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Abstract
Trustworthiness and energy efficiency are two important aspects of data gathering in Wireless Sensor Networks (WSNs).

The first criterion can be fulfilled by adopting trustworthy nodes for data communication along with choosing watchdogs

for monitoring. Additionally, the use of the clustering scheme reduces energy exhaustion substantially. Accordingly,

effective data gathering requires trust-aware and energy-efficient clustering, data gathering tree construction, and watchdog

selection. The previous data gathering algorithms did not include all of the clustering, tree construction, and watchdog

selection phases. Furthermore, some studies proposed greedy schemes to solve the mentioned phases and had low per-

formance. In this paper, we propose the Trust-aware and Energy-efficient Data Gathering (TEDG) algorithm to gather data

more effectively. The proposed scheme comprises all the above-mentioned phases, including clustering, tree construction,

and watchdog selection. These phases are modeled as optimization problems, and they are solved using Particle Swarm

Optimization (PSO). The watchdog selection phase has variable-length particles because the number of watchdogs has not

been unknown. Novel particle representation and initialization schemes are proposed to handle these particles. According

to the performed simulations, TEDG improves consumed energy for data delivery to the sink, standard deviation of the

residual energy of nodes, and network lifetime by 220%, 81%, and 129%, respectively.
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1 Introduction

Nowadays, the use of Wireless Sensor Networks (WSNs)

has increased (Singh et al. 2018). The nodes within a WSN

monitor their surrounding area and send their sensed data

in a multi-hop manner. Data transmission to the sink

against different attacks, such as data modification, Black

Hole Attack (BHA), and Selective Forward Attack (SFA),

must be protected to ensure effective monitoring of the

environment (Tomić and Mccann 2017; Ansari et al. 2021).

BHA and SFA, in which the malicious nodes drop data

packets, are among the most prominent attacks and should

be mitigated to ensure effective data gathering. A practical

approach for this purpose is to use more trusted nodes for

data transmission (Cai et al. 2019; Khalid et al. 2019; Han

et al. 2022). In addition, the use of watchdogs provides

effective monitoring throughout the network. These nodes

monitor the activity of others within the network (Monnet

et al. 2017). The malicious nodes can be determined using

the information gathered by watchdogs. The amount of sent

data to the sink can be increased by preventing the mali-

cious nodes from participating in the data gathering process

(Bangotra et al. 2021; Shahid et al. 2022).

Another important criterion in designing WSNs is

energy efficiency. The energy of sensors is limited and will

be exhausted after a while. Therefore, measures should be

taken to ensure that the nodes have the least energy con-

sumption rate. Exploiting the clustering technique, which

has been applied in many studies such as (Ni et al. 2017;

Mittal et al. 2021), reduces energy consumption
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considerably. In this scheme, the Cluster Head (CH) per

cluster aggregates the gathered data by the cluster mem-

bers. Consequently, the amount of data and required energy

for its transmission decreases substantially. The gathered

data by CHs should be forwarded to the sink. For this aim,

a data gathering tree is constructed over the CHs and some

relay nodes (Elhabyan and Yagoub 2015; Khalid et al.

2019; Pavani and Rao 2019). A data gathering algorithm

should take into account the trust and energy criteria to

decrease the packet loss and increase the network lifetime.

It is essential to consider these measures in both the cluster

and data gathering tree construction schemes. Moreover,

some watchdogs are required to monitor the packet for-

warding by sensor nodes and identify malicious ones. In

summary, an effective data gathering algorithm comprises

trust-aware and energy-efficient clustering, routing, and

watchdog selection schemes.

As mentioned above, many trust and energy-aware data

gathering algorithms have been proposed so far. However,

these schemes did not include all of the above-mentioned

phases. For example, references (Elhabyan and Yagoub

2015; Edla et al. 2019; Shyama et al. 2022) did not address

the security challenges and are vulnerable to SFA. The

proposed trust-aware algorithms in Yun et al. (2018),

Shcherba et al. (2019) and Bangotra et al. (2021) did not

apply the clustering scheme. Another concern is about the

problem-solving approach of the proposed algorithms.

Some studies used greedy approaches to solve the phases.

The proposed trust-aware and cluster-based algorithms in

Fang et al. (2021), Hu et al. (2021), Isaac Sajan and Jasper

2021 and Yang et al. 2021) were greedy and did not yield

high-throughput solutions. On the other hand, the approa-

ches which applied optimization algorithms did not pay

enough attention to optimizing the clusters and data gath-

ering tree in terms of trust and energy (Pavani and Rao

2019; Rodrigues and John 2020; Han et al. 2022; Supriya

and Adilakshmi 2022). They did not concern with trust-

worthiness and energy efficiency in both clustering and

routing schemes. Furthermore, they did not use watchdogs,

and the trust level of each node was derived from its next

hop on the tree.

Finally, the proposed approaches for watchdog selection

had low performance. The proposed schemes in Mittal

et al. (2021), Shahid et al. (2022) did not specify watchdogs

and computed trust values of nodes based on the sensors in

their neighborhood and clusters, respectively. This moni-

toring strategy requires a considerable amount of energy.

Monnet et al. (2017) selected a small number of high-

energy nodes as watchdogs to reduce the overhead caused

by monitoring. This approach, however, did not necessarily

assign watchdogs to important nodes such as CHs. Refer-

ences (Bouali et al. 2016; Abdellatif and Mosbah 2020; Hu

et al. 2021) proposed effective and energy-efficient

monitoring schemes by assigning watchdogs to more

important nodes such as CHs and relay nodes. The draw-

back of these algorithms was that they were greedy and

could not select watchdogs properly.

Considering the shortcomings of the existing approa-

ches, we propose the Trust-aware and Energy-efficient

Data Gathering (TEDG) algorithm. The proposed

scheme consists of clustering, tree construction, and

watchdog selection phases. The mentioned phases consider

trust and energy criteria. Accordingly, the objective of the

clustering phase is to adopt nodes with high trust value and

residual energy as CHs. The main concern in the proposed

tree construction scheme is to choose relay nodes from

trusted and high-energy sensors. Finally, in the proposed

watchdog selection scheme, sensors with high trust and

energy levels are adopted to perform monitoring tasks.

Each phase can be considered as an optimization problem,

which aims to increase the trust and energy level of

adopted nodes as much as possible. We use an extension of

Particle Swarm Optimization (PSO), namely PSO-TVAC

(Ratnaweera et al. 2004), to solve these optimization

problems. Specifically, we design the PSO components per

phase, including particle representation, fitness function,

and decoding procedure. The particles of the clustering

phase represent the selected CHs. Moreover, the particles

of the tree construction phase denote the priority of sensors

to be selected as relay nodes. Finally, an assumed particle

in the watchdog selection phase represents the selected

watchdogs for monitoring CHs and relay nodes. The CHs

are responsible for monitoring the cluster members to

reduce the overhead caused by monitoring. To sum up, the

key contributions of the TEDG algorithm can be listed as

follows:

1. The proposed algorithm includes trust-aware and

energy-efficient clustering, data gathering tree, and

watchdog selection phases. Therefore, it yields high-

throughput solutions.

2. All phases are modeled and solved by PSO-TVAC.

The proposed clustering and tree construction schemes

remove the shortcomings of the existing approaches

and include proper particle representation, fitness

function, and decoding procedure. Additionally, to

the best of our knowledge, meta-heuristic algorithms

have not been applied for watchdog selection before.

3. As the number of watchdogs has not been known, the

particles of the watchdog selection phase are of

variable length. We propose novel initialization and

particle updating procedures to handle the mentioned

particles. Furthermore, some randomness is included in

the watchdog selection scheme to reduce the possibility

of selecting the malicious nodes as watchdogs.
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4. Extensive simulations demonstrate the superiority of

the TEDG algorithm over existing schemes.

The rest of the paper is organized as follows. The related

studies to our research are discussed in Sect. 2. The system

model is presented in Sect. 3. The PSO-TVAC algorithm is

described in Sect. 4. Next, TEDG is explained in Sect. 5.

The proposed algorithm is evaluated in Sect. 6. Finally,

Sect. 7 concludes the paper.

2 Related works

The related research to our work can be categorized into

trust-aware and energy-aware data gathering algorithms.

Some studies only considered trust or energy criterion,

while others investigated both criteria and proposed trust

and energy-aware schemes.

A critical concern in design systems is to ensure their

reliability and security (Gunjan et al. 2015; Swapnarani

et al. 2022). This topic has been deeply studied in WSNs

(Prabhu and Mary Anita 2020). Yun et al. (2018) modified

the Dijkstra algorithm for trust-aware routing, where the

cost of a link was defined based on the level of mistrust of

the receiver node to the sender one. In the algorithm pre-

sented by Khalid et al. (2019), each node adopted the next

hop toward the sink based on the trust criterion. The trust

value and the amount of residual energy were applied to

determine the next hop in Bangotra et al. (2021). The

proposed algorithm by Wang et al. (2014) extended

AODV. In this study, the cost of a link was defined based

on the trust level of its end nodes and some QoS parameters

such as reliability and delay. The AODV algorithm was

also used in Yin et al. (2022). This study clustered the

sensors first, followed by performing multi-path AODV-

based routing to connect CHs to the sink. The considered

criteria in this study were trustworthiness and energy effi-

ciency. In Isaac Sajan and Jasper (2021), the considered

measures for cluster construction and routing were residual

energy of nodes, required energy for data transmission,

trust value of nodes, and data transmission delay. The

proposed algorithm identified the malicious nodes based on

their trust value and completely isolated them from the

network. Reference (Sánchez-Casado et al. 2015) noticed

that packet loss may occur due to collision, mobility of

nodes, and SFA. It estimated the probability of collision,

mobility, and packet loss to derive the probability of SFA

occurrence. A node was assumed to be malicious if the

derived probability for SFA occurrence exceeds a pre-de-

fined threshold.

Some proposals investigated the topic of trust in cluster-

based WSNs. The algorithm proposed in Bouali et al.

(2016) employed the clustering scheme for data

communication. In this study, the CHs and border nodes

were responsible for data routing among the clusters. Some

watchdogs monitored the data routing procedure to ensure

reliable data delivery. In addition, the CH and watchdog

selection was performed considering the trust criterion.

Reference (Saidi et al. 2020) clustered nodes to reduce

energy exhaustion. The criteria for CH selection were

residual energy, trust level, and the number of neighbors

per node. In the proposed monitoring scheme, the CH and

members of each cluster monitored each other. The dis-

advantage of this plan was the high energy depletion rate of

the CHs due to direct data transmission to the sink. Monnet

et al. (2017) applied LEACH (Heinzelman et al. 2002) to

construct clusters. This study adopted some watchdogs

based on the residual energy criterion. Additionally, some

random guards were specified to monitor the watchdogs

and prevent malicious ones from reporting false

information.

Yang et al. (2021) extended LEACH (Heinzelman et al.

2002) for cluster construction. Furthermore, they used the

cryptography technique to identify malicious nodes. For

this aim, some encrypted information was added to the

header of each forwarded packet. The sink recognized

malicious nodes based on the received evidence. This

scheme, however, yielded considerable overhead. The

LEACH algorithm was also used for clustering in Li et al.

(2019; Abdellatif and Mosbah 2020). These studies con-

sidered trust and energy criteria for CH and watchdog

selection. The proposed algorithm in Hu et al. (2021)

performed clustering and routing along with watchdog

selection. In this study, the most trusted nodes were

adopted as CHs. Each CH selected one of the closer CHs to

the sink as the next hop based on the trust and energy

measures. The same criteria were applied to choose some

watchdogs in the clusters to monitor the activities of CHs

and cluster members.

References (Pavani and Rao 2019; Rodrigues and John

2020) applied meta-heuristic algorithms to mitigate SFA

and increase energy efficiency. The k-means and modified

monkey optimization algorithms were applied to select

CHs in Supriya and Adilakshmi (2022). The considered

metrics for this purpose were the trust value of nodes, their

energy level, their distance from the sink, and the degree of

the nodes. This algorithm consumed a considerable amount

of energy due to direct data transmission from the CHs to

the sink. Han et al. (2022) included trust and energy criteria

in the proposed CH selection scheme in LEACH. Fur-

thermore, Genetic Algorithm (GA) was used to construct a

spanning tree over the CHs. The proposed algorithm in

Rodrigues and John (2020) selected high-energy CHs first.

Next, it combined chicken swam optimization with the

dragonfly algorithm to construct highly trusted paths for

intra-cluster data communication. Deterministic finite
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automata and PSO were applied to construct energy-effi-

cient clusters and the data gathering tree in Prithi and

Sumathi (2020). This study also proposed a greedy

scheme to detect malicious nodes. These schemes had a

low performance because they did not include energy and

trust criteria in both phases. Furthermore, they did not

adopt watchdogs and the trust level of each node was

reported by its next hop on the tree.

The proposed algorithm in Pavani and Rao (2019)

employed PSO and firefly algorithm for cluster and tree

construction, respectively. This algorithm concerned the

trust criterion in the cluster construction phase. Further-

more, only CHs are included in the data gathering tree. In

this plan, CHs consumed a considerable amount of energy

due to data transmission over long distances. Mittal et al.

(2021) applied cuckoo search and fuzzy logic for cluster

construction. The cuckoo search algorithm was used for

modeling the CH selection problem, while fuzzy logic was

applied for evaluating the fitness value of individuals. In

the proposed tree construction scheme, for each CH, the

closest neighboring CH to the sink was adopted as its next

hop. Additionally, each node was monitored by its neigh-

bors, which yielded considerable overhead. Sajan et al.

(2022) firstly identified the members per cluster, followed

by specifying the CHs. Next, the data transmission tree was

constructed over CHs using gray wolf optimization algo-

rithm. The considered criteria in this study were trust,

energy, distance, and delay. Shahid et al. (2022) proposed a

cellular automata-based SFA detection and prevention

scheme to improve the security level of LEACH. This

research focused on the trustworthiness of nodes and

energy efficiency, which are of high importance under

SFA.

The rest of this section briefly reviews energy-aware

data gathering algorithms that did not concern the trust

criterion. GA was employed for cluster construction in

Mittal et al. (2019). In the proposed scheme, each gen of a

given chromosome represents the status of its corre-

sponding node, i.e., to be a CH or a member node. The aim

was to use high-energy nodes as CHs and decrease the

energy required for data gathering. Mann and Singh (2019)

improved the Artificial Bee Colony (ABC) algorithm by

enhancing its initialization scheme and integrating it with

differential evolution. The improved ABC was applied for

CH selection. Furthermore, a greedy scheme was proposed

to determine the members of each cluster. The fuzzy logic

was applied for cluster construction in Hou et al. (2022).

The considered criteria in this study were the energy level

of nodes, their distance from the sink, and the number of

neighbors per node.

Elhabyan and Yagoub (2015) performed clustering and

tree construction using PSO. In the cluster construction

phase, a particle represented the set of CHs, aiming to

increase energy efficiency. The proposed tree construction

scheme assigned a priority per node and used these values

to construct high-quality trees. The criteria for tree con-

struction were the energy level of CHs, the number of non-

CH nodes on the tree, and the link quality. The proposed

algorithm in Shyama et al. (2022) integrated GA and PSO,

and used the resultant meta-heuristic algorithm for path

construction. The main concern of the path construction

scheme was fault tolerance, while the proposed cluster

construction approach aimed to improve energy-efficiency

and coverage. Ant colony optimization was applied for tree

construction in Arora et al. (2020), where the criterion for

next-hop selection was the residual energy of sensors.

Reference (Pachlor and Shrimankar 2018) proposed a

greedy approach to balance energy exhaustion throughout

the WSN. In each round of executing the algorithm, the

current CHs adopted the next ones considering the energy

consumption measure. Additionally, high-loaded clusters

were decomposed into two clusters for better load

balancing.

The studied algorithms are compared in Table 1. The

measures for comparison are the inclusion of clustering,

tree construction, and watchdog selection phases, the

application of meta-heuristic algorithms for each phase,

and included criteria per phase. It is noticeable that some

algorithms assumed end-to-end communication and con-

structed routes instead of data gathering trees. Addition-

ally, in some cluster-based algorithms, the CHs directly

send data to the sink. Some trust-aware algorithms, which

considered trust criteria in the clustering and tree con-

struction, did not specify watchdogs. In these schemes, the

trust value per node was calculated using the reports of its

neighbors or corresponding CH. Finally, as shown in

Table 1, some schemes choose watchdogs randomly.

3 System model

The system model comprises the network, adversary, and

energy models as described in the following.

3.1 Network model

The considered network consists of n nodes that are ran-

domly distributed in a monitoring area of dimensions

l� w. The transmission range and initial energy of the

nodes are the same and indicated by tr and einit, respec-

tively. The notation Ni denotes the set of neighbors of node

si, and dij presents the distance between nodes si and sj.

Furthermore, the residual energy of node si is shown by ei.

Additionally, the trust level of node si is presented by ti.

The sensors are partitioned into k � n clusters to enhance
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the energy efficiency, where parameter k shows the per-

centage of nodes that are adopted as CHs. The CH of the j
th cluster, denoted as Cj, is presented by chj.

3.2 Adversary model

The considered attack in this paper is SFA, in which each

malicious node drops some of the received packets. It is

assumed that each malicious sensor drops a received packet

with a probability a or forwards it to the next hop with a

probability 1� a. Furthermore, we make no assumption

about the malicious nodes. Each sensor may be compro-

mised by the attacker and become a malicious node. It is

assumed that c percentage of the deployed sensors are

malicious.

The introduced notations are summarized in Table 2.

Table 1 Comparison of the considered algorithms (Incl. = Inclusion, Aprch. = Approach, Tree = Tree construction, R = Routing,

W = Watchdog selection, D = IDS, G = Greedy, M = Meta-heuristic, F = Fuzzy logic, RND = Random, T = Trust, E = Energy)

Reference Clustering Tree or routing Watchdog selection

Incl. Aprch. Criteria Incl. Aprch. Criteria Incl. Aprch. Criteria

Abdellatif and Mosbah (2020) 4 G T, E T G T, E W G T, E

Arora et al. (2020) – – – T M T – – –

Bangotra et al. (2021) – – – R G T, E – – –

Bouali et al. (2016) 4 G T R G T W G T

Cai et al. (2019) 4 G T – – – – – –

Edla et al. (2019) 4 G E Tree M E – – –

Elhabyan and Yagoub (2015) 4 M E Tree M E – – –

Fang et al. (2021) 4 G T, E – – – – – –

Han et al. (2022) 4 G T, E Tree M T, E – – –

Heinzelman et al. (2002) 4 G E – – – – – –

Hou et al. (2022) 4 F E – – – – – –

Hu et al. (2021) 4 G T Tree G T, E W G T, E

Khalid et al. (2019) – – – Tree M T, E – – –

Li et al. (2019) 4 G T – – – – – –

Shyama et al. (2022) 4 M E Tree M E – – –

Mann and Singh (2019) 4 M E – – – – – –

Mittal et al. (2021) 4 M T, E Tree G E – – –

Mittal et al. (2019) 4 M, F E – – – – – –

Monnet et al. (2017) 4 G E – – – W RND –

Ni et al. (2017) 4 M E – – – – – –

Pachlor and Shrimankar (2018) 4 G T – – – – – –

Pavani and Rao (2019) 4 M T, E Tree M E – – –

Prithi and Sumathi (2020) 4 G E Tree M E D G –

Isaac Sajan and Jasper (2021) 4 G E Tree G E, T – – –

Rodrigues and John (2020) 4 M E Tree M T – – –

Saidi et al. (2020) 4 G T, E – – – – – –

Sajan et al. (2022) 4 G T, E Tree M T, E – – –

Sánchez-Casado et al. (2015) – – – R G T – – –

Shahid et al. (2022) 4 G T, E – – – – – –

Shcherba et al. (2019) – – – R G T – – –

Supriya and Adilakshmi (2022) 4 M T, E – – – – – –

Wang et al. (2014) – – – R G T – – –

Yang et al. (2021) 4 G E – – – D G –

Yin et al. (2022) 4 M E R G T, E – – –

Yun et al. (2018) – – – R G T – – –

TEDG 4 M T, E Tree M T, E W M T, E
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3.3 Energy model

The proposed model by Heinzelman et al. (2002) is applied

to compute the amount of energy required to send and

receive a packet of length b. These values are derived using

(1) and (2), respectively. In these equations, ETX and ERX

represent the amount of energy required to send and

receive the packet, respectively. According to (1), the

amount of energy consumed to send the packet depends on

dij. If dij is less than the threshold (i.e., d0Þ, the free space

model is used. Otherwise, the multi-path fading channel

model is applied to calculate ETX . Parameters efs and emp
denote the exhausted energy by the amplifier for free space

and multi-path fading channel models, respectively. Fur-

thermore, ec indicates the consumed energy by the elec-

tronic circuit.

ETX b; dij
� �

¼ bec þ befsd
2
ij dij\d0

bec þ bempd
4
ij dij � d0

(

ð1Þ

ERX bð Þ ¼ bec ð2Þ

The values of the parameters related to the energy model

are given in Table 3.

4 Overview of the PSO-TVAC algorithm

PSO is a meta-heuristic scheme inspired by the social

behavior of birds for food finding. In this algorithm, some

particles search the solution space to find high-quality

solutions. Particle Pi consists of the position vector Xt
i ¼

½xti1; xti2; . . .; xti;dim� and the velocity vector

Vt
i ¼ ½vti1; vti2; . . .; vti;dim�, where parameters dim and t pre-

sent the space dimension and the iteration number. The

position and velocity vectors of particles are initiated

randomly and updated in each iteration to increase (de-

crease) their fitness (cost). Each particle Pi is updated

based on the best position found by the particle itself

(pbestti) and the best position found by all particles so far

(gbestt) using (3) and (4). The pbests of particles and the

gbest are updated per iteration. The algorithm is continued

until some termination conditions are met.

Vtþ1
i ¼ wVt

i þ c1r1i pbest
t
i � Xt

i

� �
þ c2r2i gbestt � Xt

i

� �

ð3Þ

Xtþ1
i ¼ Xt

i þ Vtþ1
i ð4Þ

where parameter w is the inertia weight, and parameters c1
and c2 are the self-cognition and social-influence coeffi-

cients, respectively. Additionally, r1i and r2i are random

dim-dimensional vectors whose elements lie within the

range 0� 1½ �.
The main shortcoming of PSO is the tendency of the

particles to fly toward the gbest, which yields trapping into

local optimums. Many PSO variants have been proposed to

improve its performance (Wang et al. 2018). Among them,

we adopt PSO-TVAC (Ratnaweera et al. 2004), which has

been applied to solve different optimization problems in

WSNs (Zhao et al. 2017; Fang and Feng 2018; Wu et al.

2019). This PSO variant decreases w and c1 and increases

c2 over time as stated in (5)-(7).

w ¼ wmax � t
wmax � wmin

tmax

ð5Þ

c1 ¼
t

tmax

c1e � c1sð Þ þ c1s ð6Þ

c2 ¼
t

tmax

c2e � c2sð Þ þ c2s ð7Þ

where tmax is the maximum number of iterations. The

values of the parameters used in PSO-TVAC are given in

Table 4. Furthermore, the flowchart of this algorithm is

shown in Fig. 1.

5 The TEDG algorithm

The operation of the proposed scheme is as follows. Ini-

tially, the network undergoes the bootstrapping process.

During this process, each sensor is assigned a unique ID,

Table 2 The list of the used notations

Notation Definition

n Number of nodes

l, w Dimensions of the area

tr Transmission range of nodes

einit Initial energy of nodes

Ni Set of neighbors of si

dij Distance between nodes si and sj

ei Residual energy of node si

ti Trust level of node si

k Percentage of nodes that are selected as CH

Cj The j th cluster

chj CH of Cj

a Packet dropping probability of malicious nodes

c Percentage of malicious nodes

Table 3 The values of the

parameters of the energy model
Parameter Value

ec 50 nJ=bit

efs 10 pJ=bit=m2

emp 0.0013 pJ=bit=m4

d0
ffiffiffiffiffi
efs
emp

q
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and its location is determined. Furthermore, the nodes

discover their neighbors using hello packets. The sink

collects the locations and neighbor lists of the sensors for

further consideration. Next, the network operation time is

divided into rounds. Each round comprises network con-

figuration, data gathering, and trust evaluation procedures.

To configure the WSN, the sink executes the proposed

clustering, tree construction, and watchdog selection

schemes. After that, it notifies the sensors about their roles

–CH, relay node, watchdog, or ordinary node—in the

current round. Finally, the sink evaluates the trust values of

sensors using the sent reports by watchdogs. Figure 2

depicts the flowchart of the TEDG algorithm.

In the following, we introduce the proposed algorithm in

detail. The clustering, tree construction, watchdog selec-

tion, and trust evaluation schemes are discussed in

Sects. 5.1 to 5.4.

5.1 Clustering

The first phase of the algorithm organizes nodes into

clusters, where the aim is to adopt nodes with a higher trust

level and residual energy as CHs. The PSO-TVAC algo-

rithm is applied to perform clustering as well as tree con-

struction and watchdog selection due to its high

performance and adaption to our problem. The proposed

clustering scheme comprises common components of PSO,

including particle representation, population initialization,

fitness function, and decoding procedure, which are

described in the following.

5.1.1 Particle representation

Each particle PC
i is an array of length k � n. Dimension pCij

comprises two values that are chosen from ranges 0� l½ �
and 0� w½ �, respectively. These values are used to specify

the j th corresponding CH to particle PC
i , namely ch j

i .

Figure 3 depicts a particle for an assumed WSN. The

illustrated network in this figure is of dimensions 100 m �
100 m, and the left-down corner of the field is assumed to

be the origin. It has 40 nodes, where five of them are

adopted as CH. Accordingly, as shown in Fig. 3b, the

particle is an array of dimensions 2 � 5.

Table 4 The values of

parameters of PSO-TVAC
Parameter Value

wmax 0.9

wmin 0.4

c1e 0.5

c1s 2.5

c2e 2.5

c2s 0.5

Initialize positions and velocities of 
particles randomly. 

Evaluate fitness values of particles, and 
initialize their Pbests and the Gbest.

Update positions and velocities of 
particles using (3) and (4).

Evaluate fitness values of particles, and 
update their Pbests and Gbest.

Update the parameters of PSO-TVAC 
using (5)-(7).

Are
termination criteria 

met?

Choose the particle with the highest 
fitness(lowest cost) as the solution

End

Start

No

Yes

Fig. 1 Flowchart of PSO-TVAC
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5.1.2 Initialization

The swarm comprises npC particles. The dimensions of

each particle are initialized to random values that are

chosen from the specified ranges.

5.1.3 Fitness function

We intend to construct trust-aware and energy-efficient

clusters. Regarding trustworthiness, the CHs should be

trusty, so they do not drop sent data packets by the cluster

members. Energy-efficient clustering necessitates adopting

high-energy nodes as CHs and balancing the depleted

energy by members for intra-cluster communication.

According to the above discussion, we include three met-

rics in (8). The first two metrics are the average trust value

and residual energy of CHs. Using these criteria results in

choosing CHs with a high trust level and residual energy.

The third measure, i.e., balancing the consumed energy by

members, is stated as minimizing the standard deviation of

distances of members from their corresponding CHs. The

rationality behind this decision is that according to (2), the

energy exhausted by each cluster member is proportional to

its distance from the corresponding CH. Thus, the third

criterion balances the amount of energy exhausted by

cluster members for intra-cluster communication.

FC
i ¼ w1avg1� j� k�n tch j

i

� �
þ w2

avg1� j� k�n ech j
i

� �

einit

þ w3

1� stdsk2C j
i
dk;ch j

i

� �� �

tr
;w1 þ w2 þ w3 ¼ 1

ð8Þ

where FC
i presents the fitness of particle PC

i . Additionally,

avg and std stand for average and standard deviation

functions, respectively. Notation C j
i denotes the j th cor-

responding cluster to the particle. Finally, w1, w2, and w3

determine the impact of the above-mentioned measures.

5.1.4 Decoding procedure

Particle PC
i is decoded considering the values of its

dimensions. Each dimension pCij identifies the j th corre-

sponding CH to the particle, namely ch j
i . The two values of

pCij are assumed to be the coordinates of a point in the

monitoring area. The closest node to this point is adopted

as ch j
i .

The remaining point is to determine the members of the

clusters. Each non-CH node sk is assigned to a CH that is

located in its transmission range. The properness of ch j
i 2

Nk to be adopted as the CH of sk, namely pcjki , is defined as:

pcjki ¼ tch j
i
þ

ech j
i

einit
þ 1� mj

i

max
1� q� k�n

mq
i

0

@

1

Aþ 1�
dk;ch j

i

tr

 !

ð9Þ

where mj
i denotes the number of members of C j

i . As shown

in (9), the criteria for CH selection are the trust value that

the CH has gained, the amount of its residual energy, its

degree value, and its distance from sk. More precisely, it is

preferred to adopt a CH with a higher trust value and

residual energy, fewer members, and closer to the node.

The steps of decoding the presented particle in Fig. 3b

are shown in Fig. 4. Firstly, the specified points by the

particle are highlighted in Fig. 4a. Next, as depicted in

Fig. 4b, the closest nodes to these points are adopted as

CHs. The non-CH sensors are assigned to CHs using (9).

(a) An assumed WSN

(b) A sample particle for clustering the nodes of the WSN
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Fig. 3 An example particle for the clustering phase
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The flowchart of the proposed clustering scheme is

presented in Fig. 5.

5.2 Tree construction

In this phase, a tree is constructed over the CHs and some

relay nodes to gather data. Using this tree, each CH or relay

node has a path to the sink. Additionally, each non-CH and

non-relay node is connected to the tree via its corre-

sponding CH. Accordingly, every sensor has a path for data

transmission toward the sink. The proposed tree construc-

tion scheme aims to adopt sensors with a higher trust level

and residual energy as relay nodes. This scheme increases

data gathering reliability. The following describes particle

representation, population initialization, fitness function,

and decoding procedure for the proposed PSO-based

scheme.

5.2.1 Particle representation

Each particle PT
i is an array of length n, where the value

of dimension pTij is chosen from the range �1ð Þ � 1½ �. As
explained in the decoding procedure, these dimensions

are used to construct a tree over the CHs and some relay

nodes. Figure 6 exemplifies a particle for the tree con-

struction problem over the proposed clustering scheme in

Fig. 4b.

5.2.2 Initialization

The swarm consists of npT particles. The dimensions

per particle are chosen from the range �1ð Þ � 1½ �
randomly.

5.2.3 Fitness function

Three measures are used to evaluate the fitness of particle

PT
i , which is denoted by FT

i . The considered measures are

the trust level, residual energy, and the number of nodes on

the tree. As shown in (10), the aim is to increase the

average trust level and residual energy of the nodes, while

minimizing the number of relay nodes used to construct the

tree.

FT
i ¼ w4avgsk2Ti

tkð Þ þ w5

avgsk2Ti
ekð Þ

einit
þ w6 1� nti

n

� �
;

w4 þ w5 þ w6 ¼ 1

ð10Þ

where Ti and nti represent the corresponding tree to PT
i and

the number of its nodes, respectively. Additionally,

parameters w4, w5, and w6, specify the importance of the

considered criteria.

5.2.4 Decoding procedure

We modify the proposed scheme in Elhabyan and Yagoub

(2015) for particle decoding. In this procedure, particle PT
i

is assumed to be of dimension n, where j th dimension

demonstrates the priority of sj to be included in Ti. The

higher priority nodes are used for tree construction as

described in the following. For each CH chj, a path con-

necting the CH to the sink is constructed. The construction

of the path is initiated from the CH. The neighboring node

of chj with the highest priority is adopted as its next hop

toward the sink. This procedure is continued until the sink

is reached. The data gathering tree is completed after

connecting all CHs to the sink. The mentioned procedure

yields constructing long paths and has a slow convergence

(a) The specified points by the particle (b) The corresponding clustering scheme
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Fig. 4 Decoding of the illustrated particle in Fig. 3b
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speed. The reason is that the next hop of node sk on an

assumed path could be further from the sink than the node.

To tackle this problem, we restrict the set of the allowed

next hops of sk to those neighbors that are closer to the

sink. This strategy prevents the formation of long paths,

and consequently, the proposed PSO-based scheme con-

verges quickly.

Figure 7 illustrates the steps of decoding the represented

particle in Fig. 6. As shown in this figure, the next hop of

each node is one of its neighbors that is closer to the sink

and has the highest priority. For example, consider node

s22. The neighbors of this sensor are nodes s15, s16, s21, s23,

s29, and s31, which have priorities 0.82, 0.76, 0.17, -0.47, -

0.67, and 0.72. Among these neighbors, nodes s15, s16, and

s21 are closer to the sink. Considering the priorities of these

nodes, sensor s15 is selected as the next hop of s22.

Figure 8 illustrates the flowchart of the proposed tree

construction scheme.

5.3 Watchdog selection

The last phase is devoted to selecting some watchdogs

from non-CH and non-relay sensors. These nodes measure

the data forwarding rate of their monitored ones and notify

the sink about it. Finally, the sink estimates the trust value

of nodes from the received reports and identifies malicious

ones. It should be noted that similar to other sensors, the

watchdog nodes monitor their surrounding environment

and send their data to their corresponding CHs for further

processing and routing toward the sink.

Some points are considered in the proposed watchdog

selection algorithm. First, the nodes with a higher trust

level and residual energy have priority to be chosen as

watchdogs. The reports of highly trusted nodes are more

likely to be accurate. Additionally, the adopted watchdogs

should have enough energy to perform monitoring. The

second point is that the malicious nodes should be pre-

vented from being selected as watchdogs. A malicious

node may act honestly to be adopted as a watchdog in

future. This malicious watchdog can prepare false reports

for the assigned nodes, and recognize them as malicious.

The proposed solution to mitigate this problem is to adopt

watchdogs randomly. The next point is to reduce the

overhead of monitoring tasks. Watchdog assignment to all

nodes increases the amount of exhausted energy throughout

the WSN. The reason is that the watchdog nodes should be

For each particle, choose two random 
values per dimension from ranges [0-l] 

and [0-w]. Additionally, initialize its 
velocity randomly. 

Initialize the Pbests of particles and the 
Gbest.

Update the positions and velocities of 
particles using (3) and (4).

Update the parameters of PSO-TVAC 
using (5)-(7).

Choose the particle with the highest 
fitness (according to (8)) as the 

solution.

End

Start

No

Decode the particles to derived CHs. 
Determine the members per cluster 

using (9).

Evaluate fitness value per particle based 
on its corresponding clustering scheme 

using (8).

Update the Pbests of particles and the 
Gbest.

Decode the particles to derived CHs. 
Determine the members per cluster 

using (9).

Evaluate fitness value per particle based 
on its corresponding clustering scheme 

using (8).

Yes

t > tmax

Fig. 5 Flowchart of the clustering phase

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.65 0.75 -0.16 0.61 0.56 -0.46 0.38 0.89 0.83 0.79 0.84 -0.33 -0.23 0.85 0.82 0.76 0.11 -0.52 0.80 0.83
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0.17 0.78 -0.47 -0.34 0.13 0.41 0.77 0.08 -0.67 0.56 0.72 -0.45 0.37 -0.61 0.28 -0.19 0.31 -0.61 0.43 0.12

Fig. 6 An example particle for tree construction over the depicted clustering scheme in Fig. 4b

11740 K. Soltani et al.

123



awake to perform monitoring tasks. Therefore, the watch-

dogs are specified only for CHs and relay nodes of the tree

to balance the amount of exhausted energy and network

protection. Non-CH nodes are monitored by their corre-

sponding CHs. Finally, the assigned watchdog to each CH

or relay node is one of its neighbors. Therefore, the allowed

location of the watchdog per node is limited to its trans-

mission range. Keeping these all together, a PSO-based

watchdog selection scheme is proposed. The components

of this algorithm are given below.

5.3.1 Particle representation

Each particle PW
i is an array of length nwi. Each dimension

pWij comprises two values, which are randomly adopted

from the ranges 0� l½ � and 0� w½ �. As discussed in the

decoding procedure, each dimension pWij is used to specify

the j th corresponding watchdog to PW
i . Accordingly, the

number of watchdogs in the corresponding WSN to PW
i

becomes equal to nwi. Figure 9 shows an example particle

for the watchdog selection scheme. This particle is used to

choose some watchdogs to monitor the specified CHs and

relay nodes in Fig. 7d.

5.3.2 Initialization

The swarm includes npW particles. Each particle PW
i pre-

sents a solution to the problem, where at least a watchdog

is assigned per CH and relay node. Accordingly, to con-

struct PW
i , firstly proper watchdogs are selected for moni-

toring tasks. Next, PW
i is constructed considering the

adopted watchdogs.

The proposed scheme adopts watchdogs in multiple

rounds. In each round, the corresponding watchdog to a CH

or relay node, namely sj, is adopted. The set of candidate

watchdogs of sj, which comprises its non-CH and non-relay

(a) Determining the next hop of CH (b) Determining the next hop of node 

(c) Data transmission path from CH to the sink (d) The ultimate tree
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Fig. 7 Some steps of decoding the depicted particle in Fig. 6
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neighbors, is named as CWj. The reason that each node is

at most given one role is to enhance security and balance

energy consumption. To determine the watchdog of sj in

particle PW
i , namely wd j

i , low-trusted and low-energy

nodes are removed from CWj firstly. By low-trusted and

low-energy nodes, we mean those sensors whose trust

value and residual energy are less than the average. Next,

the properness of each node sk 2 CWj to be adopted as

wd j
i , namely pwk, is computed as:

pwk ¼
ek
einit

þ tk ð11Þ

The probability of selecting node sk as wd
j
i , denoted by

prkj , is computed using (12). Finally, wd j
i is adopted using

Roulette-Wheel Selection (RWS). The application of RWS

prevents the algorithm from trapping into local optimums

and results in more reasonable solutions.

prkj ¼
pwkP

sq2CWj
pwq

ð12Þ

The pseudo-code of the proposed scheme is given in

Algorithm 1. In this context, WDi denotes the corre-

sponding watchdog set to PW
i . Additionally, M is the set of

monitored nodes and comprises CHs and relay nodes. To

initialize PW
i , set WDi is formed first. After that, the

coordinates of the watchdogs are used to form the particle.

An example watchdog set for the given network in

Fig. 7d is represented in Fig. 10a. Additionally, the initial

form of the particle is shown in Fig. 10b.

5.3.3 Fitness function

The considered measures in this phase are the average trust

level, average residual energy, and the number of

watchdogs. The aim is to choose the least number of high-

energy and trusted nodes as watchdogs to effectively

monitor CHs and relay nodes. The fitness of particle PW
i ,

namely FW
i , is computed as:

FW
i ¼ w7avgsk2PW

i
tkð Þ þ w8

avgsk2PW
i
ekð Þ

einit

þ w9 1� nwi

n

� �
;w7 þ w8 þ w9

¼ 1 ð13Þ

where coefficients w7, w8, and w9, are used to specify the

impact of the measures.

5.3.4 Decoding procedure

The set of watchdog nodes is derived by decoding particle

PW
i . Each dimension pWij comprises two values, which

specify the coordinates of a point on the field. The closest

node to this point is considered as the j th watchdog. The

decoding steps of the represented particle in Fig. 9 are

shown in Fig. 11. Firstly, as illustrated in Fig. 9a, the

corresponding points to the particle are specified in the

monitoring area. Next, the closest nodes to these points are

selected as watchdogs (Fig. 11b).

5.3.5 Particle updating

As previously mentioned in Sect. 4, in PSO-TVAC, each

particle PW
i is updated based on its pbest and the gbest. The

proposed formulas for particle updating, i.e., (3) and (4),

implicitly assume that PW
i , its pbest (pbest

W
i ), and the gbest

(gbestW) have the same dimensions. More precisely, pWij is

updated using the j th dimension of pbestWi and gbestW . The
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issue raises here is that in the watchdog selection algo-

rithm, the particles are of different dimensions. Therefore,

generally, there is no one-to-one correspondence between

the dimensions of PW
i , pbest

W
i , and gbestW . To deal with

this issue, we consider two cases based on the number of

dimensions of PW
i , pbest

W
i , and gbestW . The solution is

stated for pbestWi , which is assumed to be of dimension nbi.

The same approach is applied to handle gbestW .

1. PW
i has less or equal dimensions compared to pbestWi .

In this case, pWij corresponds to dimension j of the pbest

as usual. Additionally, the residual dimensions of

pbestWi are ignored.

2. PW
i has more dimensions than pbestWi . In this case, for

the first nbi dimensions, dimension j of PW
i corresponds

to that of pbestWi . The corresponding dimension for

pWij nbi\j� nwið Þ is determined as follows. Firstly, all

dimensions of pbestWi are decoded to obtain some

points on the monitoring area. The dimension pWij is

also decoded to derive a point on the area, namely ptij.

That dimension of pbestWi , which its corresponded

point has the least distance from ptij, is adopted as the

corresponding dimension to pWij .

Algorithm 2 presents the steps of the proposed particle

updating scheme more precisely. In this algorithm, pbWij

and gbWij denote the corresponding dimension to pWij in

pbestWi and gbestW , respectively.

The proposed particle updating scheme is more clarified

in the following example. Here, the depicted particle in

Fig. 9 is considered as PW
i . Additionally, pbestWi and

gbestW are given in Figs. 12a,b, respectively. Furthermore,

their corresponding WSNs are shown in Figs. 12c,d for

more clarity. The pbest is of dimension four and handled as

usual. On the other hand, the gbest is of dimension three

and therefore, pgWi4 is chosen from the three dimensions of

gbestW . As derived from Fig. 12b, the corresponding point

to the third dimension of gbestW has the least distance from

ptij. Accordingly, the third dimension of gbestW is chosen

as pgWi4 .

For each particle, choose a random 
value per dimension from range [(-1)-
1]. Additionally, initialize its velocity 

randomly. 

Initialize the Pbests of particles and the 
Gbest.

Update the positions and velocities of 
particles using (3) and (4).

Update the parameters of PSO-TVAC 
using (5)-(7).

Choose the particle with the highest 
fitness (according to (10)) as the 

solution.

End

Start

No

Decode the particles to derive the 
corresponding trees.

Evaluate fitness value per particle based 
on its corresponding tree using (10).

Update the Pbests of particles and the 
Gbest.

Decode the particles to derive the 
corresponding trees.

Evaluate fitness value per particle based 
on its corresponding tree using (10).

Yes

t > tmax

Fig. 8 Flowchart of the tree construction phase

45 53 5 75

95 67 50 37

Fig. 9 An example particle for watchdog selection over the illustrated

WSN in Fig. 7d
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The flowchart of the proposed watchdog selection

scheme is given in Fig. 13.

5.4 Trust evaluation

The sink updates the trust values of the sensor nodes at the

end of each round. To this end, the moving average model

is applied, which is presented in the following formula:

ti ¼ w10ti þ 1� w10ð Þtri ð14Þ

where tri denotes the trust value of node si in the current

round. This parameter is derived considering the evidence

gathered from the monitors (i.e., watchdogs or the corre-

sponding CH) of sensor si. Furthermore, parameter w10

determines the importance of ti against the gained trust by

si in the current round.

In the TEDG algorithm, the monitoring scheme for each

node depends on its role. The CHs and relay nodes are

assigned watchdogs. The ordinary sensors, which only

transmit the sensed data to the CHs, have no special

monitors. The corresponding CH to each ordinary node is

responsible for monitoring its behavior and reporting its

data generation rate to the sink. As previously mentioned,

the reason for applying different policies based on the node

type is to balance the security level and the energy con-

sumption criterion. According to the above discussion, the

trust of ordinary node si 2 Cj in the current round is

computed as:

tri ¼ tchj � tdichj ð15Þ

In this equation, the trust value of node chj is also

considered to compute tri. This strategy alleviates the

impact of false reports of malicious CHs on the trust values

(a) The selected watchdogs, which are illustrated by dashed 

circles

(b) The corresponding particle 

2

8 9

3

10

4 5

11 12

6

13
15

16

22
23

17

24

18

25

26

20

27
29 30

36
37

31

38

32

33

39
4034

7

14

35

21

28

1

19
42 49 75

95 73 37

Fig. 10 Watchdog selection

over the depicted WSN in

Fig. 7d
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of truthful nodes. The notation tdichj denotes the trust degree

of chj in node si in the current round. Node chj computes

this parameter according to its direct observations of packet

generation by node si in the current round as:

tdichj ¼
NGPi

EGP
ð16Þ

where NGPi denotes the number of generated packets by

node si at the current round. Additionally, EGP presents the

expected number of generated packets at the current round,

which is the same for all nodes over time as we assume

periodic data generation.

The trust value of node si, which is a CH or relay node,

is derived based on the given evidence by the watchdogs in

its neighboring set as:

tri ¼

Pndi
j¼1tj � tdi

wg j
i

ndi
ð17Þ

(a) The specified points by the particle (b) The corresponding watchdogs, which are presented by 
dashed circles 
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Fig. 11 Decoding of the depicted particle in Fig. 9

(a) The pbest (b) The gbest

(c) The corresponding watchdogs to the particle of Fig. 12(a) (d) The corresponding watchdogs to the particle of Fig. 12(b)
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Fig. 12 The pbest and gbest of the presented particle in Fig. 9
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where ndi and wg j
i denote the number of available

watchdogs in Ni, and the j th watchdog of sensor node si,

respectively. It should be noted that in the proposed

watchdog selection scheme, only one watchdog is assigned

per CH or relay node. However, the determined watchdog

for a CH or relay node may fall in the transmission range of

others. As a result, each CH or relay node may be moni-

tored by multiple watchdogs.

6 Performance evaluation

The performance of TEDG is studied in this section. Some

recently published algorithms, including TPSO-CR

(Elhabyan and Yagoub 2015), DAMS (Abdellatif and

Mosbah 2020), TEFCSRP (Mittal et al. 2021), and CAT-

EDP (Shahid et al. 2022) are adopted for the sake of

comparison. TPSO-CR applied PSO for clustering and tree

construction. This algorithm did not concern SFA. On the

other hand, DAMS, TEFCSRP, and CAT-EDP are trust-

aware algorithms. DAMS partitioned nodes into clusters,

where CHs send data directly to the sink. The TEFCSRP

algorithm used cuckoo search and fuzzy logic for cluster

construction. Additionally, it proposed a greedy scheme for

tree construction. Finally, CAT-EDP applied cellular

automata for clustering. The comparisons among the con-

sidered algorithms are reported in Figs. 14, 15, 16, 17, 18,

19, 20, 21, 22, 23. Each data point in these figures is the

average of five experiments over randomly deployed

WSNs. Additionally, each experiment of AI-based schemes

is repeated five times. Accordingly, each result for AI-

based algorithms represents the average of 25 different

executions of the algorithms. Furthermore, MATLAB is

used to implement the considered algorithms. The com-

parison measures are packet loss, the exhausted energy by

the nodes, and the network lifetime.

The simulations are conducted in areas of dimensions

100 m 9 100 m to 200 m 9 200 m. The number of sen-

sors is varied within the range of [100–500]. The sensor

nodes are deployed randomly over the network. Parameters

tr and einit are set to 60 m and 2 J, respectively. The value

of c is chosen from set {10%, 20%}. Accordingly, 10% or

20% percentage of sensors are randomly chosen as mali-

cious nodes. The malicious sensors are randomly adopted

from the deployed ones. Furthermore, the value of a, which
presents the packet dropping probability of malicious

nodes, is adopted from set {20%, 30%}. Finally, the value

of k is assumed to be 10%. This value results in con-

structing clusters of acceptable sizes. The remaining point

is to determine the values of parameters w1 to w10. The first

nine parameters balance trustworthiness and energy effi-

ciency in different phases. These parameters are deter-

mined such that the resulting packet loss, energy

exhaustion, and network lifetime become acceptable.

Based on the simulation results, these parameters are set to

0.3, 0.4, 0.3, 0.4, 0.35, 0.25, 0.5, 0.25, and 0.25. The last

parameter, i.e., w10, determines the impact of the past

behavior of sensors on their trust value. This parameter is

set to 0.8 in the performed simulations.

6.1 Determining the control parameters

The control parameters of the proposed algorithm can be

divided into two sets. The first set includes the introduced

parameters in PSO-TVAC, namely wmax, wmin, c1e, c1s, c2e,

and c2s. The values of these parameters are assumed to be

0.9, 0.4, 0.5, 2.5, 2.5, and 0.5, as stated in Ratnaweera et al.

(2004). The next set consists of the number of iterations

Initialize the positions of particles 
using Algorithm 1. Additionally, 

initialize their velocities randomly. 

Initialize the Pbests of particles and the 
Gbest.

Update the positions and velocities of 
particles using Algorithm 2.

Update the parameters of PSO-TVAC 
using (5)-(7).

Choose the particle with the highest 
fitness (according to (13)) as the 

solution.

End

Start

No

Decode the particles to derive the 
corresponding watchdogs.

Evaluate fitness value per particle based 
on its corresponding watchdogs using 

(13).

Update the Pbests of particles and the 
Gbest.

Decode the particles to derive the 
corresponding watchdogs.

Evaluate fitness value per particle based 
on its corresponding watchdogs using 

(13).

Yes

t > tmax

Fig. 13 Flowchart of the watchdog selection phase
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and particles of clustering, tree construction, and watchdog

selection phases. We derive the convergence plot of these

phases against different numbers of particles and nodes,

and determine the proper number of iterations and particles

per phase accordingly. In this set of experiments, param-

eters c and a are set to 10% and 30%, respectively.

Figure 14 illustrates the convergence plot of clustering,

tree construction, and watchdog selection phases versus

different numbers of particles and sensor nodes. From this

figure, we can see that the derived fitness values using 10

and 20 particles do not differ noticeably. Therefore, the

number of particles is set to 10 to decrease the time com-

plexity of the algorithm. Additionally, based on the

(a) The clustering scheme with 10 particles (b) The clustering scheme with 20 particles

(c) The tree construction scheme with 10 particles (d) The tree construction scheme with 20 particles

(e) The watchdog selection scheme with 10 particles (f) The watchdog selection scheme with 20 particles

Fig. 14 Convergence plot of the phases of TEDG versus different numbers of nodes and particles
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presented results in Fig. 14a, c, and e, the maximum

number of iterations (i.e., tmax) in all phases is assumed to

be 300.

6.2 Packet loss comparison

The packet loss measure indicates the ability of the algo-

rithms to prevent malicious nodes from disrupting the data

gathering process. The packet loss of node si, namely pli,

depends on the number of malicious nodes on the path

connecting the node to the sink. Assume there are nmi

malicious nodes on the path from si to the sink, where the j
th one is denoted by ml ji . The first malicious node, ml1i ,

drops a percentage of packets, and forwards the remaining

ones. Node ml2i drops a percentage of the received packets,

which is equal to a 1� að Þ percentage of the generated

packets by si. Generally, ml
j
i drops a 1� að Þj�1

percentage

of the generated packets by si. Accordingly, pli is equal to:

pli ¼
Xnmi

j¼1

a 1� að Þj�1 ð18Þ

(a) =10%, =20% (b) =10%, =30%

(c) =20%, =20% (d) =20%, =30%

Fig. 15 Packet loss comparison versus different numbers of nodes and various values of c and a

Fig. 16 Energy exhaustion comparison versus different numbers of

nodes
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Using the equation above, the total packet loss of the

WSN will be:

packet loss ¼
Xn

i¼1

pli ¼
Xn

i¼1

Xnmi

j¼1

a 1� að Þj�1 ð19Þ

As it is derived from the above equation, the packet loss

depends on the value of a and the number of malicious

nodes that are chosen as relay nodes. Therefore, adopting

highly trusted nodes as CHs and relay nodes reduces packet

loss considerably.

The SFA mitigation capability of the considered algo-

rithms versus various numbers of nodes is compared in

Fig. 15. This criterion is measured by varying the per-

centage of malicious nodes, the packet dropping proba-

bility, and the number of nodes. As shown in this figure, the

resultant packet loss of all algorithms increases by raising

the number of nodes. Additionally, the average increase in

packet loss caused by increasing c from 10 to 20% is equal

to 95%. Finally, increasing the percentage of dropped

packets from 20 to 30% raises the packet loss by 16.7% on

average.

(a) 250-node WSNs (b) 500-node WSNs

Fig. 17 Standard deviation (SD) of residual energy of nodes comparison over time

Fig. 18 SD of residual energy of nodes comparison versus different

numbers of nodes

Fig. 19 Energy exhaustion per delivered bit comparison versus

different numbers of nodes

Fig. 20 Network lifetime comparison versus different numbers of

nodes
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According to the reported results in Fig. 15, TEDG

improves the average packet loss by 7.99, 1.91, 3.08, 3.36

times, compared to TPSO-CR, DAMS, TEFCSRP, and

CAT-EDP, respectively. TPSO-CR did not include an SFA

mitigation mechanism. Therefore, malicious nodes may

participate in the data gathering process. Adopting these

nodes as CHs or relay nodes increases packet loss con-

siderably. Therefore, the algorithm has a low performance

despite achieving an acceptable amount of energy con-

sumption and lifetime. DAMS is in second place regarding

the packet loss criterion. In this algorithm, the CHs directly

send data to the sink. Therefore, using DAMS decreases

the probability of participating malicious nodes in the data

gathering process. However, as shown in Sects. 6.3 and

6.4, this algorithm yields a high energy consumption and

low network lifetime. The TEFCSRP algorithm monitored

all sensors by their neighbors. Additionally, in CAT-EDP,

each sensor is monitored by the nodes in its cluster. These

algorithms did not concern the trustworthiness of watch-

dogs (i.e., neighbors and nodes in the cluster). Therefore,

they dropped more packets compared to DAMS. The low

packet loss of the proposed algorithm is due to applying

PSO-TVAC in clustering, tree construction, and watchdog

selection phases. The proper particle representation in these

phases yields acceptable results. Additionally, the trust

measure is included in the fitness functions of all phases.

Adopting trusted nodes as CHs, relay nodes, and watch-

dogs reduces packet loss substantially.

6.3 Energy exhaustion comparison

Three energy-aware metrics are considered, including the

average and standard deviation of the exhausted energy by

the nodes, and the consumed energy per delivered bit to the

sink. The average energy exhaustion of nodes indicates the

total depleted energy for data gathering. Furthermore, the

standard deviation of the residual energy of sensors pro-

vides evidence about the evenness of energy consumption

throughout the network. The mentioned parameters, how-

ever, do not demonstrate the energy efficiency of the

(a) 250-node WSNs (b) 500-node WSNs

Fig. 21 Number of alive nodes comparison over time

Fig. 22 Time Complexity comparison versus different number of

nodes

Fig. 23 Overhead comparison versus different number of nodes
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algorithms. An algorithm may have a low energy con-

sumption, but its packet loss is high. Therefore, we also

measure the consumed energy per delivered bit. This

measure is derived by dividing the consumed energy of all

nodes by the number of delivered bits to the sink.

Figure 16 illustrates the average energy consumption by

varying the number of nodes. The reported results are

derived after 400 rounds of executing the algorithms. In

this section and the following experiments, parameters c
and a are assumed to be 10% and 30%, respectively. As

shown in the figure, the consumed energy increases by

enlarging the node set. TEDG reduces the average energy

exhaustion by 28%, 84%, and 134%, in comparison with

TEFCSRP, DAMS, and CAT-EDP, respectively. The

higher energy exhaustion of DAMS and CAT-EDP is due

to direct data transmission from CHs to the sink. According

to (1), the long distances between the CHs and the sink

necessitate a high energy consumption for data transmis-

sion. On the contrary, the CHs are connected to the sink

using multi-hop paths in the proposed algorithm. Sending

data over short distances does not require much energy.

The TEFCSRP algorithm also used multi-hop paths for

data transmission. However, it used only CHs in the tree

resulting in relatively long distances between CHs, which

yields high energy consumption for data transmission.

Additionally, DAMS is greedy and consequently has a low

performance. Finally, as shown in Sect. 6.6, TEFCSRP and

CAT-EDP have a relatively high overhead, which increases

their total energy consumption. The proposed algorithm

also consumes 9% more energy than TPSO-CR. The lower

energy consumption of this scheme is due to its higher

packet loss. The lost packets are transmitted over fewer

hops compared to the delivered ones to the sink. Accord-

ingly, energy consumption decreases by increasing packet

loss.

The standard deviation of residual energy of the sensor

nodes over time using the competitive algorithms is shown

in Fig. 17. According to the reported results in this figure,

TEDG yields the least standard deviation. After 400 rounds

of executing the algorithm, this measure raises to 0.16 and

0.23 for 250 and 500-node WSNs, respectively. The

average of this metric for 250 and 500-node WSNs using

other considered algorithms is equal to 0.23 and 0.58,

respectively. The better outcome of TEDG is due to that it

considers the residual energy of CHs in the cluster con-

struction phase. Additionally, high-energy sensors are

adopted as relay nodes and watchdogs in the successive

phases of the algorithm. Finally, data is transmitted in a

multi-hop manner toward the sink. This scheme avoids

quick energy depletion of CHs. Accordingly, the sensor

nodes exhaust energy more evenly by exploiting TEDG.

The impact of varying the number of nodes on the

standard deviation criterion is depicted in Fig. 18. As

shown in the figure, this measure increases by enlarging the

node set. Additionally, the standard deviation of the pro-

posed algorithm is less than other schemes. More precisely,

compared to TPSO-CR, DAMS, TEFCSRP, and CAT-

EDP, it reduces this measure by 5%, 73%, 137%, and

108%, respectively. The high standard deviation of DAMS

and CAT-EDP is due to that the CHs directly send gathered

data to the sink in these algorithms. Accordingly, the

adopted CHs per round consume a considerable amount of

energy. Furthermore, DAMS is greedy and therefore, it

cannot balance the consumed energy by nodes effectively.

Finally, TEFCSRP did not consider the energy criterion for

adopting relay nodes on the data gathering tree. Accord-

ingly, the algorithm has a high standard deviation.

The last studied energy-aware criterion is the amount of

exhausted energy to deliver one bit to the sink. This metric

is investigated in Fig. 19, where the data points are com-

puted by dividing the consumed energy of all nodes by the

number of delivered bits to the sink. As illustrated in this

figure, the proposed algorithm yields the lowest amount of

exhausted energy to deliver per bit and is the most energy-

efficient scheme in our experiments. More specifically, the

amount of exhausted energy by TEDG to deliver one bit to

the sink is 1.46 lJ. This measure is equal to 7.15 lJ, 3 lJ,
2.22 lJ, and 3.97 lJ, for TPSO-CR, DAMS, TEFCSRP,

and CAT-EDP, respectively. The superiority of our algo-

rithm regarding the exhausted energy to deliver per bit

measure is due to its lowest energy exhaustion and packet

loss. According to the reported results in this section, the

proposed algorithm outperforms the existing approaches

regarding the energy consumption criterion.

6.4 Lifetime comparison

An important concern in WSNs is to decrease the death rate

of sensors over time. This is due to that the coverage and

connectivity of nodes may be distrusted by increasing the

number of dead nodes. The death rate is quantified in the

literature as the network lifetime and the number of alive

nodes measures. The lifetime measure indicates the

timespan between the network starting time and the first

death. The second metric is defined as the number of alive

nodes over time. These criteria are studied in Figs. 20 and

21, respectively. According to Fig. 20, the first node death

in 250 and 500-node WSNs using the proposed algorithm

occurs on rounds 1251 and 641, respectively. These values

are equal to 1281 and 521 for the second-place algorithm,

namely TPSO-CR. On average, TEDG increases network

lifetime by 28%, 141%, 159%, and 187%, compared to

TPSO-CR, DAMS, TEFCSRP, and CAT-EDP, respec-

tively. The other point is that the network lifetime

decreases by enlarging the node set. This is due to that by

increasing the number of sensors, the closer nodes to the

Trust-aware and energy-efficient data gathering in wireless sensor networks using PSO… 11751

123



sink have to forward more data. These nodes consume

more energy and die sooner.

Figure 21 demonstrates the number of alive nodes by

applying the contestant algorithms. As shown in this figure,

TEDG keeps much more nodes alive compared to others

over time. The proposed algorithm brings about 243 and

483 alive nodes in 250 and 500-node WSNs after 1500

rounds. TPSO-CR, DAMS, TEFCSRP, and CAT-EDP

keep 241, 232, 233, and 232 nodes alive in 250-node

WSNs after 1500 rounds of execution. These values are

equal to 450, 274, 479, and 325 in 500-node WSNs. The

higher lifetime and number of alive nodes of TEDG is due

to that it has a low standard deviation of the exhausted

energy by nodes. Accordingly, the nodes consume energy

evenly throughout the network and die later. Considering

the results of Figs. 17 and 21, we can conclude that the

dead nodes are the adopted ones as CH. TPSO-CR also has

a low death rate. However, as illustrated in Fig. 15, its

packet loss is high.

6.5 Time complexity comparison

The time complexity of an algorithm indicates its usability

in real-world scenarios. Figure 22 compares the time

complexity of the contestant algorithm versus different

numbers of nodes. The average required time to execute

TEDG, TPSO-CR, DAMS, TEFCSRP, and CAT-EDP is

equal to 156, 151, 37, 121, and 14 s, respectively. It should

be mentioned that the considered algorithms are centralized

and hence, the reported results present the required time to

execute them in the sink or another server. The reason for

the low time complexity of DAMS and CAT-EDP is that

they are greedy algorithms. TEFCSRP used fuzzy and

meta-heuristic algorithms for clustering. Hence, the time

complexity of this algorithm becomes higher than that of

DAMS. The high time complexity of TPSO-CR is due to

applying meta-heuristic algorithms for clustering and tree

construction. TEDG improves the convergence speed of

the tree construction scheme compared to TPSO-CR. The

algorithm has an additional watchdog selection phase

compared to TPSO-CR. Therefore, its time complexity

does not differ from that of TPSO-CR noticeably.

6.6 Overhead comparison

The imposed overhead by an algorithm indicates its

usability in real-world scenarios. The overhead of the

considered trust-aware data gathering algorithms is quan-

tified as the exhausted energy by the SFA mitigation

mechanism. It includes the consumed energy by watch-

dogs, CHs, or other nodes to monitor their neighbors.

Figure 23 compares the overhead of the contestant algo-

rithms versus different numbers of nodes. TPSO-CR did

not provide any SFA mitigation mechanism and hence, it is

not included in this figure. The reported results indicate

that the proposed algorithm has a lower overhead com-

pared to the competitive algorithm. More precisely, its

consumed energy for monitoring tasks is 28%, 64%, 71%,

less than that of DAMS, TEFCSRP, and CAT-EDP,

respectively. The low overhead of TEDG is due to that it

minimizes the number of watchdogs as much as possible.

Additionally, watchdogs only monitor CHs and relay

nodes. On the other hand, the watchdogs per cluster are

independently adopted in DAMS. Therefore, the number of

watchdogs and their exhausted energy of this algorithm is

more than that of TEDG. In the TEFCSRP algorithm, each

sensor monitors its close neighbors. Additionally, in CAT-

EDP, each node is monitored by all nodes in its cluster.

These two algorithms did not specify watchdogs and used

all nodes for trust computation. Accordingly, their moni-

toring overhead is considerable.

7 Conclusion

This paper proposed TEDG to improve trustworthiness and

energy consumption in WSNs. The proposed scheme com-

prised three phases of clustering, tree construction, and

watchdog selection, which were solved using TVAC-PSO.

The considered criteria in these phases are the trust and

energy level of nodes. Most of the existing research did not

include all the mentioned phases, and some studies pro-

posed greedy approaches to solve the phases. Furthermore,

most of the algorithms, which used meta-heuristic

schemes, proposed ineffective particle representation and

objective functions that yielded poor solutions. As con-

firmed by the experimental results, TEDG outperformed

the existing approaches in terms of packet loss and energy-

related measures.

As future work, we plan to apply other meta-heuristics,

such as Grey Wolf Optimizer (GWO) and Gravitational

Search Algorithm (GSA) to solve the intended problem.

These algorithms outperform PSO (Rashedi et al. 2009;

Mirjalili et al. 2014) and hence, using them for data gath-

ering in WSNs would yield better results. It is also possible

to combine some meta-heuristics to improve results. The

other direction is to consider more realistic settings.

Examples of real-world assumptions are the unreliability of

wireless links, packet collision, and node failure. We also

aim to include a congestion control mechanism in our

design, which is caused by different factors such as packet

collision and node buffer overflow (Ghaffari 2015).
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