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Abstract
The accurate prediction of strip crown is the precondition of the shape preset model in hot strip rolling. In this study, a new

hybrid strip crown forecasting model is proposed in combination with extreme learning machine (ELM) and the industrial

data. The production data of 1780 mm hot strip rolling are collected by the on-site data acquisition system to form dataset.

Principal component analysis (PCA) is used to reduce the dimension of the input data for modeling samples. To improve

the prediction accuracy of ELM, an improved PSO based on S-curve decreasing inertia weight (SDWPSO) is proposed to

optimize the initial weights and biases of ELM. Finally, the optimal ELM model and simple production dataset are used to

establish a strip crown prediction model of hot strip rolling named PCA-SDWPSO-ELM. The comprehensive performance

of the proposed hybrid PCA-SDWPSO-ELM prediction model is evaluated by MAE, MAPE and RMSE. The superiority of

the proposed model is also proved by comparing the prediction results with those of the other three comparison models.

The research shows that the hybrid PCA-SDWPSO-ELM method can solve the problem of nonlinear and strong coupling

in traditional engineering. It is suitable for parameter prediction and optimization in the iron and steel manufacturing

industry, especially in the process of shape control in hot strip rolling.

Keywords Strip crown prediction � Extreme learning machine (ELM) � Industrial data � Principal component analysis

(PCA) � Regression model � Hot strip rolling

1 Introduction

Hot strip rolling products are widely used in the national

economy (Pittner and Simaan 2011; Peng et al. 2015). Strip

shape, including the crown and flatness of strip, is one of

the key indices of product quality. The crown represents

the difference in thickness distribution between the two

sides and the middle on the cross section of the strip, and

flatness represents the different elongations of the strip in

the length direction (Peng et al. 2014). Poor strip shape

quality not only affects the hot rolling process, but also

adversely affects the subsequent processes, such as cold

rolling and shearing. Therefore, shape control is a core,

frontier and highly difficult technology in the hot strip

rolling process. Naturally, research on shape prediction and

control has great theoretical significance and practical

value.

To date, many scholars have carried out intensive

studies of shape control in rolling processes. The common

research methods of strip shape control are traditional

mathematical analysis and finite element analysis. For strip

crown control, it is generally effective to combine all kinds

of factors affecting the strip crown, such as the detection

device, the mathematical model, the load distribution, the

bending and shifting system (Pin et al. 2013). It is the most

basic method of establishing the strip shape control model

through traditional mathematical analysis. The core idea of

this method is to fully consider the characteristics of the
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rolling mill model and metal flow law and to calculate the

elastic deformation and flexural deformation of the rolling

mill by using the influence function method (Li et al.

2010). Combined with the bending roll and shifting roll

strategies, the shape of the roll gap profile is calculated to

realize crown control (Peng et al. 2014). The finite element

method can flexibly simulate the metal flow law and stress

and strain of strips under various rolling conditions

(Moazeni and Salimi 2015). The reasonable grid dividing

and setting boundary conditions provide the most accurate

representation for the roll system force and deformation of

the whole rolling mill; thus, the calculation results of the

shape parameters can be obtained with high precision, and

the influence of the shape actuator on the flatness, crown

and edge drop in the actual rolling process can be verified

(Linghu et al. 2014; Tran et al. 2015). However, it is

increasingly difficult to improve the precision of traditional

shape mathematical models because of the many simplified

conditions in the process of solving mathematical analytic

method and finite element method.

To continuously improve the strip shape control accu-

racy, artificial intelligence technology with data and algo-

rithms as the core has attracted increasing attention from

scholars. Intelligent technology is not only more and more

used in mobile electronic information network (Nikjoo

et al. 2018; Mohajer et al. 2022a, b), but also has emerged

in the field of industrial control. Early intelligent research

was on the optimization of mechanism model parameters

using heuristic intelligent optimization algorithms, such as

using a genetic algorithm (GA) to establish multiobjective

optimal control strategy and apply it to the identification of

strip shape parameters and the setting of rolling schedules.

The optimal strip crown and flatness setting values can be

obtained successfully, and the precision of strip shape

control can be improved (Nandan et al. 2005). The GA and

the ant colony algorithm (ACA) was used to optimize the

crown model of hot strip rolling, which proved that an

evolutionary algorithm was practical in the optimization of

rolling process parameters (Chakraborti et al. 2006). In

recent years, data-driven modeling theory based on

machine learning has become the main direction of intel-

ligent modeling. Common machine learning algorithms

mainly include artificial neural networks (ANNs), support

vector machines (SVMs), decision trees and random forests

(RFs), deep learning. The earliest application of artificial

intelligence in the rolling field was to build a rolling force

prediction model of the leveling rolling process using a

neural network and applied it to a practical production line,

and good results were obtained (Larkiola et al. 1998; Pican

et al. 1996; Moussaoui and Abbassi 2006). The pattern

recognition method is generally used in shape control

systems, and the accurate shape standard pattern charac-

teristic coefficient is the premise of shape control. The T-S

cloud inference neural network (Zhang et al. 2015a, b), PID

neural network (Zhang et al. 2015a, b) and radial basis

function network (Zhang et al. 2016) can effectively

identify common defects in cold rolling and improve the

precision of shape control. The relationship model between

input parameters and strip shape can also be established by

combining ANN and GA to predict the minimization flat-

ness of hot strip rolling (John et al. 2008). In addition, the

transfer matrix between the characteristic flatness error and

flatness adjustment parameters can be established by using

a GA to optimize the BP neural network. The transfer

matrix was successfully applied to the strip shape adjust-

ment mechanism of a rolling mill for the accurate control

of strip shape (Liu et al. 2005; Peng et al. 2008). Com-

bining a shape control matrix with the differential evolu-

tion algorithm (DE) optimization ELM, an intelligent

model of cold strip rolling can be established and applied to

the shape control process (Yang et al. 2017).

According to rolling theory, hot strip crown control is a

multivariable, strong coupling and nonlinear process. At

present, the strip crown prediction model based on tradi-

tional mathematical analytic theory has poor accuracy and

can no longer meet the needs of higher precision rolling.

Therefore, it is urgent to establish a new type of strip crown

model with high precision prediction ability by using the

above artificial intelligence methods. Artificial intelligence

method simulates the real process of human brain pro-

cessing. Based on a large amount of industrial data, it can

predict the target crown, which can effectively prevent the

error caused by the assumption being divorced from reality

and the simplification being too rough. Up to now, there

have been a few studies of strip crown prediction based on

AI techniques. ANNs are basic methods of intelligent

modeling. A hybrid model was constructed by Deng et al.

(2019) based on hot strip rolling production data and a deep

learning network to predict hot strip crown, and the results

show that the 97.04% absolute error of modeling samples is

less than 5 lm. Wang et al. (2019) established a prediction

model of hot strip crown by using the mind evolutionary

algorithm (MEA) to optimize the multilayer perceptron.

Based on research on accurate prediction of strip crown,

the influence of various input factors on the strip crown

was analyzed. SVM is another common machine learning

algorithm that can realize model training with small sample

sizes. Many studies have combined heuristic intelligent

optimization algorithms and SVMs to establish strip crown

prediction models. The basic strategy is to use an intelli-

gent optimization algorithm to optimize the key parameters

in the SVM model and use the selected optimal parameters

to establish the prediction model and predict the strip

crown (Wang et al. 2018; Ji et al. 2021; Song et al. 2022).

Although the proposed SVM model has high prediction

accuracy, it is not suitable for large-scale industrial data
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modeling. In addition, the model based on a single machine

learning method easily underfits or overfits, and the

ensemble model can solve this problem. Tree-based

ensemble algorithms have recently been recognized as one

of the best and most commonly used supervised learning

methods. The ensemble learning method with the decision

tree as the base learner inherits the advantages of the

decision tree, such as being simple, highly inter-

pretable and robust to anomalies, overcoming the disad-

vantages of instability and high variance (Zhou 2012). RF

is a typical ensemble learning algorithm, that can also be

used to establish a strip crown prediction model of hot strip

rolling with good generalization performance (Sun et al.

2021). The novel strip crown prediction model using well-

performing and efficient tree-based ensemble learning

algorithms, including extreme gradient boosting

(XGBoost) and light gradient boosting machine

(LightGBM) algorithms, has been established and deeply

studied (Li et al. 2021). Based on the above analysis, the

combination of artificial intelligence methods and big data

technology is a new trend in studying how to further

improve the precision of strip crown control in rolling

processes. Although some strip crown prediction models

based on artificial intelligence have been reported, the

sophisticated modeling process and expensive calculation

cost are still incompatible with the characteristics of

industrial control, such as fast and simple. Therefore, it is

still very urgent and important to establish a strip crown

prediction model with high-precision, efficient and easy

realization by using more advanced intelligent algorithms

and combining with the production data of manufacturers.

In general, the production data of hot strip rolling have

the characteristics of redundancy, high dimension and

coupling, and there are many factors, including chemical

composition parameters, strip parameters, variable param-

eters of each stand, affecting the strip crown. Because the

dimension is too high, the distribution of data on each

feature dimension becomes sparser, which is basically

disastrous for machine learning algorithms. Therefore,

directly modeling with these high-dimensional data will

lead to slow training speed and low accuracy. PCA is a

multie element statistical method for converting multiple

indices into several comprehensive indices with a low loss

of information by using dimension reduction and is based

on research on the most significant variations of the vari-

ables (Samarasinghe 2007). Huang and Harris (1993)

applied PCA to select the initial codebook to decrease the

dimension of training vectors. Malvoni et al. (2016) used

PCA to reduce the dimension of a training set data used for

photovoltaic forecast modeling, which improved the

accuracy of the forecasting model. Franceschi et al. (2018).

used PCA to screen the input variables that affect the

prediction effect of PM2.5 and PM10 and established an

environmental early warning model by multilayer percep-

tron. PCA is also used in image compression research to

group all training vectors of the test image and obtain the

principal components from all training vectors in the

training image (Tsai et al.2015). The reasonable use of

PCA algorithm can greatly simplify the model structure

and save the training time.

In this study, a new hybrid PCA-SDWPSO-ELM fore-

casting model is proposed in combination with artificial

intelligence method and the industrial data to predict strip

crown in hot rolling. First of all, the production data of

1780 mm hot strip rolling are collected, summarized,

mined and sorted by the on-site data acquisition system to

form an effective modeling dataset. Then PCA algorithm is

used to reduce the dimension of high-dimensional dataset

to further improve the simplicity of modeling data. In order

to improve the prediction accuracy of ELM, an improved

particle PSO based on S-curve is proposed to optimize the

initial weights and biases of ELM, so as to determine the

optimal ELM model parameters. Finally, the optimal ELM

model and simple production dataset are used to establish a

strip crown prediction model of hot strip rolling, and the

comprehensive performance of the proposed model and

other models are analyzed by means of comparative

research, which verifies the superiority and effectiveness of

the proposed model. This paper is organized as follows:

Sect. 2 introduces the basic theory of shape control. Sec-

tion 3 shows the collection and processing of modeling

data and the related modeling process. The discussion of

the strip crown forecasting results is described explicitly in

Sects. 4 and 5 concludes this paper.

2 Theory of strip crown control

2.1 Strip crown and proportional crown

Strip crown is the thickness difference between the center

of the strip cross section and the reference point of the

edge. To eliminate the effect of strip edge thinning, the

edge reference point is usually located 40 mm from the

strip edge. The definition of a strip crown is shown in

Fig. 1. The proportional crown is the ratio of the strip

crown to the thickness of the strip center.

heL hL hC hR heR

Fig. 1 Thickness variation in the strip cross section
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C ¼ hC � hL þ hRð Þ
2

ð1Þ

Cph ¼
C

hc
ð2Þ

where C is the strip crown, mm; hC is the thickness of the

center of the strip cross section, mm; hL and hR are the

thickness of the reference point on the left and right side of

the strip cross section, respectively, mm; and Cph is the

proportional crown of the strip.

2.2 Unload roll gap crown model

The traditional crown control model consists of two parts:

the unloaded roll gap crown model and the uniform load

roll gap crown model. The unloaded roll gap crown is the

roll gap crown of the rolling mill without a workpiece and

without adding force, which reflects the effect of the roll

crown on the shape of the strip, and it is an important factor

that affects the shape of the load roll gap. As shown in

Fig. 2, the unloaded roll gap crown consists of two parts:

the roll gap between work rolls and roll gap between the

backup roll and work roll.

2.2.1 Roll crown model

The calculation of the roll crown is the premise of the

unload roll gap crown calculation. The roll crown is the

diameter difference between the middle and the end of the

roll, which is the sum of the original grinding crown,

equivalent crown, thermal crown and wear crown. The roll

thermal crown and roll wear crown are the crown formed

by thermal expansion and wear during the rolling process.

The equivalent crown of the roll is 0 for a conventional

mill, and for a CVC mill, it can be calculated by interpo-

lation of the transverse position.

CR ¼ Cgrn þ Ceqv þ Ct þ Cw ð3Þ

where CR is the roll crown, mm; Cgrn is the original

grinding crown of the roll, mm; Ceqv is the equivalent

crown of the roll, mm; Ct is the thermal crown of the roll,

mm; and Cw is wear crown of the roll, mm.

2.2.2 Roll gap crown between the backup roll and work
roll

The gap crown between the backup roll and the work roll is

determined by the work roll crown and the backup roll

crown. Because it corresponds to the contact area between

rollers, it is necessary to transform the crown of the work

roll by assuming that the roll crown curve exhibits a conic

distribution.

Cbr�wr ¼ Cbr þ Cwr �
Lbr
Lwr

� �2

ð4Þ

where Cbr�wr is the gap crown between the backup roll and

the work roll, mm; Cbr is the backup roll crown, mm; Cwr is

the work roll crown, mm; and Lbr is the backup roll length,

mm. Lwr is the work roll length.

2.2.3 Roll gap crown between two work rolls

The work roll gap crown is the roll gap crown between two

work rolls when no load is carried, and its size is equal to

that of the work roll crown.

Cwr�wr ¼ Cwr ð5Þ

where Cwr�wr is the roll gap crown between two work rolls,

mm, and Cwr is the work roll crown, mm.

2.3 Uniform load roll gap crown model

The uniform load roll gap crown is the shape of the roll gap

when the unit width rolling force is distributed in the

contact area between the strip and the work rolls. The

shape of the uniform load roll gap depends on the unloaded

roll gap crown, roll system deflection and elastic flattening

deformation of the rolls caused by the rolling force and

bending force. The mathematical model of the uniform

load roll gap crown can be described as a function of unit

width rolling force, bending force, strip width, roll elastic

modulus, roll diameter, gap crown between the backup roll

and work roll, and roll gap crown between the two work

rolls. The mathematical model is constructed as follows

(Peng et al. 2014):
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Fig. 2 Schematic plan of the unloaded roll gap
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Cufd ¼ b0 � pþ b1 � p1:5 þ b2 � Cwr�wr þ b3 � Cbr�wr � p
þ b4 � Cbr�wr � p1:5 þ b5 � Fw þ b6 � p � Fw

þ b7 � p2 � Fw þ b8 � Cbr�wr þ b9 � p � Dwr

þ b10 � Fw � Dwr þ b11 � p � Dbr þ b12 � p1:5 � Dwr

þ b13 � Fw � Dwr þ b14 � Cbr�wr � Dwr

þ b15 � Cbr�wr � Ewr þ b16 � Dwr � Dbr þ b17 � Dbr � Ewr

ð6Þ

where Cufd is the uniform load roll gap crown, mm; p is the

unit width rolling force, kN/mm; Fw is the bending force,

kN; Dwr and Dbr are the diameters of the work roll and

backup roller, respectively, mm; Ewr is the elastic modulus

of the work roll, MPa; and bi is the model coefficients. The

model coefficients bi are cubic polynomials of the strip

width:

bi ¼ ci;0 þ ci;1 �W þ ci;2 �W2 þ ci;3 �W3; i ¼ 0� 17

ð7Þ

where W is the strip width, mm, and ci;j are polynomial

coefficients.

3 Methodology

3.1 ELM regression modeling

The ELM is a kind of single-hidden-layer feedforward

neural network (SLFN), which was proposed in 2004

(Huang et al. 2004, 2006, 2012). The purpose is to simplify

the learning parameter setting while overcoming the defect

of the BP algorithm, which easily falls into local minima

and improving the learning efficiency (Lan et al. 2013).

w is defined as the connection weight of the input layer

and the hidden layer, and b is defined as the connection

weight of the hidden layer and the output layer.

w ¼

w11 w12 � � � w1n

w21 w22 � � � w2n

..

. ..
. ..

.

wl1 wl2 � � � wln

2
6664

3
7775
l�n

ð8Þ

b ¼

b11 b12 � � � b1m
b21 b22 � � � b2m
..
. ..

. ..
.

bl1 bl2 � � � blm

2
6664

3
7775
l�m

ð9Þ

b is defined as the biases of the hidden layer neurons; n, l

and m are numbers of neurons in the input layer, hidden

layer and output layer, respectively.

b ¼

b1
b2
..
.

bl

2
6664

3
7775
l�1

ð10Þ

The input and output matrices of the training set are X

and Y respectively, and Q is the sample size.

X ¼

x11 x12 � � � x1Q
x21 x22 � � � x2Q

..

. ..
. ..

.

xn1 xn2 � � � xnQ

2
6664

3
7775
n�Q

ð11Þ

Y ¼

y11 y12 � � � y1Q
y21 y22 � � � y2Q

..

. ..
. ..

.

ym1 ym2 � � � ymQ

2
6664

3
7775
m�Q

ð12Þ

g xð Þ is the activation function of the hidden layer neuron. T
is the output of the network.

T ¼ t1; t2; t3; . . .; tQ½ �m�Q;

tj ¼

t1j
t2j

..

.

tmj

2
6664

3
7775
m�1

¼

Pl
i¼1

bi1g wixj þ bi
� �

Pl
i¼1

bi2g wixj þ bi
� �

..

.

Pl
i¼1

bimg wixj þ bi
� �

2
66666666664

3
77777777775
m�1

j ¼ 1; 2; . . .;Qð Þ

ð13Þ

where wi ¼ wi1;wi2; . . .;win½ �; xj ¼ x1j; x2j; . . .; xnj
� �T

.

H is the hidden layer output matrix, and the specific

forms are as follows:

H w1;w2; . . .;wl; b1; b2; . . .; bl; x1; x2; . . .; xQð Þ

¼

g w1 � x1 þ b1ð Þ g w2 � x1 þ b2ð Þ � � � g wl � x1 þ blð Þ
g w1 � x2 þ b1ð Þ g w2 � x2 þ b2ð Þ � � � g wl � x2 þ blð Þ

..

. ..
. ..

.

g w1 � xQ þ b1ð Þ g w2 � xQ þ b2ð Þ � � � g wl � xQ þ blð Þ

2
66664

3
77775
Q�l

ð14Þ

and represented by a matrix:

Hb ¼ T 0 ð15Þ

If the number of neurons in the hidden layer is equal to

the number of training set samples, the training samples

can be approximated by zero error for any w and b for the

SLFN, which means that
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XQ
j¼1

tj � yj
�� �� ¼ 0 ð16Þ

yj ¼ y1j; y2j; . . .; ymj
� �T

j ¼ 1; 2; . . .;Qð Þ ð17Þ

However, when the number of training samples Q is too

large, to reduce the computational complexity, the number

of hidden layer neurons K usually takes a number smaller

than Q, and the training error of the SLFN can approach an

arbitrary e, e[ 0; that is,

XQ
j¼1

tj � yj
�� ��\e ð18Þ

When the activation function g xð Þ is infinitely differ-

entiable, the parameters of the SLFN do not need to be

completely adjusted and w and b can be randomly selected

before training and remain unchanged during training. The

connection weight b between the hidden layer and the

output layer can be obtained by solving the least square

solution of the following equations:

min
b

Hb� T0k k ð19Þ

Its solution is

b̂ ¼ H
þ
T0 ð20Þ

where Hþ is the Moore–Penrose generalized inverse of the

implicit layer output matrix H.

3.2 S-curve decreasing inertia weight PSO
algorithm

3.2.1 Standard PSO algorithm

The standard PSO algorithm originated from the study of

the foraging behavior of birds and was originally proposed

by Eberhart and Kennedy (1995). All the particles in a

group adjust their velocity and position in accordance with

the current global optimal solution found by the current

individual extremum and the entire particle group that they

have found. The velocity and position adjustment strategy

are as follows:

Vkþ1
id ¼ wVk

id þ C1rand 0; 1ð Þ Pk
id � Xk

id

� �
þ C2rand 0; 1ð Þ Pk

gd � Xk
id

	 

ð21Þ

Xkþ1
id ¼ Xk

id þ Vkþ1
id ð22Þ

where w is an inertial factor, C1 and C2 are acceleration

constants, rand 0; 1ð Þ is a random number belonging to 0–1,

Pid represents the dth dimension of the ith variable indi-

vidual extremum, Pgd represents the dth dimension of the

global optimal solution and k represents the number of

iterations.

3.2.2 Improvement of the PSO algorithm

In the standard PSO algorithm, the default w is 1, which

indicates that the particles always fly along a certain

direction at a constant speed during the search process until

the search boundary is reached. Only when the optimal

solution is exactly on the particle trajectory can the optimal

solution be found. Shi and Eberhart introduced a linear

decreasing inertia weight coefficient into the particle

swarm velocity update formula (Shi and Eberhart 1998).

The linear decreasing inertial weight has the same decline

rate, so the region with the larger inertia weight accounts

for only a small part of the total area. Inspired by research

of Monteil and Beghdadi (1999), combined with the value

range of linear decreasing weight is [0.4,0.9], S-curve

function can be introduced into the inertial weight function,

and the shape of the function can be changed by changing

the form of the independent variable. Therefore, in this

paper, an S-curve decreasing inertia weight is constructed

after repeated adjustment, which expands the large inertial

weight area. Its mathematical form is as follows:

w ¼ 0.25 � ð1� tanh(a � ðnnow � 60=niter � bÞÞÞ þ 0.4 ð23Þ

where nnow is the current number of iterations, niter is the

maximum number of iterations, and a and b are parameters

of S-curve. a is used to adjust the steepness of the maxi-

mum and minimum transition areas, and b is used to adjust

the range of the transition area.

By changing the inertia weight w, the effect of the

velocity of the particle at the last moment on the current

velocity will change. Research shows that when the inertia

weight is small, particles will search near their positions,

and in a short time, particles will quickly gather together.

At this time, the algorithm is similar to the local search

algorithm. When the inertia weight is large, particles will

continue to explore new areas, and the algorithm tends to

be a global search algorithm. When an appropriate inertia

weight is selected, the algorithm will have a greater

probability of finding the optimal solution. To search

according to different inertia weights in the same iterative

optimization process, an S-curve decreasing inertia weight

coefficient is designed. In the initial stage of the search, the

larger inertia weight of the S-curve decline function

decreases slowly, while in the search, the larger inertia

weight tends toward a global search, so the inertia weight

of the S-curve function makes the algorithm have good

ergodicity in theory. At the end of the iteration, the inertia

weight of the S-curve function reaches a smaller value

faster. Because the smaller inertia weight tends toward a

local search, theoretically, the inertia weight of the S-curve
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function can obtain better local search performance than

the linearly decreasing inertia weight. Therefore, PSO

based on S-curve decreasing inertia weight (SDWPSO) is

selected to initialize the weights and biases of the ELM.

Different S-curves can be obtained by adjusting the

values of a and b, and the process of decreasing the inertia

weight will be different. Figure 3 shows curves of the

inertia weight decline with different combinations of a and

b.

3.3 Factory case study and modeling industrial
data collection

3.3.1 Description of a hot strip rolling mill in Chengsteel

A hot strip rolling mill in the HBIS group of the Chengsteel

company, as shown in Fig. 4, is used to demonstrate the

design and implementation of the hybrid PCA-SDWPSO-

ELM model. The production line consisting of furnace,

vertical mill, roughing mill, flying shear, finishing mill,

laminar cooling device, coiler and the arrangement of each

equipment is shown in Fig. 5.

In the process of hot strip rolling, basic automation,

process automation, man–machine interfaces, material

tracking systems and measurement instruments will pro-

duce a large amount of real-time production data. Data

exchange is realized through industrial ethernet, so that all

functions of the computer control system can be completed.

A flowchart of data communication is shown in Fig. 6.

3.3.2 Data collection

The main sources of data collected are as follows: The first

source is communication with other process computers.

This part of the rolling data mainly includes incoming data,

product size data and performance requirement data. The

incoming data include slab number, steel coil number,

material, blank size and chemical composition. The fin-

ished product size data generally include the target thick-

ness, target temperature and target width. Performance

requirement data include target yield strength, cooling rate

and cooling temperature. The second part is the data from

the instruments, which are the actual rolling data measured

in the rolling process, and these data are the key data in the

modeling process. They mainly include the data related to

the stands and the independent data of the stands. The

relevant data of the stands mainly include the rolling force

data, the roll gap data and the speed of the motor. Inde-

pendent data of the stand mainly include measured thick-

ness, measured width and measured temperature. The third

part is the process intervention data of HMI operators. The

flow of hot strip rolling is shown in Fig. 7.
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3.3.3 Determination of the input and output parameters
of the model

According to the description of the theory of strip crown in

Part 2, the influencing factors of strip crown mainly include

the following aspects:

• Mill roll: diameter, roll length, roll thermal expansion,

roll wear, etc.

• Strip steel: material (yield strength), strip width, strip

thickness, temperature, etc.

• Rolling conditions: rolling force, bending force, roll

shifting, roll speed, etc.

Based on the above principles, the variables listed in

Fig. 8 are selected as input parameters of the model. The

output variable is the exit strip crown after finishing mill.

3.3.4 Data preprocessing

Rolling data were collected from the data center for one

week. Due to the erroneous data and outliers in these raw

data, they cannot be directly used in modeling. Therefore,

data preprocessing must be carried out. Preprocessing

includes the following operations:

1. Removal of missing values.

2. Elimination of extraneous values.

3. Removal of outliers that are extremely deviated from

the mean.

A total of 1809 strip samples are used as modeling

datasets through the above operations. These data can be

divided into 8 layers according to the final rolling thick-

ness. The sample number of each layer is shown in Fig. 9.

From the perspective of modeling, the whole dataset can be

divided into a training set and a test set. The sample data

are normalized to [- 1,1] (Han et al. 2013; Niu et al.

2016). The normalization formula as follows:

x0i ¼ 2� xi �min xið Þ
max xið Þ �min xið Þ þ �1ð Þ; i ¼ 1; 2; 3; . . .; n

ð24Þ

where max xið Þ and min xið Þ are the maximum and mini-

mum numbers of data sequences, respectively.

3.3.5 Dimension reduction of sample data by PCA

PCA is a multivariate statistical technique implemented to

reduce dimensionality and to extract characteristic features

from the original dataset. Suppose that the observed sample

of the strip steel experimental data in this paper is X:

X ¼

x11 x12 � � � x1n
x21 x22 � � � x2n
..
. ..

. ..
.

xQ1 xQ1 � � � xQn

2
6664

3
7775 ð25Þ

X is standardized by the following calculation:

x�ij ¼
xij � xjffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var xj
� �q ; i ¼ 1; 2; . . .;Q ; j ¼ 1; 2; . . .; n ð26Þ
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variables of the ELM models

Prediction model of hot strip crown based on industrial data and hybrid the PCA-SDWPSO-ELM... 12491

123



xj ¼
1

Q

XQ
i¼1

xij

var xj
� �

¼ 1

Q� 1

XQ
i¼1

xij � xj
� �2

; j ¼ 1; 2; . . .; n

ð27Þ

where xj is the mean value and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var xj
� �q

is the standard

deviation of x1; x2; x3; . . .; xn. The aim of data standard-

ization is to eliminate the effects of different dimensions

with respect to several data series.

The sample correlation coefficient matrix R for the strip

steel sample is calculated as

R ¼

r11 r12 � � � r1n
r21 r22 � � � r2n
..
. ..

. . .
. ..

.

rn1 rn2 � � � rnn

2
6664

3
7775 ð28Þ

rij
cov xi; xj
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var x1ð Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var x2ð Þ

p
¼

PQ
k¼1 xki � xið Þ xkj � xj

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPQ

k¼1 xki � xið Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPQ

k¼1 xkj � xj
� �2qr ; Q[ 1

ð29Þ

The eigenvalues and eigenvectors of the correlation

coefficient matrix R are calculated.

k1 � k2 � � � � � kn � 0 ð30Þ

a1 ¼

a11
a21
..
.

an1

2
6664

3
7775; a2 ¼

a12
a22
..
.

an2

2
6664

3
7775; . . .; a2 ¼

a1n
a2n
..
.

ann

2
6664

3
7775 ð31Þ

n principal components can be obtained by PCA, and the

first k principal components are selected according to the

cumulative contribution rate of each principal component.

The contribution rate is defined as follows:

gi ¼
kiPn
k¼1 kk

i ¼ 1; 2; . . .; nð Þ ð32Þ

where gi represents the explained variations of the ith

principal component, and
Pn

i¼1 gi ¼
Pi

k¼1 kk=Pn
k¼1 kk i ¼ 1; 2; . . .; nð Þ depicts the accumulative

explained variations of principal components.

According to the principal component expression, the

principal component score of the standardized sample is

calculated, and the principal component score matrix is

defined as F:

F ¼

F11 F12 � � � F1k

F21 F22 � � � F2k

..

. ..
. . .

. ..
.

FQ1 FQ2 � � � FQk

2
6664

3
7775 ð33Þ

Fij ¼ aj1xi1 þ aj2xi2 þ � � � þ ajnxin;
i ¼ 1; 2; . . .;Q; j ¼ 1; 2; . . .; kð Þ ð34Þ

In this paper, the input variable that influences the strip

crown in hot strip rolling is 79-dimensional data, which is

catastrophic for the machine learning algorithm. Therefore,

with a cumulative contribution rate of 0.95, the dimension

of the modeling input variables is reduced.

3.4 Model development

Among 1809 strip steel sample data, 83% (1500) are used

as training set data, and 17% (309) are used as test set data.

Four models are established and compared. A simple ELM

without any optimization is named the single ELM model.

The initial weights and biases of the ELM optimized by the

SDWPSO algorithm are named the hybrid SDWPSO-ELM

model. The ELM optimized by the PSO algorithm is

named the hybrid PSO-ELM model. The hybrid SDWPSO-

ELM model, which is modeled using the dimension

reduction of independent variables by the PCA method, is

named the hybrid PCA-SDEPSO-ELM model.

The four models are used to predict the strip crown of

hot strip rolling and their comprehensive performance is

evaluated. Figure 10 shows the main flowchart of the

proposed hybrid SDWPSO-ELM model.

3.5 Model performance accuracy criteria

R2, MAE, MAPE and RMSE metrics are used to evaluate

the comprehensive performance of each model. The for-

mula for calculating the four indicators is as follows:
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R2 ¼ 1�
PQ

i¼1 yi � y�i
� �2

PQ
i¼1 yi � yð Þ2

; y ¼ 1

Q

XQ
i¼1

yi

 !
ð35Þ

MAE ¼ 1

Q

XQ
i¼1

yi � y�i
�� �� ð36Þ

MAPE ¼ 1

Q

XQ
i¼1

yi � y�i
yi

����
���� � 100% ð37Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPQ
i¼1 yi � y�ið Þ2

Q

s
ð38Þ

where Q is the sample size; yi; y
�
i is the actual output and

predicted output crown of the ith strip sample, respectively;

and y is the average actual crown of the strip samples.

4 Strip crown prediction results
and discussion

In this section, to show the performance of the proposed

hybrid PCA-SDWPSO-ELM model, MATLAB is used to

implement the model calculation. The average value of

three implementations for each model is taken as the

comprehensive performance.

4.1 Comparison of the search efficiencies of PSO
and SDWPSO

With the same dataset and network parameters, the stan-

dard PSO and the SDWPSO algorithm are used to optimize

the initial weights and biases of the ELM. Table 1 shows

the performance of the two optimization algorithms on the

test set with different numbers of hidden layer neurons.

Regardless of the number of hidden layer neurons, the

determination coefficient R2 and MSE of the SDWPSO

algorithm on the test set are better than those of the PSO

algorithm, which fully proves the superiority of the

SDWPSO algorithm.

When the topology of the ELM is 79-80-1, the variation

in the best fitness value of the two algorithms is recorded.

The variation rule of the best fitness value curves for the

two algorithms is shown in Fig. 11. The diagram shows

that the convergence rate of the fitness curve of the stan-

dard PSO algorithm is slow during the iteration process,

and the fitness value process decreases gradually during the

whole iteration process. It is stable after 80 iterations. By

comparison, the improved SDWPSO algorithm quickly

reaches the best fitness after approximately 40 iterations. In

addition, the best individual fitness obtained by the stan-

dard PSO algorithm is 0.0145, while that of the SDWPSO

algorithm is 0.0133. The result represented by SDWPSO is
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Removal missing 
values

Elimination of 
extraneous values Outlier detection

Modeling data with 
1809 samples

Initialize ELM weights
and biases

Calculate MSE of 
forecast results

Initialize ELM weights  
and biases  

Start

ELM training output MSE as 
SDWPSO fitness value

Volume extremum and global 
extremum initialization

Update particle position 
and velocity

Calculate particle fitness 
value

Update volume extremum 
and global extremum

Whether the ending 
conditions are met?

Obtain the optimal input 
weight and threshold of ELM

EndY

N

Fig. 10 Flowchart of the

proposed model
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more likely to be the global extremum of the solution

space. After many tests, the same rule is observed.

Therefore, the proposed SDWPSO algorithm has more

advantages because of its characteristic of finding global

extrema accurately and quickly.

4.2 Comparison of the prediction accuracies
of different models

In this section, the comprehensive performance of the

hybrid PCA-SDWPSO-ELM, single ELM, hybrid PSO-

ELM and hybrid SDWPSO-ELM models is discussed in

detail. The basic parameters of the models are shown in

Table 2.

The scatter plots and regression effect of the four models

on the training set and the test set are depicted in Fig. 12.

The black straight line y = x represents the ideal prediction

model, which means that the predicted value is exactly the

same as the actual value. In the actual process, the pre-

diction models have difficulty achieving zero error, so the

proximity of the regression line and ideal line is one of the

important indices used to characterize its performance. In

the graph, the red line represents the regression line of the

data obtained on the training set used for modeling, while

the blue line represents the regression line of the data

obtained on the test set. The determination coefficient R2 of

models can be used to evaluate the proximity to the ideal

case. R2 = 1 means that the prediction is absolutely correct

and there is no error. The smaller the value of R2 is, the

worse the performance of the model. Clearly, the proposed

hybrid PCA-SDWPSO-ELM model has a more concen-

trated scatter distribution and presents higher R2 values.

(The R2 values reached 0.7937 and 0.8573 on the training

set and the test set, respectively.)

A comparison of the predicted values of the four models

on the training set and the test set with the corresponding

actual values is shown in Fig. 13. It can be roughly seen in

the diagram that the predicted strip crown values of the

samples are consistent with the actual values. The absolute

error frequency distribution histograms and corresponding

normal distribution curves of the four model predictions

are shown in Fig. 14. Figure 14 shows that the absolute

error distribution of the crown prediction value of the

single ELM model is the most divergent. After PSO opti-

mization of the ELM model, the concentration of the

absolute error distribution is improved. After replacing

PSO algorithm with SDWPSO optimization algorithm, the

absolute error distribution of prediction results is more

concentrated, and the most concentrated model is the

proposed hybrid PCA-SDWPSO-ELM model. The disper-

sion of the normal curve can also be described by the

standard deviation (SD). The smaller the SD represents the

more concentrated the data distribution. The size of SD

shown in Fig. 14 also proves that the hybrid PCA-

SDWPSO-ELM model is the most superior both on the

Table 1 Performance of the

PSO and SDWPSO algorithms

on the test set

Number of hidden layer neurons PSO algorithm SDWPSO algorithm

R2 MSE R2 MSE

20 0.5993 130.4134 0.6529 112.9932

40 0.6272 121.3071 0.7103 94.2611

60 0.7428 83.6819 0.7709 74.5358

80 0.7692 80.0299 0.8337 61.2996

100 0.8092 62.0823 0.8318 54.7187
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Fig. 11 Comparison of the optimization processes between of PSO

and SDWPSO algorithms

Table 2 Parameters used in PSO

Parameters Values

Hidden layer neurons 80

Activation function of the hidden layer neurons Sigmoid

Population size 100

Acceleration factors C1 = 2.4 C2 = 1.6

Number of iterations 100

Parameters of the S-curve a = 0.15 b = 10
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training and testing set. Its prediction absolute error con-

centrated in the range of 0 and shape is high in the middle

and low on both sides. The overall error distribution is

approximately symmetrical, which means that the number

of samples with large prediction error is smaller and the

whole model is more stable and fault-tolerant.

More intuitive and quantitative performances of models

are characterized by the MAE, MAPE and RMSE. Table 3

shows the specific calculation results of each error index,

and the error distribution histogram is drawn according to

Table 3, as shown in Fig. 15.

In comparison with that of the hybrid PSO-ELM model

and single ELM model whose initial weights and biases are

not optimized, the performance of the hybrid PSO-ELM

model (R2 = 0.762, MAE = 6.280, MAPE = 14.265% and

RMSE = 8.428 for the training set and R2 = 0.769,

MAE = 6.441, MAPE = 17.623% and RMSE = 8.667 for

the test set) is far better than that of the single ELM model

(R2 = 0.581, MAE = 7.972, MAPE = 18.458% and

RMSE = 11.177 for the training set and R2 = 0.427,

MAE = 12.189, MAPE = 35.434% and RMSE = 15.725

for the test set). This performance enhancement benefits

from the PSO algorithm selecting the optimal initial

weights and biases for the ELM.

When comparing the hybrid SDWPSO-ELM model with

the hybrid PSO-ELM model, the performance of the hybrid

SDWPSO-ELM model (R2 = 0.782, MAE = 5.945,

MAPE = 13.758% and RMSE = 8.071 for the training set

and R2 = 0.834, MAE = 5.358, MAPE = 13.613% and

RMSE = 7.357 for the test set) is better than that of the

hybrid PSO-ELM model. The inertia weight with the

S-curve decreases slowly in the initial stage of the search,

and the larger inertia weight tends ward a global search in

the middle of the search. Therefore, the S-curve inertia

weight makes the algorithm have better ergodicity in the-

ory. At the end of the iteration, because the small inertia

weight is more inclined to a local search, the S-curve
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inertia weight reaches the smaller value more quickly and

can obtain better local search performance.

When comparing the hybrid PCA-SDWPSO-ELM

model with the hybrid SDWPSO-ELM model, the perfor-

mance of the hybrid PCA-SDWPSO-ELM (R2 = 0.794,

MAE = 5.726, MAPE = 13.108% and RMSE = 7.842 for

the training set and R2 = 0.857, MAE = 5.165, MAPE =

13.429% and RMSE = 6.814 for the test set) is better than

that of the hybrid SDWPSO-ELM model. After PCA pro-

cessing with a cumulative contribution of 0.98, the inde-

pendent modeling variables are reduced from

79-dimensional to 14-dimensional. It has the advantages of

a high training speed and simple topology structure to use

the dataset after dimension reduction. Figure 16 shows the

training time of each model. According to Fig. 16, the

training time of the hybrid PCA-SDWPSO-ELM model is

less than that of the hybrid SDWPSO-ELM model, which

confirms this conclusion. A fast response is of great sig-

nificance for industrial online control. Therefore, the

hybrid PCA-SDWPSO-ELM model is more suitable for

strip crown prediction in the online control process of hot

strip rolling than other models.

With the synthesis of the above analyses, this study

clearly demonstrates that it is effective to use industrial

data and the hybrid PCA-SDWPSO-ELM approach to

model the crown, which is one of the key strip shape

parameters in the hot rolling process. This study can

greatly reduce the traditional mathematical calculation

without losing precision. More importantly, the research

method proposed in this paper can be extended to other

model parameter prediction and optimization processes,

and it can effectively solve other nonlinear and strong

coupling problems in the rolling processes.

5 Conclusions

An efficient approach for the prediction of strip crown in

hot strip rolling processes based on a machine learning

algorithm, called the hybrid PCA-SDWPSO-ELM model,

is proposed in this research. The purpose of this study is to

establish a soft measurement method based on production

data for the accurate prediction of the strip crown and to

improve the precision of shape control in hot strip rolling.

The following conclusions can be drawn by comparing the

comprehensive performance of the proposed model with

that of the other three models.

Table 3 Calculation results of the determination coefficient and error

indicators

Indices Models Training set Test set

R2 Single ELM 0.581 0.427

Hybrid PSO-ELM 0.762 0.769

Hybrid SDWPSO-ELM 0.782 0.834

Hybrid PCA-SDWPSO-ELM 0.794 0.857

MAE Single ELM 7.972 12.189

Hybrid PSO-ELM 6.280 6.441

Hybrid SDWPSO-ELM 5.945 5.358

Hybrid PCA-SDWPSO-ELM 5.726 5.165

MAPE (%) Single ELM 18.458 35.434

Hybrid PSO-ELM 14.265 17.623

Hybrid SDWPSO-ELM 13.758 13.613

Hybrid PCA-SDWPSO-ELM 13.108 13.429

RMSE Single ELM 11.177 15.725

Hybrid PSO-ELM 8.428 8.667

Hybrid SDWPSO-ELM 8.071 7.357

Hybrid PCA-SDWPSO-ELM 7.842 6.814
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Fig. 15 Error distribution histogram of four models. a Training set and b test set
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1. The proposed S-curve decreasing inertia weight PSO

algorithm can greatly improve the search efficiency of

the traditional PSO algorithm and overcome its short-

coming of easily falling into local minima. Based on

this algorithm, the initial weights and biases of the

ELM network are optimized and selected, and the

accuracy of the hybrid SDWPSO-ELM model for

predicting the strip crown in hot strip rolling is

improved significantly.

2. The dimensionality reduction of independent variables

is an effective method to deal with the modeling of

industrial data. Training a model using a dataset after

dimensionality reduction can not only improve the

generalization performance of the model but also

simplify the model structure and save modeling time.

A less time consuming and quick response is beneficial

to online real-time control systems in industry.

3. The combination of the ELM and industrial data can be

used to predict the strip crown effectively. This data-

driven prediction method can be easily extended to

other parameter predictions and optimization by gen-

erating the corresponding training data in rolling

processes. The research in this paper provides a new

method to solve the multivariable, strong coupling and

nonlinear complex industrial problems that cannot be

handled by traditional mathematical models and pro-

vides technical support for the efficient utilization of

massive data in hot strip rolling processes and the

precision control of strip shape.
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