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Abstract
Symmetric and k-cyclic structure ofmodal pseudocomplementedDeMorgan algebraswas introduced previously. In this paper,
we first present the construction of epimorphisms between finite symmetric (or 2-cyclic) modal pseudocomplemented De
Morgan algebras. Furthermore, we compute the cardinality of the set of all epimorphism between finite structures. Secondly,
we present the construction of finite free algebras on the variety of k-cyclic modal pseudocomplemented De Morgan algebras
and display how our computations are in fact generalizations to others in the literature. Our work is strongly based on the
properties of epimorphisms and automorphisms and the fact that the variety is finitely generated.

1 Introduction

A pseudocomplemented De Morgan algebra A is a De Mor-
gan algebrawith a unary operator ∗ such that every a ∈ A, the
element a∗ is the pseudocomplement of a, see for instance
(Sankappanavar 1986), i.e.,

a ∧ x = 0 if and only if x ≤ a∗.

A. V. Figallo considered the subvariety of pseudocomple-
mented De Morgan algebras (Figallo and sobre 1992) which
verifies:

(tm)x∨ ∼ x ≤ x ∨ x∗

This author called them modal pseudocomplemented De
Morgan algebras (for short,mpM−algebras). In addition, we
can define this class of algebras as follows:

Recall thatA.Monteiro introduced tetravalentmodal alge-
bras (TMA-algebras) as algebras 〈L,∧,∨,∼,∇, 0, 1〉 of
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type (2, 2, 1, 1, 0, 0), such that 〈L,∧,∨,∼, 0, 1〉 are De
Morgan algebras which satisfy the following conditions:

∇x∨ ∼ x = 1,

∇x∧ ∼ x =∼ x ∧ x .

These algebras arise as a generalization of three-valued
Łukasiewicz algebras by omitting the identity ∇(x ∧ y) =
∇x∧∇ y, and theywere studied in Figallo and Ziliani (1991),
Figallo and Landini (1995), Figallo (2021), Font and Rius
(2000), Loureiro (1983). The variety of TMA-algebras is
generated by the well-known four-element De Morgan alge-
bra expanded with a simple modal operator ∇ (i.e., ∇1 = 1
and ∇x = 0 for x �= 1. Besides, ∼ 0 = 1 and ∼ x = x for
x �= 0, 1). The operator∇ has associated� operator through
�x =∼ ∇ ∼ x , andwhen theTMA-algebra is a three-valued
Łukasiewicz algebras, � coincides with Baaz’s � operator,
Baaz (1996). Baaz’s � operator was intensive studied in the
Fuzzy Logic area by Esteva, Godo, Hájek, Montagna, and
others, see for instance (Esteva et al. 2001, 2000).

It is worth mentioning that the class of mpM−algebras
constitutes a proper subvariety of the variety V0 stud-
ied by H. Sankappanavar in Sankappanavar (1986). More
recently, the theory of operators over mpM−algebras was
considered by Figallo-Orellano et al. in Figallo-Orellano
and Pascual (2019), Figallo-Orellano et al. (2022), Figallo-
Orellano et al. (2017). In particular, they studied the class of
mpM−algebras enriched with an automorphism of period 2
and k, where k is an positive integer; in fact, this automor-
phism works as a new unary operator. Recently, the class of
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k-cyclic mpM-algebras has been related to paraconsistent
logics and logics formal inconsistency (LFIs, see Carnielli
andMarcos 2002) through degree-preserving construction in
Figallo-Orellano et al. (2022); clearly, when we take k = 2,
we obtain the class of symmetric mpM-algebras. On the
other hand, monadic and modal operators over special Heyt-
ing algebras were studied in Almiñana and Pelaitay (2021),
Cantú and Figallo (2020), Gallardo and Ziliani (2022).

In this paper, we will determine the condition to construct
epimorphisms between finite symmetric mpM-algebras,
with the purpose of computing them. To know how the
epimorphisms can be built, it is useful, for instance, to deter-
mine the lattice of subvarieties of the variety of symmetric
mpM-algebras, see (Figallo-Orellano et al. 2017, Section 7).
Furthermore, the construction of epimorphisms between two
finite algebra can be used to compute the cardinality of free
algebras in finite generated varieties as it was the case of
Figallo-Orellano et al. (2017), Section 6.

On the other hand,wewill focus on the task of studying the
structure of free k-cyclicmpM-algebras with a finite number
of generators. The technique to be used in this section was
applied recently in the papers (Figallo-Orellano andGallardo
2015; Figallo-Orellano et al. 2017; Figallo et al. 2018). In
particular, a technique to study a notion of free algebras over
a poset, which is a generalization of the standard notion of
free algebra, was presented by Figallo-Orellano andGallardo
(2015).

2 Preliminaries

Definition 2.1 Wesay that an algebra A is said to be anmpM-
algebra if it is a De Morgan algebra for ∼ and ∗ verifies the
following identities:

(P1) x ∧ (x ∧ y)∗ = x ∧ y∗,
(P2) x ∧ 0∗ = x ,
(P3) 0∗∗ = 0,
(tm) x∨ ∼ x ≤ x ∨ x∗.

In Figallo and sobre (1992), it was showed that every
mpM−algebra is a TMA-algebra by defining ∇x =∼ (∼
x ∧ x∗) and �x =∼ ∇ ∼ x , but the varieties are not equiv-
alent as it was shown in Figallo et al. (2018), Section 5. In
Figallo et al. (2018) (see also Figallo et al. 2014), the authors
proved that the subdirectly irreducible mpM−algebras are
three as displayed in the following Remark.

Remark 2.2 Subdirectly irreducible mpM−algebras are the
following: T2 = {0, 1} with 0 < 1, ∼ 0 = 0∗ = 1, ∼ 1 =
1∗ = 0; T3 = {0, a, 1}, with 0 < a < 1, ∼ a = a, a∗ = 0,
∼ 0 = 0∗ = 1, ∼ 1 = 1∗ = 0; and T4 = {0, a, b, 1}

with a � b, b � a and 0 < a, b < 1, ∼ b = a∗ = b,
∼ a = b∗ = a, ∼ 0 = 0∗ = 1, ∼ 1 = 1∗ = 0.
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Definition 2.3 Figallo-Orellano et al. (2022) A k-cyclic
mpM-algebra (for short Ck-algebra) is a pair (A, t) where
A is an mpM-algebra; i.e., A is a De Morgan algebra for ∼
and ∗ verifies the following identities:

(P1) x ∧ (x ∧ y)∗ = x ∧ y∗,
(P2) x ∧ 0∗ = x ,
(P3) 0∗∗ = 0.
(tm) x∨ ∼ x ≤ x ∨ x∗.

Besides, the function t : A → A is an automorphism
for mpM-algebras such that tk(x) = x where k is an integer
k ≥ 0. Besides, wewrite t0(x) = x and tn(x) = (tn−1◦t)(x)
if n ≥ 1.

Sometimes we write “t x” instead of “t(x).” It is worth
mentioning that the class Ck-algebra is a variety, and as
examples, we have the classes 1-cyclic mpM-algebra and
2-cyclic mpM-algebra were studied in Figallo et al. (2014)
and Figallo-Orellano et al. (2017), respectively.

Now, we give a result to be used to characterize the prime
spectrum for a given Ck-algebra. First, recall that the notion
of prime filter, ultrafilter, maximal and minimal is in the
usual ones, see (Balbes and Dwinger 1974). Also, we will
use the well-known Birula–Rasiowa transformation ϕ, see,
for instance, Font and Rius (2000). Recall that, if A is a De
Morgan algebra, the map ϕ is defined as follows: For every
prime filter P of A

ϕ(P) = A\ ∼ P = A\{∼ x : x ∈ P}

This map has the following properties:

• ϕ(P) is a prime filter of A,
• ϕ(ϕ(P)) = P ,
• if Q is a prime filter of A such that P ⊆ Q then ϕ(Q) ⊆

ϕ(P).

Then, we have the following lemma:
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Lemma 2.4 Figallo-Orellano et al. (2022) Let (A, t) be a Ck-
algebra, P ⊆ A a prime filter, and ϕ is the Birula–Rasiowa
transformation on A. Then, the following properties hold:

(a) t i (P) is a prime filter for 1 ≤ i ≤ k;
(b) P is minimal (maximal) iff t i (P) is minimal (maximal)

for 1 ≤ i ≤ k;
(c) U is an ultrafilter iff t i (U ) is an ultrafilter for 1 ≤ i ≤ k;
(d) ϕ(t i (P)) = t iϕ(P), 1 ≤ i ≤ k;
(e) if F is a c-filter of A and F ⊆ P, then F ⊆ ϕ(P)∩t i (P);
(f) if P ⊆ Q and Q is a prime filter of A, then ϕ(P) = Q,

or P = Q.

Definition 2.5 For a given Ck-algebra (A, t), we say that
(A, t) is r -periodic if r is the smallest non-negative element
such that tr (x) = x for every x ∈ A.

In what follows, we will present important examples of
Ck-algebra, in fact, as we will see they are the generating
algebra of the variety.

Remark 2.6 Figallo-Orellano et al. (2022) Let T2, T3, and T4
be the simple algebras of the variety of mpM-algebras, see
Remark 2.2. In the following, we will consider the sets T2,k ,
T3,k , and T4,k of all sequences x = (x1, . . . , xk) with xi ∈
Ts,k (s = 2, 3, 4) and with the pointwise defined operations.
Indeed, these algebras are also Ck-algebras. Taking the func-
tion t : Ti,k → Ti,k defined as follows: t(x1, x2, . . . , xk) =
(xk, x1, x2, . . . , xk−1) where (x1, x2, . . . , xk) ∈ Ti,k with
i = 2, 3, 4. It is not hard to see that T2,k = (T2,k, t),
T3,k = (T3,k, t) and T4,k = (T4,k, t) are k-periodic Ck-
algebras.

It is well-known that divides relation “/” between inte-
gers is a partial order. Then, for a given positive integer k, we
have the set Div(k) = {z : z divisor of k} can be considered
as distributive lattices; moreover, k1 ∧ k2 = lcm(k1, K2)

and k1 ∨ k2 = gcd(k1, K2) are the least common multi-
ple and greatest common divisor, respectively. Now, it is
possible to see that for every k-periodic Boolean algebra,
we have Bk is lattice-isomorphic to the Boolean algebra
Div(k). Furthermore, for every d ∈ Div(k) there is a
unique Bg associated with d which is a subalgebra of Bk .
Besides, Bg is d-periodic characterized by Bd = {g ∈ Bk :
t is an automorphism and td g = g}.
Lemma 2.7 Figallo-Orellano et al. (2022) The subalgebras
of Ti,k = (Ti,k, t) are of the form Ti,d = (Ti,d , td) with d/k
and i = 2, 3, 4. Besides, T2,d is a Ck-subalgebra of T3,d and
T4,d, but T3,d is not subalgebra of T4,d.

Lemma 2.8 Figallo-Orellano et al. (2022) Ti,d1 ∩ Ti,d2 =
Ti,gcd(d1,d2), T2,d1 ∩ Ti,d2 = T2,gcd(d1,d2), T3,d1 ∩ T4,d2 =
T2,gcd(d1,d2) with i = 2, 3, 4

Theorem 2.9 Figallo-Orellano et al. (2022) The variety of
Ck-algebras is finitely generated and locally finite. Besides,
the only simple algebras are Ti,k = (Ti,k, t) with i = 3, 4
and their subalgebras.

So, it is clear that the variety of Ck-algebras is finitely
generated and locally finite. Now, if we take k = 2, we
obtain the simple algebras of the variety S-algebras studied
in Figallo-Orellano et al. (2017), Theorem 5.14. Indeed:

Definition 2.10 Figallo-Orellano et al. (2017) A symmet-
ric modal pseudocomplemented De Morgan algebra (or
S-algebra) is a pair (A, T ), where A is a mpM-algebra
and t is an automorphism of period 2 defined on A, that
is, T (T (x)) = x for all x ∈ A.

Theorem 2.11 Figallo-Orellano et al. (2017) Let A be an
S-algebra. Then, A is subdirectly irreducible if and only if
A is isomorphic to a subalgebra of either T2

4 or T
2
3.

Next, we will display the S-algebras T2
4 and T2

3:
(i) T2
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where the operations are given by:

x ∼ x x∗ T x

0 1 0 0
a n l d
b l n c
c h k b
d k h a
e m m m
f f j j
g g i g
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x ∼ x x∗ T x

h c d l
i i g i
j j f f
k d c n
l b a h
m e c e
n a b k
1 0 0 1

(ii) T2
3:
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x ∼ x x∗ T x

0 1 0 0
a n e d
d k e a
e m m m
m e e j
i e 0 i
k d 0 n
n a 0 k
1 0 0 1

(iii) T4,1 = (A, t), where A = {0, a, b, 1} and t(x) = x
and a =∼ a for x ∈ A,

(iv) T4,2 = (A, t), where A = {0, f , j, 1} and t( f ) = j ,
f =∼ j ,
(v)T4,3 = (A, t), where A = {0, e,m, 1} and if t(e) = m,

e =∼ e,
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(vi) A = {0, c, 1} and t(x) = x and then we have T3 =
(A, t),

(vii) A = {0, c, 1}, t(c) =∼ c and so T3 = (A, t).
Finally,
(viii) T2.
Clearly T2

3 and T3 are not subalgebras of T2
4, but T4,2 and

T2 are the only subalgebras of T2
3.

3 Epimorphism between finiteS-algebras

In this section, we will determine the condition to construct
epimorphisms between finite S-algebras, with the purpose
of computing them. To know how the epimorphisms can be
built, it is useful, for instance, to determine the lattice of sub-
varieties of the variety of S-algebra, see (Figallo-Orellano
et al. 2017, Section 7). Furthermore, the construction of
epimorphisms between two finite algebras will be used to
compute the cardinality of free algebras in finite generated
varieties as it was the case of Figallo-Orellano et al. (2017),
Section 6.

3.1 Prime spectrum of a given algebra

It is well-known that for given a finite distributive lattice,
every prime filter is a principal filter (i.e., generated by an
element a) and so there is a bijection between the set of
prime filters and the set of prime elements. In the following,
we will refer to S-algebra A where A is finite.

On the other hand, Birula–Rasiowa transformation can
be used on the set of prime filter of A. So, we denote by
�(A) the set of all prime filters of A and the transformation
ψ : �(A) → �(A) can be defined by as ψ(p) = q iff
ϕ([p)) = [q). So, we have that ψ verifies:

• ψ(ψ(p)) = p, for any p ∈ �(A),
• if p1, p2 ∈ �(A) are such that p1 ≤ p2, then ψ(p2) ≤

ψ(p1).

As a particular case, we have that for every x ∈ A with
x �= 1 the negation ∼ can be characterized by means of ψ as
follows:

∼ x =
∨

{p∈�(A):ψ(p)�x}
p

From the result exposed in Figallo et al. (2014) and The-
orem 2.11, we have the following:

Definition 3.1 Let (�(A), ψ) be the prime spectrum of a
given S-algebraA has the following connected components:

Type I : with ψ(p) = p, (1.1) ψ = T and (1.2) ψ �= T ,
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Type II : with p < p′, ψ(p) = p′ and ψ(p′) = p, (2.1)
{p, T (p)} incomparable elements, (2.2) p = T (p)
and (2.3) T = ψ ,

Type III : with p and p′ incomparable elements,ψ(p) = p′
and ψ(p′) = p, (3.1) T = ψ , (3.2) p = T (p)
and (3.3) {p, T (p), ψ(p), ψ(T (p))} incompara-
ble elements.

Thus, if p ∈ �(A) we say that p:

• is of type I iff ψ(p) = p,
• is of type II iff there is q ∈ �(A) such that if p < q, then

ψ(p) = q, or if q < p, then ψ(q) = p,
• is of type III iff there exist q ∈ �(A) incomparable ele-

ments with p such that ψ(p) = q.

Let us observe that if A is a mpM−algebra, then the con-
nected component has only type I, II or III, where the operator
T does not play any role. In the next, we will display some
technical properties that allow us to develop this section.

Lemma 3.2 Let A be a finite mpM-algebra and p ∈ �(A).
Then, we have that:

(i) p∗ =
⎧
⎨

⎩

∨
t∈�∗

p

t si �∗
p �= ∅,

0 si �∗
p = ∅,

where �∗
x = {z ∈ �(A) :

z ∧ x = 0},
(ii) ∼ p∗ ∈ �(A),
(iii) if p = pci = (0, . . . , ci , . . . , 0) with ci ∈ �(Ti ) i =

2, 3, 4, then the following hold:

1. ci ∈ �(T2) implies ψ(p) = p,
2. ci ∈ �(T3) implies ψ(pc) = p1,
3. ci ∈ �(T4) implies ψ(pa) = pb.

Proof It is not hard to see (i) holds. We prove that (ii) is
verified: let A � ∏n

i=1 Ti where i ∈ {2, 3, 4} and the mpM-
algebra Ti are the generating algebras of the variety, see
Remark 2.2. Then, we will identify the elements of A with
n-tuples (x1, . . . , xn). It is possible to see that the prime ele-
ments of A are the form p = (0, . . . , pi , . . . , 0), where the
coordinate i is pi and the rest are 0, with pi ∈ �(Ti ). Thus,
we have that ∼ p∗

i ∈ �(Ti ).
(iii) We know that if P is a prime filter of A, then the

transformation verifies: ϕ(P) = A\ ∼ P . Since A is finite,
then ψ(p) = q iff ϕ([p)) = A\ ∼ [p) = [q). So, let
us observe that if p = (0, . . . , 1, . . . , 0), then ϕ([p)) =
ϕ([(0, . . . , 1, . . . , 0))) = A\ ∼ [(0, . . . , 1, . . . , 0)) =
[(0, . . . , 1, . . . , 0)) = [p) and thus ψ(p) = p, what verifies
1. Let us now consider pc = (0, . . . , c, . . . , 0) and p1 =
(0, . . . , 1, . . . , 0). Hence, ϕ([p1)) = ϕ([(0, . . . , 1, . . . ,
0))) = A\ ∼ [(0, . . . , 1, . . . , 0)) = A\{(x1, . . . , 0, . . . , xn) :
xi ∈ Ts} = {(w1, . . . , z, . . . , wn) : wi ∈ Ts, z ∈ {c, 1}} =

[(0, . . . , c, . . . , 0)) = pc and thereforeψ(pc) = p1. In anal-
ogous way we can see that ψ(pa) = pb. ��
Corollary 3.3 In every finite mpM-algebra A, we have:

(i) if p ∈ �(A) and ψ(p) = p, then ∇ p = p =∼ p∗,
(ii) Let p, q ∈ �(A) such that p < q and ψ(q) = p, then

∇ p = q =∼ p∗ = ∇q =∼ q∗,
(iii) Let us suppose p, q ∈ �(A) are incomparable elements

such that ψ(q) = p and ψ(p) = q, then p < ∇ p =
∇q > q and ∇ p /∈ �(A).

Proof Taking into account the proof of Lemma 3.2, we will
prove that (i) holds. Indeed, let p = (0, . . . , pi , . . . , 0) with
pi ∈ �(Tαi ) such that ψ(p) = p. Thus, it is clear that
pi = 1 ∈ �(T2) and then p =∼ p∗ = ∇ p.

(ii) : Let p, q ∈ �(A) such that p < q. So, it is clear that
p = (0, . . . , c, . . . , 0) and q = (0, . . . , 1, . . . , 0) with
c, 1 ∈ �(T3). Hence, q =∼ p∗ =∼ q∗ and besides
∇ p = ∇q = q as desired.

(iii) : If we take t = (0, . . . , ti , . . . , 0) of type III, then
it is clear that ti ∈ �(T4) and therefore ti = a, or
ti = b. Thus, if we take p, q ∈ �(A) incompara-
ble elements such that ψ(q) = p and ψ(p) = q,
then p = (0, . . . , a, . . . , 0) and q = (0, . . . , b, . . . , 0).
Therefore, ∇ p = ∇q = (0, . . . , 1, . . . , 0), which com-
pletes the proof. ��

Let us suppose that (�(A1), ψ1) and (�(A2), ψ2) are
prime spectrum of given finite two mpM-algebras A1 and
A2. So, we define (�(A1), ψ1) + (�(A2), ψ2) as follows:
(�(A1) + �(A2), ψ), where + is ordinal sum of the set of
prime filters �(A1) and �(A2), and ψ|�(Ai ) = ψi . i = 1, 2.
Therefore, taking into account Lemma 3.2 and 3.3, we have
proved the following theorem:

Theorem 3.4 Let A be finite mpM-algebra and (�(A), ψ)

its prime spectrum. Then,

(�(A), ψ) =
∑

α2

(�(T2), ψ2) +
∑

α3

(�(T3), ψ3)

+
∑

α4

(�(T4), ψ4),

where αi < ∞ y ψi is the associated transformation of gen-
erating mpM-algebras Ti .

3.2 The construction of epimorphisms

Let A and A′ be finite S-algebra, we denote by Epi(A, A′)
the set of all S-epimorphism between A and A′. Besides, we
consider the set R(A) = �(A) ∪ {∇ p : p ∈ �(A)}.
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Definition 3.5 Let A and A′ be S-algebras. We say that the
function f : R(A1) → R(A2) is said to be a S-function if
the following conditions hold:

S1. f is one-to-one;
S2. f (ψ(p)) = ψ f (p), for every p ∈ �(A1);
S3. f (∇q) = ∇ f (q), for every q ∈ �(A1);
S4. f (T (q)) = T ( f (q)), for every q ∈ �(A1).

We denote by F(A2, A1) the set of all S-functions from
A1 into A2.

Lemma 3.6 Let A1 and A2 be finite S-algebras and f :
R(A1) → R(A2) a S-function. Then:

(i) f is increasing over �(A1),
(ii) f (p) and p are prime elements of the same type,
(iii) f is increasing over R(A1).

Proof (i) Let q1, q2 ∈ �(A1) such that q1 ≤ q2. Then,
by Corollary 3.3 (ii), we have that ∇q1 = q2 and so
f (q1) ≤ ∇ f (q1) = f (∇q1) = f (q2).

(ii) Let us suppose p is of type I, i.e., ψ(p) = p. Hence,
f (p) = f (ψ(p)) = ψ f (p) and then f (p) is of type
I. Furthermore, if p ∈ �(A) is of type II, then there is
q ∈ �(A) such that p < q (or q < p). Now, let us
suppose that p < q, then ψ(p) = q and f (p) < f (q).
Thus, ψ( f (p)) = f (q) and therefore f (p) is of type
II. Now, if p is of type III, then there exist q ∈ �(A)

incomparable elements with p such that ψ(p) = q.
Thus, it is clear that ψ( f (p)) = f (q), then f (p) and
f (q) are incomparable elements. Indeed, if we suppose
that f (p) = f (q), then since f is one-to-one, we have
p = q which is a contradiction. Now, if we suppose
that f (p) < f (q), then—by Corollary 3.3 (ii)—we
have ∇ f (p) = f (q). Therefore, ∇ p = q but using the
same corollary item (iii), we have that∇ p is not a prime
element which is a contradiction. The rest of the proof
runs with a similar reasoning.

(iii) Taking into account (i), we only have to consider the
case that p, q ∈ R(A1) such that p = ∇t1, or q =
∇t2 with t1, t2 ∈ �(A1) and p ≤ q. So, suppose that
(1) p ∈ �(A1) and q = ∇t2 with t2 ∈ �(A1) and
consider the following sub-cases: (1.1) t2 of type I or
II and (1.2) t2 of type III. To case (1.1), we have by
Corollary 3.3 that q = ∇t2 ∈ �(A1) and from (i) we
haveproved the case. To case (1.2),wehavebyCorollary
3.3 that ∇t2 = (0, . . . , 1, . . . , 0) /∈ �(A1). Thus, we
have that p = pa , or p = pb and then we need to
consider the following two sub-cases (a) pa < ∇ pa =
∇ pb, or (b) pb < ∇ pa = ∇ pb. First, let us suppose
that (a) holds, since ψ(pa) = pb, then ψ( f (pa)) =
f (pb) and f (pa), f (pb) are incomparable elements.

Hence, by Corollary 3.3 (iii), we can infer that f (pa) <

∇ f (pb) = f (∇ pb) and therefore f (p) < f (q). We
can prove (b) in analogous way to (a).

Let us now suppose (2) p = ∇t1 and q = ∇t2 with t1, t2 ∈
�(A1). Therefore, it is clear that ∇t1 = (0, . . . , 1i , . . . , 0)
and ∇t2 = (0, . . . , 1 j , . . . , 0). Since p ≤ q, then i = j
which implies that ∇t1 = ∇t2 and so f (p) = f (q).

On the other hand, let us suppose that (3) p = ∇t1 and
q, t1 ∈ �(A1). Therefore, p = ∇t1 = (0, . . . , 1i , . . . , 0)
and q = (0, . . . , q j , . . . , 0). From the latter and since p ≤ q,
we infer that i = j and then p = q, which completes the
proof. ��

LetA1 be aS-algebra,we denotewith Ar
x = {q ∈ R(A1) :

f (q) ≤ x} and Aπ
x = {p ∈ �(A1) : f (p) ≤ x} �= ∅,

for every x ∈ A1. Now, Lemma 3.6 allows us to prove the
following lemma:

Lemma 3.7 Let f ∈ F(A1, A2). Then, the following holds:

∨

q∈Arx

q =
∨

p∈Aπ
x

p.

Proof First, consider Nx = Ar
x − Aπ

x , a = ∨
p∈Aπ

x

p, b =
∨

q∈Arx

q and c = ∨
r∈Nx

r , then it is clear that b = a ∨ c. Now,

let us suppose that Nx = ∅, then c ≤ a. Indeed, let r ∈ Nx

and so there is p0 ∈ �(A1) such that r = ∇ p0 =∼ p0∗∨ p0.
From the latter, we have that ∼ p0∗ ≤ r and p0 ≤ r . Taking
into account Lemma 3.7, we conclude that f (∼ p0∗) ≤ f (r)
and f (p0) ≤ f (r). Since f (r) ≤ x and by Lemma 3.2, we
have that ∼ p0∗ ∈ �(A1). Therefore, ∼ p0∗, p0 ∈ Aπ

x as
desired. ��

Now, we will consider a new kind of function associated
with f as follows:

Definition 3.8 Let f ∈ F(A1, A2), thenwe say that the func-
tion Ff : A2 → A1 is a �-function associated with f if the
following hold for each x ∈ A:

(i) Ff (x) = ∨
q∈Arx

q, if Aπ
x �= ∅;

(ii) Ff (x) = 0, if Aπ
x = ∅, where Aπ

x = {p ∈ �(A1) :
f (p) ≤ x}.

We denote by�S(A2, A1) the set of all�-functions asso-
ciated with S-functions.

Lemma 3.9 If p ∈ �(A2), then F f (p) = 0, or F f (p) ∈
�(A).

Proof Let us suppose p ∈ �(A2). So, we can consider the
following cases:
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(i): p is a minimal element of �(A2). If we suppose that
Ff (p) �= 0, then there exists p1 ∈ �(A1) such that
f (p1) ≤ p. Now, since f (p1) ∈ �(A1), then f (p1) =
p. Hence, it is not hard to see that Aπ

p = {p1} and
therefore Ff (p) = p1.

(ii): p is amaximal element but notminimal of�(A2). Then,
there is q ∈ �(A2) such that q < p and ∇q = p.
Now, if we suppose that Ff (p) �= 0, then there is p′ ∈
�(A1) such that f (p′) ≤ p. If Ff (q) = 0, then we
have there is not t ′ ∈ �(A1) such that f (t ′) ≤ q, then
f (p′) = p and Aπ

p = {p′}. Hence, Ff (p) = p′. On
the other hand, if Ff (q) �= 0 there is a unique element
q ′ ∈ �(A1) such that f (q ′) = q and q ′ < ∇q ′. Now,
if we have q ′ = ∇q ′ would have f (q ′) = f (∇q ′) =
∇ f (q ′) = ∇q = p which would be a contradiction. As
consequence, we infer that Aπ

p = {q ′,∇q ′}. Indeed, it
is clear that f (q ′) = q is of type II, and by Lemma 3.6,
we have also that q ′ is of type II. Then, ∇q ′ ∈ �(A1)

and f (∇q ′) = p. Let us suppose that there is h′ ∈
�(A) such that f (h′) ≤ p. Since f (h′) ∈ �(A1), then
f (h′) = q, or f (h′) = p. From the latter, we obtain
that h′ = q ′, or h′ = ∇q ′ and therefore Ff (p) = ∇q ′
as desired. ��

Theorem 3.10 Every �-function F f associated with an S-
function f is a S-epimorphism.
Proof Let f be anS-function ofA enA′ and let Ff : A′ → A
be the �-function associated. Then, it is not hard to see that
Ff (x ∨ y) = Ff (x) ∨ Ff (y) for every x, y ∈ A′. So, we
will see that Ff (∼ x) =∼ Ff (x). Indeed:

(i) Let us suppose Aπ∼x �= ∅because in the contrary itwould
be verified without any difficulty that Ff (∼ x) ≤∼
Ff (x). Now, let q0′ ∈ Aπ ∼x , then q0′ ∈ �(A′) and
so f (q0′) ≤∼ x = ∨

{p∈�(A):ψ(p)�x}
p. Hence, there

is p0 ∈ �(A) such that f (q0′) ≤ p0 and ψ(p0) �
x . So, we have that ψ(p0) ≤ ψ( f (q0′)) and therefore
f (ψ(q0′)) � x . As consequence of these assertions, we
infer that ψ(q0′) � Ff (x) and so q0′ ≤∼ Ff (x). Thus,
by Lemma 3.7 we have that we wanted. Conversely, let
us suppose that∼ Ff (x) �= 0; on the contrary,wewould
have trivially that ∼ Ff (x) ≤ Ff (∼ x). Therefore, let
p′ ∈ �(A′) such that ψ(p′) � Ff (x). From the latter,
we obtain that ψ( f (p′)) � x and therefore p′ ≤ Ff (∼
x), which completes the proof.

(ii) We will see that Ff respects the operation ∗. To this
end, it is enough to prove that it respects ∗ for prime ele-
ments; i.e., Ff (p∗) ≤ (Ff (p))∗ for every p ∈ �(A′).
Indeed, let us suppose that Ff (p∗) �= 0 and Ff (p) �= 0.
Since Ff (p∗) = ∨

{q ′∈�(A1), f (q ′)≤p∗}
q ′, then we can sup-

pose that q0′ ∈ �(A) such that f (q0′) ≤ p∗. From

Lemma 3.2 (i), we have that p∗ = ∨
{t∈�(A′):t∧p=0}

t .

Therefore, f (q0′) � p and so q0′ � Ff (p). Taking into
account Lemma3.9,we can assert thatq0 ′ and Ff (p) are
incomparable prime elements. Thus, q0′ ∧ Ff (p) = 0
and therefore q0′ ≤ (Ff (p))∗. On the other hand, we
will see that Ff (p)∗ ≤ Ff (p∗). First, let us consider
Ff (p)∗ �= 0 because the contrary we would have the
property holds trivially. Let q ′ ∈ �(A1) such that
q ′ ∧ Ff (p) = 0. Thus, q ′ � Ff (p) and so we con-
clude that f (q ′) � p. From the latter and Lemma 3.9,
we have that f (q ′) and p are incomparable prime ele-
ments. Therefore, f (q ′) ∧ p = 0 and f (q ′) ≤ p∗ what
prove that we wanted. Since it is not hard to see that
Ff (x∗) = Ff (x)∗ for every x ∈ A′, then we have
proved that (ii) holds.

(iii) Finally, it is clear that T (Ff (p)) = T (
∨

q ′∈Aπ
p

q ′) =
∨

q ′∈Aπ
p

T (q ′). Now, let q0′ ∈ �(A′) such that f (q0′) ≤
p, then T ( f (q0′)) = f (T (q0′)) ≤ T (p). Since
T (q0′) ∈ �(A′), we have that T (q0′) ≤ ∨

t ′∈Aπ
T (p)

T (t ′) ≤

Ff (T (p)). Conversely, since Ff (T (p)) = ∨
h′∈Aπ

T (p)

h′

and let h0′ ∈ �(A′) such that f (h0′) ≤ T (p), then
T ( f (h0′)) = f (T (h0′)) ≤ T 2(p) = p. Therefore,
T (h0′) ≤ Ff (p). So, h0′ ≤ T (Ff (p)). From the
last assertions, it is clear that Ff (T (x)) = T (Ff (x))
with x ∈ A. Therefore, Ff : A → A′ is an S-
homomorphism.

To see that Ff is onto, let b ∈ �(A′). Then, f (b) = a ∈
�(A) and so Ff (a) �= 0. Recall by Lemma 3.9, we have that
Ff (a) ∈ �(A′). Now, letw = Ff (a). So, f (b) ≤ f (w) and
taking into account that f (w) ≤ a = f (b) holds, we have
that b = w and then Ff (a) = b. Finally, it is not difficult to
see that if w ∈ A′, then there is z ∈ A such that Ff (z) = w

as desired. ��
In the following,wewill see the reciprocal of Lemma3.10,

before we see the following technical result that we need.

Lemma 3.11 Let A1 and A2 be finite S-algebras and let h :
A2 → A1 be an S-epimorphism and let p′ ∈ �(A1). Then,
there is a unique p0 ∈ �(A2) such that h(p0) = p′.

Proof We know that there is x ∈ A2 such that h(x) = p′.
Let us suppose that h−1(p′) = {x1, . . . , xt } and consider the
element p0 =

t∧
i=1

xi . It is clear that h(p0) = p′ and p0 �= 0.

So, we have to see that it is a prime element. Indeed, let us
suppose that p0 = a ∨ b, then we have that a ≤ p0 and
b ≤ p0. Besides, p′ = h(p0) = h(a) ∨ h(b) and therefore
p0 = a, or p0 = b.
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Now, we will see that p0 is unique. Indeed, let p1 ∈ �(A)

and p1 ∈ h−1(p′). Thus, p0 ≤ p1, and if p1 is a prime ele-
ment of type I or III, we have that p0 = p1. Now, let us
observe that if p1 is of type II and we suppose p0 < p1,
then ∇ p0 = p1 and �p0 = (∼ p0)∗ ∧ p0 = 0. On
the other hand, since h is a ∇,�-morphism we have that
p′ = h(p1) = h(∇ p0) = ∇h(p0) = ∇ p′. Since �p′ =
�∇ p′ = � ∼ � ∼ p′ =∼ ∇� ∼ p′ =∼ � ∼ p′ = ∇ p′,
we infer that 0 = h(�p0) = �h(p0) = �p′, which
is a contradiction. Therefore, we have that p0 = p1 as
desired. ��

For a given S-epimorphism h : A2 → A1, we will say
that the function f : �(A1) → �(A2) is induced by h if
the following condition holds: f (q) = p iff h(p) = q. The
existence of f is insured by Lemma 3.11; furthermore, f is
one-to-one.On the other hand, f can be extended for a unique
S-function fs : R(A1) → R(A2) in the following way: if
q ∈ �(A1), then fs(q) = f (q), fs(ψ(q)) = ψ f (q) and
fs(T (q)) = f (T (q)); if q ∈ R(A1)/�(A), then fs(∇q) =
∇ f (q). Thus, we will say that fs is the S-function induced
by h.

Lemma 3.12 If f is the function induced by the S-
epimorphism h, then f is a �-function.

Proof Let h : A1 → A2 be an S-epimorphism and let g
be the S-function induced by h. Besides, let us consider the
�-function Fg associated with g. We will see that Fg = h.
Indeed, let first p ∈ �(A2) and suppose that Fg(p) �= 0.
From Lemma 3.9, we have that Fg(p) = p′ with f (p′) =
p and p′ ∈ �(A1). By definition of f , we can infer that
h(p) = p′ and so Fg(p′) = h(p). Let us now suppose that
Fg(p) = 0, then we have to see that h(p) = 0. So, let us
first suppose that h(p) �= 0 by contradiction, then there is
p′ ∈ �(A1) such that p′ ≤ h(p). FromLemma 3.11, there is
a unique q ∈ �(A1) such that h(q) = p′. Since f is induced
by h, we have that f (p′) = q. On the other hand, we have
that p′ = p′ ∧ h(p) = h(p∧ q). By Lemma 3.11, we obtain
that q = p ∧ q. So, q = f (p′) ≤ p and therefore Aπ

p �= ∅,
which is not possible. ��

Taking into account the previous Lemma and Theo-
rem 3.10, we can observe that for every epimorphism has
�-function induced by it and for every �-function has asso-
ciated a unique S-epimorphism. On the other hand, it is not
hard to see that the set of all S-epimorphisms between A en
A′, denoted by Epi(A, A′), is equipotent with the set of all
�-functions from A′ into A, denoted by F(A′, A), i.e.,

|Epi(A, A′)| = |F(A′, A)|,

where |X | denotes the number of elements of X .
For a given finite S-algebras A1. Let us now consider

|�(A1)| = m and suppose A1 has t1,1+2t1,2 prime elements

of type I; 2(t2,2 + t2,3) + 4t2,1 of type II; and 2(t3,1 + t3,2) +
4t3,3 of type III. Therefore,

t1,1+2t1,2+2(t2,2+ t2,3)+4t2,1+2(t3,1+ t3,2)+4t3,3 = m.

An in this case we denote A1 = At1,i ;t2, j ;t3,k with the
propose to mark what kind of prime element has A. Now, let
consider a finite S-algebras A2 = As1,i ;s2, j ;s3,k and suppose
there is an S-epimorphism from A1 into A2. It is clear that
si, j ≤ ti, j and then the setF(A2, A1) is non-empty. Besides,
if we denote by Fi j (A2, A1) the set of all one-to-one S-
functions between the set of all prime elements of i and sub-
type j of A2 and A1, respectively. So, we have:

|F(A′, A)| =
∏

1≤i≤2

|F1,i (A
′, A)| ·

∏

2≤s≤3
1≤ j≤3

|Fs, j (A
′, A)|.

From all results exposed up to here, we have the following
central theorem:

Theorem 3.13

|Epi(A2, A1)| = s1,1!
(s1,1 − t1,1)! · (2s1,2)!

(2s1,2 − t1,2)! · s2,1!
(s2,1 − t2,1)!

· s2,2!
(s2,2 − t2,2)! · (2s2,3)!

(2s2,3 − t2,3)! · (2s3,1)!
(2s3,1 − t3,1)! · (2s3,2)!

(2s3,2 − t3,3)!
· (4s3,3)!
(4s3,3 − t3,3)!

|Aut(A2, A2)| = s1,1! · (2s1,2)! · s2,1! · s2,2!(2s2,3)! · (2s3,1)!
·(2s3,2)! · (4s3,3)!,

where we denote by Aut(A2, A1) the set of all automor-
phisms over A2.

Proof To compute the number of epimorphisms, we have to
calculate the number of one-to-one functions from the set of
prime elements of A1 into the one of prime elements of A2.
On the other hand, if we take h ∈ Epi(A, A) such that h is
one-to-one, then the S-function f (function induced by h) is
onto. Since f /�(A) : �(A) → �(A) is one-to-one, we have
proved the theorem. ��

3.3 Examples:mpM-algebras, ukasiewicz algebras of
order 3 and Boole algebras

In this part of the paper,wewill display someparticular cases.
To this end, we take T (x) = x (i.e., the identity function)
and let A1 and A2 be finite mpM-algebras. So, we have:

|EpiS(A2, A1)| = |EpimpM (A2, A1)| = s1,1!
(s1,1 − t1,1)!

· s2,1!
(s2,1 − t2,1)! · (2s3,1)!

(2s3,1 − t3,1)
!
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Now, if A1 and A2 are 3-valued Łukasiewicz algebras,
then:

|EpiŁ3(A2, A1)| = s1,1!
(s1,1 − t1,1)! · s2,1!

(s2,1 − t2,1)! .

Besides, if A1 and A2 are Boolean algebras, then:

|EpiB(A2, A1)| = s1,1!
(s1,1 − t1,1)! .

4 Free k-cyclic modal pseudocomplemented
DeMorgan algebras

In this section, we will focus on the task of studying the
structure of free Ck-algebras with a finite number of genera-
tors. The technique that will use in this section was applied
recently in the papers (Figallo-Orellano and Gallardo 2015;
Figallo-Orellano et al. 2017; Figallo et al. 2018; Gallardo
and Ziliani 2021). In particular, it was presented a technique
to study a notion of free algebras over a poset in Figallo-
Orellano and Gallardo (2015), which is a generalization the
standard notion of free algebra.

We denote by FCk (n) this algebra where n is a positive
integer. From the results shown in Sect. 2 and the fact that
the variety of Ck-algebras is finitely generated and locally
finite, we have that for every d divisor of k, the family C
of the maximal c-filters of FCk (n) can be partitioned in the
following way:

Ni,d = {N ∈ C : FCk (n)/N � Ti,d}.

Thus, from Theorem 2.9 we have:

FCk (n) �
∏

d/k

T
α2,d
2,d ×

∏

d/k

T
α3,d
3,d ×

∏

d/k

T
α4,d
4,d ,

where αi,d = |Ni,d | with i = 2, 3, 4.
Now, let us consider Epi(FCk (n), Ti,d) the set of all epi-

morphisms from FCk (n) into Ti,d andwe denote by Aut(Ti,d )
the set of all automorphisms over the algebra Ti,d and
|X | denotes the number of elements of X . It is not hard
to see that Aut(Tl,d) (with l = 2, 3) has only d auto-
morphisms and they are t, t2, . . . , td−1, td . Besides, it is
possible to prove that |Aut(T4,d)| = 2d. Taking the function
s : Epi(FCk (n), Ti,d) → Ni,d defined by s(h) = ker(h) =
h−1({1}) for every h ∈ Epi(FCk (n), Ti,d), we can see that s
is onto and s−1(N ) = {α ◦ h : α ∈ Aut(Ti,d)}. Therefore,

αi,d = |Epi(FCk (n), Ti,d)|
|Aut(Tl,d)|

On the other hand, for every h ∈ Epi(FCk (n), Ti,d) there
is a function f : G → Ti,d such that f = h|G . Now, if
F∗(G, Ti,d) = { f : G → Ti,d such that [ f (G)]Ck = Ti,d},
then we have:

|Epi(FCk (n), Ti,d)| = |F∗(G, Ti,d)|.

where [ f (G)]Ck denotes the Ck-algebra generated by f (G).
Let us observe that the condition [ f (G)]Ck = Ti,d is equiva-
lent to asking f (G) ⊆ Ti,d and f (G) � S for everymaximal
subalgebra S of Ti,d . If we denote M(d) the set of maximal
divisors of d different of d. Then, for every maximal subal-
gebra of Ti,d are of the form Ti,x with x ∈ M(d). Thus, we
can write:

F∗(G, Ti,d) = Fi,d\
⋃

l≤i

⋃

x∈M(d)

Fl,x ,

where Fi,d is the set of all functions from G into Ti,d . There-
fore,

|F∗(G, Ti,d)| = |Fi,d | − |
⋃

l≤i

⋃

x∈M(d)

Fl,x |

= (id)n − |
⋃

l≤i

⋃

x∈M(d)

Fl,x |.

On the other hand, it is well-known that every finite set J
and the family of finite sets {A j } j∈J verify:

|
⋃

j∈J
Ai | =

∑

X⊆J , X �=∅
(−1)|X |−1|

⋂

j∈X
A j |.

Now, let us observe that if we take I = {w : w ≤ i}, then:

|
⋃

l≤i

⋃

x∈M(d)

Fl,x | = |
⋃

(z,t)∈I×M(d)

Fz,t |

=
∑

X⊆I×M(d)

(−1)|X | |
⋂

( j1, j2)∈X
Fj1, j2 |,

where

⋂

( j1, j2)∈X
Fj1, j2 = { f ∈ Fi,d : f : G →

⋂

( j1, j2)∈X
Tj1, j2}.

Calculating˛i,d

If i = 2, then I = {2} and therefore the following holds:

α2,d =
(2d)n − | ⋃

x∈M(d)

F2,x |
d
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=
(2d)n − ∑

Z⊆M(d),Z �=∅
(−1)|Z |−1 | ⋂

w∈Z
F2,w|

d

=
(2d)n − ∑

Z⊆M(d),Z �=∅
(−1)|Z |−1 (2mcd(Z))n

d
,

where gcd(Z) is the set of greatest common divisors of Z .
If i = 3, then:

α3,d =
(3d)n − | ⋃

( j,x)∈{2,3}×M(d)

Fj,x ∪ F2,d |

d

=
(3d)n − |F2,d ∪ ⋃

y∈M(d)

F3,y |

d
.

Since

|F2,d ∪
⋃

y∈M(d)

F3,y | = |F2,d | + |
⋃

y∈M(d)

F3,y | − |F2,d ∩
⋃

y∈M(d)

F3,y |

and

|F2,d ∩
⋃

y∈M(d)

F3,y | = |
⋃

y∈M(d)

(F2,d ∩ F3,y)|,

I have that

α3,d =
(3d)n − (2d)n − ∑

W⊆M(d),W �=∅
(−1)|W |−1 (3gcd(W ))n + ∑

H⊆M(d)×M(d),H �=∅
(−1)|H |−1 (2gcd(H1∪H2))n

d

where H1 = {x : (x, y) ∈ H} and H2 = {y : (x, y) ∈ H}.
Finally, for i = 4 and by Lemma 2.7, we have:

α4,d =
(4d)n − | ⋃

( j,x)∈{2,4}×M(d)

Fj,x ∪ F2,d |

2d

=
(4d)n − |F2,d ∪ ⋃

y∈M(d)

F4,y |

2d
.

By analogous reasoning to the last case, we have:

α4,d =
(4d)n − (2d)n − ∑

W⊆M(d),W �=∅
(−1)|W |−1 (4gcd(W ))n + ∑

H⊆M(d)×M(d),H �=∅
(−1)|H |−1 (2gcd(H1∪H2))n

2d
.

From the last assertions, we have proved the following
theorem:

Theorem 4.1 Let FCk (n) be the free Ck-algebra with n gen-
erators, then:

|FCk (n)| =
∏

d/k

2α2,d ·
∏

d/k

3α3,d ·
∏

d/k

4α4,d

with

α2,d =
(2d)n − ∑

Z⊆M(d),Z �=∅
(−1)|Z |−1 (2gcd(Z))n

d
,

α3,d =
(3d)n − (2d)n − ∑

W⊆M(d),W �=∅
(−1)|W |−1 (3gcd(W ))n + ∑

H⊆M(d)×M(d),H �=∅
(−1)|H |−1 (2gcd(H1∪H2))n

d
,

α4,d =
(4d)n − ∑

W⊆M(d),W �=∅
(−1)|W |−1 (4gcd(W ))n − (2d)n + ∑

H⊆M(d)×M(d),H �=∅
(−1)|H |−1 (2gcd(H1∪H2))n

2d
.
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4.1 Particular cases

In this subsection, we will show that Theorem 4.1 has par-
ticular cases that was previously obtained in the literature in
Figallo et al. (2018), Figallo-Orellano et al. (2017).

4.2 C1-algebras ormpM-algebras

If k = 1, the class of C1-algebras coincides with the one of
mpM-algebras. According to Theorem 4.1, we have that the
free C1-algebra with r generators is:

FC1(r) � T
α2,1
2,1 × T

α3,1
3,1 × T

α4,1
4,1 .

Since M(1) = ∅ we have that
∑

Z⊆M(1)
(−1)|Z | (2gcd(Z))r = 0

and therefore α2,1 = 2r . Besides, it is possible to see that

∑

H⊆M(1)×M(1),H �=∅
(−1)|H | (2gcd(H1∪H2))r = 0,

∑

W⊆M(d),W �=∅
(−1)|W |−1 (4gcd(W ))r = 0

=
∑

W⊆M(d),W �=∅
(−1)|W |−1 (3gcd(W ))r ,

and thus, α3,1 = 3r − 2r and α4,1 = 4r−2r
2 = 2r−1(2r − 1).

Therefore,

|FC1(n)| = 22
r × 33

r−2r × 42
r−1(2r−1).

This numberwas presented byA.V. Figallo et al. in Figallo
et al. (2018), Theorem 4.5.

4.3 C2-algebras orS-algebras

For the k = 2, we have the class of C2-algebras coincides
with the one of S-algebras introduced in Figallo-Orellano
et al. (2017). Then, the free C2-algebra with r generators is:

FC2(r) �
2∏

d=1

T
α2,d
2,d ×

2∏

d=1

T
α3,d
3,d ×

2∏

d=1

T
α4,d
4,d .

Since |Ti,d | = id , α2,2 = 4r−2r
2 , α3,2 = 9r−3r−4r+2r

2 and

α4,2 = 42r−4r−22r+2r
4 , then

|FC2 (r)| = |T2,1|2r × |T2,2| 4
r−2r
2 × |T3,1|3r−2r

× |T3,2| 3
2r−3r−22r+2r

2 × |T4,1| 4
r−2r
2 × |T4,2| 4

2r−4r−22r+2r
4

= 22
r × 4

4r−2r
2 × 33

r−2r × 9
32r−3r−22r+2r

2

× 4
4r−2r

2 × 16
42r−4r−22r+2r

4

= 22
r × 42·

4r−2r
2 × 33

r−2r × 9
9r−3r−4r+2r

2

× 16
16r−4r−4r+2r

4

= 22
r × 42·

4r−2r
2 × 33

r−2r × 9
9r−3r−4r+2r

2

× 16
16r−3·4r+2·2r+4r−2r

4

= 22
r × 42·

4r−2r
2 × 33

r−2r × 9
9r−3r−4r+2r

2

× 16
16r−3·4r+2·2r

4 × 16
4r−2r

4

= 22
r × 43·

4r−2r
2 × 33

r−2r × 9
9r−3r−4r+2r

2

× 16
16r−3·4r+2·2r

4 .

This number was obtained by Figallo-Orellano et al.in
Figallo-Orellano et al. (2017), Theorem 6.4.

4.4 Ck-algebras with k are prime number

|FCk (r)| =
∏

N∈N2,d ,d/k

|T2,d ||N2,d | ×
∏

N∈N3,d ,d/k

|T3,d ||N3,d |

×
∏

N∈N4,d ,d/k

|T4,d ||N4,d |

=
∏

d/k

(2d)α2,d ×
∏

d/k

(3d)α3,d ×
∏

d/k

(4d)α4,d

= 2α2,1 × (2k)α2,k × 3α3,1 × (3k)α3,k × 4α4,1 × (4k)α4,k

= 22
r × (2k)

2kr−2r
k × 33

r−2r × (3k)
3kr−3r−2kr+2r

k × 4
4r−2r

2

× (4k)
4kr−4r−2kr+2r

2k
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