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Abstract
In this paper, first, general dynamic modeling is proposed for multi-input/output nonlinear systems in the form of affine and

non-affine systems. Then, an observer barrier function-based adaptive fuzzy scheme is suggested to estimate unknown

functions. Briefly, the main contributions of the proposed scheme are: (1) the proposed modeling can be employed in

various classes of nonlinear systems, e.g., Single Input–Single Output (SISO), Single Input–Multi Output (SIMO), Multi

Input–Single Output (MISO), and Multi Input–Multi Output (MIMO) systems with square or non-square control gain

matrix, (2) by combining an observer error signal and the barrier Lyapunov function, the proposed Observer-based Barrier

Lyapunov Function (OBLF) method can be employed to solve the problems of output constraint by preventing the output

from violating the constraint, and (3) a non-singular robust adaptive fuzzy approach is presented for various classes of

nonlinear systems so that the uncertainties are attenuated by a robust bounded H1-like control term. The proposed

scheme guarantees the stability of the closed-loop system based on the Strictly Positive Real (SPR) condition and OBLF

theory, but it does not need the SPR conditions to be well known. Finally, to show the usefulness of the proposed

technique, the simulation examples are employed for various classes of nonlinear affine and non-affine systems with square

or non-square control gains.

Keywords Affine and non-affine systems � Barrier Lyapunov function � Observer-based robust adaptive fuzzy �
Nonlinear systems � Non-singular controller

1 Introduction

Nonlinear dynamical systems can be found in a wide

variety of applications, e.g., MIMO, SIMO, MISO, and

SISO systems, and also affine and non-affine systems.

Stabilization and tracking control are some of the essential

parts of these nonlinear systems.

Consider _X ¼ F X;Uð Þ is a non-affine and _X ¼ F Xð Þ þ
G Xð ÞU is an affine nonlinear system, where X and U are

input and output vectors, F X;Uð Þ and F Xð Þ are continuous
function vectors, and G Xð Þ is a square or non-square

control gain matrix. The majority of control approaches of

nonlinear systems are designed for SISO systems and also

the MIMO systems with a square control gain matrix. It is

yet difficult to employ a proper control strategy for systems

with a non-square control gain matrix. In (Gao and Tong

2015), the authors propose a control method for a MIMO

affine model of underwater systems with both square and

non-square control gain matrices. Also, most of the articles

are applied to the control of affine nonlinear systems,

because the development of a control technique for non-

affine systems is yet a challenge. The authors in (Ghavidel

2018, 2020; Ghavidel and Kalat 2018) develop their con-

trol methods for non-affine systems. Furthermore, the

authors in (Ghavidel and Kalat 2017a) develop their con-

trol method for a class of MIMO systems with non-square

control gain matrices. Moreover, in (Ghavidel 2018; Gha-

videl and Kalat 2018) a robust method is employed to

control both affine and non-affine nonlinear systems. This

paper proposes a simple method is proposed to control

MIMO systems with square control gain matrices, MIMO
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systems with non-square control gain matrices, SIMO,

MISO, and SISO systems, and also both affine and non-

affine nonlinear systems.

Two types of adaptive fuzzy controllers are commonly

researched: indirect and direct adaptive fuzzy methods. An

important issue in the indirect adaptive fuzzy technique is

the possibility of a singularity problem when the inverse of

the control gain matrixes is computing. Recently, several

stable control approaches have been developed to over-

come the singularity problem of SISO systems (Labiod and

Guerra 2010; Ghavidel and Kalat 2019; Ghavidel 2020)

and MIMO systems (Min et al. 2017). To avoid the sin-

gularity problem, in (Lamara et al. 2012) the non-sym-

metric control gain matrix of the MIMO system is

extracted as the sum of a symmetric matrix and a skew-

symmetric matrix. Also, a global non-singular terminal

sliding mode control method is presented in (Li and Tong

2003). In (Li and Lee 2011), the controller singularity

problem is avoided by the decomposition of the control

gain matrix into the product of a symmetric positive-defi-

nite matrix, a diagonal matrix, and a unity upper triangular

matrix. In (Li et al. 2013a), and the estimation of the

control gain matrix is decomposed into the product of one

diagonal matrix and two orthogonal matrices. The authors

in (Li et al. 2013b) presented a symmetric matrix decom-

position technique. A regularized inverse of the estimated

control gain matrix is employed in (Lin et al. 2012; Li et al.

2015; Min et al. 2017) to avoid the controller singularity

problem, and a complex robust control term was proposed

to compensate for uncertainties that appear due to using the

regular inverse technique. In this paper, based on the pro-

posed OBLF method a non-singular adaptive fuzzy

approach is presented for various classes of nonlinear

systems.

In practice, all the system states are not available for

measurement. To overcome this problem, the authors in

(Guo et al. 2020; Li et al. 2020; Tong et al. 2020; Zhang

and Dong 2020) developed observer-based adaptive fuzzy

control methods. In (Ghavidel and Kalat 2017b; Ghavidel

2018, 2020), the authors employed an observer-based

adaptive fuzzy technique with SPR condition which is

required for the closed-loop system stability. An important

advantage of these schemes is that the proposed approach

does not require SPR conditions to be known. This paper

develops this observer method for multi-input/output affine

and non-affine systems. (Also, the other schemes of

observer-based adaptive fuzzy methods with SPR condi-

tions are developed by the authors in Ren et al. 2010;

Rigatos 2014.)

Recently, the logarithm barrier functions in Lyapunov

theories have been suggested for nonlinear systems

(Shaocheng et al. 2005; Schkoda and Crassidis 2007;

Shahnazi 2016). By combining the observer error signal

and the barrier Lyapunov function, the proposed OBLF

control method can be applied to solve the problems of

output constraint by preventing the output from violating

the constraint. The main purpose of our design consists of

modeling a Lyapunov function to guarantee the limitation

of the observer error signals.

In many physical systems, input saturation for a limited

bound of the control signal is applied. Applying input

saturation is a problem to design a stable controller. Some

control schemes have been proposed for nonlinear systems

in the presence of input saturation (Shi 2014, 2015). These

works assume some complicated assumptions and tech-

niques to utilize input saturations. This paper uses a simple

and stable strategy employed to design a limited bound of

the control signals.

Finally, the main advantages of the proposed method are

as follows:

1) Many researchers develop their control methods for

affine systems with square control gains. Based on

the proposed technique, a general dynamics model is

proposed for affine and non-affine forms of SISO,

MIMO, SIMO, and MISO systems with non-square

control gain matrices (see Sect. 2 for more details).

2) An essential problem of indirect control methods is

the possibility of singularity. A non-singular control

approach is presented for various classes of nonlinear

systems (see Sect. 3.2 for more details).

3) An accurate method is considered for nonlinear

systems in the presence of input saturation. This

method does not require complex functions, difficult

assumptions, and extra robust terms (see Sect. 3.2 for

more details).

4) By using a feedback error function instead of the

state variables, the number of fuzzy sets and rules can

be decreased so that a smaller tracking error is

achieved (see Sect. 4.1 for more details).

5) The basic idea of the observer control method is

introduced based on an observer scheme in (Ghavidel

and Kalat 2017b; Ghavidel 2018, 2020). Note that

these approaches are proposed based on the SPR

condition. In this paper, it can be extended to SPR

condition via the barrier Lyapunov function theory.

Hence, although the observer control technique needs

proper conditions for SPR, it does not require SPR

conditions to be recognized, i.e., themain advantage of

the proposed observer�based scheme is that matrices

Qoi,Poi,Qi,Pi, vectorBsi and filter LiðsÞ do not require
to be known (see Sect. 4.2 for more details).

6) It is an important advantage that the proposed barrier

Lyapunov is a function of the observer error signal

fesi , because the selection of the parameter ki will not

be restricted (see Sect. 4.3 for more details).
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7) A bounded robust H1-like control term is proposed

to compensate for uncertainties. The conventional

robust H1 terms are presented in (Ghavidel and

Kalat 2017c; Ghavidel et al. 2017, 2020) (see

Sect. 4.3 for more details).

2 Problem formulation and preliminaries

The general nonlinear systems (Wang 1996) can be more

complicated when they are in the form of non-affine sys-

tems. In this section, these complicated systems are trans-

formed into the controllable form of non-affine systems.

Therefore, the general model of nonlinear non-affine

systems is as follows

Z
:

i
¼ Fi Z;Uð Þ þ Di tð Þ

yi ¼ hi Zð Þ

(

: ð1Þ

where Z ¼ Zi; . . .;Zr½ �T and Zi�R
pi is the state vec-

tor,Fi Z;Uð Þ�Rpi is the smooth vector, pi represents the

order of i-th subsystem of the non-affine system

(1),U ¼ ½u1; . . .; um�T�Rm is the system input vector,

Di�R
pi is an unknown but bounded external disturbance

vector, and hiðZÞ�R is a smooth and known real function

for i ¼ 1; 2; . . .; r (i.e., subsystems), and j ¼ 1; 2; . . .;m
(i.e., system inputs). Note that the MIMO Eq. (1) is a

general non-affine dynamics model.

It is very important that the general model (1) is not

limited only to the control of MIMO systems, it can be

easily extended to the SISO, SIMO, and MISO systems.

Because MIMO non-affine systems can be transformed into

a SISO affine system (i ¼ 1 and j ¼ 1), a SIMO affine

system (i ¼ 1; ::; r and j ¼ 1) and also a MISO affine sys-

tem (i ¼ 1 and j ¼ 1; ::;m).

Based on input–output linearization, a diffeomorphism

vector Ti ¼ T1i; . . .; Tpi

� �T
can be written as

Ti ¼ hi; Lhi; . . .; L
ni�1hi; Tniþ1; . . .; Tpi

� �T
, so that the con-

trol input uj appears in the derivation function Lni�1hi. The

diffeomorphism vector Ti can be rewritten as Ti ¼
xi; . . .; xi

ni�1ð Þ; f1i; . . .; fpi�ni

� �T ¼ Xi; fi½ �T .
Accordingly, Xi ¼ xi; . . .; xi

ni�1ð Þ� �T
, fi ¼ f1i; . . .;½

fpi�ni �
T
, and ni � pi. Hence, it transforms the non-affine

system (1) to the following controllable form

_xi ¼ xiþ

..

.

x
nið Þ
i ¼ Fi X1; . . .;Xr; f1; . . .; fr;Uð Þ þ di tð Þ
_fi ¼ qi X1; . . .;Xr; f1; . . .; frð Þ
yi ¼ xi

8

>

>

>

>

>

<

>

>

>

>

>

:

ð2Þ

where the vector DiðtÞ is transformed into the scalar di tð Þ.
So, if the zero dynamics qi 0; f1; . . .; frð Þ in (2) is asymp-

totically stable, non-affine system (2) can be transformed

into r subsystem of the affine system as

_xi ¼ xiþ1

..

.

x
nið Þ
i ¼ Fi X;Uð Þ þ di tð Þ
yi ¼ xi

:

8

>

>

>

>

>

<

>

>

>

>

>

:

ð3Þ

where X ¼ ½X1; . . .;Xr�T .

Assumption 1 The following assumptions are applied for

the controllability of the system:

1) Assume that the relative degree of the controllable

system (3) is ni � pi.

2) The function oFi X;Uð Þ=oU is nonzero so that

0\oFi X;Uð Þ=oU�Fi, for an unknown positive

constant Fi. Also, external disturbance diðtÞ is

bounded (i.e., jdi tð Þj � di).

Now, it is assumed that gi Xð Þ is a bounded and unknown
vector; then, system (3) can be transformed into r subsys-

tem of the affine system as

x
ðniÞ
i ¼ Fi X;Uð Þ � gi Xð ÞUþ gi Xð ÞUþ di tð Þ

x
ðniÞ
i ¼ f i Xð Þ þ gi Xð ÞUþ di tð Þ

x
nið Þ
i ¼ fi Xð Þ þ

P

m

j¼1

gij Xð Þuj þ di tð Þ
yi ¼ xi

(

ð4Þ

where

f i Xð Þ ¼ Fi X;Uð Þ � gi Xð ÞU
gi Xð Þ ¼ ½gi1; . . .; gim�

By (4), the general dynamic model can be rewritten as

X
:
¼ AXþ B F Xð Þ þG Xð ÞUþ D tð Þ½ �

Y ¼ CTX

�

ð5Þ

where Y ¼ ½y1; . . .; yr�T�Rr are the output of the system for

i ¼ 1; 2; . . .; r and j ¼ 1; 2; . . .;m, respectively, that r is the

number of subsystems and ni is the i-th system relative

degree where n ¼ n1 þ n2 þ . . .þ nr. Let denote

F Xð Þ ¼ f 1 Xð Þ; . . .; f r Xð Þ½ �T
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G Xð Þ ¼ gij
� �

�Rr�m

D tð Þ ¼ ½d1ðtÞ; . . .; drðtÞ�T

A ¼ diag½A1; . . .;Ar�, B ¼ diag½B1; . . .;Br�, C ¼ diag

½C1; . . .;Cr�,

Ai ¼

0
0

..

.

0

0

1
0

..

.

0

0

0
1

..

.

0

0

. . .

. . .
. .
.

. . .

. . .

0
0

..

.

1

0

2

6

6

6

6

4

3

7

7

7

7

5

�Rni�ni , Bi ¼

0

0

..

.

1

2

6

6

4

3

7

7

5

�Rni�1,

and Ci ¼

1

0

..

.

0

2

6

6

4

3

7

7

5

�Rni�1.

Note that, for r ¼ m, the control gain matrix G Xð ÞRr�m

is a square matrix, and for r 6¼ m it can be a non-square

matrix. Also, for SISO, MISO, and SIMO systems, it can

be defined as:1� 1 matrix, 1� m vector, and r � 1 vector,

respectively.

3 Robust and non-singular control
of the general dynamic model

In the current section, a general control method is pre-

sented for the proposed general dynamic model (5). In this

paper, it is assumed that F Xð Þ and G Xð Þ are unknown, and
D tð Þ 6¼ 0: Therefore, the proposed nonsingular controller

with control input saturation can be presented by the con-

ception of the ideal controllers and the non-singular control

designs.

3.1 The Ideal control design

The control problem is to achieve the state Xi for tracking

the desired state Xdi ¼ xdi; . . .; xdi
ni�1ð Þ� �T

. The tracking

error is defined as

Ei ¼ Xdi � Xi ¼ xdi; . . .; x
ni�1ð Þ
di

h iT

� xi; . . .; x
ni�1ð Þ
i

h iT

¼ ei; . . .; e
ni�1ð Þ
i

h iT

ð6Þ

E ¼ E1; . . .;Er½ �T¼ e1; . . .; e
n1�1ð Þ
1 ; . . .; er; . . .; e

nr�1ð Þ
r

h iT

ð7Þ

If F Xð Þ and G Xð Þ are known and free of external dis-

turbance, i.e., D tð Þ ¼ 0, the following ideal control signal

U�
o makes the tracking error in the system (5) becomes

stable asymptotically

U�
o ¼ G Xð Þ# �F Xð Þ þ bð Þ ð8Þ

where b ¼ b1; . . .; br½ �T ¼ x
n1ð Þ
d1 þKT

1E1

� �

; . . .;
h

ðx nrð Þ
dr

þKT
r ErÞ�T . Let Ki=½ki1; . . .; kini �

T
to be chosen such that the

polynomial sni þ kini s
ni�1 þ . . .þ ki1 is Hurwitz.

Assumption 2 The control gain matrix G Xð Þ is assumed

to be non-singular, i.e.,G Xð Þ is an invertible matrix (in-

verse or pseudo-inverse of G Xð Þ is available).

Inserting (8) into (4) yields (for D tð Þ ¼ 0)

_X ¼ AXþ B FþGG# �Fþ bð Þ
� �

ð9Þ

Therefore, if G# ¼ Ir�r, (where Ir�r is a unit matrix),

then after simple operations we have

e
nið Þ
i þ kinie

ni�1ð Þ
i þ . . .þ ki1ei ¼ e

nið Þ
i þKT

i Ei ¼ 0 ð10Þ

indeed, the tracking of the reference command is

asymptotically attained from any initial conditions, i.e.,

lim
t!1

Ei ¼ 0. Hence, there exist positive definite matrices

Qoi and Poi such that

Ai � BiK
T
i

	 
T
Poi þ Poi Ai � BiK

T
i

	 


þQoi ¼ 0 ð11Þ

Definition 1 (Ghavidel and Kalat 2017a): G��Rm�r is the

‘‘inverse = pseudo-inverse’’ of ‘‘square = non-square’’

matrix G�Rr�m; thus, it can be defined as:

G� ¼
GTG
� ��1

GT if : m\r

G�1 if : m ¼ r

GT GGT
� ��1

if : m[ r

8

>

<

>

:

ð12Þ

Thus, we have

GG� ¼
Non� unitmatrix if : m\r
Ir�r if : m ¼ r
Ir�r if : m[ r

8

<

:

ð13Þ

Then, by Definition 1 and by assuming that all matrices

are invertible, G# can be as follows

G# ¼
G� GG�½ ��1

if : m\r

G�1 if : m ¼ r

GT GGT
� ��1

if : m[ r

:

8

>

>

<

>

>

:

ð14Þ

Therefore, by (14) and the ideal controller (8), (10) can

be achieved.

3.2 The non-singular control design
in the presence of input saturation

By an unknown vector gi Xð Þ, non-affine nonlinear systems

(3) can be transformed into a nonlinear affine system (4).

Thus, it is challenging to determine an accurate function of

FðXÞ and GðXÞ. Therefore, the controller (8) is unrealiz-

able, because F Xð Þ and G Xð Þ are unknown and D tð Þ 6¼ 0:
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To overcome these kinds of problems, an adaptive fuzzy

method is used to estimate unknown functions and uncer-

tainties. Thus, it is very important that, although the pro-

posed method needs an accurate function of F Xð Þ and

G Xð Þ, this paper does not require those functions to be

known. Let denote:

Ĝ
# ¼

Ĝ� ^
GĜ

�h i�1

if : m\r

Ĝ�1 if : m ¼ r

ĜT ^
GĜ

T
h i�1

if : m[ r

:

8

>

>

>

>

<

>

>

>

>

:

ð15Þ

where Ĝ is the adaptive fuzzy estimation of G. The

adaptive fuzzy controller can be still unrealizable because

it is possible that matrices ĜĜ
�
, Ĝ

�
, Ĝ, ĜĜ

T
are not

invertible.

Definition 2 (Ghavidel and Kalat 2017a): Let H be a

square matrix and H�1 be the inverse of H. So, the regu-

larized inverse of H is defined as

H�1 ffi Hr ¼ HT ½dIþHHT ��1
, where d is a small regu-

larization constant. Using this scheme, it is not necessary to

limit the parameter estimations to avoid the singularity

problem.

The suggested control scheme is not limited only to the

control of MIMO systems; it can be easily extended to the

SISO, SIMO, and MISO systems, because MIMO non-

affine systems can be transformed into SISO affine systems

(i ¼ 1 and j ¼ 1), SIMO affine systems (i ¼ 1; ::; r and

j ¼ 1) and MISO affine systems (i ¼ 1 and j ¼ 1; ::;m).

Note that if g�1
11 be the inverse of G Xð Þ ¼ ½g11��R1�1, then

the regularized inverse of g11 is defined as

g�1
11 ffi gr11 ¼ g11½dþg211�

�1
.

Hence, by Definitions 1 and 2, the estimation of control

gains can be proposed as

Ĝ
# ffi Ĝ

r#

¼

Ĝ
T
Ĝ

h ir

Ĝ
T � Ĝ Ĝ

T
Ĝ

h ir

Ĝ
T

� �h ir

if : m\r

Ĝ
r

if : m ¼ r

Ĝ
T ^

GĜ
T

� �r

if : m[ r

:

8

>

>

>

>

>

<

>

>

>

>

>

:

ð16Þ

Indeed, a non-singular robust indirect adaptive fuzzy

controller with estimation Ĝ
r#

is applied to overcome the

singularity problem

Uo ¼ Ĝ
r# �F̂þ bþ ur
	 


ð17Þ

where F̂, Ĝ; and Û are estimates of F, G; and control input

U, respectively, and ur is a robust control vector to com-

pensate for uncertainties. Let denote:

F̂ ¼ f̂1; . . .; f̂r
� �T

,

Ĝ ¼
ĝ11 ĝ12 � � � ĝ1m
..
. ..

. . .
. ..

.

ĝr1 ĝr2 . . . ĝrm

2

6

4

3

7

5 2 Rr�m,

ur ¼ ur1; . . .; urr½ �T
To apply the non-singular controller Uo, the general

dynamic model (5) can be rewritten by adding and then

subtracting ĜUþ �F̂þ bþ ur
	 


_X ¼ AXþ B Fþ DþGUð Þ þ B Ĝ� Ĝ
� �

U
n

þ �F̂þ bþ ur
	 


� �F̂þ bþ uur
	 
�

ð18Þ

_X ¼ AXþ Bbþ B �~F� ~GUþ Dþ ur
	 


þ B ĜU� �F̂þ bþ ur
	 


n o

ð19Þ

where eF ¼ F̂� F and eG ¼ Ĝ�G. After some simple

manipulations, we can obtain the tracking error as

_E ¼ A� BKT
	 


Eþ B eF þ eGU� D� ur

� �

þ Br Xð Þ

_E ¼ A� BKT
	 


Eþ B ~Fþ ~GU� Dr � ur
	 


ð20Þ

where Dr ¼ D� r ¼ dr1; . . .; drr½ �T , and r Xð Þ ¼
�F̂þ bþ ur
	 


� ĜU
n o

is an uncertainty that appears

because of applying the regular inverse technique.

The tracking errors (20) for each subsystem can be

rewritten as

_Ei ¼ Ai � BiK
T
i

	 


Ei þ Bi
~fi þ ~guj � dri � urj
	 


ð21Þ

where ef i ¼ f̂ i � f i and egi ¼ ĝi � gi.

The controller (17) is still unrealizable because it might

not always be available due to the input saturation. We

assume that the control input U is bounded by upper and

lower bounds as

uj ¼ sat uoj
	 


¼
umax j uoj 	 umax j

uIj umin j\uoj\umax j

umin j uoj � umin j

8

<

:

ð22Þ

where Uo ¼ uo1; . . .; uom½ �T is the controller input to be

designed; umaxj and uminj are known

upper and lower bound of the controller uoj. The new

ideal controller can be proposed as

U� ¼ sat U�
o

	 


ð23Þ

where U� ¼ u�1; . . .; u
�
m

� �T
. Then, we have
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U ¼ sat Uoð Þ ¼ Uo þ D ð24Þ

where D ¼ D1; . . .;Dm½ �T . It is important to notice that D is

zero in the areas of uminj\uoj\umaxj since U ¼ Uo, so that

DIj ¼ 0 umin j\uoj\umax j

DIj 6¼ 0 otherwise

�

ð25Þ

By substituting the proposed controller (17) into plant

(1) and based on (24) and (25), the tracking error for

umin j\uoj\umax j (i.e., DIj ¼ 0) can be written as

_Ei ¼ Ai � BiK
T
i

	 


Ei þ Bi
~fi þ ~guj � dri � urj
	 


ð26Þ

Also, for out of the area umin j\uoj\umax j (i.e., DIj 6¼ 0),

we have

_Ei ¼ Ai � BiK
T
i

	 


Ei þ Bi
~fi þ ~guj þ Dj � dri � uri
	 


ð27Þ

By (25)-(27), the tracking error for umin j � uoj � umax j

can be written as

_Ei ¼ Ai � BiK
T
i

	 


Ei þ Bi
~fi þ ~guj þ di � uri
	 


ð28Þ

where

dIi ¼
dIi ¼ �driuminj\uoj\umaxj

dIi ¼ DIj � dri otherwise

�

Note that the robust controller uri can play an important

role to compensate for these uncertainties.

4 Barrier Lyapunov function-based adaptive
fuzzy control

As previously mentioned, it is assumed that F Xð Þ and

G Xð Þ are unknown. Therefore, we use the fuzzy estima-

tions F̂ and Ĝ instead. It is very important to note that one

of the most important purposes of the article is to design a

general nonlinear modeling of multi-input/output affine

and non-affine systems. In this study, we suggest the

adaptive fuzzy method and develop the proposed controller

and general nonlinear modeling by this algorithm. Thus,

the adaptive fuzzy method is only one way to estimate

unknown functions (we can use other methods, e.g.; neural

networks). Furthermore, to improve the performance of the

control system, the proposed OBLF approach is employed

in this section. Therefore, the first descriptions of the fuzzy

logic system and observer models are presented in Sects.

4.1 and 4.2; then, the OBLF method is suggested.

4.1 Description of the fuzzy logic system

To improve the control performance of the adaptive fuzzy

scheme and also to reduce the number of fuzzy sets and

rules, the authors in (Ghavidel 2018; Ghavidel and Kalat

2018) employed a fuzzy logic system that the feedback

error functions as fuzzy inputs are used instead of the state

variables. Hence, it can be developed for SISO and MIMO

systems.

It is very important that, based on (5), F is a function of

X and U. Thus, it is a challenging problem for the fuzzy

system because the control input U is directly fed back into

F. This paper uses a simple method to overcome this

problem by applying the following fuzzy input:

N ¼
Pr

i¼1 Ni ¼
Pr

i¼1 K
T
i Ei. Note that if the state vector X

is not directly measurable, hence N̂ ¼
Pr

i¼1 N̂i ¼
Pr

i¼1 K
T
i Êi can be as the input of the fuzzy system, which

Êi is an estimation error vector of Ei (for more details, see

Sect. 6).

Thus, the fuzzy logic system is introduced with the

following fuzzy IF–THEN rules as

Rl : IF N̂ isFl THEN y ¼ �yl; . . . l ¼ 1; 2; . . .;Mð Þ ð29Þ

Fl and yl are the fuzzy sets, and lFl and lyl are their

membership functions, N̂ and y�R are the input and output

of the fuzzy system, l = 1,…,M is the number of fuzzy

rules. The output of the proposed fuzzy logic system can be

written as

y N̂
	 


¼
PM

l¼1 lFl Nð Þ½ �yl
PM

l¼1 lFl Nð Þ½ �
¼ hTn N̂

	 


ð30Þ

h ¼ ðy1; . . .; yMÞT is the output fuzzy membership

function. Also, the fuzzy basis functions are defined as

nl N̂
	 


¼
lFl N̂
	 


PM
l¼1 lFl N̂

	 
� � ð31Þ

n N̂
	 


¼ n1; . . .; nM
	 
T ð32Þ

The optimal parameter vectors h� are defined as

h� ¼ arg minh2X supN2R;X2Rn y N̂jh
	 


� y Xð Þ








� �

ð33Þ

where || � || represents the Euclidean-norm of a vector. Also,

X is the compact set defined as X ¼ h : jjhjj �my

� �

;

where my is the positive constant specified by the designer.

The minimum approximation error can be written in terms

of the optimal parameter estimates asxo ¼ y N̂jh�
	 


�y Xð Þ.

Remark 1 Note that another method can be applying N̂i as

the input of the fuzzy logic system. Then, fuzzy IF–THEN

rules can be rewritten as: {Rl: IF N̂1 is F
l
1 and … and N̂r is

Fl
r, THEN y = yl}, where Fl

i are fuzzy sets. One problem

with this method is that increasing the number of fuzzy sets

and/or fuzzy IF–THEN rules, compared to the use of fuzzy

input N̂ ¼
Pr

i¼1 N̂i.

12544 H. Fallah Ghavidel, S. M. Mosavi-G

123



By the above detentions, f̂ i and ĝij can be described as

follows

f̂i N̂jhi
	 


¼ hTi ni N̂
	 


ð34Þ

ĝij N̂jhij
	 


¼ hTijnij N̂
	 


ð35Þ

Also, h�i and h�ij are the optimal parameters and can be

defined as

h�i ¼ arg minhi2Xi
supN̂2R;X2Rn fi N̂jhi

	 


� fi Xð Þ








h i

h�ij ¼ arg minhij2Xij
supN̂2R;X2Rn gij N̂jhij

	 


� gij Xð Þ








h i

8

>

<

>

:

ð36Þ

where Xi ¼ hi : mi � jjhijj �mif g and Xij ¼
hij : mij � jjhijjj �mij

� �

where mi, mi, mij and mij are the

positive constants specified by the designer. Then, the

minimum approximation errors can be written in terms of

the optimal parameter estimates as

xIi ¼ fi N̂jh�i
	 


� fi Xð Þ
� �

þ gij N̂jh�ij
� �

� gij Xð Þ
n o

uj

ð37Þ

By fuzzy systems (34) and (35) and the minimum

approximation errors (38), the tracking error (28) for each

subsystem can be as follows

_Ei ¼ Ai � BiK
T
i

	 


Ei þ Bi
~h
T

i ni þ ~h
T

ijnijuj þ xoi � uri

� �

ð38Þ

where xoi ¼ di þ xIi, ehi ¼ hi � h�i and ehij ¼ hij � h�ij.

This paper suggests the fuzzy input N̂ for the fuzzy

approximators; thus, one drawback of utilizing this

scheme is that the approximation error xi maybe increased.

Hence, a robust term is required to compensate for the

fuzzy approximation errors. Thus, though f̂ i N̂jhi
	 


and

ĝij N̂jhij
	 


are applied to estimate f iðXÞ and gijðXÞ,
respectively, the controller is still viable.

4.2 Observation of the state vector

The control of the nonlinear system becomes more com-

plicated when the state vector X is not directly measurable.

Thus, a state observer should be established to approximate

the unmeasured states. The following errors are employed.

– error vector Ei ¼ Xdi � Xi ¼ ei; . . .; e
ðni�1Þ
i

h iT

– error of the estimated state vector (error observer)

Êi ¼ Xdi � X̂i ¼ êi; . . .; ê
ðni�1Þ
i

h iT

– observation error

eEi ¼ Ei � Êi ¼ X̂i � Xi ¼ eei; . . .; ee
ðni�1Þ
i

h iT

When an observer is applied to estimate the state vector

Xi, the suggested control law (17) can be rewritten as

Uo ¼ Ĝ
r# �F̂þ b̂þ ur

� �

ð39Þ

where b̂ ¼ b̂1; . . .; b̂r
h iT

¼ x
n1ð Þ
d1 þKT

1 Ê1

� �

; . . .; x
nrð Þ
dr

�h

þKT
r ÊrÞ�T .
By (39), the tracking error (38) for each subsystem can

be rewritten as

_Ei ¼ AiEi � BiK
T
i Êi þ Bi

~h
T

i ni þ ~h
T

ijnijuj þ xoi � uri

� �

ð40Þ

The observer is designed as follows

_̂
Ei ¼ Ai � BiK

T
i

	 


Êi þKci ~ei
êi ¼ CT

i Êi

~ei ¼ ei � êi ¼ CT
i
~Ei

8

>

<

>

:

ð41Þ

From (40) and (41), we have

_~Ei ¼ Asi
~Ei � BiK

T
i Êi þ Bi

~h
T

i ni þ ~h
T

ijnijuj þ xoi � uri

� �

ð42Þ
_~Ei ¼ Asi

~Ei � BiK
T
i Êi þ Bi

~h
T

i ni þ ~h
T

ijnijuj þ xoi � uri

� �

¼ Asi
~Ei þ Bi

~h
T

i ni þ ~h
T

ijnijuj þ x1i � uri

� �

ð43Þ

where Kci=½kc1i; . . .; kcnii�
T

is the observer gain vector

which guarantees the characteristic polynomial of Asi ¼
Ai �KciC

T
i to be Hurwitz. Note that �KT

i Êi in (42) can be

a part of uncertainties as x1i ¼ xoi �KT
i Êi. Otherwise, the

matrix Asi in observation error dynamics (42) becomes

Asi ¼ Ai �KciC
T
i � BiK

T
i Êi. Thus, it is difficult to

demonstrate that this matrix Asi is Hurwitz, in a high-order

system especially.

There exist positive definite matrices Qi and Pi such that

AT
siPi þ PiAsi þQi ¼ 0 ð44Þ

where for a given positive definite matrixQi, there exists a

positive matrix Pi which is the solution of the following

equation, and the entries of the vector Bsi ¼
b1i; . . .; bnii½ �T�Rni which are positive constants.

Because only the observation error ee1i can be measured

in the observation error dynamics (42), we apply the SPR

Lyapunov method to study the stability of the error

dynamics (42).

Note that these approaches are proposed based on the

Strictly Positive Real (SPR) condition and Lyapunov the-

ory. But in this paper, it can be extended to SPR condition

and barrier Lyapunov function theory. Furthermore, by this

method, matrices Qoi, Poi Qi, Pi, vector Bsi and filter LiðsÞ
do not require to be known.
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The observation error dynamics (42) can be written as

~ei ¼ Hi sð Þ ~h
T

i ni þ ~h
T

ijnijuj þ x1i � uri

� �

ð45Þ

where

Hi sð Þ ¼ CT
i sIni�ni � Asið Þ�1Bi ¼

1

sni þ kc1sni�1 þ . . .þ kcni

ð46Þ

and Hi sð Þ is a stable transfer function. Hence, (45) can be

rewritten as

~ei ¼ Hi sð ÞLi sð Þ Li sð Þ�1 ~h
T

i ni þ ~h
T

ijnijuj þ x1i � uri

� �n o

ð47Þ

where filter LiðsÞ is chosen so that Hi sð ÞLiðsÞ is an SPR

transfer function, and also Li sð Þ�1
is an appropriate

stable function. LetLi sð Þ ¼ b1is
mi þ b2is

mi�1 þ . . .þ bni ,

wheremi ¼ ni � 1. If the entries of the vector Bsi ¼
b1i; . . .; bnii½ �T�Rni are positive constants, all roots of Li sð Þ
are stable. So Hi sð ÞLiðsÞ can be an SPR transfer function.

The state�space realization of (46) can be written the

following form

_~Ei ¼ Asi
~Ei � BiL

T
i

~h
T

i ni þ ~h
T

ijnijuj þ x1i � uri

� �

ð48Þ

where we now have eEsi ¼ eei; . . .; ee
ðni�1Þ
i

h iT

.

It is challenging to determine the entries of the fil-

terLiðsÞ, i.e., entries of the vectorBs ¼ b1; . . .; bni½ �T . To

overcome this problem, we can rewrite (47) as

_~Esi ¼ Asi
~Ei � Bi

~h
T

i ni þ ~h
T

ijnijuj þ xi � uri

� �

ð49Þ

where xi ¼ x1i þ -i is a lumped uncertainty and -i can be

written as

-i ¼ L�1
i � 1

	 


~h
T

i ni þ ~h
T

ijnijuj þ x1i � uri

� �

ð50Þ

To achieve the proposed OBLF control method, the

error Eq. (45) can be rewritten as

_~esi ¼ ~h
T

i ni þ ~h
T

ijnijuj þ wi � uri

� �

ð51Þ

where

wi ¼ Hi sð Þ � 1ð Þ ~h
T

i ni þ ~h
T

ijnijuj þ x1i � uri

� �

ð52Þ

4.3 OBLF control approach

The barrier Lyapunov function is an efficient technique to

resolve the drawback of output constraint. By confirming

the boundedness of the barrier Lyapunov function along

the system trajectories, the transgression of constraints is

prevented (Shaocheng et al. 2005; Schkoda and Crassidis

2007; Shahnazi 2016). Now, the observer error signal ee1i
needs the barrier function ViðtÞ to avoid it from reaching

the limits 
ki.

Vi tð Þ ¼
1

2
log

k2i
k2i � ~e2si

ð53Þ

where logð:Þ denotes the natural logarithm ofð:Þ, and ki the

constraint oneesi, i.e., eesij j\ki. As seen from the schematic

illustration of Vi eesiðtÞð Þ in Fig. 1, the barrier Lyapunov

function escapes to infinity at eesij j ¼ ki. It can be shown

that Vi is positive definite, and thus, a valid Lyapunov

function candidate in the set eesij j\ki. From (Schkoda and

Crassidis 2007; Shahnazi 2016), if Vi tð Þ is positive definite
and _Vi tð Þ � 0, for proper positive constant ki we have

eesij j\ ki so that Vi tð Þ ! 1 as eesij j ! ki. Indeed,

eesiεð�ki;þkiÞ8tε½0;1Þ.
It is an important advantage that the proposed barrier

Lyapunov is a function of the observer error signal

eesi ¼ ei � êi ¼ x̂i � xi, because the selection of the

parameter ki will not be complicated. Indeed, we expect

eesi ! 0 at all times; hence, we always have a limited

observer error as eesij j\ki. Therefore, the proposed barrier

Lyapunov functions can maintain the observer error eesi in a

small area. Hence, we can hope that the tracking errors are

bounded and converge toward zero, i.e., ei; êi ! 0, because

eesi ¼ ei � êi ! 0. But, the conventional barrier Lyapunov

(Shaocheng et al. 2005; Schkoda and Crassidis 2007;

Shahnazi 2016) is a function of the trajectory signal error

ei ¼ xdi � xi; thus, a selection constraint will occur for

parameter ki or desired trajectory state xdi, since ki directly

depends on xdi as jei ¼ xdi � xij / ki. Indeed, even in a

good tracking trajectory (e.g., ei ¼ xdi � xi ! 0), parame-

ter ki may be a large constant. Therefore, the conventional

barrier Lyapunov functions can only restrict the tracking

error ei, and it designs a control method that does not drive

ei out of the interval eij j\ki. In other words, it can’t be

concluded that the tracking errors asymptotically converge

to zero. For more details, see Fig. 2

Fig. 1 Schematic illustration of barrier function
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Now, we define the robust H1-like control term and the

proposed OBLF-Adaptive Fuzzy Laws (OBLF-AFL) as

uri ¼
1

2k2i
zi þ ~esið Þ ð54Þ

_hi ¼ �ci zi þ ~esið Þni ð55Þ
_hij ¼ �cij zi þ ~esið Þujnij ð56Þ

where zi ¼ eesi=ðk2i � ee
2
siÞ, and ki, ki, ci, and cij are positive

designing constants. Also, the H1-like tracking perfor-

mance can be achieved for a prescribed attenuation level ki.
In the conventional robust H1 control terms, it is

assumed that parameter ki should be sufficiently small so

that the derivative of the Lyapunov function is semi-neg-

ative definite, but this condition yields a very high mag-

nitude of control input uj which is not practically feasible.

An inappropriate adjustment of parameter ki may cause bad

behavior of the whole system, e.g., a higher frequency of

chattering or a higher tracking error may occur. The pro-

posed bounded robust H1 control term can be one prob-

able answer for solving these problems. The main purpose

of this technique is to increase the accuracy of the closed-

loop stability. In other words, to improve the compensation

for uncertainty xi, a strategy is using the proposed bounded

robust control term. Now, we propose the bounded robust

H1-like (54) as

uri ¼ uzi þ uei ð57Þ

where

uzi ¼ sat
1

2k2i
zi

 !

¼
1

2k2i
zið Þ jzij\ �wi

�wisign zið Þ else

8

<

:

uei ¼ sat
1

2k2i
~esi

 !

¼
1

2k2i
~esið Þ j~esij\ �xi

�xisign ~esið Þ else

8

<

:

where wi and xi are the user-defined bounds as wij j �wi

and xij j �xi.

Also, to guarantee the fuzzy parameters are bounded, hi
and hij can be improved by a simple projection algorithm.

Improved adaptive laws with projection can be written as

h ¼

R

t

0

_hdsþ h 0ð Þ m\ hk k\ �m

�m hk k	 �m
m hk k�m

8

>

>

<

>

>

:

ð58Þ

where hi and hij are described as h, and mi and mij are

defined as m, and also mi and mij are described as m. The

block diagram of the proposed control method is shown in

Fig. 3.

Remark 2 Although the suggested observer-based tech-

nique requires proper conditions for filter Li sð Þ to

Hi sð ÞLiðsÞ be SPR, the filter Li sð Þ and vector Bsi sð Þ don’t

need to be known (i.e., in other words, the filter Li sð Þ is

only applied for analysis purposes). In (Tee et al. 2009), the

authors employed a filtered version of adaptive fuzzy law.

It seems that applying these filtered adaptive fuzzy laws

can make the control system design very difficult, while the

Lumped uncertainties wi and xi can be compensated by the

bounded robust H1-like (57).

Theorem Consider the uncertain nonlinear system—in the

form of (1), then using the proposed controller (39), the

robust control term (57), and the OBLF-AFLs (55) and

(56), the tracking error of the closed-loop system will be

uniformly ultimately bounded.

Proof Consider the Lyapunov function.

Vi ¼
1

2
Ê
T

i PoiÊi þ
1

2
eE
T

siPi
eEsi þ

1

2
log

k2i
k2i � ee

2
si

þ 1

2ci
eh
T

i
ehi

þ 1

2cij
eh
T

ij
ehij

ð59Þ

The derivative of Vi is obtained as

_Vi ¼
1

2

_̂
E
T

i PoiÊi þ Ê
T

i Poi
_̂
Ei

� �

þ 1

2

_
eE

T

siPi
eEsi þ eE

T

siPi
_
eE si

� �

þ k2i
ee1i _ee1i

k2i � ee
2
si

þ 1

ci
eh
T

i
_
eh i

þ 1

cij
eh
T

ij
_
eh ij

ð60Þ

Fig. 2 Boundary layer ki based
on the conventional barrier

Lyapunov function Vi eiðtÞð Þ,
and the proposed barrier

Lyapunov function Vi eesiðtÞð Þ
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By substituting the tracking errors (41) and (49) into

(60), and after some simple manipulations, we have

_Vi ¼
1

2
Ê
T

i AoiPoi þ PoiAoif gÊi þ eE
T

siCiK
T
ciPoiÊi

þ 1

2
eE
T

si AsiPi þ PiAsif geEsi þ eE
T

siPiBsifeh
T

i ni þ eh
T

ijnijuj

þ xi � urig þ k2i
eesi _eesi

k2i � ee
2
si

þ 1

ci
eh
T

i
_
eh i þ

1

cij
eh
T

ij
_
eh ij

ð61Þ

Utilizing (11), (44), and the error dynamics (51), the

latter results

_Vi ¼ � 1

2
Ê
T

i QoiÊi �
1

2
~E
T

siQi
~Esi þ ~E

T

siCiK
T
ciPoiÊi

þ ~E
T

siPiBsif~h
T

i ni þ ~h
T

ijnijuj þ xi � urig

þ ~esi
k2i � ~e2si

~h
T

i ni þ ~h
T

ijnijuj þ wi � uri

� �

þ 1

ci
~h
T

i
_~hi

þ 1

cij
~h
T

ij
_~hij

ð62Þ

Based on the vector Bsi in filter LiðsÞ (Ghavidel and

Kalat 2017b, 2018; Ghavidel 2018), define that

eE
T

siPiBsi ¼ eE
T

siCi ¼ eesi; now after some manipulations we

have

eE
T

siCiK
T
ciPoiÊi þ eE

T

siPiBsi
eh
T

i ni þ eh
T

ijnijuj þ xi � uri

n o

¼ eesi eh
T

i ni þ eh
T

ijnijuj þ xi � uri

� �

ð63Þ

where KT
ciPoiÊi can be a part of the uncertainty xi. Then,

(63) can be rewritten as

_Vi ¼ � 1

2
Ê
T

i QoiÊi �
1

2
eE
T

siQi
eEsi

þ eesi eh
T

i ni þ eh
T

ijnijuj þ xi � uri

� �

þ zi eh
T

i ni þ eh
T

ijnijuj þ wi � uri

� �

þ 1

ci
eh
T

i
_
eh i

þ 1

cij
eh
T

ij
_
eh ij ð64Þ

_Vi ¼ � 1

2
Ê
T

i QoiÊi �
1

2
eE
T

siQi
eEsi

þ zi þ eesið Þ eh
T

i ni þ eh
T

ijnijuj
� �

þ eesi xi � urið Þ

þ zi wi � urið Þ þ 1

ci
eh
T

i
_
eh i þ

1

cij
eh
T

ij
_
eh ij ð65Þ

By the fact
_
eh i ¼ _hi and

_
eh ij ¼ _hij, the adaptive laws (55)

and (56) we have

_Vi ¼ � 1

2
Ê
T

i QoiÊi �
1

2
eE
T

siQi
eEsi

þ eh
T

i zi þ eesið Þni þ
1

ci

_
eh i

� �

þ ehTij zi þ eesið Þujnij þ
1

cij

_
eh ij

 !

þ eesi xi � urið Þ

þ zi wi � urið Þ ð66Þ

_Vi ¼ � 1

2
Ê
T

i QoiÊi �
1

2
eE
T

siQi
eEsi þ eesi xi � urið Þ

þ zi wi � urið Þ ð67Þ

By the robust term uri, for out of the areas jzij\wi and

jeesij\xi, we have

Vi

:
¼� 1

2
ÊT
i QoiÊi �

1

2
ET
siQiEsi þ xiesi � �xijesijð Þ

þ wizi � �wijzijð Þ
ð68Þ

Fig. 3 Block diagram of the

proposed OBLF approach by

robust adaptive fuzzy

controllers
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_Vi � � 1

2
Ê
T

i QoiÊi �
1

2
eE
T

siQi
eEsi þ xij jjeesij � xijeesijð Þ

þ wij jjzij � wijzijð Þ
ð69Þ

_Vi � � 1

2
Ê
T

i QoiÊi �
1

2
eE
T

siQi
eEsi ð70Þ

Since xij jjeesij �xijeesij, and wij jjzij �wijzij. For the

areas jzij\wi and jeesij\xi, we have

_Vi ¼ � 1

2
Ê
T

i QoiÊi �
1

2
eE
T

siQi
eEsi �

eesizi

k2i
þ eesixi �

ee2si
2k2i

 !

þ ziwi �
z2i
2k2i

 !

ð71Þ

Note that

ziwi �
1

2k2i
z2i ¼ � 1

2

1

ki
zi � kiwi

� �2

þ 1

2
k2i w

2
i

~esixi �
1

2k2i
~e2si ¼ � 1

2

1

ki
~esi � kixi

� �2

þ 1

2
k2ix

2
i

8

>

>

>

<

>

>

>

:

ð72Þ

Therefore, the previous relation becomes

_Vi � � 1

2
Ê
T

i QoiÊi �
1

2
eE
T

siQi
eEsi �

1

k2i
eesizi þ

1

2
k2i w

2
i

þ 1

2
k2ix

2
i ð73Þ

Since � 1
ki
zi � kiwi

� �2

� 0 and � 1
2

1
ki
eesi � kixi

� �2

� 0.

Also, based on (Ren et al. 2010),�eesizi\0

0� log
k2i

k2i � ~e2si
\

~e2si
k2i � ~e2si

¼ ~esizi ð74Þ

Thus, from (74) we have � 1
k2i
eesizi\0. Finally, (73) can

be written as

_Vi � � 1

2
ETi QiEi þ

1

2
k2i w2

i þ x2
i

	 


ð75Þ

where Ei ¼ Êi; eEsi

h iT

and Qi ¼ diag Qoi;Qi½ �. Also, Qoi

and Qiare positive definite matrices. Therefore, the H1-

like tracking performance can be achieved, and also for ki
sufficiently small, Eq. (75) will be true and the bounded

H1-like tracking criterion will hold. Then, the integration

of _Vi from 0 to T gives

Z T

0

_Vi tð Þ� � 1

2

Z T

0

kEik2Qi
dt

þ 1

2
k2i

Z T

0

kwik2 þ kxik2
� �

dt;

2Vi Tð Þ þ
Z T

0

kEik2Qi
dt� 2Vi 0ð Þ

þ k2i

Z T

0

kwik2 þ kxik2
� �

dt:

Z

T

0

E2iQi
dt� 2Vi 0ð Þ þ 1

2
k2i Mwi ð76Þ

It is assumed that there exists a positive constant Mi [ 0

such that
R1
0

kwik2 þ kxik2
� �

dt�Mi; then for the integral
R T

0
kEik2Qi

dt one gets
R1
0
kEik2Qi

dt� 2Vi 0ð Þ þ k2iMi. Thus,

the integral
R T

0
kEik2Qi

dt is bounded and according to Bar-

balat’s Lemma; we have

lim
t!1

Ei ¼ 0 )
lim
t!1

Êi ¼ 0

lim
t!1

Êsi ¼ 0

8

<

:

) lim
t!1

Ei ¼ 0 ) lim
t!1

E ¼ 0

ð77Þ

Remark 3 From (73)-(75), and by term � 1
k2i
eesizi\0, we

can see that the proposed OBLF approach makes the

decreasing of the time derivative of the Lyapunov function,

because 1
k2i

is a large constant. Therefore, we showed that

the proposed scheme can improve _ViðtÞ

_Vi � � 1

2
Ê
T

i QoiÊi þ
1

2
eE
T

siQi
eEsi þ

1

k2i
eesizi

( )

þ 1

2
k2i w2

i þ x2
i

	 


ð78Þ

Remark 4 If zi ¼ 0, we have a control approach without

OBLF-AFL. Therefore, the robust controller with Obser-

ver-Adaptive Fuzzy Law (O-AFL).

uri ¼
1

2k2i
~esi ð79Þ

_hi ¼ �ci ~esini ð80Þ
_hij ¼ �cij ~esiujnij ð81Þ

The stability of the controller with O-AFL is almost

similar to the suggested OBLF-AFL method. Consider the

Lyapunov function

Vi ¼
1

2
Ê
T

i PoiÊi þ
1

2
eE
T

siPi
eEsi þ

1

2ci
eh
T

i
ehi þ

1

2cij
eh
T

ij
ehij ð82Þ

The derivative of Vi is as follows
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_Vi ¼ � 1

2
Ê
T

i QoiÊi �
1

2
~E
T

siQi
~Esi

þ ~esi ~h
T

i ni þ ~h
T

ijnijuj þ xi � uri

� �

þ 1

ci
~h
T

i
_~hi þ

1

cij
~h
T

ij
_~hij

ð83Þ

Similar to the proof of the OBLF-AFL method, it is

simple to see that the derivative of Vi is obtained as

_Vi � � 1

2
ETi QiEi þ

1

2
k2ix

2
i ð84Þ

4.4 The control approach for semi-known affine
and non-affine systems

If we assume that f i Xð Þ ¼ f oi Xð Þ þ Df i and

gij Xð Þ ¼ goij Xð Þ þ Dgij, where f oi and goij are well known,

and Df i and Dgij are unknown functions, one useful method

is rewriting the affine system (4) as

x
nið Þ
i ¼ foi Xð Þ þ Dfif g þ

P

m

j¼1

goij Xð Þ þ Dgij
� �

uj þ di tð Þ
yi ¼ xi

(

ð85Þ

x
nið Þ
i ¼ foi Xð Þ þ

P

m

j¼1

goij Xð Þuj þWi þ di tð Þ
yi ¼ xi

(

ð86Þ

where Wi ¼ Df i þ
Pm

j¼1 Dgijuj. The new proposed con-

troller can be as

Uo ¼ Gr#
o �Fo þ b̂� Ŵ� ur

� �

ð87Þ

where

Fo ¼ f o1 Xð Þ; . . .; f or Xð Þ½ �T

Go ¼ gij
� �

�Rr�m

Ŵ ¼ ½Ŵo1; . . .; Ŵor�
T

Now, we can apply the proposed adaptive fuzzy esti-

mation Ŵi ¼ hTi ni N̂
	 


for uncertainties Wi, by adaptive

laws (55) and (80); OBLF-AFL: _hi ¼ �ci zi þ eesið Þni, and
O-AFL: _hi ¼ �cieesini. The stability of the controller (84) is

similar to the previous schemes. Consider the Lyapunov

function

Vi ¼
1

2
Ê
T

i PoiÊi þ
1

2
eE
T

siPi
eEsi þ

1

2ci
eh
T

i
ehi ð88Þ

The derivative of Vi for OBLF-AFL and O-AFL meth-

ods is as follows, respectively,

_Vi ¼ � 1

2
Ê
T

i QoiÊi �
1

2
eE
T

siQi
eEsi þ zi þ eesið Þ hTi ni

	 


þ eesi xi � urið Þ þ zi wi � urið Þ þ 1

ci
eh
T

i
_
eh i ð89Þ

_Vi ¼ � 1

2
Ê
T

i QoiÊi �
1

2
eE
T

siQi
eEsi þ eesi hTi ni

	 


þ eesi xi � urið Þ þ 1

ci
eh
T

i
_
eh i ð90Þ

It is simple to see that the derivative of Vi is obtained as

_Vi � � 1
2
ETi QiEi þ 1

2
k2ix

2
i .

5 Simulation example

For highlighting the usefulness of the proposed control

method with input saturation, it is applied and simulated

under different levels of disturbance. In Example 1, the

proposed control is simulated for a SISO non-affine sys-

tem. In Example 2, the proposed control is applied to a

SISO compressor system. In Example 3, the proposed

control is simulated for a MIMO non-affine system with

square control gain. Furthermore, to apply the control

method of Sect. 4.5, in Example 4 and 5 we use a semi-

known 6-DoF underwater vehicle and a Hybrid Energy

Storage System (HESS). Results illustrate the tracking

performance for two cases: 1) the control approach with

OBLF-AFL and 2) the control approach with O-AFL.

The constraint parametersmi,mij, mi and mij are delib-

erately chosen to be large enough (Ghavidel and Kalat

2017a, 2018). For all examples in this paper, we have three

fuzzy membership functions ll N̂
	 


which are assumed in

the form of ll N̂
	 


¼ exp � ðN̂þ clÞ=rl
	 
2

h i

where rule l

denotes the l th fuzzy rule forl ¼ 1; 2; 3, where cl ¼
f�1; 0; 1g is the center of,ll ¼ fl1; l2; l3g, respectively.
Also, rl ¼ 0:3 is an arbitrary constant value. Moreover,

ni ¼ nij ¼ n1; n2; n3½ �T and nl is a positive value expressed

as (31). The disturbance isdi ¼ 0:5sin ptð Þ � u tð Þf g
þf5sin 2ptð Þ � u t � 10ð Þg, where u :ð Þ is a unit step func-

tion. The control design parameters for Examples 1–5 are

given in Table 1.

Example 1 Model features:

• SISO

• Non-affine

• Linear input–output

• Unknown model

The dynamic equation of a SISO non-affine system is as

follows (Tee et al. 2009)
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_x1 ¼ x2
_x2 ¼ �x1 þ 2x2 � 2x21x2 þ

u1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u1j j þ 0:1
p

y1 ¼ x1

8

>

<

>

:

þ d1

ð91Þ

The initial conditions of fuzzy parameters are chosen

randomly in the intervals h1 0ð Þ ¼ ½�0:5; 0:5� and

h11 0ð Þ ¼ 2; 3½ �. Also, the control input is limited

between - 50 and ? 50, Ao1 ¼ ½00; 10�, Kc1 ¼
kc11; kc21½ �T and C1 ¼ 1; 0½ �T (note that i ¼ 1). Moreover,

the desired value is xd1 ¼ sinðp=5Þ:
The tracking trajectory x1 for SISO non-affine system

(i; j ¼ 1) is shown in Fig. 4. The tracking performance of

the proposed controller with OBLF-AFL is proper; there-

fore, it can be seen that the proposed technique can guar-

antee system performance among uncertainties, and for this

task, it reduces the amount of chattering. Furthermore,

Fig. 5 shows the estimation errors ê1 and _̂e1. Figure 6

illustrates the control inputs u1 with input saturation 
50.

The results of the study obviously show that the proposed

approach can achieve suitable performance.

Example 2 Model features:

• SISO

• Affine

• Nonlinear input–output

• Unknown model

Consider a compressor motor of a fuel cell system. The

dynamic equation of the compressor system is as follows

(Ulrich et al. 2012)

_X ¼ J�1 ktI � kfX� Q
	 


þ d1
_I ¼ L�1 �RI � keXþ Vð Þ þ d2
_P ¼ v�1

m cwX� k�1
h P

	 


þ d3

8

<

:

ð92Þ

where V , I, L, R, X, P, and Q ¼ cpP are the voltage input,

the current input, inductance, resistance, the propeller

Table 1 Control design

parameters for Examples 1–5
Parameter Example 1 Example 2 Example 3 Example 4 Example 5

ci c1=500 c1=c2=100 c1=c2=600 c1,…,c6=500 c1=700

cij c11=1 c11=c22=20

c12=c21=50

c13=c23=50

c11=c22=50

c12=c21=10

– –

ki k1=0.01 k1=k2=0.01 k1=k2=0.01 k1,…,k6=0.02 k1=0.01

ki 0.7 0.7 0.7 0.7 0.7

K1i ¼ K2i ½2; 2�T ½30; 30�T ½10; 10�T ½2; 2�T ½20; 20�T

Kc1i ¼ Kc2i ½20; 20�T ½50; 50�T ½100; 100�T ½50; 50�T ½40; 40�T

d 0.0001 0.0001 0:0001 0:0001 0:0001

Qi, Pi,Qoi, Poi, Bsi and Li No need No need No need No need No need

Fig. 4 Tracking trajectories: xd1 (dotted line), x1 by OBLF-AFL (solid

line) and O-AFL (dashed line), for Example 1

Fig. 5 Tracking trajectories ê1 and ê2: by OBLF-AFL (solid line) and

O-AFL (dashed line), for Example 1

Fig. 6 Control input u1 by OBLF-AFL (solid line) and by O-AFL

(dashed line), for Example 1
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rotational velocity, piston pressure, and shaft torque,

respectively. Also kt, kf , ke, J, cw, vw, and kh are the motor

constants. Therefore, non-affine models (85) can be pro-

posed as

_x1 ¼ _X
€x1 ¼ €X ¼ f1 þ g11u1 þ d tð Þ

�

ð93Þ

where

f 1 ¼ b1Xþ b2 _Xþ b3P,g11 ¼ b4, and u1 ¼ V

The model parameters are follows:

b1 ¼ � Rþkektþcpv
�1
m cwL

L , b2 ¼ � kfþRJ
L , b3 ¼ Rcpþcpv

�1
m k�1

h L

L ,

b4 ¼ kt
L,

The initial conditions of fuzzy parameters are chosen

randomly in the intervals h1 0ð Þ ¼ ½�1; 1� and

h11 0ð Þ ¼ ½1; 3�. Also, the control input is limited between -

8 and ?8, Ao1 ¼ ½00; 10�, Kc1 ¼ kc11; kc21½ �T and

C1 ¼ 1; 0½ �T . Moreover, the desired value is

xd1 ¼ 5sinðp=5Þ:
The tracking trajectory y1 for SISO non-affine system

(i; j ¼ 1) is shown in Fig. 7. The tracking performance of

the proposed controller with OBLF-AFL is proper; there-

fore, it can be seen that the suggested control design can

guarantee system performance among uncertainties, and

for this task, it reduces the amount of chattering. Moreover,

Fig. 8 shows the estimation errors ê1 and _̂e1. Figure 9

illustrates the control inputs u1 with input saturation 
8.

The results of the study clearly demonstrate that the pro-

posed method can achieve suitable performance.

Example 3 Model features:

• MIMO

• Non-affine

• Nonlinear input–output

• Square control gain

• Unknown model

Consider the following academic MIMO non-affine

nonlinear system as

_x11 ¼ x21
_x21 ¼ x211 þ 1:5x221 þ 1:5u31 þ 3� sin x11ð Þð Þu1 � u2 þ d1
_x31 ¼ x11 � 0:8x31
_x12 ¼ x22
_x22 ¼ x222 þ x11 þ x221 � 0:2u1 þ 1þ x212

	 


u32 þ 2þ cos x12ð Þð Þu2 þ d2
_x32 ¼ x12 � 2x32
y1 ¼ x11; y2 ¼ x12

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

ð94Þ

Based on (Ghavidel 2018; Ghavidel and Kalat 2018),

the system with output y has a relative degree of 2

(r ¼ 2) for each subsystem. The zero dynamics of sys-

tem are _x31 ¼ x11 � 0:8x31 and _x32 ¼ x12 � 2x32. This

means that system is stable. Thus, it can be modeled as a

second-order plant. The realization process includes four

states (x11, x21, x12 and x22), and the outputs are modeled

as y1 ¼ x11 and y2 ¼ x12 (states x31 and x32 neglected).

Therefore, we can show the system without unmodeled

dynamic as

_x11 ¼ x21
_x21 ¼ x211 þ 1:5x221 þ 1:5u31 þ 3� sin x11ð Þð Þu1 � u2 þ d1
_x12 ¼ x22
_x22 ¼ x222 þ x11 þ x221 � 0:2u1 þ 1þ x212

	 


u32 þ 2þ cos x12ð Þð Þu2 þ d2
y1 ¼ x11; y2 ¼ x12

8

>

>

>

>

<

>

>

>

>

:

ð95Þ

We can easily check that oFi X;Uð Þ=oU[ 0. The initial

conditions of fuzzy parameters are chosen randomly in the

intervals h11 0ð Þ ¼ h22 0ð Þ ¼ ½�0:5; 0:5�, h11 0ð Þ ¼ h22 0ð Þ ¼
½5; 8� and h12 0ð Þ ¼ h21 0ð Þ ¼ ½0:5; 1�. Also, the control input
is limited between - 3 and ? 3, Ao1 ¼ Ao2 ¼ ½00; 10�,Fig. 7 Tracking trajectories: xd1 (dotted line), x1 by OBLF-AFL (solid

line) and O-AFL (dashed line), for Example 2

Fig. 8 Tracking trajectories ê1 and _̂e1: by OBLF-AFL (solid line) and

O-AFL (dashed line), for Example 2

Fig. 9 Control input u1 by OBLF-AFL (solid line) and by O-AFL

(dashed line), for Example 2
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Kc1 ¼ kc11; . . .; kc21½ �T , Kc2 ¼ kc12; . . .; kc22½ �Tand
C1 ¼ C2 ¼ 1; 0½ �T . Moreover, desired values are

xd1 ¼ sinðp=5Þand xd2 ¼ �sinðp=5Þ.
The tracking trajectories xi for the MIMO non-affine

system (i ¼ 1; 2) are shown in Figs. 10 and 11. Moreover,

Figs. 12 and 13 show the trajectories of estimate errors êi

and _̂ei. Figures 14 and 15 illustrate the control inputs uj
with input saturation 
3. The results of the study clearly

exhibit that the suggested method can achieve proper

performance.

Example 4 Model features:

• MIMO

• Affine

• Linear input–output

• Non-square control gain

• Semi-known model

To show the usefulness and effectiveness of the pro-

posed method, a physical example is employed. Details on

the matrices operated for a model of a 6-DoF underwater

vehicle with 8 thrusters can be as (Ghavidel and Kalat

2017a)

€x ¼ FþGUþ D tð Þ ð96Þ

where F ¼ f 1; . . .; f 6½ �T�R6, G ¼ gij
� �

�R6�8, D= d1; . . .;½
d6�T�R6, U= u1; . . .; u6½ �T�R6.

Based on section 5.4, we assume that the system is

semi-known. The initial conditions of fuzzy parameters

are chosen randomly in the intervals hi 0ð Þ ¼ ½�1; 1�.
Also, the control input is limited between - 20 and

?20, Aoi ¼ ½00; 10�, Kci ¼ kc1i; kc2i½ �T , and Ci ¼ 1; 0½ �T .
Moreover, desired values are xdi ¼ 2; 3; 4; p

3
; p
4
; 2p
5

� �

:

The tracking trajectories for the 6-DoF underwater

vehicle are shown in Fig. 16. The tracking performances

of the suggested OBLF-AFL are also proper. So, it can

be seen that the proposed controller can guarantee sys-

tem performance. We can see that the tracking errors are

uniformly ultimately bounded and converge to a small

region near zero. Moreover, Fig. 17 illustrates the control

inputs uj with input saturation 
20.

Fig. 10 Tracking trajectories: xd1 (dotted line), x1 by OBLF-AFL

(solid line) and O-AFL (dashed line), for Example 3

Fig. 11 Tracking trajectories: xd2 (dotted line), x2 by OBLF-AFL

(solid line) and O-AFL (dashed line), for Example 3

Fig. 12 Tracking trajectories ê1 and _̂e1: by OBLF-AFL (solid line)

and O-AFL (dashed line), for Example 3

Fig. 13 Tracking trajectories ê2 and _̂e2: by OBLF-AFL (solid line)

and O-AFL (dashed line), for Example 3

Fig. 14 Control inputs: u1 (solid line) and u2 (dashed line), by OBLF-

AFL, for Example 3
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Example 5 Model features:

• SISO

• Affine

• Nonlinear input–output

• Semi-known model

The average control models of each part of a HESS with

the boost-buck converter (e.g.; battery or supercapacitor)

can be expressed as (Ghavidel and Mousavi-G 2022a, b)

V ¼ F Ið Þ
dI

dt
¼ �R

L
I þ 1

L
V

� �

� VL

L
u1 þ d tð Þ

y1 ¼ I

8

>

<

>

:

ð97Þ

where V and I are the average voltage and current, R and L

are the IGBT inductor and resistance, function F is the

dynamical model of HESS (e.g.; battery in this study), u1 is

the average value of the switching signal, d is the external

disturbance, and VL ¼ 750 v is the stable voltage of the

DC-bus.

The system with output y1 ¼ I has a relative degree of 1

(r ¼ 1). Then we have; f 1 ¼ �RIþ Vð ÞL�1 and

g1 ¼ �VL�1. The initial conditions of fuzzy parameters

are chosen randomly in the intervals h1 0ð Þ ¼ 0. Also, the

control input is limited between 
1, Ao1 ¼ ½00; 10�, Kc1 ¼
kc11; kc21½ �T and C1 ¼ 1; 0½ �T . Moreover, the desired value

is xd1 ¼ 5sinðp=5Þ:
The tracking trajectory y1 is shown in Fig. 18. The

tracking performance of the proposed controller with

OBLF-AFL is good, and for this task, it reduces the amount

of chattering. Moreover, Fig. 19 shows the estimation error

ê1. Figure 20 illustrates the control inputs u1 with input

saturation 
1. The results of the study clearly demonstrate

that the proposed method can achieve

suitable performance.

5.1 The comparing results

By comparing case results, it can be seen that the control

performance of the proposed control with the OBLF-AFL

method is suitable. Also, we see that the tracking errors can

converge to a small neighborhood of zero. Moreover, we

can state that the results show the usefulness and effec-

tiveness of the suggested controller and the ability to

Fig. 15 Control inputs: u1 (solid line) and u2 (dashed line), by

O-AFL, for Example 3

Fig. 16 Tracking trajectories: xdi (dotted line), xi by OBLF-AFL (solid line) and O-AFL (dashed line), for Example 4
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maintain the system performance amid various uncertain-

ties and disturbances’ various amplitude and frequency.

In short, the performance of the proposed method for

various classes of nonlinear systems is suitable. The rea-

sons are that the proposed method is based on combining

advantages of barrier Lyapunov, fuzzy system, adaptive

method, a bounded robust H1-like control term, and a

simple and accurate observer scheme. Also, we do not have

an SPR transfer function, and it does not require matrices

Qi, Pi,Qoi, Poi and vectors B1, B2 to be known. Further-

more, the fuzzy estimator with the feedback error function

N̂ as input in the fuzzy adaptive controller can improve the

sensitivity of uj to the tracking errors, while the number of

fuzzy term sets and rules is decreased. Moreover, the

proposed method is computationally simple, effective,

robust, and properly behaved in the presence of input sat-

uration. Also, by this technique, the chattering phe-

nomenon can be alleviated.

Remark 5 Some more comparisons were performed for

Examples 1–5 without the input saturation. According to

these simulation results, it was observed that with input

saturation a large overshoot of the control input may be

generated in the earliest moments as an impulse signal.

These large overshoots may cause bad behavior of the

system under control because they may play a destructive

role. Hence, simulation studies are neglected for this

method. Furthermore, several simulations were carried out

for control of various nonlinear systems, e.g., for MIMO

maglev bogy (Wen et al. 2011), MISO and SISO affine

MLS (Yousfi et al. 2014), MIMO affine robot system

(Ghavidel and Kalat 2017c), etc. Simulation studies show

the usefulness of the suggested approach. The simulation

results were under the fuzzy logic inputs N̂ and X̂. These

simulation studies are neglected for this method. Briefly,

from Table 2 we can see the tracking performances of the

Fig. 17 Control input uj by
OBLF-AFL (solid line) and by

O-AFL (dashed line), for

Example 4

Fig. 18 Tracking trajectories: xd1 (dotted line), y1 by OBLF-AFL

(solid line) and O-AFL (dashed line), for Example 5

Fig. 19 Tracking trajectory ê1: by OBLF-AFL (solid line) and O-AFL

(dashed line), for Example 5

Fig. 20 Control input u1 by OBLF-AFL (solid line) and by O-AFL

(dashed line), for Example 5
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control approach with OBLF-AFL and O-AFL in the

presence of large and sudden disturbances. Also, we want

to develop our design method in the next study so it can be

applied for intelligent computing approaches (Youssef

et al. 2018; Li et al. 2019; Al-Qerem et al. 2020).

6 Conclusion

In this paper, a non-singular control strategy with an

OBLF-AFL is applied for various types of nonlinear sys-

tems (i.e., for MIMO, MISO, MIMO, and SISO systems).

Also, a bounded H1� like control term is employed to

compensate for uncertainties. A stability analysis is intro-

duced to solve the problem of nonlinear systems with input

saturation. Moreover, the suggested scheme can be applied

to unknown or semi-unknown affine and non-affine sys-

tems. Also, the proposed observer controller does not need

SPR conditions to be identified. Moreover, a fuzzy esti-

mator with the feedback error function N̂ is used, so that,

the number of fuzzy sets and also fuzzy IF–THEN rules is

reduced. The suggested approach is robust and accurate

with less computing. The simulation results signify obvi-

ously that the tracking errors are very small. Finally, the

proposed strategy can maintain system performance

despite various uncertainties and external disturbances with

a proper reduction in chattering. The proposed approach is

not limited only to the simulation examples; it can be

applied to various class of nonlinear systems, e.g., MIMO,

MISO, MIMO, and SISO systems. We want to develop this

scheme in the next study, so it can be applied to industrial

and practical systems.
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