 1

]
.

By repeating in this manner, we obtain

1

M
(
xn, xn+1, tk1

) − 1 ≤ λn

[
1

M
(
x0, x1, tk1

) − 1

]
(9)

for all n ∈ N. Since λ ∈ [0, 1), we conclude from (9) that

lim
n→∞

[
1

M
(
xn, xn+1, tk1

) − 1

]
≤ 0,

that is,

lim
n→∞ M

(
xn, xn+1, t

k
1

)
= 1 (10)

for all t1, t2, . . . , tk > 0. For each n ∈ N, p > 0 and
t1, t2, . . . , tk > 0, we have

M
(
xn, xn+p, t

k
1

)
≥ M2

l

(
xn, xn+1, t

k
1

)
∗ M2

l

(
xn+1, xn+p, t

k
1

)
≥ M2

l

(
xn, xn+1, t

k
1

)
∗ M22

l

(
xn+1, xn+2, t

k
1

)
∗ · · · ∗ M2p−1

l

(
xn+p−2, xn+p−1, t

k
1

)
∗M2p−1

l

(
xn+p−1, xn+p, t

k
1

)
. (11)
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From (10), we have

lim
n→∞ Ml

a

(
xn, xn+1, t

k
1

)
= 1

for all t1, t2, . . . , tk > 0 and a > 0, which together with
inequality (11) yields

lim
n→∞ M

(
xn, xn+p, t

k
1

)
≥ 1 ∗ 1 ∗ · · · ∗ 1 = 1

for all t1, t2, . . . , tk > 0 and p > 0. Therefore, the sequence
{xn} is aG-Cauchy sequence in X .By theG-completeness of
X , there exists u ∈ X such that the sequence {xn} converges
to u, that is,

lim
n→∞ M

(
xn, u, tk1

)
= 1 (12)

for all t1, t2, . . . , tk > 0.
Now, we will show that u is a fixed point of T . For each

n ∈ N, we have

1

M
(
xn+1, Tu, tk1

) − 1 = 1

M
(
T xn, Tu, tk1

) − 1

≤ λ

[
1

M
(
xn, u, tk1

) − 1

]
.

By using (12), we have

lim
n→∞

[
1

M
(
xn+1, Tu, tk1

) − 1

]
= 0,

that is,

lim
n→∞ M

(
xn+1, Tu, tk1

)
= 1 (13)

for all t1, t2, . . . , tk > 0. For any n ∈ N, we have

M
(
u, Tu, tk1

)
≥ Ml

2

(
u, xn+1, t

k
1

)
∗ Mk

2

(
xn+1, Tu, tk1

)
,

which together with (12) and (13) yields

M
(
u, Tu, tk1

)
= 1

for all t1, t2, . . . , tk > 0, that is, Tu = u. Thus, u is a fixed
point of T .

For the uniqueness, we suppose v is another fixed point of
T distinct from u. Then, there exist r1, r2, . . . , rk > 0 such
that

M
(
u, v, rk1

)
< 1,

that is,

1

M
(
u, v, rk1

) − 1 > 0.

Now, we have

1

M
(
u, v, rk1

) − 1 = 1

M
(
Tu, T v, rk1

) − 1

≤ λ

[
1

M
(
u, v, rk1

) − 1

]
.

Since λ < 1, the above inequality yields a contradiction.
Therefore, we must have u = v. Thus, the fixed point of T
is unique. �	
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