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Abstract

Complex intuitionistic fuzzy set, as an extension of intuitionistic fuzzy set, could describe the fuzzy characters of things more
detail and comprehensively and is very useful in dealing with vagueness and uncertainty of problems that include the periodic
or recurring phenomena. In this paper, various operation properties of complex intuitionistic fuzzy sets are investigated when
the membership phase and non-membership phase are restricted to [0, 27r]. Meanwhile, consider that precise membership
values and non-membership values should normally be of no practical significance, and there is no equality and proximity
measure investigation on complex intuitionistic fuzzy sets. First of all, we proposed a new distance measure for complex
intuitionistic fuzzy sets. Then this distance measure is used to define («, 8)-equalities of complex intuitionistic fuzzy sets.
Two complex intuitionistic fuzzy sets are said to be («, 8)-equal if the distance between their membership degrees is less
than 1 — « and the distance between their non-membership degrees is less than 8. Furthermore, this paper shows how various
operations between complex intuitionistic fuzzy sets affect given («, 8)-equalities of complex intuitionistic fuzzy sets. Finally,
complex intuitionistic fuzzy relations are discussed and some examples are given to illuminate the results obtained in this

paper.

Keywords Complex intuitionistic fuzzy set - Distance measure - («, §)-equality - Complex intuitionistic fuzzy relations -
Operation

1 Introduction

Since the concept of intuitionstic fuzzy sets was put forward
by Atanassov (1986), the theories and applications of intu-
itionstic fuzzy sets have developed rapidly. It is well known
that intuitionstic fuzzy set was a generalization of fuzzy set
(Zadeh 1965). Meanwhile, the range of the membership func-
tion and non-membership function of intuitionstic fuzzy set
are limited to the interval [0, 1], and their sum also belongs
to the interval [0, 1], i.e., they all belong to the real numbers.
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The question presented by Daniel Ramot and other
researchers was, what will be the result, if change the co-
domain in the fuzzy sets to complex numbers instead of real
numbers? To discuss this issue, in 2002, Ramot et al. (2002)
proposed the concept of complex fuzzy sets by consider-
ing both the membership degree and periodicity of uncertain
problems. The membership function of a complex fuzzy set
is given by a complex-valued function, which comprises an
amplitude term and a phase term. However, this concept is
different from the fuzzy complex set introduced and dis-
cussed by Buckley (1989, 1991, 1992), Zhang (1992) and
Gong and Xiao (2021, 2022). Subsequently, to incorporate
the hesitation degree and the periodicity information into the
analysis, Alkouri and Salleh (2012) proposed a new innova-
tive concept and called it complex intuitionistic fuzzy sets,
where the membership function p , (x) and non-membership
function v, (x) of a complex intuitionstic fuzzy set A instead
of being real-valued functions with the rang of [0, 1] are
replaced by complex-valued functions of the form
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My (x) =r,(x) 'ei@"A(X) i=+-1
and
v (x) =5, (x) - a® j = /1,

where r, (x) and s, (x) are real-valued functions and both
belong to the interval [0, 1]such that0 < r, (x)+s,(x) <1,
alsow,, (x) and @, , (x) are real-valued functions. The nov-
elty of complex intuitionistic fuzzy set lies in its ability for
membership and non-membership functions to achieve more
range of values. The ranges of values are extended to the
unit circle in complex plane for both membership and non-
membership functions instead of [0, 1] as in the conventional
intuitionistic fuzzy functions. They also discussed the basic
operations on complex intuitionistic fuzzy sets, developed a
formula for calculating distance among complex intuition-
istic fuzzy sets and gave its application in decision-making
problems (Alkouri and Salleh 2013a,b). Meanwhile, some
new types of fuzzy sets and their applications have been
investigated by many researchers recently (Al-Shami 2022;
Al-Shami et al. 2022; Ibrahim et al. 2021).

On the other hand, with an attempt to show that “pre-
cise membership values should normally be of no practical
significance”, Pappis (1991) introduced firstly the notion
of “proximity measure”. Hong and Hwang (1994) then
discussed the value similarity of fuzzy systems variables.
Further, Cai (1995, 2001) introduced and discussed &-
equalities of fuzzy sets and their properties. As the extension
of the §-equalities of fuzzy sets, the §-equalities of complex
fuzzy sets was discussed by Zhang et al. (2009). Mean-
while, in 2013, Gong et al. (2013) investigated the similarity
and («, B)-equalities of intuitionistic fuzzy choice functions
based on triangular norms.

As a newly developed tool, complex intuitionistic fuzzy
set can describe the fuzzy characters of things more detail and
comprehensively and is very useful in dealing with vague-
ness and uncertainty of problems that include the periodic
or recurring phenomena, which has been investigated sys-
tematically and exhaustively by many researchers and has
successfully applied in actual decision-making problems and
other areas (Garg and Rani 2019a, b, c,d, 2020a, b; Rani and
Garg 2017). So in this paper, various operation properties of
complex intuitionistic fuzzy sets are investigated when the
membership phase and non-membership phase are restricted
to [0, 27 ]. Meanwhile, consider that precise membership val-
ues and non-membership values should normally be of no
practical significance, and there is no equality and proximity
measure investigation on complex intuitionistic fuzzy sets.
First of all, we proposed a new distance measure for com-
plex intuitionistic fuzzy sets. The distance of two complex
intuitionistic fuzzy sets measures the difference between the
grades of two complex intuitionistic fuzzy sets as well as that
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between the phases of the two complex intuitionistic fuzzy
sets. Then this distance measure is used to define («, B)-
equalities of complex intuitionistic fuzzy sets. Two complex
intuitionistic fuzzy sets are said to be («, §)-equal if the dis-
tance between their membership degrees is less than 1 —« and
the distance between their non-membership degrees is less
than 8. The concept of (o, 8)-equalities of complex intuition-
istic fuzzy sets allows us systematically develop the distance,
equality and proximity measures for complex intuitionistic
fuzzy sets, which not only deeply enrich the fundamental
theory of complex intuitionistic fuzzy sets, but also provide
a powerful tool to further investigate complex intuitionistic
fuzzy sets.

The rest of this paper is organized as follows: In Sect. 2,
after reviewing the concept of complex intuitionistic fuzzy
set, some operations of complex intuitionistic fuzzy sets are
introduced and their properties are discussed. Section 3 inves-
tigates distance measure and (o, B)-equalities of complex
intuitionistic fuzzy sets and discusses («, f)-equalities for
various implication operators. Complex intuitionistic fuzzy
relations are discussed in Sect. 4 and some examples are given
to illuminate the results obtained in this paper in Sect. 5. Con-
clusion is given in Sect. 6.

2 Operations of complex intuitionistic fuzzy
sets

After reviewing the concept of complex intuitionistic fuzzy
sets, some operations of complex intuitionistic fuzzy sets are
introduced and their properties are discussed in this section.

To distinguish complex intuitionistic fuzzy sets from
intuitionistic fuzzy sets, we use A, B, ...todenote intuition-
istic fuzzy sets. And correspondingly, A, B, C, D, ... are
used to denote complex intuitionistic fuzzy sets. Let A =
(O 1, (0., (1) % € U B = {{x, iy (0), v, (1))
x e U}, C = {{x,uc(x),v.(x)) : x € U}yand D =
{(x, np(x),v,(x)) : x € U} be four complex intuition-
istic fuzzy sets on U, then u,(x) r,(x) - e Pua (x),

() = ry@) - et p ) = ro(x) - €™,
1) = ry) - @ () = s, (x) - e,
Ve (x) = s,(x) - @ v (x) = so(x) - e and

v, (x) =s5,(x) - ¢/“vp ™ denote their membership and non-
membership functions, respectively. The collection of all
complex intuitionistic fuzzy subsets is denoted by CIF*(U).

Definition 1 (Alkouri and Salleh 2012) A complex intuition-
istic fuzzy set A, defined on an universe of discourse U,
is characterized by membership and non-membership func-
tions u, (x) and v, (x), respectively, that assign any element
x € U a complex-valued grade of both membership and
non-membership in A.
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By Definition 1, the values of u, (x), v, (x) and their sum
may receive all lying within the unit circle in the complex
plane, and are on the form

i@, (x)

(@) =7, (x) e
for membership function in A and

v, (x) =5, (x) - &' ®va ™)

for non-membership function in A, where i = +/—1, each of
r,(x) and s, (x) are real-valued functions and both belong
to the interval [0, 1] such that 0 < r,(x) + s,(x) < 1,
also ¢4 ™) and @™ gre periodic function whose peri-
odic law and principal period are, respectively, 27 and
0 < 0,(0),0,x) < 27, ie, 0,x) = ov,,x) +
2km, w,,(x) = w,,(x) + 2k, k =0,£1, £2, ..., where
o, ,(x) and w, , (x) are the principal arguments. The principal
arguments @, , (x) and w, , (x) will be used in the following
text.

Let CIF*(U) be the set of all complex intuitionistic fuzzy
sets on U. The complex intuitionistic fuzzy set A may be
represented as the set of ordered pairs

A= {{(x, , (¥), v, (1) : x € U,

where p,(x) : U — {ala € C,|a] < 1}, v,(x) : U —
{a'la e C,la'| <1}and |, (x) +v,(x)| < 1.

Definition2 (1) A quasi-triangular norm 7 is a function
[0, 11? x [0, 1]*> — [0, 1] that satisfies the following con-
ditions

O 7, D, @, 1) =d, ;- )

(i) T((a,a), (b,b)) =T((b,b),(a,a));

(i) T((a,a),b,b)) < T((c,c),(d,d)) whenever
a<c,d <candb>d, b >d;

(iv) T(T((a,d). (b, b)), (¢, c)) = T((a.a), T((b,b),
(¢, c))).

(2) A triangular norm 7 is a function [0, 1?2 x [0, 1] —
[0, 1]? that satisfies the conditions (i)—(iv) and the following
condition

(v) T((0,0), (0,0)) = (0,0).

We said T is an s-norm, if a triangular norm 7 satisfies

(vi) T((a,d), (0,0)) = (a,a).

We said T is a t-norm, if a triangular norm 7 satisfies

(vii) T((a,a), (1, 1)) = (a,a ).

(3) We said a binary function T : CIF*(U) x CIF*(U) —

CIF*(U)

_ i Sup Ta(@, ()., ()

T(A, B) = (sup T1 (i, (x), py(x))-€ *V ,
xeU

. i inf Th(w, 4 (%), @, 5 (X)) . .

1nlf] Ti(v, (x), vy (x)) - ¢ xey H ATy a triangular

xXe

norm if 77 is a triangular norm and 73 is a quasi-triangular

norm; we said 7 is an s-norm if 77 an s-norm; we said 7 is
a t-norm if 7 a t-norm.

Definition 3 (Complex intuitionistic fuzzy union) Let A =
(%0 1y (0 v, (1) x € UYand B = ((x, py (x), v, (X)) :
x € U} be two complex intuitionistic fuzzy sets on U. The
complex intuitionistic fuzzy union of A and B, denoted by
AUB = {(x, 3 (x), v, 5 (x)) : x € U}, where

Moaup (X) =105 () - ¢ Cucaus) )
= max(r, (x), r; (x)) - & " Cua @) ()
and

V40 (X) = 8,5 (x) - e'“viaup) )

= min(s, (x), 5, (x)) - € M@ @@,z (g

pil2m pi0.81
Example 1 Let A = {0-¢ )’60'46 )

(0.3~ei2”,0.5-ei1'5”) B — <0.6.ei0.27{’0.3.ei|.8ﬂ>

z [ X

e 1097

4+ 07:¢7,0.1777) ’2‘16 ) then AU B =

<0.4‘€[0'5”,0.6~€i0'5”> + <O.7‘€i2”,0‘1~€i0'9ﬂ)

y 4 ’

(0_4,61'0'577 .0.6-€i1‘3ﬂ)

(0.2'€i0'5ﬂ .0.6-€i0'5ﬂ)

y
0.6- il.2n’0.3.,i0.8n
(0.6-¢ ! e ) +

Theorem 1 The complex intuitionistic fuzzy union on CIF*
(U) is an s-norm.

Proof Properties (i), (ii), (v) and (vi) can be easily verified
from Definition 3. Here we only prove (iii) and (iv).

(i) Let A = {{(x,u,(x),v,(x)) : x € U}, B =
(e 1, (), v, () = x € UY, C = {(x, i (0, v (1))
x € Uyand D = {(x, u,(x),v,(x)) : x € U} be four
complex intuitionistic fuzzy sets on U. Suppose |, (x)| <
e @,,(x) < ,c(x), v, ()] = v ()], 0,,(x) =
0,c ) and 1, (O] < 11, ()], 0,5 (%) < @, (0), [0, (0)] =
v, (xX)], w,;(x) > o, ,(x). Forany x € U, we have

|H’AUB (x)l = max(rA (.X), rp (x))
< max(re (x), rp, (X)) = |peyp (01,
@, aup) (X) = max(w,, (x), ®,;(x))

< max(w, (x), ®,, (X)) = @, cp (%),
and
[V40p ()| = min(s, (x), s, (x))
= min(s. (x), 5, (X)) = [veyp (O],
W, aup (X) = min(w, , (x), @, (x))
= min(w, (x), 0, (X)) = @, cyp) (X).-

(iv) Suppose A = {(x, u,(x),v,(x)) : x € U}, B =
(0, 1y (1), v, (1) 1 x € U and € = {{x, e (1), v (1)) :

@ Springer
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x € U} be three complex intuitionistic fuzzy sets on U, then
iw (x)
Haumyue (X)) = TFaugue (X) - € HAUBUO

= max(r, ,(x), 7. (x)) - ei max (@, 4 ;) @).0, ¢ ()

= max(max(r, (x), r, (x)), r-(x))

o maxmax(@, ; (0., p ()0, ¢ (1))

= max(r, (x), max(r,(x), r-(x))

ei max(wﬂA (x),max(wMB (x),wuc (x))

= K auucy (x).
10, aupyuc) ¥

Vausue (x) = ScauBuc (x)-e
= min(s, ; (1), 50 () - € M Caun e )
= min(min(s, (x), s, (x)), 5. (x))
ol mMin(min(®, , ().0, 5 ()0, ()
= min(s, (x), min(s, (x), 5. (x))
imin(w,, , (x),min(@, 5 (x),@, - (x))

- e

VY auuc) (x).

Corollary 1 Let Cy €
(x)

CIF*(U),a € I, p, (x) = re, (x) -
©)

i a)ﬂ Ca

and v, (x) = sq (x) - e ™ g membership
and non-membership functions, respectively, where I is an
arbitrary index set. Then Uyc;Cy € CIF*(U), and its mem-

bership and non-membership functions are

(x) = supr,. (.X) el SUPyes @)y, (x)

MUaelca
ael
and
. iinfye; @ X
v, o (x)=1infs. (x)-e ! vCo )
ael o ael o

Definition 4 (Complex intuitionistic fuzzy intersection) Let
A= {{x, 11, (1), v, (D) s x € U)and B = {{x, 1, (x), v,
(x)) : x € U} be two complex intuitionistic fuzzy sets on
U. The complex intuitionistic fuzzy intersection of A and

B, denoted by AN B = {(x, tty5(X), 5 (X)) : x € U},
where
Moang (X) =T 405 () - &' Pucans) )

= min(r, (x), ry(x)) - ¢ min(, , (1), 5 (x)) 3)
and

— iw ANE (x)
Vg (X) = 8,05 (x) - e vAnB)

= max(s, (x), s, (x)) ol MaX(@, , (0.0, 5 (1) @)

@ Springer
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Example2 Let A = 03¢ )’(0‘46 )
0.3- i2n’0.5_ il.57 0.6- i0,271’0'3. i1.87
(0.3-e : e ), B — (0.6-¢ . e )+
ol 0.9
(0.7-¢'7,0.1-¢ )’ then A N B
<0_2.ei0.57r’0_6.eil.371> + <0.3.ei7t’0_5.ei1,571>
y Z :

(0.4'8i0'5ﬂ ,10‘6'6'. 14371) +

(0‘2'81.0'57[ 0‘6'8'.0'5” )

y
0.5- i0.27r’0.4, il.87
02e ~0de ) 4

Theorem 2 The complex intuitionistic fuzzy intersection on
CIF*(U) is a t-norm.

Proof This proof is similar to the proof of Theorem 1. O

Corollary 2 Let C, €

elwuca (x)

CIF*(U),a € I, pug, (x) = re, (x)-

and v, (x) = s, (x) - e Pvca ™ g membership
and non-membership functions, where I is an arbitrary index
set. Then NyejCy € CIF*(U), and its membership and non-

membership functions are

. iinfye; @ (x)
U x)=infr x)-e uC
Neer Ca ( ) 1 I Co ( ) “

and

(x) = sups,, (x) - ¢! SWPaer @y, ()

vmael Ca acl

Corollary 3 Let Cop € CIF*(U), o € I, B € Do, Icyg x) =

iwl (x) (x)
rCaﬂ(x) e Map

and v, (x) S, (X) - e “Cap
its membership and non-membership functions, respec-
tively, where I and I, are two arbitrary index sets. Then
Uger, Ngel, Cap, Naery YUpen, Cap € CIF*(U), and their
membership and non-membership functions are

i Supyeq, infger, ® (x)
(x) = sup m; Fe, @) e el TRAEL Opcep ™

'uuotell Npel, Cap wel

iinfyer, SUPger, wﬂc‘w (x)
s

(x) = inf sup Teos (x)-e

Mmaell Ugel, Cap ael gep,

and

iinfyey, sup, w (x)
(x) = inf sup s, (x)-e ach TEpely TuCyp 7

V,
Yaer; Npel Cap acl) el

i sup, infger, (x)
(x) = sup inf s (x) e e TR Gy

vV,
Nael Ypel, Cap wel

Corollary4 Let Cy € CIF*(U),k = . ;Lck(x) =
o, (x) - eleCk( x) and Ve, (x) = Se, (x) - R (x) its mem-

bership and non-membership functions, respectively. Then

1,2, ..

En_)oocn == ﬂ;o 1 U]?On Ck,
lim Ch=U2, M2, Ck € CIF*(U),

—n—>00
and their membership and non-membership functions are

. iinf,>1 su 3} X
m (x) = inf supr, (x)-e n=1 SUPkzn @, ( ),
n>1

Ztk>n

Timp— 00 Ck
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_ . i sup,,>p infgzy, Duc, (x)
Mﬁimn%oock (x) - Zgl; ]:gfl rck (x) ¢ ’

and
. isu infy=, w . (x)
_ (x) = supinf s, (x)-e Pzt ikzn @y 00
limp— 00 C n>1 k>n k
. iinf,>1 supg~, ® ~ (x)
v, o (X) = inf sups, (x)-e "= G
My — 00 Ck n>1 k>n k

Definition 5 (Complex intuitionistic fuzzy complement) Let
A={{x,u,(x),v,(x)): x € U}beacomplex intuitionistic
fuzzy seton U. The complex intuitionistic fuzzy complement
of A, denoted by A and defined as follows.

) z = {{x, v, (x), u, (N}

) A = {{x, uy(x), v, (X))}, where p (x) = r;(x) -
elw/“i(x), V() = s, (x) - e i
rA(-x)a SA()C) =1 _SA(-X),

Dand r (x) = 1 —

w5 (x),

W x)=12m7 - W, (x) = —w,,(x),
a)u.A (x) + 7T9

and
w,,(x),

w (X)) =121 -0, =-0,x),
w,,(x)+m.

The following example uses the first way of Definition 5 to
calculate the complement of the complex intuitionistic fuzzy
set A. Note that if the second way is used, the corresponding
results also can be obtained.

0.5.)1'1271’0.4. ,i0.87
e p e ) +

105 Hil.3m
Example3 Let A = ¢ (04 ;,0'66 )
(0.3'€i2”,0.5'€i1'5ﬂ) [ (0.4'(3i0'8ﬂ,0.5'€i1‘2n)
* i1.3 : i0.5 ’ then'1514 ; *
(0.6-¢"'°7,0.4-¢'"-7T) (0.5-¢"'°7,0.3-¢'°7)
+ : + 03e 03,

Proposition 3 Ler A, B and C be three complex intuitionistic
fuzzy sets on U, then the following propositions hold

(i) AUA=A,ANA=A;

(i) AUB=BUA,ANB = BN A;

(iii) (AUB)NC =(ANC)UBNC),(ANB)UC =
(AUC)N(BUC);

(iv) AN(BNC) = (ANB)NC, AU(BUC) = (AUB)UC;

(v) (ANB)=AUB, (AUB)=ANB;

(vi) A = A.

Proof Here we only prove (iii), (iv), (v) and (vi). Let A =

(o, 11, (0,0, (1) 1 x € UY, B = {(x, 11, (), v, (1)) 1 x €
U}and C = {(x, u-(x), v.(x)) : x € U} be three complex

intuitionistic fuzzy sets on U. The complement of A and
Bare A = (x,v,(x), n,(x)) and B = (x, v,(x), u,(x)),
respectively. Then

(iii) First of all, we prove that (AU B)NC =(ANC) U
(BNC), since

iw (x)
Haupne (x) = Ttaus)nc (x) - e "H(AUB)N0)

= min(r,,, (x), 7. (x)) - gimi“(wu(AuB)(x)*‘”uc (x))

= min(max(r, (x), r, (x)), rp(x))

. ei min(max (@, , (1)@, 5 (£)),0, ¢ ()

= max(min(r, (x), 7. (x)), min(r, (x), r-(x)))

) ei max(min(w[m (x),wﬂc (x))‘min(a)uB (x),a)ﬂc (x)))

iw (x)
— . ANC)U(BNC
= T ancyuEne) (x) - e THANO)UBNC)

= Kancyusne) (x).
Vaus)ne (x) = Scaunc (x) - eiwv((AUB)ﬂc) @
= max(s, , (x), 5. (x)) - ei max(®, 4 ) (X),0, ¢ (x))
= max(min(s, (x), 5, (x)), 5. (x))
. ol max(min(e, , (X).0, 5 ()).0, ()
= min(max(s, (x), s (x)), max(s, (x), 5. (x)))

. ei min(max(wvA (x),a)vc (x)),max(a)vB (x),wuc (x)))

iw (x)
— . ANC)U(BNC
= S AncyuBNC) (x) e v )U( )

= Vianoyuano) (x).

It implies that (AU B)NC =(ANC)U(BNCO).

Similarly, we can prove that (AN B)UC = (AUC)N
(BUCQO).

(iv) First of all, we prove that AN(BNC) = (ANB)NC,
since

)

iw
Hoansney X) =T yngne) (X) - € HANEN

=min(r, (x), 7y (x)) - eimin(w“A (9-050c) )

= min(r, (x), min(r, (x), 7. (x)))

. ei min(wﬂA (x),min(wﬂB (x),a)uc x)))

= min(min(r, (x), r,(x)), r-(x))

e min(min(w,, 4 (¥),0, 5 ()),@, ¢ (x))

— iw (x)
= . ANB)NC
r(AmB)mc (x) e m( )NC)
Hanpne (x).
— . iw AN(B (x)
Vanane) (X) = S 4nanc) (X) - € vAanBno)
imax(w, , (x),®

= max(s, (x), Sz (X)) - € vancy @)

= max(s, (x), max(s, (x), s (x)))
. ei max(w, 4 (x),max(cuvB (x),wvc (x)))

= max(max(s, (x), s, (x)), s, (x))

@ Springer
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. ot max(max(e, , ()., 5 (1)).0, ¢ (x))

iw (x)
— . ANBINC
SuanBnc (x) - e anBNe)

= Vaanp)nc (x).

It implies that AN (BNC)=(ANB)NC.

Similarly, we can prove that (AUB)UC = AU (BUC).
(v) First of all, we prove that (AN B) = A U B, since
Mgy ) = Vanp (X)
— sAﬂB (x) . eiwv(AﬂB) (X)

= max(s, (x), s, (x)) - ' " a1 )

= Moy (0
Vom0 = M (X)

= Tanp (x) - eiw”(AmB)(X)

= min(r, (x), 7, (x)) - ¢ M 0 un )

= Va5 (0

It implies that (AN B) = A U B.

Similarly, we can prove that (AU B) = A N B.

(vi) Mf(x_) = vz(0) = p,(x) and v_(x) = pp(x) =
v, (x),ie, A=A o

Definition 6 (Complex intuitionistic fuzzy product) Let A =
(0, 11, (1), v, (1) x € UYand B = {{(x, (1), v, (x)) :
x € U} be two complex intuitionistic fuzzy sets on U. The
complex intuitionistic fuzzy product of A and B, denoted by
AoB ={{x,p,z(x),v, ,(x)) : x € U}, where

Hopg (¥) = 1y (1) - & Cutton @

DuA (x) “uB (x)

(ry () -y () - 27 ) §)

and

iw (x)
Viop (X) = 8,5 (x) - @ vAeB)

= (5, (1) +55(x) —5,(x) - 55(x))

o) 0,0 @, @) o)
_61271( U2n + U271 - l)271' ’ U2n ) (6)

il.2m i0.87
Example 4 Let A = (03¢ );0'4'6 L4

(0.3-ei2ﬂ,0.5~2”'5ﬂ) B— (0.6-ei0'2”,0.3-ei"8”)

(0_4,61'0,571 ,0.6~€”‘3”) i

(0‘2»6’.0’5” 0‘6~€i0'5ﬂ)

’ x

z y
I 1091 10127 i 1.887
+ (0.7-¢',0.1-e ) . then Ao B = (0.3-¢ ,0.58-¢ ) +

<0.08'(3i0'125n ‘0.84'ei1A475n> 4 0.21 el ,0.55'6“'725”)
y z ’

Theorem 4 The complex intuitionistic fuzzy product on
CIF*(U) is a t-norm.

@ Springer

Proof Properties (i), (ii), (v) and (vii) can be easily verified
from Definition 6. Here we only prove (iii) and (iv).

(ii) Let A = {(x,u,(x),v,(x)) : x € U}, B =
(0 1y (), 0, (0) = x € U C = (X, pe (), v (1))
x € Uand D = {{x, u,(x),v,(x)) : x € U} be four
complex intuitionistic fuzzy sets on U. Suppose |, (x)| <
e (] @, () < @, (), v, = @] w,,(x) >
0,0 (¥) and [, (0] < 11ty (O], @,,(x) < @, (), [, (0]
> v, (X)), w,,(x) > w, (). Forany x € U, we have

[0 GO = |y )] - |rg ()] < [re ()] - 1, (x)]
= |MC0D ()C)|,
w, (x) w, (x)

o (20 00
21 2

= W, (con) (),
and
[Vaes G =I5, (O] + [s5 )] — [5, ()] - |55 ()]
> Isc ()] + s, (O] = lsc ()| - |5, (0]
= [Veop ()1,
a)UA ('x) ('UVB (X) a)UA ('x) a)uB (x)
W, pop) (X¥) =270 < o + T Tom o >

2 2 2 2

= Wy cop) (x).

- ((ch(x) n o, (X) . o, (x) ) wun(x))

(iv) Suppose A = {(x, u,(x),v,(x)) : x € U}, B =
{(x, 1z (x),vp(x)) : x € U and C = {{x, p(x), v (x)) :
x € U} be three complex intuitionistic fuzzy sets on U.
Then

iw (x)
— . AoB)oC
= r(AoB)oC (_x) e H((AoB)oC)

w x) o, ~(x)
. 1(AoB) nC
l2n( 27 T )

Hao)oc (x)

= (rgop (@) - 1c(x)) - e
= ((ry(x) - rg(x)) - re (%)

P ( “)/LA () . w/l.B (x)

27 2n

2} (x)
: ) nC
i2n 2r T 2w

- e

= (r,(x) - (rg(x) - re(x)))

w x) o, ~(x)
uBY TuC
a)/LA(,\').Zﬂ( 2 27 )

27 2

2w

- e

= M goBoC) (x).
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0
iw (x)
T e (x) = S(4oB)oC (x) - e v(AeB)0)
2 (wv(AoB)(X)+“’VC(x)7wv(AoB)(x)'wUC("))
2 2 2 2
= (S5 () +5.(X) — 5, ,(x) - 5.(x)) - € " " " "
= (SA(X) +SB()C) - SA()C) ° SB(-X) +SC(.X) - (SA(X) +S3(x) - SA(.X) : SB()C)) . sc(x))
w 4 x) o ) o X)) o px) w 4 (x) o X)) o ) o px)
(271( Uéqrr + VZBﬂ - v{‘n : v{s’” ) w C(x) 27[( Uéqﬂ + VZBﬂ - v?ﬂ : vfn ) . C(x))
i2mr + L — -
2 2 2 2
e
= (SA (X) + SB(X) + sc(x) - SB(X) : Sc(x) - SA(X) : (SB(X) + Sc(x) - SB(.X') : Sc(-x)))
w ) o ~X) o px) o ~x) o pX) o~ s o .-k
3 w4 () Zrz( vfn + V2C7'r - UZBﬂ : VZCJT ) w4 () 2”( UZBH + V2Cn - UZBrr . UZC;T )
L o — = I
-e
— (x) 10, AoBoC)) )
= SpoBoc) X) - €
= V4o(BoC) (x).
Corolla(r))(S Let Cy € CIF*(U),a € I, pg, (x) = re (x) - = min(rA1 (), 7y, (X), o0 ay (x))
iw X iw (x) . .
e nCa and Ve, x) = Sc, (x)-e "vCa its membershlp and imin(wMA] (x),cz)MA2 (x)s..ns Dpuay (X)) 7
non-membership functions, where I is an arbitrary index set. e )
Then [[ye; Ca = CioCro---0Cy € CIF*(U), and its d
membership and non-membership functions are an
v, ()
— 1 XAp XX AN
Mnael Ca (x) = (rcl x) - e @) Tea ) 10,041 x A xomx A ) X
o (CnC) ) ey @ @, @ = A xAgxxAy (x)-e 157 N
1271( 27 : 21 21 > (8)
e =max(sAl(x),sA2(x),...,sAN x))

and

vnael Ca (x)

-1
= [Scl (x) + Sc, x)+---+ Sy x)—---+ (=" (sCl (x) - Sc, (x)-- Sy x)]
. 0,0, (X)) 0,0, ) ©,Cy ) _pe—l foyc, () oyc, X) w,e,, ()
6’2”[( S A >—'"+((2;)2 ( e )]

Definition 7 (Complex intuitionistic fuzzy Cartesian prod-

pil2m L ,10.87 105 i3
ExampIeS Let A = (0.5-¢ ,0.4-¢ ) + (0.4-¢ ,'0‘6 e )

uct) Let A,,n = 1,2,..., N be N corlyi)ple)((xi)ntuitionistic (03027 0.5.¢11:57) B (0.6~eié2”,0.3~ei1'8”) (02:61057 0 6.01057)
fuzzy sets on U, p, (x) = r, (x)-e w7 v, (x) = z A B = x + . 2
8y, (X) e ®vin ™ their membership and non-membership  + W—'l'elwﬂ, then A x B = W
functions, respectively. The complex intuitionistic fuzzy (0.2-¢/0-57 0.6.¢10-87) (0.5-¢'™ ,0.4-¢/997) (O.4-ei0‘2”’,0.6-ei1‘8”)
Cartesian product of A,,n = 1,2,...N, denoted by A; x <0.2-ei0~5(7)::g.)6.e“3”> (0.4<ei0'(5)§;,z(§.6-ei1'3”) (0.3ei0$2);;f(;.59i1'87’>
Ag X X AN = {0 By ey O Vi g exay () NN 00 * @)
x € U}, where (026957 ,0.6¢157) | (0.3¢'™,0.5¢ 157
(z.y) (z,2)
H (1) Definition 8 (Complex intuitionistic fuzzy probabilistic sum)
%72 N , Let A = {(x,u,(x),v,(x)) : x € U} and B =
=T xagxexay (X - o Py xagxexay) X {{x, y(x),v,(x)) : x € U} be two complex intuition-

istic fuzzy sets on U. The complex intuitionistic fuzzy

@ Springer
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probabilistic sum of A and B, denoted by AFB =
{(x, 7, (X), 0,2, (X)) x € U}, where
(x)

iw  ~
Hazp (x) = rAiB(x) e nAEh)

= (rA(x)+rB(x) _rA(x) 'rB(x))

%) x) o x) o x) o (x)
. nA uB HA nB
€l2ﬂ< Tt : )

2 P

©)

and

iw ~. (x)
Vats (x) = Sats (x) - e vath

N wv,3<x>>

=(sA(x)-sB(x)>-e12”< R (10)

0.5'(3“‘271 ,0.4,6,1'0‘871) i

0.4- iO‘Sﬂ,O‘G' il.37
b (04-¢ 0.6-¢ )+

Example 6 Let A = {

<0'3.ei2n,0.5'ei15n> _ <0.6'€i0‘2”,0.3'€“'8ﬂ) (0.2'8i0’5ﬂ,0.6'€i0'5ﬂ)
z ’ - X )
Pl p10.97 o~ i 1,287 10.72
40701 AT R — (08 ,)(c).IZe )
<0'52.ei0,8757[ 0436'€i0‘325ﬂ) (0‘79'61.2” 0'05.6i0.675n>

y z

Theorem 5 The complex intuitionistic fuzzy probabilistic
sum on CIF*(U) is an s-norm.

Proof This proof is similar to the proof of Theorem4. O

Corollary 6 Let Cy € CIF*(U),a € I, pe, (x) = re, (x) -

¢"“uca™ and Ve, (X) = 5., (x) - e vca ™ jgs membership
and non-membership functions, where I is an arbitrary index
set. Then Ci+CrF - - - —T—Co, € CIF*(U), and its membership

and non-membership functions are

o Min 2T, 4 ()F0, 5 () (11)

and

iw .o (x)
— . AUB
X) =8,,,(X) e vk

=max (0,r,(x) +r,(x) — 1)
] ei max (0.0, , () +o,, (x)—27r)' (12)

VAUB(

Example7 Let A = (0-5-6"1‘2”)}0_4.61'048”)
(0.3-¢127 0.5-¢'1:57) B = (0.6-¢1027 () 3.0187)
M, then AXUB — M
(0.667,0.2:¢7) 4 (e 0e04) X

Y z

<0_4.ei0,57[ 0.6-6“‘3”)

(0.2~€i0'5n 0.6-€i0'5”)

+
+

Theorem 6 The complex intuitionistic fuzzy bold sum on
CIF*(U) is an s-norm.

Proof Properties (i), (ii), (v) and (vi) can be easily verified
from Definition 9. Here we only prove (iii) and (iv).

(i) Let A = {(x,pu,(x),v,(x)) : x € U}, B =
{(x, up(x),vp(x)) = x € U}, C = {{x, ue(x), v (x)) =
x € Uland D = {{x, u,(x),v,(x)) : x € U} be four
complex intuitionistic fuzzy sets on U. Suppose |, (x)| <
e ()]s @, () < @, (@), v, = @] w,,(x) =
0,0 (@) and |11, (O] < 11, (D], @,5(6) < 0,,(0), v, ()]
> v, (X)), w,,(x) > w,,(x). Forany x € U, we have

|10y O] = min(L, 7, (x) + 7, ()

< min(1, 7o (x) + 7, (X)) = |, X1,

B repiey () = [re @) 1y (0) 470, (1) = (= D* g, () 76, (1) -+ g, ()]

2m 2 2

. ®, 0, X) @, c0(x) 0 (X) _pe=l (@0, ®) @, 0 ) w0, - (x)
1271[( /1271T + M27zT et ng B el ) wey 7 Tl T TGy
4

@m)?

and

Veperine, @) = (5o, (1) 56, (1) - 5, (X))

. val () “’\/CZ(X) oy, (X)
612”< T

Definition 9 (Complex intuitionistic fuzzy bold sum)Let A =
{0, 11, (1), v, (1)t x € UYand B = {(x, (1), v, (x)) :
x € U} be two complex intuitionistic fuzzy sets on U. The
complex intuitionistic fuzzy bold sum of A and B, denoted
by AUB = {{x, ., (x),v,,, (X)) : x € U}, where

() =1, (x) - e uaon @

=min (1, 7, (x) +7,(x))

MAUB

@ Springer

w (x) = min27, @, , (x) + ®,5(x))

1(AUB)

= MR, 0,0 (1) + 0,5 (1) = 0, ) (),

and

Vo5 ) = max(0, s, (x) +s,(x) — 1)
> max (0, s (x) + 5, (6) — 1) = [, ()],
@, auB) (x) = max(0, w,, (x) + @,z (x) — 27)
> max(0, w,. (x) + w,, (x) —27) = W, cop) (x).
(iv) Suppose A = {(x, u,(x),v,(x)) : x € U}, B =

{(e g (x),vp(x)) : x € Upand C = {{x, o (x), v (%))
x € U} be three complex intuitionistic fuzzy sets on U. Then
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Kpimyoe @) = 7 o e () e uavsyoo) ®
=min(l, r,, (x) + 7. (x))
o MCT@, ) ()40, (1))
= min(1, min(1, r, (x) + r, (x)) 4+ r.(x))
. ¢l MinQrminQr.w, 4 (D+o, 5 (D)t ()
=min(1, r, (x) + min(1, r, (x) + r. (x)))
. ei min(Zn.wHA (x)+min(2ﬂ.wuB )+, ()
= min(l, r, (¥) + 7y (0) - ¢ M 00 )
= Kausoe )
Vaosoe X = Suopoe () - & aomoe) )
=max(0, s, . (x) + s, (x) — 1)
) ei max (0.0, ) p) (W F@, ¢ (0)=27)
= max(0, max(0, s, (x) +s,(x) — 1) +s.(x) — 1)
. ol Max(O,max (0,0, , ()+w, 5 ()=27)+0, (1) =27)
=max(0, s, (x) + max(0, s, (x) +s.(x) —1) = 1)
. ot MaxO,0, 4 (0)+max(0,0, , ()4, (¥)=27)=27)
=max (0, s, (x) + 5, (x) — 1)
) ei max27,, 4 )+, g0 (0)=27)
= Vausoe) ().
O

Corollary 7 Let Cy € CIF*(U),a € I, pe, (x) = re, (x) -

¢'uca ™ and Ve, () = s¢, () -e'vca W) g membership and

non-membership functions, where I is an arbitrary index set.
Then C{UC,U - --UC, € CIF*(U), and its membership and
non-membership functions are

MC]UCZUMUCm ()C) = min (11 rCl (-x) + rC2 (.X) + -+ rca ()C))

o TN QT 0 (40,0, ()0, ()
and

= max (0, re, (x) + Te, X))+ + re, x)—1)

) e‘i max (0,0, ()Fo,c, W+-Fo,c, (x)7271).

"cloczo...oca x)

Definition 10 (Complex intuitionistic fuzzy bold intersec-
tion) Let A = {{x,u,(x),v,(x)) x € U} and
B = {{x,uz(x),v,(x)) x € U} be two complex
intuitionistic fuzzy sets on U. The complex intuitionistic
fuzzy bold intersection of A and B, denoted by ANB =
{6, g (0), v, (X)) © x € U}, where

iow . (x)
Hopng (X) =14 (X) - €400

=max (0,7, (x) +ry,(x) —1)- ol X 0.0,y (4o, (¥)=27) (13)

and

o .. (x)
- . ANB
Varp (x) = Sanp (x) - e vand

=min (1, s, (x) 4 5, (x)) - ¢! M0, O+, 5 ()

(14)
Examples Let A — (0.5'€i1'2n‘0.4'€i0'8n) (0.4'€i0'5ﬂ,0.6'€i1'3n)
X )
<0'3.ei2n,0.5'ei15n> _ <0.6'(3i0‘2”,0.3'€“'8ﬂ> (0.2'€i0’5ﬂ,0.6'€i0'5n)
z T x

y
ol 1097 . L0 Hi2m
4 07 ,(;.1e ) then ANB (0.1-¢ ),60.7e ) 4
<0_ei07r’1_ei1.87r> (0.ei7{’0_6.ei2ﬂ>

y z

Theorem 7 The complex intuitionistic fuzzy bold intersection
on CIF*(U) is a t-norm.

Proof This proof is similar to the proof of Theorem 6. O

Corollary 8 Let Cy € CIF*(U),a € I, pe, (x) = re, (x) -

& uca ™ gnd Ve, (X) = s¢, (X) e vca ™ g membership and

non-membership functions, where I is an arbitrary index set.
Then CiNCaN - --NCy € CIF*(U), and its membership and
non-membership functions are

'uclﬁczﬁ'"ﬁca (X) = max (Oa rCI (-x) + rcz (X) + tt + rCu ()C) - 1)

) ei max (O,wﬂcl (x)+w#C2 (X)+”‘+‘%Ca (x)—2m)

and

(x) =min (1, re (x) + 1o, () + - +re, (X))
Wt ()

vcmczhmﬁcu
ei min (27'[,(4)MC1 (x)+w“c2
Definition 11 (Complex intuitionistic fuzzy bounded differ-
ence) Let A = {(x,u,(x),v,(x)) : x € U} and B =
{(x, nz(x),vy(x)) : x € U} be two complex intuition-
istic fuzzy sets on U. The complex intuitionistic fuzzy
bounded difference of A and B, denoted by A| — |B =
{{x, MAHB(x), vA‘le(x)) :x € U}, where
iw iy (X)
[y gy (X) = 1y p (x) - @ Cutal=iB)

= max (0, r, (1) =ry () - € " OCua 070 )

(15)
and
V() = 5,y (1) - € )
Al-|B Al-|B
=min (1,1 —s,(x) +s5,(x))
L Min 227 =0, (4o, (X)) (16)

il.27 i0.87
Example9 Let A = (053¢ )’60'4'6 L4

<0_3_ei27r’0'5_ei1.577> . (0.6~e[0'2”,0.3-e“'8”) T (0.2,61'0.571’0.6_61'0.571)

Z ? X y

(0.4'€i0'5ﬂ,0.6'€i1'3”) +

@ Springer
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T 1091 Sl oi2m
4 07 ,(Z).le ) then Al — |B = (0-¢ ,(1.9e )
(0.2,61'07[,1_61'1,271) (O-Ei”,0.6-ei1'4”)
+ : + s .

Definition 12 (Complex intuitionistic fuzzy symmetrical dif-
ference) Let A = {{x, u,(x),v,(x)) x € U} and
B = {{x,uz(x),v,(x)) : x € U} be two complex intu-
itionistic fuzzy sets on U. The complex intuitionistic fuzzy
symmetrical difference of A and B, denoted by AVB =
{(x, gy (X), Vg (X)) : x € U}, where

Magp(X) =1y (x) - eiwu(AvB) (x)

= 1y (x) = ry ()] - a7

(17
and

Vv (X) = 8,05 (X) - e vave )

=1 —s5,(x) =5, (x)] - &P @70, DI (18)

Lil2m 1087
Example 10 Let A = &3¢ )’60'46 )
0.3-¢/27 (0.5.¢i 157 0.6-¢0-27 (0.3.¢i1.87

O3e05€15) p_ 0660031 |

it ,i0.91
4 0770.1e) - then AVB =

Z
(042'61.0”,0.2'610‘2”) <0.4'€iﬁ,0.4'€i0'4ﬂ>
+ : + 0 :

(0.4-ei0‘5” O.6'€”'3ﬂ>

(0.2,6[0,57[ 0.6-€i0'5ﬂ)

y
(0.1-¢/7,0.3-¢/0-67)
X

Definition 13 (Complex intuitionistic fuzzy convex linear
sum) Let A = {(x,u,(x),v,(x)) : x € U} and B =
{(x, y(x),v,(x)) : x € U} be two complex intuitionistic
fuzzy sets on U. The complex intuitionistic fuzzy con-
vex linear sum of min and max of A and B, denoted by
AlLB = (X, ey, 5 (), v, (1) 1 x € U}, & € [0, 1],
where

Mg () =74, 5(X) i

= [Amin(r, (x), 7y (x)) + (1 — A) max(r, (x), ry(x))]

. ei[k min(a)ﬂA (x).wHB (x)+(1—1) max(qu (X)"‘)MB x))]

(19)

and

VAH-AB(X) = SAH-AB(X) - vl ® «

= [Amax(s, (x), s, (x)) + (1 = ) min(s, (x), 5, (x))]

. ei[)\ max(, , (X),, 5 (N))+(1=2) min(w, , (x),, 5 (x))] .

(20)
il2m 10.87 0.5 Lil37
Example 171 LetA = (0.5-¢ );0.4 e ) ;| (0.4-e ,0.6-¢ )
<0.3'€i2”,0.5'€i1‘5”) B — <0.6'€i0’27r,0.3'€“'8ﬂ) + (0‘2'81.0'57[,0‘6'6’.0'5”)
z [ X y
T 51097 ,i10.971 Lildm
+ (0.7-¢'7,0.1-¢ )’ then A||)\B — (0.57-¢ ,0.33-¢ ) +

4 X
<0.34~€i0'5ﬂ ,0.6-€i0'747r>
y

ilTn _il.087
+ {058 ’20'22 ¢ ") when A = 0.3.

@ Springer

3 Distance measure and (a, 8)-equalities of
complex intuitionistic fuzzy sets

In this section, we define a new distance measure for com-
plex intuitionistic fuzzy sets. The distance of two complex
intuitionistic fuzzy sets measures the difference between the
grades of two complex intuitionistic fuzzy sets as well as that
between the phases of the two complex intuitionistic fuzzy
sets. This distance measure is then used to define («, B)-
equalities of complex intuitionistic fuzzy sets which coincide
with those of intuitionistic fuzzy sets already defined in the
literature if complex intuitionistic fuzzy sets reduce to tradi-
tional intuitionistic fuzzy sets.

3.1 Distance measure for complex intuitionistic
fuzzy sets

Definition 14 A distance between two complex intuitionistic
fuzzy sets is a function d : (CIF*(U), CIF*(U)) — [0, 1],
for any A, B, C € CIF*(U), satisfying the following prop-
erties.

(i) 0 <d(A, B) < 1,d(A, B) = 0ifand only if A = B;
(ii) d(A, B) = d(B, A); and
(ii)) d(A, B) <d(A,C)+d(C, B).

Let A = {(x,u,(x),v,(x)) : x € U} and B =
{(x, nz(x),v,(x)) : x € U} be two complex intuitionistic
fuzzy sets on U . In the following, we introduce two functions
oy, ng)and p(v,, v,) which play an important role in the
remainder of this paper.

Definition 15 Let

Py, )

1
= max (super (x) —ry(x)], 3 suplw, , (X) — @, (x)l) 21
xeU T xeU

and
Py, vp)
= max (sup|sA (x) = sz (0, % sup|w,, (X) — @4 (x)|> ’
xeU T xeU

(22)

then

1
d(A, B) = 5 (p(ys 1t5) + P (v, 05)) (23)

Theorem 8 d(A, B) defined by Equation (23) is a distance
function of complex intuitionistic fuzzy sets on U.
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Proof (i) and (ii) can be easily verified from Definition 15.
Here we only prove (iii).

Gii) Let A = {(x,u,(x),v,(x)) : x € U}, B =
{{x, p (), vp(x)) 1 x € Uy and C = {{x, o (x), ve (%)) :
x € U} be three complex intuitionistic fuzzy sets on U.
According to Definition 15, we have

d(A, B) = (p(uA wy)+p(v,, vR))

- (max (supv () =y (O] 3 suple, () = ,,(x>|)
2 7.[ M H'

)

1
=3 (max (SHB(IVA (x) = re [+ 1re(x) = ry (0,

+max(sup|sA(x) s (x)| suple(x)

xelU xeU

2
+ max(sup(|s, (x)

xelU

1
5= Sug(lwﬂA(X) — 0, )|+ o, (X)) — o, (X)|)>
xe

- s( (X)l + |Sc(x) — S (x)l),

1
5= sup(lo,, (x) —

o P w,c ()] + |o,c(X) — o, (X)I)))

f(max(sup|rA (x) —
xeU

re (01,

1
5= suplw, (x) — @, (X)) max(supls, (x) — sc (x)],
U xeU

27 e
1 1
~— suplw,, (x) — @, (x)]) + = (max(sup|r. (x) —ry(x)],
2r xeU 2 xeU
1
. j‘e‘g"”uc () =, (X))
+ maX(GUPISC (x) = s, (), oy suplw, ¢ (x) — w5 (X))
xeU T xeU

= E(p(uA,MB)er(vA,vB))
=d(A,C)+d(C, B).

m}

121 () 4.,i0.87

Example 12 Let A = {03 )}0.4 1087

(0.3~ei2”,0.5-e“‘5”) B — (0.6~ei0'2”,0.3~e”'8”)+(0.2»ei0'5”,0.6-ei0'5”)
Z ’ - X 3

(0.4-€i0’5” O.6-€i1'3”>

+ . . Since sup,cylr,(x) — ry(x)] = 0.4,
5 SUp, ey lw,, (1) — w,, ()] = 0.5, sup,cyls,(x) —
sz(x)] = 0.4, and %supxewww(x) —w,,x)] = 0.5,

therefore p(u,,u,) = 0.5 and p(v,,v,) = 0.5, so
d(A, B) = 5(p(,, 1) + (v, 1)) = 0.5.

Remark 1 It is easy to see that, if A and B are two intuition-
istic fuzzy sets on U, then

Oy, ) = SUPIMA(x) My (X1,

xeU
10( A B) - Sup|VA(x) - UB(X)I
xeU

and

1
d(A, B) = z(p(MA, mp)+pW,, vp)).

3.2 (a, B)-equalities of complex intuitionistic fuzzy
sets

Definition 16 (Gong et al. 2013) Let U be an universe of
discourse, A and B be two intuitionistic fuzzy sets on U,
Mg (x), 1z (x), v, (x) and v, (x) their membership and non-
membership functions, respectively. Then A and B are said
to be («, B)-equal, if and only if

SUPIMA(x) pp ()| =1 —a,supv(x) —v ()] < B,

xeU xeU

where 0 <o < 1,0 < < landa + f < 1. Symboli-
cally, we denote A = («, B)B. In this way we say A and B
construct a (¢, 8)-equality.

Lemma 1 Let

o1 %oy = max(0, o) +ap — 1) (24)
and
B1 * B2 = min(l, B + B2), (25)

where 0 < aj,ap0 < 1,0 < B1,62 < 1 and a1 + B
1,0 4+ B2 < 1. Then

IA

(i) Oxa; =0,0%p8; =p1,VYa; €0, 1], 1 € [0, 1];
(ii) 1xa; =a1,1xB; =1,Va; €10, 1], B1 € [0, 1];
(iii) 0 < ay*xay < 1,0 < B %P < 1,Vay,ap €

1], B1, B2 € [0, 1];
(iv) oy fa=ar*xay <axo,fi < B = P1*p
B x B, Vi, a, a0 € [0, 1], B1, B, B2 € [0, 1];
(v) apxay = g xap, B1 * 2 = B2 * f1, Vo,
11, B1, B2 € [0, 1];
(vi) (a1 *a2) x a3 = oy * (a2 * a3), (B1 * B2) * B3 =
Brx(B2*p3), Y, az, a3 € [0, 1], B1, B2, B3 € [0, 1].

IA

m

Definition 17 Let A = {(x, u,(x),v,(x)) : x € U} and
B = {{x,uz(x),v,(x)) : x € U} be two complex intu-
itionistic fuzzy sets on U. Then A and B are said to be
(o, B)-equal, if and only if

p(M’A’H'B)Sl_aa IO(VA7UB)§ﬂ7 (26)
where 0 < o < 1,0 < g < land @ + B < 1. Symboli-

cally, we denote A = («, B)B. In this way we say A and B
construct a («, 8)-equality.
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Remark 2 Two complex intuitionistic fuzzy sets A and B are
said to build a («, B)-equality if p(u,, ny) < 1 — a and
p(v,,v,) < B. An advantage of using 1 — « rather than « is
that the interpretation of o can comply with common sense.
That is, the greater « is, the more equal the two complex
intuitionistic fuzzy sets are; the smaller g is, the more equal
the two complex intuitionistic fuzzy sets are; and if « = 1
or B = 0, then the two complex intuitionistic fuzzy sets are
strictly equal.

Theorem 9 Let A and B be two complex intuitionistic fuzzy
sets on U. Then

(i) A=1(0,1)B;

(ii) A=(1,00B < A = B;

(iii) A = (a, B)B & B = (a, B)A;

(iv) A = (a1, B)B and a) > az, By < B = A =
(a2, B2)B;

v) IfVi e I, A = (a;, Bi)B, where I is an index
set and sup;c;o; + sup;c;Bi < 1, then A =
(Sup;es @i, Sup;es Bi) By

(vi) Let A = (a1, B1)B. If there exists an unique o and g,
such A = («, B)B forany A and B, thena < ay, B >
Bi-

Proof Properties (i)—(iv) can be easily proved. Here we only
prove properties (v) and (vi).
(v) Since A = (v, B;)B, forany i € I, we have

Py s p)
1
— max (j‘;g 40 = 7y 001, 5 suplo () ww(xn)
<l-qa,

and

P, vgp)

1
= max (SHPISA (x) = sz (0], o sup|w, , (x) — w,,B(X)I) =B
xelU

xeU

therefore

sup|r, (x) —ry(x)|
xeU

1
<l —supa;, z—suplw,,(x) —w, ()] <1 —supa;,
iel T xeU iel

and

Sup|sA (x) - SB (x)l
xeU

1
< sup B, T suplw,, (x) — @,;(x)| < sup B,
iel T xeU iel

@ Springer

hence

Py, tp) = max <SUP|FA (x) = ry )l
xeU

1
~—suplw,, (x) — wMB(X)l) <1—supa;,
27 yeu iel

and

P, v,) = max(supls, (x) — s, ()],
xeU

1
—— suplw,, (x) — o, (x)]) < sup B;.
T xeU iel

It implies that A = (sup;¢; «;, sup;<; Bi)B.

(i) Let @1 = 1 — p(,. 1), Bi = p(v,,v,). Then
A = (ay, B1)B. Obviously, if A = («, B)B, we have 1 —

a1 = p(y, ) <1 —aand By = p(u,, ny) < B. There
mustbe ¢ < oy, 8> B1. O

Theorem 10 Let A, B and C be three complex intuitionistic
fuzzy setson U. If A = (a1, B1)B and B = (a2, f2)C, then
A = (o, B)C, where a« = a1 ka2, B =1— a1 *a.

Proof Since A = (1, B1)B and B = (a2, B2)C, we have

Py, pp) = max(sup|r, (x) —ry(x)],
xeU

1
_ — <1-—o,
2

p(VA, UB) = max(sup|SA(x) - SB(-X)|1
xeU

1
s—suplw,, (x) —w,, (X)) < Bi,
2z xeU A g

and

Py, ) = max(sup|ry (x) —re(x)],

xeU
1
Ejgglwﬂg ) —w,0)) =1 —ay,
P Vg, Vo) = max(supls, (x) — s (x)],

xeU

1
—_ — <
5 jlelglw,,g () = 0,c ) = 2,

therefore

1
sup|r,(x) —ry(x)| <= 1 — a1, = suplw,, (x) — o, , ()]
xeU T xeU

Sl_a15

1
Sup|SA(x)—SB(x)| 51311 _sup|a)vA(x)
xeU T xeU

-, (x)| < B,
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and

1
suprp(x) —ro ()| <1 —an, o suplw, , (x)
xelU T xeU

—w,c()] =1 —ay,
1
suplsy (x) —s.(x)| < B2, = suplw,,(x)
xeU T xeU

—w,(x)| < B,

consequently, we have

1
p(l'LA7 /“Lc) = maX(SUP|VA ()C) - rc (x)ls A~ Suplw,,,A ()C) - w,,,c (X)l)
xeU xeU

2
= max(sup|r/\ (X) - VB()C)l + SUP|VB(X) - rc(x)‘v
xelU xeU

1
o 322"’% () — w5 ()]
1
s _
+o xeglw“B(x) w,c (X))

<max((1 —o) + (1 —a2), (1 —a1) + (1 —a2))
=l-a)+{1—-a)
=1— (a1 +a— 1),

furthermore, note that p(u,, 1) < 1. Hence

Py, o) <1 —max(0, 1 +ap— D =1—-ajxax=1—a.

1
p(v,, V) = max(supls, (x) — 5. (X)], o sup|w,, (x) — @, (x)])
xeU T xeU
< max(supls, (x) — s, (x)| + supls (x) — 5. (x)],

xeU xeU

1
5= suplw,, (¥) — o, (0)]
U

27 xe
1
+ 3 ::B|a)v3 xX) —w, (X))
< max(B1 + B2. B1 + B2)
= B1+ B2.

That is to say

P v ) <Br+h=<l-a+l-—a=1—(er+ax—1)
=1-max(0, o1 +a2 — 1) =1—0a; xar = B.
It implies that A = («, B8)C. O

Theorem 11 IfA| = (a1, B1)B1 and A, = (a2, B2) Ba, then
A1 U Ay = (min(ay, a2), max(B1, B2))(B1 U By).

Proof According to Definition 15, we have

Py 0y s Mgus,)

= max(suplr, 4, (¥) = 7y g, (X1,
xeU

1
~_ Suplw A1 UA (x) —w B1UB (x)|)
2 el n(A1UAD) wn(B1UBy)

and

p(UAlqu’ vBluBz)
= max(sup|sA1UA2 (-x) - SBIUBZ (-x)|a
xeU
1
Py Suplwv(Alqu)(‘x) - a)U(BIUBZ)(‘x)D'
xeU

2

Based on Definitions 3 and 17, we can obtain that

SUp|ry ua, () = g up, (X
xeU

suplmax(rA1 (x), T'a (x)) — max(rBl (%), T, (x))]

xeU

< sup max(|r, (x) —ry (O, [r,, (X) = rg, ()]
xeU

< supmax(l — oy, 1 —a2)

xeU

< 1 — min(xy, o).

1
sup |a)/L(A1UA2) (x) — @, (B,UBy) ()]
xeU

2w

1
= —— sup|max(w,,,, (1), @,,,, (1)) — max(@,, ()., @,, ()|
T xeU

1
< 3 S MK, () = @, (0 10,1, () = @, (D)

1
< — supmax(l —ay, 1 —a2)
27 yeu

<1 — min(xy, o).

Sup‘sAlqu ()C) - SBIUBZ (x)|
xeU

= suplmin(sA] (x), Sa, x)) — min(sB1 (x), Sz, )]

xeU

< sug min(lsA1 (x) — Sp, )|, |sA2 (x) — S, @)D
xe

< sup min(By, B2)
xeU

< max(B1. B2).

1
5= suplw ) —w ()]
o XEB V(A UA2) V(B UBy)

1 . .
= S SupImin(@,, (X), @, (1) — Min(,, (), 5, ()]
T xeU

A

1 .
< 2 SN, () = 05 (] 0,4, () = 0, (D)

1 )
~— sup min(By, B2)
27 xelU

< max(B1, B2).

I\

It implies that
A1 U Ay = (min(ay, a2), max (B, B2))(B1 U By).

O

Corollary9 If A; = (@, Bi)Bi, i € I, where I is an index
set, then U;jc1 A; = (inficy o, SUp; ¢ Bi) Uier Bi.
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Theorem 12 IfA| = (a1, B1)B1 and A = (a2, B2) B2, then
A1 N Ay = (min(ay, @2), max(B1, B2))(B1 N By).

Proof According to Definition 15, we have

Py iy s Mg op,)

= max(sup|rAmA2 (x) —
xelU

Py OO,

P Supla)u(AlﬂAz) (x) —
xeU

> ERPRNES))

and
p(vAlﬂAz’ vB|ﬁBz)

= max(sup|sAlnAz (x) —
xeU

85,08, (D15

5 Sup |wv(AmA2) (x) =

_— vy (O

Based on Definitions 4 and 17, similar to the proof of
Theorem 11, we can obtain that

A1 N Ay = (min(ay, az), max(By, B2))(B1 N By).

m}

Corollary 10 If A; = (w;, Bi)Bi, i € I, where I is an index
set, then Njej A; = (infics o, sup;¢; Bi) Nier Bi.

(@, B)B.

Proof According to Definitions 5 and 17, we have

Theorem 13 If A = («, B)B, then A =

Py ig)

= max(sup|r; (x) = r ()], 5 suplo, ; () — @, ; (X))
xeU xeU

= max(sup|(1 —r,(x)) — (1 = ry(x))],
xeU

1
nggl(zn —w,, (X)) = 27 —w,5(x)])

= max(suplr, (¥) = 1y (0. 7~ suple () = @,, (X))
X€E

= p(l’l'A’ H/B)

<1-—a.

P, vy)

=max(sup|sA(x) —sB(x)| 7 suplwm(x) va(x)|)
xeU T xeU

= max(sup|(l —s,(x)) — (1 —s,(x))],
xeU

1
ZEEBI(ZH —w,,(x) = 21 —w,,(x))])

= max(sup|sA (X) — S (X)|, 2_ Suplwu,q (x) — W, (X)D

xeU xeU

@ Springer

= ,O(UA, UB)
<B.

It implies that A = («, ) B. o

Corollary11 [fA,'j = (O(,‘j,,B,‘j)B,‘j, i € 11, ] € 12, where
11 and I, are two index sets, then

Uier, Njen Alj = (inf inf ®;j, SUp sup ﬂlj) Uier, m]GIZB!j
iel jebh iel jeb

and

Nier, Yjen, Aij = (inf inf a;;, sup sup Bi;) Niery Yjen Bij.
iel| jel iel, jeh

Corollary 12 Suppose A; = («;, Bi)Bi, i = 1,2, .... Let

lim sup A; =N52, UX

n—oo =n

1=n

A;, lim inf A; = U;’lozl nN>X A;,
n—oo
and

lim sup B; = N2, UX, B;, lim inf B; = U2, N2 B;,

=n

n—>00 n—00
then
nll)rrgo sup A, = (mf oy, ’sll>1p Br) 11m sup B,
and

lim inf A, = (mf1 oy, sup B) 11m inf B,.

n—oo n>1

Theorem 14 IfA| = (a1, B1)B1 and A = (a2, B2) B2, then
Alo Ay = (a1 *ap, 1 —ay xap)(B) o By).

Proof According to Definition 15, we have

P pony+ Mg 0m,)

= max(sup|rAloAz (x) —
xeU

31032 (x)|»

1
sup|w/1(AloA2) () —
xeU

27_[ w/L(BloBz) (x)|)

and

PWaionys Vo)

= max(sup|sA10A2 (x) —
xeU

Sagomy @]:
1
P Slelg|wv(AloA2) (x) — wv(BloBz)(x)D
X
Base on Definitions 6 and 17, we can obtain that

Suplr/\lo/\z (X) - r};]ogz (x)l
xeU
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= SuPIrA1 () -1y, (x) =1 (x) - 1y, (X)]

= suplr, (x) -, (x) -
xeU

+VA2(X)'VB](X)

ra, (1) -1y ()

7"31 (X) 'rBZ(-x)l

= SuP|"A2 () (ry, () = rp () 15 (X)(ry, (X) — 1y, (x))]
< supl, () = 1y, O]+ Supl, () =, )
<l-a1+1—-m

=1— (a1 +ar—1).

We note that sup,cy[ry .4, (X) = 7rp 5 (X)] = 1, s0 we
have sup,cylry o0, (X) =7 op O = 1= (a1 +a2 - 1) =
1 —max(0,a; +ar — 1) =1 — oy *xap.

(B oBy) €3]]

— sup|w x)—w
T xegl W(AjoAy)

—Lsup 2 MM - M.M

2z xeU 21 2T 27T T
= i sup MAI (X) ) w”AZ (x) _ quz (x) : wuBJ (x)

2 xeU 2 27

wMz (X) ) wl‘”] ()C) wuk] (x) . wulx‘z (X)
2 2T
L sup Dpay D) (@, (¥) = O, ()
2z xeU 21
®,5 ()@, (X) — 0,5 (1))
2

1
< 2 (Ul () =

<l—-aj+1-a
=1—(x;+ar—1).

©,5, ()] + sUpl@,,, (1) = @, (V)])
xeU

We note that % SUPL 1@, (4 0y (X) = @3 opyy ()| = 1,
so we have % SUPL e |0, (4 0ny () — @05y, (D] = 1 —
(ar+ar—1)=1—max(0,a; +a2 — 1) =1 — ay *an.

In the similar way, we can prove that sup, ¢y [s 4, () —
SBloBz(‘x)l <+ =l-ag+l—-a=1- (g +
ar— 1) =1 —max(0,a; +ap — 1) = 1 — a1 *x ap and
3 SUD 7|0, 4 o) () =0, ) ()] < B1+B2 < 1—ar+
l—ay=1—(t1+ar—1)=1—max(0,a; +ay — 1) =
1— o] ko).

It implies that

Aro Ay = (ag *xap, 1 —ay *xap)(By o B).

O

Corollary 13 Suppose A; = («;, Bi)B;, i € I, where I isan

index set, then Ajo Ayo---0A; = (ap *ap *---xa;, 1 —
o) kagx---ka;)(BioByo---0B).
Theorem 15 If A, = (o, By)Bn, n = 1,2,..., N, then

Al XAy X -+ X A, =
By x -+ x By).

(inf1<p<ny o, Sup; <, <y Bn)(B1 X

Proof Trivial from Definitions 7 and 17. O

Theorem 16 IfA| = (a1, B1)Bi and Ay =
A1+Ar = (a1 % a2, 1 —ay * a2)(Bi+Ba).

(ctz, B2) By, then

Proof According to Definition 15, we have

p(/’LAlJ}AZ’ N’Blfrsz)

= max(sup|rA iy, ) =y I
% juplwuml%Az) () — ©usi 18y D
and
'O(VAIJ}AZ’ UBI%BZ)
= max(iup|sA 14y ) =85 0 (O
% Slelglwvmﬁf\z)(x) = Oy iy D

Based on Definitions 8 and 17, we can obtain that

SUPIF, ¢, (1)
X€E

= suplr, (1) + 7, ()

- rBljrBz (x)|

rAl(x) -rAz(x)

xeU
— (g, () 1y (1) = 1y (X) - 7y ()]
= sup|(1 — r, (1))(r, (x) = 1y (1))
xeU
+ (=1, (), () = 7y ()]
< suplr, () —ry (O] + suplr, (x) = r,, ()]
xeU xeU
Sl-og+1-m
=1—(x1+ay—1).
‘We note that super|rAl+A (x) — Tpin x)] <1, so we

have super|rA]“2 (x) — Ty ihy @ =<1l—=(14+ar—-1)=
l—max(O,(xl—l—az—l)_l—tx] * 0.

o j‘;g'%m,mz)(x) ECHPETCo)
L sup 2 (qul (x) quz (x) _ qul (x) . quz (x)
27 vevu 2w 2 2w 2
o (O O ) 0p @ 00
2w 2 2w 2w
@, (x) 0, (x) W5, (x)
=sup||]— —
el 2 2 2

N (1 B W5, (x)) (quz (x) B W5, (x))‘
2w 2w 2w

(Il B W4, () @, (X) O (x)|

< sup
xeU

2 I 2 2
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+‘1_w#31(x) Dy, () _“)uBz(x) ) Sl—ar+1-a
27 2 2 =1— (1 +a—1).
1
= o (509 |0, () = 0, 0] + |0, @) — 0, (x)\)
27 (er h " 2 " x)] <1, so we

<l—aj+1—-ap=1—(a;+ar—1).

1
We note that 5 sup, ./ |a)v(AI;A2) (x) —a)v(BljrBz)(x)| <1

vy iagy ) =@, (O] = 1=

(ar+ar—1)=1—max(0,a; +a2 — 1) =1 —a *an.

In the similar way, we can prove that super|sv(A 9 )(x)—
142

(31+B>( DN=p+hp=l-a+l-a=1-(y+
ar — 1) =1 —max(0,a; +ap — 1) = 1 — a1 *x ap and
2 SUDep|0, o () =@, L, (D] S B fo < 1 -
aitl—ay =1— (i +ar—1) = 1—max(0, a1 +ar—1) =
1 —ap *an.
It implies that

1
so we have 5-sup,.yl®

A1+Ar = (a1 * a2, | —ay % 02)(B1+B2).

]

Corollary 14 Suppose A; = («a;, Bi)B;, i € I, where I is an
index set, then A|+Ar+ - - - ~T—Ai =(xy*xap *---%a;, 1 —
oy koo k- ko) (Bi+Bat - - - +Bj).

Theorem 17 IfA| = (a1, B1)Brand Ay =
A1UA, = (a1 *xan, 1 —aq *az)(BloBz).

(a2, B2) B, then

Proof According to Definition 15, we have

P, 0y g 0,)

= max(sup|rA Oy (x) — "p,08, x)],
1
3 S 10, 0,00y () = @5, (D)

and

'O(UAl UAy? vB, 032)

= max(supls, ., (¥) = 5,5, ()
1
Z jgg'wv(/\lmz) (x) — wv(BlOBz) -

Based on Definitions 9 and 17, we can obtain that

SUPI7 1, () = 7, ()

= sup|min(1, r, (x)+r (x))—mln(l Iy (x)+r (x))|
xeU

= Superl () + Fay (x) —

rp, (1)
xeU

- rlgz (.X)l

< suplr, (¥) = ry ()] + suplr, (x) = ry ()]
xeU xeU
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We note that super|rA Ay (x) — 75,08
havesupererloAz(x) "5, I <1l—(a1+ax—1)=
1 — max(0, o1 + oy — 1)—1—a1 * oo

1
_ su5|a)ﬂ(A]UA2) (x) — me,oBz)(x)l
X

1
= — 2
> flelglmm( 7,0, )+, @)

—min(27, @, (X) + @, ()]

1
< s suplw,,, () + o, () =0, () =0, ()]
xeU

1
< ﬂ(fzglw’“‘l (x) = @, ()] +fzglw,mz () — @, (X))

<l-oa+1—-a

=1—(;+a2—1).

We note that 51z Sup, ey |@,, o, () =@, 5 o (D] < 1
so we have % super|wM<AluA2)(x) — @, 5,08,) X)) <1-
(ar+ar—1)=1—-—max(0,a; +ar — 1) =1 — ay *ay.

In the similar way, we can prove that sup, . |s AU (x) —

Spop, D = b1+ <= T—ar+1T—0a=1-(+
ay— 1) =1 —max(0,a; + a2 — 1) = 1 —ay *xap and
2 Uy @, 0 () =@, (] < Bt By < 1 -
a1+l—ay =1—(x1+ar—1) = 1—max(0, a1 +ar—1) =
1— o] k0.

It implies that

A]UAQ = (o1 *x0ap, 1 — o *O{z)(B]UBz).

O

Corollary 15 Suppose A; = («;, Bi)B;, i € I, where I is an

index set, then A{UALU---UA; = (o) ko % -+ - ko, | —
oy ko k- ko) (B1UBU - - - UB)).
Theorem 18 IfA| = (a1, B1)B1 and Ay = (ay, B2) B2, then

A1NAz = (o o, 1 — ay % a2)(BINBL).

Proof According to Definition 15, we have

Py pay s g )
= max(sup|rAmA2 (x) — Tp8, x)],
xeU

1
3 SUPIO, 1 0y, () =

. o))

and

'O(UAI Ay’ vB| th)

= maX(suplsA 1, X) =85 0 (01,
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Z jgglwvmlmz) (x) = D, 5,A8y) (0.

Based on Definitions 10 and 17, we can obtain that
Sup|rA|ﬁA2 ()C) - rBlth (X)l
xXe

= sup|max(0, Fa, (x) + Ta (x)—1)

xeU

—max(0, r, (x) +7r, (x) = 1)

IA

su8|rA1 (x) + T (x) — I, (x) — I, x)]

IA

suplr, (x) = ry (X)] + suplr, (x) = r, ()]
xeU xeU

A

<l—o1+1—u
=1—(x;+ay—1).

‘We note that super|rAlhA2 (x) — T, 0m x)] <1, so we
have supererlr.m2 (x) — T50, @ <1l—-(e1+ax—1)=
1 —max(0,01 +ay — 1) =1 — a1 * ay.

2 jzglw““lmz) () = @ (8, ABy) ()]

1
= — sup|/max (0, w
T xeU

— max (0, W, (x) + W5, (x) —2m)|

(x) + @, (x) —2m)

AL

1
=5 flelglqu, () +@,,, (X) =0, (X) =0, ()]

IA

1
—(supla,, () — @, (V)] + suplw,,, (x) = w,,, (X))
xeU xeU

2
l—o+1—ap
=l—(t1+a—1

IA

=1—0o) xan.

We note that - SUP ey |®, 4 ) () =@, i, (O] = 1
1

so we have o supycy|@, , o0 () =@, o (D] < 1 =
(a1 +ax—1)=1—-—max(0, a1 +ar — 1) =1 —ay xan.

In the similar way, we can prove that sup, cy/ls, ., (x) —
sBlth(x)| <Bi+B<l—-o+1—a=1—max(0, o +
ar — 1) = 1 — a1 xap and %suprUlwu(Almz)(x) -
Oy @ = B+ fr = T—ar+1—a =1 (@1 +
ar—1)=1—max(0,a; +ar — 1) =1 — a *xan.

It implies that

AlhAz = (a1 *x0ap, 1 —ay *O[z)(Blth).

O

Corollary 16 Suppose A; = (v;, Bi)Bi, i € I, where I is an
index set, then AjNA2N - NA; = (@] ko % -+ -k, | —
o kag k- -k a;)(BINBaN - - - NB)).

Theorem 19 IfA| = (a1, B1)B1 and Ay = (a2, B2) B2, then
Ay — Ay = (a1 * a2, 1 — oy *a2)(By| — |B?).

Proof According to Definition 15, we have
IO(I'LAl |—lAp MB“_‘BZ)

= max(sup|r, ., (X) =7y 5 (X)I,
xeU

— sup|w xX)—w X
2 xegl ‘4(A1\—|A2)( ) MBH—‘BZ)( D

and

p(UAll—\Az’ UB”,|32)
= max(sup|sA1‘_|A2 (x) — 851218, )],
xeU
1
5 SUPI®, a1y (X) = @y 5,y (D)
xeU

21

Based on Definitions 11 and 17, we can obtain that

SUP|"A1HA2 (x) - rslez ()C)l
xeU

= sup|max (0, Ty (x) — T4, (x)) — max(0, Iy, (x) — Ty )|

xeU
< Superl ()C) - rA2 ()C) - VB] (.X) +r1;, (.X)l
xeU -
< suplr,, (¥) =y, (O] + suplr, (1) =7, ()]
xeU xeU
<l—-a+1—mm

=1— (o1 +ay—1).

We note that sup,.cyyry a0, (X) =74, 15, ()] < 1, sowe
have supererl‘_‘A2 (x) — 5118, @) <1l—(a1+ar—1) =
1 —max(0,01 +ay — 1) =1 — oy *ay.

1
5= SUPI®, 4 4y (¥) = @5y, ()]
xeU

2w

1
= — 0, —
T ;:B|max( 0, (x) W, (x))

—max(0, w,, (¥) = @, ()]

1
E fzgleAl (X) - quz (X) - a)MBl (X) + wﬂgz (X)l

IA

2w
l—ar+1—a
=1—(x;+ay—1).

1
= (suplw,, (x) = @, ()] + supl, ., (x) — @, (X)])
xelU xeU

IA

We note that ﬁ SUP ey 1@, 14y (X) — @, -1y, (X) ] =
1, so we have % super|wMA1|7M2) (x) — @,y -1By) ) <
l—(xi4+ary—1)=1—max(0,a; +apr —1) =1 —aq *ar.

In the similar way, we can prove that sup, /{8, |4, (x) —
Spip, I =P+ =l—-ar+1—a=1— (a1 +
oy — 1) =1 —max(0,a; +ar — 1) = 1 — ;] *ap and
% Super"ov(Al\—Mz)(x) — Oy 1-1By) DN =<=pg+p=1-
aj+1—ay =1—(xj4+a2—1) = 1 —max(0, a1 +ar—1) =
1 — o *xap.
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It implies that
Ayl = Ay = (a1 *ap, 1 — oy xa2)(By| — |B).

O

Corollary 17 Suppose A; = («;, B;)B;, i € I, where I is an
index set, then A1| — |Aa| — |-+ | —|A; = (] %o %+ -+ %
ai, L —aypxop* - xa;)(Bi| — [Ba| — |- | = | By).

Theorem 20 IfA| = (a1, B1)B1 and Ay = (a, B2) B, then
A1VAr) = (a1 xaz, 1 — oy xa2)(B1VBy).

Proof According to Definition 15, we have

Py vays M vs,)

= max(suplr, v, (X) =7y 5 (X1,
xeU

_Suplw A1VA (x)_(l) B1VB (-x)|)
2 el w(A1VA2) w(B1VBy)

and

Py vays Vi vs,)

= max(supls, v, (X) = 5 5 (X1,
xeU

Py Suplwv(A]VAz) (x) — a)v(B|VBZ)(x)|)
T xeU

Based on Definitions 12 and 17, we can obtain that

SUP(7 g ga, (X) = 75 9, (0]

xeU
= sup||rAl (X) - rAz(x)| - |rB1 (x) - rBz(x)H
xeU
= sug|max(rA1 (x) =1y, (), 1y, (x) =71, (X))

—max(ry (x) —rg (x), 1y (x) = ry (X))]

S Sup"”,@.‘1 (-x) - rBl (x)l + Sup|”A2 (.X) - rBZ (.X)|
xeU xeU

<l—-aj+1—-0

=1—(x;+ay—1).

We note that sup,cy|ry ga, (X) = 1 g5, (X)| < 1, s0 We
have sup, 17y g4, (X) =74 95, (DI = 1= (1 +a2 - 1) =
1 —max(0,a; +ar — 1) =1 — oy *xap.

1
A~ SUP|(UM(A]VAZ> (X) - wu(B]VBZ) ()C)l
T xeU

1
= 5= supllw,, () — o, (D] — o, () —w,, I
xeU

2
1
=3 f‘;B'maX(‘”ﬂAl (X) = @, 0, (X), @, (X) — @, (X))

—max(@,; (X) =@, (), 0, (X) — w5 (X))]

@ Springer

1
< = (supl, ,, (X) — @, ()] + suplw,,, (¥) — @, (X))
xelU xelU

Sl—ar+1-a
1 — (g +ap—1).

‘We note that % super|a)ﬂ(AlVA2)(x)—a)MBlVBZ)(xﬂ <1,
so we have % SUPL e |0, (4 v4y) (X)) — @595, (X = 1 —
(ar+ar—1)=1—max(0,a; +ay — 1) =1 —aj * ay.

In the similar way, we can prove that sup, ¢y |5, v, (¥) —
Spvp, D = Br+h =1-ar+1—-a=1-(+
ar— 1) =1 —max(0,a; +ap — 1) = 1 — a1 * ap and
% SqueU|wv<A1VA2)(x) - wv(BIVBz)('x)l =pi+p =1-
a1+l—ay =1—(x1+ar—1) = 1—max(0, a1 +ar—1) =
1-— o ko).

It implies that

A1VAy = (a1 *xap, 1 —ay *xap)(B1VB)).

[}

Corollary 18 Suppose A; = («a;, Bi)Bi, i € I, where I is an
index set, then AfVA)V ---VA; = (g xap *-- - %o, 1 —
oy *xapx---xa;)(BiVByV - - - VB;).

Theorem 21 IfA| = (a1, B1)B1 and A, = (a3, B2) B, then
AqllnAz = (min(ayq, az), max(By, B2))(B1ll:B2).

Proof According to Definition 15, we have

Py a0 Moy, 8y)
= max(sup|rAlHMz (x) — "800, 8 )],
xeU

1
~_ Supla) A A (x) —w B B (x)l)
2 el w(Apll;A2) w(Byl1,B2)

and

'O(VAllllez’ UBIH)\BZ)
= max(sup|sA]H)LA2 (X) - s31||)LB2 ()C)|,
xeU

1
— Su |a) (_x) — . (.X)l)
3 xeg (A1, A2) v(B1ll3B2)

Based on Definitions 13 and 17, we can obtain that

SuperlmAz (x) — T35 )]
xeU

= suB[Mmin(rAl (x), Ta, (x)) — min(rBl (x), I, (x))]
xe

+ (1= W)max(r, (). r,, (1) = max(ry (). r,, ()]

< suplAmax((ry, (1) = 1, (01 17y, () = 7, (D)

+ (1= pymax(lr, (1) —r, @), lry, (0) = ry, (D]

<max(l —aj, 1 —a2) = 1 — min(ay, @2).
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1
= suplw,, 4, (X) —@ )]
7 xeg W(ALl13AD) W(By 115 By)

1
= — suB[Mmin(wM] (x), Opy, x)) — min(a)Ml (x), Wy, )]
Xe
+ (1 — )L)lmax(wwI (x), Opy, (x)) — max(wwl (x), Wug, NIl
1
< =—sup[2r max(|w;ml (x) — Dpgy (x)1, ‘wugl (x) — Dpp, [€3]))
T xeU
+ (I =) max (o, () — @y, (O, oy, (6) = @pp, (D]
<max(l —oay, 1 —ay)
=1- min(al, 0(2).
SUP‘SAI 1 An (X) - SBI“ABZ (-x)l
xeU

= sug[Mmax(sAl (x), S (x)) — max(sBl (x), S, €9)]
xe

+ (1= W)lmin(s,, (1), s,, () = min(s, (). s, )]

< SupDmax (s, (5) = 5, (Dl sy, () = 83, (D
X€E

+ (l - }") maX(|sAl ()C) - SAZ (x)lv ISgl (X) - SBZ (x)l]
< max (B, f2).

1
—— suplw, 4,y (X) — @ (€9]
By XGB V(AL 113 A2) v(B1 13 By)

1
= 5— sup[A|max(wy, (x), wy,, (X)) — max(wyg (X), Wy, ()]
T xeU -
+ (1 = 2)min(wy, (x), w,, (x)) = min(wy,, (x), @y, ()]
1
< 5= sup[Amax(jwy, (¥) — vy, ()], [@vg, () — @y, (X))
T xeU
+ (I =2 max(jwy,, (x) — vy, (X, [@vp (X) = @y, (V)]

< max(By, B2).

It implies that

Ail]]p A2 = (min(ay, a2), max(B1, B2)) (Bl B2).
o

Corollary 19 Suppose A; = («;, Bi)Bi, i € I, where 1
is an index set, then A||yA2]|l|x || A; = (@(nf(ay, as, - -
), sup(Bi, Ba, - -+, Bi))(BillaBalla - - - |11 Bi).

4 Complex intuitionistic fuzzy relations

In this section, complex intuitionistic fuzzy relations are dis-
cussed.

Definition 18 (Atanassov 1986, 1999) Let U and W be two
arbitrary finite non-empty sets. An intuitionistic fuzzy rela-
tion R(U, W) is an intuitionistic fuzzy subset of the product
space U x W. The relation R(U, W) is characterized by the
membership function u i (x,y) : U x W — [0, 1] and the
non-membership function vy (x,y): U x W — [0, 1] with
the condition

0=<pzlx,y)+v(x,y) =1

forallx e Uandy e W. )
Like any intuitionistic fuzzy set, R(U, W) may be repre-
sented as the set of ordered pairs

RU.W) = (v 9, sy (0, ), 0,00, 0)) | (6, y) € U x W),

Definition 19 Let U and W be two arbitrary finite non-empty
sets. A complex intuitionistic fuzzy relation R(U, W) is
a complex intuitionistic fuzzy subset of the product space
U x W.Therelation R(U, W) is characterized by the mem-
bership function w,(x,y) : U x W — {ala € C, |a|] < 1}
and the non-membership function v,(x,y) : U x W —
{d'|a e C,|d'| < 1} with the condition

e (x, y) +ve(x, ) <1,

where x € U and y € W, u,(x,y) and v,(x,y) assign
each pair (x,y) a complex-valued grade of membership
and a complex-valued grade of non-membership to the set
RWU, W).

Like any complex intuitionistic fuzzy set, R(U, W) may
be represented as the set of ordered pairs

RWU, W) ={((x, y), g (x, ), v (x, y)) | (x,y) € U x W}

The value 1, (x, y) and v, (x, y) may receive lie within
the unit circle in the complex plane, and are on the form
He(X,y) =rp(x)- ¢ Pur @ and Ve (X, y) = s5(x) el PR
where i = +/—1, each of r,(x) and s, (x) are real-valued
and both belong to the interval [0, 1] such that 0 < r, (x) +
s.(x) < 1, also J)/L #(x) and @ . (x) are periodic function
whose periodic law and principal period are, respectively,
2r and 0 < @, (X), 0, (x) < 27.

The complex membership function ., (x, y) and the com-
plex non-membership function v, (x, y) are to be interpreted
in the following manner.

(i) r, (x) represents a degree of interaction or interconnect-
edness between the elements of U and W; Correspondingly
s, (x) represents a degree of no connection or no interaction
between the elements of U and W;

(ii) @, (x) represents the phase of association, interac-
tion, or interconnectedness between the elements of U and
W; Correspondingly w, , (x) represents the phase of no con-
nection or no interaction between the elements of U and W.

Remark 3 Without the phase terms @, (x) and o, (x), a
complex intuitionistic fuzzy relation R(U, W) reduces to a
traditional intuitionistic fuzzy relation R(U, W).
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5 Examples

As is well known, in the practice of financial work, we can
make accurate evaluation and judgment on the advantages
and disadvantages of the economic benefits of enterprises by
dissecting and analyzing the financial situation and operat-
ing results of enterprises. The selection and application of
financial indicators as evaluation and judgment standards is
particularly important. In this section, we consider financial
indicators selection and application between two companies
below which involves the significance of the phase terms of
a complex intuitionistic fuzzy relation and the application
of operation of complex intuitionistic fuzzy set. Meanwhile,
an example of “therapeutic effects of drugs” is given to illu-
minate (o, §)-equality between two complex intuitionistic
fuzzy sets.

Example 13 Let U be the set of financial indicators of the A
company. Possible elements of this set are “return on equity”,

“total asserts turnover”, “current asserts turnover”, ‘“asset-

liability rate”, “quick rate” and “capital accumulation rate”,
etc. Let W be the set of financial indicators of the B company.
Suppose the complex intuitionistic fuzzy relation R(U, W)
represents the impact of company A’s financial indicators on
company B’s financial indicators, i.e., y is influenced by x,
wherex € U andy € W.

The membership function 1, (x, y) of complex intuition-
istic fuzzy relation R(U, W) is a complex value function,
with an amplitude term and a phase term. The amplitude
term indicates the degree of influence of an A company indi-
cator on a B company indicator. An amplitude term with a
value close to 0 implies a small degree of influence, while
a value close to 1 suggests a large degree of influence. The
phase term indicates the “phase” of influence, or time lag that
characterizes the influence of an A company indicator on a
B company indicator.

The non-membership function v, (x, y) of the complex
intuitionistic fuzzy relation R(U, W) is also a complex value
function, with an amplitude term and a phase term. The
amplitude term indicates the degree of uninfluence of an A
company indicator on a B company indicator. An amplitude
term with a value close to 0 implies a small degree of no
influence, while a value close to 1 suggests a large degree
of no influence. The phase term indicates the “phase” of no
influence, or time lag that characterizes the no influence of
an A company indicator on a B company indicator.

For example, let x =‘“asset-liability rate” and y="capital
accumulation rate”. Then w,(x,y) and v,(x,y) are the
degrees of membership and non-membership of the influence
of “asset-liability rate” of company A on “capital accumula-
tion rate” of company B. The value of 1, (x, y) and v, (x, y)
may be obtained from an expert.

@ Springer

Suppose an expert states that “A company’s ‘asset-liability
rate’ has a great influence on B company’s ‘capital accu-
mulation rate,” and the effect of a decline or increase of A
company’s ‘asset-liability rate’ is evident on B company’s
‘capital accumulation rate’ in two-four months. While the
degrees to which A company’s ‘asset-liability rate’ has no
influence on B company’s ‘capital accumulation rate’ is
small, and the no influence of a decline or increase of A
company’s ‘asset-liability rate’ is evident on B company’s
‘capital accumulation rate’ in two-four months.” If R(U, W)
is a traditional intuitionistic fuzzy relation, according to the
expert’s statement, let membership degree w,(x, y) = 0.85
and non-membership degree v, (x, y) = 0.1. Then we notice
that the time information provided by the expert will be lost.
However, if a complex intuitionistic fuzzy relation is used
to express R(U, W), i.e. i, (x, y) and v, (x, y) are assigned
two complex values, then it would include all of the infor-
mation provided by the expert.

Assume R(U, W) is used to measure interactions between
A company and B company financial indexes in the limited
time frame of 12 months. Then let

He(x,y) =085 27T

and

n 3
t2nﬁ,

vp(x,y) =0.1-¢
thus
R(x,y) =(0.85- ¢ 0.1 _eiZn%).

Note that the amplitude of u,(x, y) and v, (x, y) were
selected to be 0.85 and 0.1, respectively. They are similar
to the degrees of membership and the degree of non-
membership of a intuitionistic fuzzy set. The phase term was
chosen to be 2 % as an average of “two-four months”, nor-
malized by 12 months the maximum time frame the relation
was designed to take into account.

Complex intuitionistic fuzzy relation, as an extension of
intuitionistic fuzzy relation, could describe the fuzzy char-
acters of things more detail and comprehensively and is very
useful in dealing with vagueness and uncertainty of problems
that include the periodic or recurring phenomena. Similar to
complex intuitionistic fuzzy set, the novelty of complex intu-
itionistic fuzzy relation lies in its ability for membership and
non-membership functions to achieve more range of values
and contains more information.

Example 14 1In this example, we will continue discuss Exam-
ple 13, let V be the set of development indicators of the city,
such as “consumer price index”, “producer price index”, etc.
Now, consider the following two complex intuitionistic fuzzy

relations.
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(i) The relation R(U, W) discussed in detail in Exam-
ple 13 represents the relation of influence of A company’s
“financial indexes” on B company’s “financial indexes”.

(i) The relation R(W, V) representing the relation of
influence of B company’s “financial indexes” on city devel-
opment indicators.

Let x="return on equity”, y ="“total asserts turnover” and
z ="“producer price index”, wherex € U,y € Wandz € V.

Suppose the following information is available from an
expert.

(i) The influence of A company’s “return on equity” on B
company’s “total asserts turnover” is medium, and its effect
is evident in four-six months, while no influence of A com-
pany’s “return on equity” on B company’s “total asserts
turnover” is medium, and its effect is not evident in four-
six months. According to Definition 19, we can describe the
information provided by the expert as follows.

R(x,y) = (0.55- 27T 0.4 2712,

(i1) The influence of B company’s “total asserts turnover”
on city development “producer price index” is verge large,
and its effect is evident in nine-ten months, while no influence
of B company’s “total asserts turnover” on city development
“producer price index” is very small, and its effect is not evi-
dent in nine-ten months. According to Definition 19, we can

describe the information provided by the expert as follows.
R(y,2) = (0.9 - 271 0.05 - /27 12)).

The two relations defined above may be combined in order
to produce a third relation, R(U, V'), the relation of influence
of A company’s “return on equity” on city development “pro-
ducer price index”. The relation R(U, V) is obtained through
the composition of relation R(x, y) and R(y, z). Itis possible
to provide a general and rigorous definition for the composi-
tion of complex intuitionistic fuzzy relation. In this example,
we consider the composition of the two degrees of member-
ship and the two degrees of non-membership derived above:
Mp (X, ¥)s g (¥, 2), v (x, ), and vy (v, 2).

The result of this composition is the degree of membership
and non-membership u, (x, z) and v, (x, z). From intuitive
consideration, we suggest that the value of u,(x,z) and
Vp (x, 2) should equal the product of 1, (x, y) and . (y, z)
and the product of v, (x, y) and v, (y, z), i.e., R(x, z) equal
the product of R(x,y) and R(y, z). According to Defini-
tion 6, we have

R(x,7) = R(x,y) o R(y, 2),

where

Mp(xX,2) = pp(x,y) o pp(y,z) =0.55

. 5 . 8 . 3.3
T2 009?712 = 0.495 - 2T T2

and

UR(.X, 7) = UR()C, y) ka(yv 7) =04

27T 60,05 27T =038 . 27T
thus
R(x.z) = (0.495 - 275 043 . 1271,

Note that for the membership function, the amplitude
term of u, (x, z) is derived by intersecting the amplitudes of
g (x,y)and u,(y, z), with product used as the intersection
function of choice. The phase term of 1, (x, z) is also derived
by intersecting the amplitudes of i, (x, y) and 11, (v, z), with
product used as the intersection function of choice. While for
the non-membership function, the amplitude term of v, (x, z)
is derived by intersecting the amplitudes of v, (x, y) and
V. (¥, 2), with probabilistic sum used as the union function
of choice. The phase term of v, (x, z) is also derived by inter-
secting the amplitudes of v, (x, y) and v, (y, z), probabilistic
sum used as the union function of choice.

Hence, the use of multiplication in this example makes
good intuitive sense. Note that the product operation empha-
sizes a unique property of complex intuitionistic fuzzy setsthe
complex algebra of its grades of membership and non-
membership. It is a feature of complex intuitionistic fuzzy
sets that is difficult to reproduce using traditional intuition-
istic fuzzy sets.

Example 15 Consider the problem of “ therapeutic effects of
drugs”. Let 1 represents 100 percent of the treatment effects
and 27 represents 12 months. Suppose A, B € CIF*(U),
where U = {x1, x2, x3} denotes three drugs. Two experts
evaluated the therapeutic effect of three drugs and described
them by two complex intuitionistic fuzzy sets A and B as
follows.

(0.6 - ¢7,0.3 - ¢0-87) N 0.5 - €127 0.45 - ¢i7)

A=
X1 X7
(0.3 /27,05 ¢157)
X3 ’
B 0.4 - eil.27r’ 0.5 - ei0.6n> N (0.2 - eiO.Sn’ 0.6 - ei1.5n>
X1 X
(0.5-¢7,0.3-¢127)
+ 5 .

Take complex intuitionistic fuzzy set A as an example, for
x1 drug, the membership function 1, (x1) = 0.6 - '™ indi-
cates that x; drug reached 60 percent effective in treating a
disease within about 6 months and non-membership function
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v,(x1) =03 €087 indicates that x; drug reached 30 per-
cent no effective in treating a disease within about 5 months.
Similar explanations can be made for the treatment effects of
the other two drugs. Then the («, B)-equality between two
complex intuitionistic fuzzy sets A and B will be discussed.
According to Definition 15, we can obtain that

1
sup|r, (x) —ry(x)| = 0.3, oy supla)M (x) — W, p x)| =0.5,
xeU xeU

and

1
supls, (x) — s, (x)| =0.2, o suplw, , (x) — o, , (x)| = 0.25,
U

xeU X€

therefore

IO(/'LA’ MB) = 0.5, p(UAa VB) = 0.25,

and
1
d(A, B) = S (p(y. 1) + p(v,. v,)) = 0.375.

Letp(u,, nyz) =05 <1l—-aandp(v,,v,) =0.25 < g,
then A and B are said («, 8)-equal if and only if 0 < « <
0.5,025 < B <landsatisfya+ 8 < 1.

According to Example 15, we note that the distance mea-
sure between two complex intuitionistic fuzzy sets A and B
is 0.375, and when o« = 0.5 and 8 = 0.25, the more equal
the two complex intuitionistic fuzzy sets are. Meanwhile,
the (c, B)-equality between two complex intuitionistic fuzzy
sets can also be used to describe the proximity between two
experts’ evaluation for three drugs. Therefore, the concept
of («, B)-equalities of complex intuitionistic fuzzy sets has
very good practical significance and use value.

6 Conclusion

Consider that complex intuitionistic fuzzy set is very use-
ful in dealing with vagueness and uncertainty of problems
that include the periodic or recurring phenomena. So in this
paper, various operation properties of complex intuitionis-
tic fuzzy sets are investigated when the membership phase
and non-membership phase are restricted to [0, 27 ]. Mean-
while, we notice that the precise membership values and
non-membership values should normally be of no practical
significance, and there is no equality and proximity measure
investigation on complex intuitionistic fuzzy sets. First of all,
we proposed a new distance measure for complex intuition-
istic fuzzy sets. The distance of two complex intuitionistic
fuzzy sets measures the difference between the grades of two
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complex intuitionistic fuzzy sets as well as that between the
phases of the two complex intuitionistic fuzzy sets. Then
this distance measure is used to define («, 8)-equalities of
complex intuitionistic fuzzy sets. Two complex intuitionistic
fuzzy sets are said to be («, 8)-equal if the distance between
their membership degrees is less than 1 — « and the distance
between their non-membership degrees is less than . The
concept of («, B)-equalities of complex intuitionistic fuzzy
sets allows us systematically develop the distance, equality
and proximity measures for complex intuitionistic fuzzy sets.
Finally, complex intuitionistic fuzzy relations are discussed
and two examples are given to illuminate the importance
of the phase term of intuitionistic fuzzy relation and the
application of operation of complex intuitionistic fuzzy set.
Furthermore, the problem of “therapeutic effects of drugs”
is given to illuminate (¢, B)-equality between two complex
intuitionistic fuzzy sets. Note that the operations discussed
in this paper makes good intuitive sense. Some operations
emphasize a unique property of complex intuitionistic fuzzy
sets, the complex algebra of its grades of membership and
non-membership. It is a feature of complex intuitionistic
fuzzy sets that is difficult to reproduce using traditional intu-
itionistic fuzzy sets. All these conclusions not only deeply
enrich the fundamental theory of complex intuitionistic fuzzy
sets, but also provide a powerful tool to investigate complex
intuitionistic fuzzy sets.
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