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Abstract
Multi-criteria group decision-making (MCGDM) problems, where correlations commonly exist among input arguments,
are becoming increasingly complex. However, most of the existing consensus-reaching methods for MCGDM problems
fail to adequately consider the effects of these interactions among criteria and experts, which may bring about inaccurate
results. Therefore, this paper establishes a novel MCGDM framework based on the generalized Shapley value to solve the
consensus-reaching problem with interval-valued Pythagorean fuzzy sets (IVPFS). First, experts’ evaluations are collected
using IVPFS, which offers a more flexible way to express this vague information. Second, the interval-valued Pythagorean
fuzzy Choquet integral operator and the interval-valued Pythagorean fuzzy Shapley aggregation operator are developed to
fuse the decision information with complementary, redundant, or independent characteristics. Third, an integrated consensus-
reaching algorithm is established to improve group consensus by iteratively updating the evaluations until the group consensus
level reaches the preset threshold. Then, the classical PROMETHEE method is extended using the generalized Shapley value
within an IVPFS context to derive a more scientific ranking result. Finally, a case study for a sustainable supplier evaluation
problem is presented to validate the proposed method. The results and comparative analysis show that the proposed method
can represent experts’ evaluations more flexibly, integrate inputs with interrelationships more effectively, and improve group
consensus more efficiently.

Keywords Multi-criteria group decision-making (MCGDM) · Interval-valued Pythagorean fuzzy set (IVPFS) · Fuzzy
measure · The generalized Shapley index · Consensus-reaching process (CRP)

1 Introduction

With continuous economic and technological development,
the associated decision-making problems are becoming
increasingly complex (Yan and Pei 2022; Şerif Özlü 2022).
Therefore, multi-criteria group decision-making (MCGDM)
has recently emerged as a research hotspot and has been
widely applied in multiple fields, such as scenic spots recom-
mendation (Ma et al. 2023) and risk management problems
(Hua et al. 2023).MCGDM involves a series of techniques to
effectively support experts in obtaining the optimal solution
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within a set of alternatives. This process generally involves
the following three aspects: (i) information expression and
aggregation; (ii) consensus-reaching process (CRP); (iii)
ranking method of alternatives.

In a practical MCGDM problem, the conventional rep-
resentation structure (e.g., crisp values) is incapable of
depicting the situation with strong uncertainty and ambigu-
ity (Khan et al. 2022). To better handle such circumstances,
various information expression structures have been investi-
gated. Zadeh reported his pioneering work regarding fuzzy
set theory (FST) in 1965 (Zadeh 1965); however, the fuzzy
set could not adequately reflect the degree of hesitancy in
human perception. Then, Atanassov (1986) extended the
FST to intuitionistic fuzzy sets (IFS). However, the sum of
membership and nonmembership degrees of IFS is restrained
within the range of [0,1], which is unrealistic because human
conception cannot perfectly fit within this constraint. To
address this concern,Yager (2014) further extended the IFS to

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-023-07842-5&domain=pdf
http://orcid.org/0000-0001-5485-1730


6630 Z. Hua, X. Jing

Pythagorean fuzzy sets (PFS). More recently, Zhang (2016)
extended the PFS to interval-valued Pythagorean fuzzy sets
(IVPFS), wherein the membership, nonmembership, and
indeterminacy degrees are characterized as interval numbers,
rather than crisp numbers. Given the capacity of IVPFS to
model the actualMCGDMprocesswith strong fuzziness, it is
employed in this work to represent the uncertain information
given by the decision-makers (DMs).

Another fundamental issue in MCGDM involves how
to integrate the decision evaluations in a reasonable and
structured manner. Although the existing interval-valued
Pythagorean fuzzy weighted average (IVPFWA) and the
interval-valued Pythagorean fuzzy weighted geometric
(IVPF-WG) operators can successfully aggregate interval-
valued Pythagorean fuzzy numbers (IVPFN) from multiple
sources (Peng and Yang 2016), these additive measures fail
to reflect the correlations among input arguments. However,
interaction phenomena commonly exist among criteria and
DMs, ranging from redundancies to synergies (Teng and Liu
2021). Investigating the effects of the interactions inherent
to the MCGDM process provides an opportunity to compre-
hensively analyze the importance of each element. The fuzzy
measure and Choquet integral can overcome the deficiency
of additivemeasures and have been explored in various fuzzy
environments. However, the Choquet integral only takes the
interactions between the adjacent coalitions of elements into
account (Chen et al. 2020). To overcome this limitation,
the generalized Shapley index can be introduced to reflect
the overall importance of each element and the global cor-
relations among them. This motivates us to investigate the
generalized Shapley function under an IVPFS environment
and develop the interval-valued Pythagorean fuzzy Choquet
integration (IVPFCI) and interval-valued Pythagorean fuzzy
Shapley aggregation (IVPFSA) operators to fuse the infor-
mation from correlated criteria and interrelated DMs.

At the beginning of an MCGDM problem, the experts’
opinions may vary considerably. Therefore, it is necessary to
reach a designated level of consensus to ensure the group
evaluation is satisfactory to most DMs, which could fur-
ther benefit the implementation of the decision result (Hua
et al. 2022; Hua and Xue 2022). Various consensus mod-
els have been proposed, and they can generally be divided
into two categories. The first is an iterative model based
on identification and direction rules (IDR). Individual eval-
uations that deviate far from the group are first identified
and then modified based on a specific recommendation rule
until the group consensus reaches a preset threshold. The
second category is the optimization-based model. Optimiza-
tion algorithms are utilized to find the best available solution
under the given constraints and have been widely applied in
different fields (Agushaka et al. 2022; Abualigah et al. 2021,
2022). The mathematical and metaheuristic approaches
are two well-known strategies for tackling optimization

problems (Oyelade et al. 2022; Abualigah et al. 2021, ?).
Inspired by optimization methods, the optimization-based
consensus-reaching model has been proposed. Although the
optimization-based CRP models can significantly improve
consensus efficiency, the results derived only from a math-
ematical model cannot ensure individual participation. To
overcome this limitation, this study develops an integrated
model that combines the advantages of IDR-based methods
and optimization models to maximize the improvement in
group consensus.

Once a group evaluation with adequate consensus has
been obtained, theMCGDMproceeds to the ranking process.
To date, various methods have been explored to facilitate
MCGDM, including Techniques for Order Preferences by
Similarity to Ideal Solution (TOPSIS) (Wang et al. 2022),
ELimination and Choice Translating REality (ELECTRE)
(Chen 2020), Preference Ranking Organization METHod
for Enrichment Evaluations (PROMETHEE) (Wang et al.
2022), and Vlsekriterijumska Optimizacija I Kompromisno
Resenje (VIKOR) (Raj Mishra et al. 2022), among others.
In particular, PROMETHEE is one of the most effective out-
ranking techniques based on dominance relations between
alternatives. However, the classical PROMETHEE method
has difficulty dealing with highly uncertain information.
Additionally, the heterogeneous correlations among criteria
and DMs are neglected, which could reduce the rationality
of the decision result. Considering this limitation, we aim
to extend the traditional PROMETHEE into the IVPFS con-
text to propose IVPF-PROMETHEE. Then, the generalized
Shapley value is introduced into the IVPF-PROMETHEE
method to analyze the correlative characteristic in MCGDM
problems. The main contributions of this study are outlined
as follows:

(1) The decision information is represented by IVPFS,which
offers a flexibleway to assess theMCGDMproblem from
both positive and negative perspectives with indetermi-
nacy. More importantly, the generalized Shapley value
is integrated into the IVPFS to handle the correlation
between variables and their combinations.

(2) An optimization model is constructed based on TOP-
SIS to derive the fuzzy measures on the criteria set,
and λ-fuzzy measure is applied to reduce the compu-
tational complexity when the number of input arguments
becomes relatively large.

(3) The interval-valued Pythagorean fuzzy Choquet inte-
gral and the interval-valued Pythagorean fuzzy Shapley
aggregation operators are developed to aggregate the
decision information with complementary, redundant, or
independent characteristics.

(4) To resolve conflicts amongDMs, an integrated consensus-
reachingmodel is constructed, which can simultaneously
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ensure expert participation and maximize consensus
enhancement.

(5) The classical PROMETHEE method is extended to the
IVPFS for the first time to our knowledge, and the
generalized Shapley index is incorporated into the IVPF-
PROMETHEE; these processes make the ranking result
more scientific.

The remainder of this paper is structured as follows:
Sect. 2 reviews the representation of fuzzy information,
consensus-reaching strategies, and alternative ranking meth-
ods. A brief introduction to PFS, IVPFS, fuzzy measures,
and the PROMETHEE method is presented in Sect. 3. In
Sect. 4, the extended IVPF-PROMETHEE method based on
the generalized Shapley value with CRP is described. A case
study and comparative analysis are presented in Sect. 5, and
in Sect. 6, the conclusions are summarized.

2 Literature review

2.1 Representation of fuzzy information

Considering the inherent ambiguity in human cognition,
various fuzzy set theories have been introduced to better
express experts’ evaluations inMCGDMproblems. Liu et al.
(2022) used intuitionistic fuzzy values to model the opin-
ions from DMs with particle swarm optimization. Ke et al.
(2022) proposed an MCGDM framework for photovoltaic
poverty alleviation project site selection under an intuitionis-
tic fuzzy environment. Given that the traditional intuitionistic
fuzzy aggregation operators cannot reflect the correlative
relationships of criteria, Jia and Wang (2022) proposed the
Choquet integral-based intuitionistic fuzzy arithmetic aggre-
gation operator to support MCGDM. However, the sum of
membership and nonmembership degrees of intuitionistic
fuzzy numbers is constrained within 0 and 1. Additionally,
the Choquet integral only considers the correlation between
adjacent coalitions of the elements, ignoring the global inter-
actions between them.

To overcome the limitation of IFS, Pythagorean fuzzy sets
(PFS) were proposed and applied to MCGDM problems.
For example, Zhang andChen (2022) employed Pythagorean
fuzzy preference relations in group decision-making to select
excellent doctors for international exchange. Zhou et al.
(2022) developed a statistical estimationmethod for handling
Pythagorean fuzzy information in a green credit problem.
Recently, Zhang (2016) extended PFS to IVPFS to better
describe the uncertainty in membership, nonmembership,
and indeterminacy degrees. Mohagheghi et al. (2020) used
IVPFS to evaluate high-technology project portfolios in
port operations. Fu et al. (2020) established a new product
ranking method combining the opinions represented with

IVPFS. However, the existing IVPF operators cannot con-
sider the relationship among input arguments. Therefore,
to take advantage of IVPFS’s ability to express uncertain
information and overcome the shortcomings of the existing
operators, we introduce the generalized Shapley index into
IVPF operators to reflect the overall importance of elements
and their global correlations in information fusion.

2.2 Consensus-reaching strategies

Consensus-reaching is essential in MCGDM since a consen-
sual decision outcome can benefit its further implementation.
The consensus-reaching strategies canmainly be categorized
into two types. The first one is the IDR-based consensus
model. Liu et al. (2022) proposed an IDR-based model to
determine the DMs with inadequate consensus and to gen-
erate the modified evaluations. Liao et al. (2021) addressed
the large-scale GDM problems considering local and global
consensus with an IDR-based model. In Liu et al. (2022), the
DM whose evaluations deviate most from the group is first
identified and then modified toward those they trust in the
social network.

The second one is the optimization-based method. Wu
et al. (2022) developed a two-fold personalized feedback
approachbyminimizing the adjustment cost of the consensus-
reaching process. Yuan et al. (2021) proposed a minimum
adjustment consensus method to obtain the updated eval-
uations with incomplete decision information. Wang et al.
(2022) extended the traditional minimum adjustment model
to handle large-scale MCGDM issues with a two-stage con-
sensus feedback mechanism. Recently, Yuan et al. (2022)
established a minimum conflict model with a limited bud-
get to improve group consensus in a pollution remediation
assessment problem.

The traditional IDR-based models often involve updat-
ing evaluations for iterations to improve the group con-
sensus, which reduces the efficiency of the consensus-
reaching process. Though optimization-based methods can
greatly enhance consensus efficiency, the results obtained
from mathematical models cannot reflect experts’ partici-
pation. To take advantage of both IDR-based models and
optimization-based methods, we proposed an integrated
consensus-reaching strategy to maximize the consensus
improvement at each modification, which can ensure both
expert participation and consensus efficiency.

2.3 Alternative rankingmethods

Based on the achieved consensual group evaluation, the
optimal solution can be obtained with alternative ranking
methods. Corrente and Tasiou (2023) utilized the TOPSIS
method for MCGDM problems with hierarchical and non-
monotonic criteria. Kumar and Chen (2022) extended the
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traditional TOPSIS with the weighted distance measure of
linguistic intuitionistic fuzzy sets to prioritize the alterna-
tives. In terms of the outranking methods, Kirişci et al.
(2022) proposed the Fermatean fuzzy ELECTREmethod for
biomedical material selection problems. Zahid et al. (2022)
extended the ELECTRE method to complex spherical fuzzy
sets to rank water treatment technologies. Raj Mishra et al.
(2022) modified the traditional VIKOR method based on
Fermatean hesitant fuzzy sets and proposed the remoteness
index for alternative ranking. Wang et al. (2022) used the
PROMETHEEmethod to assist with nested information rep-
resentation of multi-dimensional decision problems.

Among these ranking methods, PROMETHEE stands
out as the most effective outranking technique since it can
obtain the ranking of alternatives with their dominance
relations. PROMETHEE method is characterized by the
elimination of scale effects between criteria and managing
incomparability with comprehensive rankings. However, the
classical PROMETHEEcannot handle uncertain information
and does not consider the correlations between input argu-
ments. To address this issue, we first extend the traditional
PROMETHEE into the IVPFSenvironment to propose IVPF-
PROMETHEE. Then, we introduce the generalized Shapley
value into IVPF-PROMETHEE to investigate the correlated
property in MCGDM problems.

3 Preliminaries

In this section, some important fundamental concepts are
reviewed, including IVPFS, the generalized Shapley index,
and the PROMETHEE method.

3.1 Interval-valued Pythagorean fuzzy set

Definition 1 (Zhang 2016). X is a universe of discourse, then
the IVPFS H on X is given as:

H =
{〈
x,
[
μL
H (x), μU

H (x)
]
,
[
υL
H (x), υU

H (x)
]〉

|x ∈ X
}
(1)

whereμL
H (x), μU

H (x), υL
H (x), υU

H (x) ∈ [0, 1], 0 ≤ (μU
H (x))2

+ (υU
H (x))2 ≤ 1. The indeterminacy degree of x ∈

X to H is defined as πH (x) = [
π L
H (x), πU

H (x)
]
, with

π L
H (x) =

√
1 − (μU

H (x))
2 − (υU

H (x))
2

and πU
H (x) =√

1 − (μL
H (x))

2 − (υL
H (x))

2
. For brevity, we define h =([

μL
H (x), μU

H (x)
]
,
[
υL
H (x), υU

H (x)
])

as an IVPFN. If
μL
H (x) = μU

H (x) and υL
H (x) = υU

H (x), the IVPFS is reduced
to a PFS. If μU

H (x) + υU
H (x) ≤ 1, then the IVPFS is reduced

to an IVIFS. Thus, the IVPFS can be considered as a gener-
alization of PFS and IVIFS.

The fundamental operations of IVPFN are presented as
follows.

Definition 2 (Peng and Yang 2016). Let p̃1 = ([
μL
1 , μU

1

]
,[

υL
1 , υU

1

])
, p̃2 = ([

μL
2 , μU

2

]
,
[
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2

])
, and p̃
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]
,
[
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])
be three IVPFNs where λ > 0,

then their operations are defined as follows:
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1 )
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2
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2 )
2
,

√
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2
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υL
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( p̃)c =
([

υL , υU
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(5)

Definition 3 (Peng and Yang 2016). Let p̃ = ([
μL , μU

]
,[

υL , υU
])
be an IVPFS, then its score function and accuracy

function are calculated as:

S ( p̃) = 1

2

[(
μL
)2 +

(
μU
)2 −

(
υL
)2 −

(
υU
)2]

(6)

A ( p̃) = 1

2
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υL
)2 +

(
υU
)2]

(7)

where S ( p̃) ∈ [−1, 1], A ( p̃) ∈ [0, 1].
Then, for any two IVPFNs p̃1 and p̃2, the comparison

rules are given as:

(1) If S ( p̃1) > S ( p̃2), then p̃1 � p̃2;
(2) If S ( p̃1) = S ( p̃2), then

(a) If A ( p̃1) > A ( p̃2), then p̃1 � p̃2,
(b) If A ( p̃1) = A ( p̃2), then p̃1 = p̃2.

Definition 4 (Peng and Yang 2016). Let p̃1 = ([
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1 , μU

1

]
,[

υL
1 , υU

1

])
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2

]
,
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2

])
be two IVPFNs,

then the distance between them is calculated as:
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4
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+
∣∣∣∣
(
π L
1
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2

)2∣∣∣∣+
∣∣∣∣
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πU
1
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πU
2

)2∣∣∣∣
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3.2 Fuzzymeasure and the generalized Shapley
index

The fuzzymeasure, introduced by Sugeno (1974), is a power-
ful tool to determine the correlations among input arguments.
It replaces additivity with monotonicity and has been widely
employed in different fields.

Definition 5 (Michio 1974). Suppose X = {x1, x2, ..., xn}
denotes a universe of discourse and P(X) is the power set
of X , then ξ is a fuzzy measure on X that satisfies cer-
tain boundary conditions (i.e.,ξ(φ) = 0 and ξ(X) = 1)
and monotonicity (i.e., if A, B ∈ P(X) and A ⊆ B, then
ξ(A) ≤ ξ(B)).

Considering the difficulty in calculating the fuzzy mea-
sure when large numbers of elements are involved, Sugeno
proposed the λ-fuzzy measure.

Definition 6 (Michio 1974). Suppose X = {x1, x2, ..., xn}
denotes a universe of discourse. If the fuzzy measure ξ on X
meets Eq. (9),

ξ(A ∪ B) = ξ(A) + ξ(B) + λξ(A)ξ(B) (9)

where A ∩ B = φ and λ represents the interaction between
A and B, with λ ∈ [−1,+∞], then it is λ-fuzzy measure.
Specifically, λ > 0 indicates a positive interrelation between
A and B, whereas λ < 0 indicates a negative interaction, and
λ = 0 denotes that A and B are mutually independent.

Given a finite set X , the λ -fuzzy measure is denoted as:

ξ(X) =

⎧⎪⎪⎨
⎪⎪⎩

1
λ

[
n∏

i=1
(1 + λξ(xi )) − 1

]
λ �= 0

n∑
i=1

ξ(xi ) λ = 0
(10)

With ξ(X) = 1, Eq. (10) can be rewritten as:

λ + 1 =
n∏

i=1

(1 + λξ(xi )) (11)

Then, λ can be uniquely derived.

Definition 7 (Choquet 1955). Suppose f is a positive real-
valued mapping on X = {x1, x2, ..., xn} and ξ is a fuzzy
measure. The Choquet integral regarding ξ can be given as:

Cξ ( f (x1), f (x2), ..., f (xn))

=
n∑

i=1

(ξ(A(i)) − ξ(A(i+1))) f (x(i)) (12)

where (·) denotes a permutation on X , such that f (x(1)) ≤
f (x(2)) ≤ ... ≤ f (x(n)) and A(i) = {

x(i), x(i+1), ..., x(n)

}
with A(n+1) = φ.

To evaluate the importance of each coalition rather than
each element, Marichal (2000) introduced the concept of the
Shapley index to the game theory.

Definition 8 (Marichal 2000). Let ξ be a fuzzy measure on
X = {x1, x2, ..., xn}, then the generalized Shapley value for
∀S ⊆ X can be determined as:

ϕS(ξ, X) =
∑

T⊆X\S

(|X | − |S| − |T |)! |T |!
(|X | − |S| + 1)!

(ξ(S ∪ T ) − ξ(T )) (13)

where |X | , |S|, and |T | denote the number of elements in the
subsets. ϕS(ξ, X) is an expected value that reflects the global
correlation between set S and each set in N\S. If S = {i}
for ∀i ∈ X , then Eq. (13) is reduced to the Shapley function
(Shapley 1953):

ϕi (ξ, X) =
∑

T⊆X\{i}

(|X | − |T | − 1)! |T |!
|X |! (ξ(i ∪ T ) − ξ(T ))

(14)

3.3 The classical PROMETHEEmethod

The PROMETHEE method, initially proposed by Brans
et al. (1986), is an effective outranking technique based
on pairwise comparisons and preference functions. The
fundamental principle of PROMETHEE is to obtain the
net outranking flow of alternatives. Its basic processes are
described as follows:

Let
[
xi j
]
m×n denote the decision information, where xi j

indicates the evaluation of the alternatives ai (i = 1, 2, ...,m)

over criteria c j ( j = 1, 2, ..., n), and let w j ( j = 1, 2, ..., n)

represent the weight of c j , with w j ∈ [0, 1] and
n∑
j=1

w j = 1.

Step 1: Normalize the decision information
[
xi j
]
m×n into[

x̃i j
]
m×n .

Step 2: Calculate the divergence between each pair of
at and as(t, s = 1, 2, ...,m) over each criterion c j ( j =
1, 2, ..., n):

d j (at , as) = x̃t j − x̃s j (15)
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Fig. 1 General procedures the proposed method

Step 3: Obtain the preference value of at over as on c j :

PVj (at , as) = PVj (d j (at , as)) (16)

where PVj (·) denotes the preference function governing the
mapping of the divergence of different alternative to a pref-
erence value.

Step 4: Determine the overall preference value of at over
as :

τ(at , as) =
n∑
j=1

PVj (at , as)w j (17)

Step 5: Obtain the positive and negative outranking flow
of alternatives at :

δ+(at ) = 1

m − 1

∑
x∈A

τ(at , x) (18)

δ−(at ) = 1

m − 1

∑
x∈A

τ(x, at ) (19)

Step 6: Obtain the alternative ranking by computing the
net outranking index:

δ(at ) = δ+(at ) − δ−(at ) (20)

4 The extended IVPF-PROMETHEEmethod
based on the Shapley value with CRP

The proposedMCGDMframework includes fourmain steps:
(i) Establish and standardize the decisionmatrix; (ii) Develop
the generalized Shapley interval-valued Pythagorean fuzzy
aggregationoperator; (iii) Implement the consensus-reaching
process; (iv) Rank the alternatives. The general procedures
of the proposed method are illustrated in Fig. 1.

4.1 Determination of fuzzymeasures on the criteria
set and the expert set

Suppose there is a MCGDM problem where m alterna-
tives A = (a1, a2, ..., am) are evaluated by K experts E =
(e1, e2, ..., eK ) on n criteria C = (c1, c2, ..., cn) to form an
interval-valued Pythagorean fuzzy decision matrix as:

P =
[
pki j

]
m×n

=

⎡
⎢⎢⎢⎢⎢⎣

p111 p212 · · · pK1n
p121 p222 · · · pK2n
...

...
. . .

...

p1m1 p2m2 · · · pKmn

⎤
⎥⎥⎥⎥⎥⎦

(21)

where pki j =
([

μkL
i j , μkU

i j

]
,
[
υkL
i j , υkU

i j

])
is an IVPFN rep-

resenting ek(k = 1, 2, ..., K ) ’s assessment of ai (i =
1, 2, ...,m) on c j ( j = 1, 2, ..., n).

Afterward,
[
pki j

]
m×n

is standardized into
[
p̃ki j

]
m×n

by

converting cost-type attributes into benefit-type attributes.

p̃ki j =
{

pki j for benefit criterion

(pki j )
c

for cost criterion
(22)

Most existing studies assume that criteria and DMs are
independent. However, this premise is rarely true in practi-
cal MCGDM problems, where correlative effects commonly
exist among criteria and DMs. Thus, the generalization of
additive measures, namely non-additive measures, should be
implemented to reflect the mutual influences between input
arguments.

Based on the principle of TOPSIS, the best option should
be the furthest from the negative ideal solution (NIS) and
the nearest to the positive ideal solution (PIS). To maximize
the performance of alternatives, we construct an optimiza-
tion model to derive the fuzzy measure on the criteria set as
follows:

max
m∑
i=1

n∑
j=1

CCi j ( p̃i j , p̃−)ϕc j (ξ,C)

s.t .

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ(φ) = 0, ξ(C) = 1,

ξ(c j ) ∈ Wj , ξ(c j ) ≥ 0,

ξ(S) ≤ ξ(T ), ∀S, T ∈ C, S ⊆ T ,

ϕc j (ξ,C) = ∑
T⊆C\c j

(n−|T |−1)!|T |!
n! (ξ(c j ∪ T ) − ξ(T )),

CCi j ( p̃i j , p̃−) = di j ( p̃i j , p̃−)

di j ( p̃i j , p̃+)+di j ( p̃i j , p̃−)
.

(23)

where p̃i j denotes the group decision matrix; p̃+ =
([max(μL

i j ),max(μU
i j )], [min(υL

i j ),min(υU
i j )]) and p̃− =

([min(μL
i j ),min(μU

i j )], [max(υL
i j ),max(υU

i j )]) indicate the

123



A generalized Shapley index-based interval-valued Pythagorean fuzzy... 6635

PIS and NIS, respectively; CCi j ( p̃i j , p̃−) is the close-
ness coefficient of evaluation p̃i j from the NIS, where
di j ( p̃i j , p̃+) is the distance measure from p̃i j to p̃+;
ϕC j (ξ,C) is the generalized Shapley value of c j on fuzzy
measure ξ ; Wj denotes the known weight information.

Then, with the optimal fuzzy measure ξ , the generalized
Shapley indices of the criteria and their combinations can be
calculated using Eq. (13).

Next, the fuzzy measure of expert ek(k = 1, 2, ..., K ) is
discussed. Practical MCGDM problems typically involve a
series of correlated DMs. Because ξ is given on the power
set, this computation would become exponentially complex
if a large number of factors is involved. To address this issue,
the λ-fuzzy measure is introduced.

Given an expert set E , the λ-fuzzy measure satisfies

ξ(E) =
K∑

k=1

ξ(ek) + λ

K−1∑
k1=1

K∑
k2=k1+1

(ξ(ek1)ξ(ek2) + · · · + λn−1ξ(e1) · · · ξ(eK ))

= 1

λ

(
K∏

k=1

(1 + λξ(ek)) − 1

)
(24)

Since ξ(E) = 1, λ =
K∏

k=1
(1 + λξ(ek)) − 1. Then, based

on the importance of single experts ξ(ek) and Eq. (9), the
fuzzy measure of the subsets of E , namely ξ(E(k)), can be
easily obtained.

4.2 The generalized Shapley interval-valued
Pythagorean fuzzy aggregation operator

When correlations exist, aggregating the individual eval-
uations without considering the interaction effects would
lead to unreliable results. Therefore, to derive more accu-
rate importance values, all subsets including the specific
element must be considered apart from their individual
importance. The prominent advantage of the Shapley value is
that the correlations between elements can be characterized
by fuzzy measures, which ensures the weight can be allo-
cated to elements and their coalitions simultaneously. Thus,
the generalized Shapley value is introduced to represent each
element’s average contribution value in all coalitions.

This subsection develops the interval-valued Pythagorean
fuzzy Choquet integral and the interval-valued Pythagorean
fuzzy Shapley aggregation operators and briefly describes
their basic properties and some special cases.

4.2.1 Interval-valued Pythagorean fuzzy Choquet integral
operator

Definition 9 Suppose p̃ j =
([

μL
j , μ

U
j

]
,
[
υL
j , υU

j

])

( j = 1, 2, ..., n) is a set of IVPFNs and ξ be a fuzzy mea-

sure on P = { p̃1, p̃2, ..., p̃n}, then the IVPFCA operator is
defined as:

I V PFC A( p̃1, p̃2, ..., p̃n) = n⊕
j=1

(ξ(P( j)) − ξ(P( j+1)))̃p( j)

=
⎛
⎝
⎡
⎣

n∑
j=1

(ξ(P( j))−ξ(P( j+1)))μ
L
( j),

n∑
j=1

(ξ(P( j))−ξ(P( j+1)))μ
U
( j)

⎤
⎦ ,

⎡
⎣

n∑
j=1

(ξ(P( j)) − ξ(P( j+1)))υ
L
( j),

n∑
j=1

(ξ(P( j)) − ξ(P( j+1)))υ
U
( j)

⎤
⎦
⎞
⎠

(25)

where (·) represents a permutation on { p̃1, p̃2, ..., p̃n},
satisfying p̃(1) ≤ p̃(2) ≤ ... ≤ p̃(n) and P( j) ={̃
p( j), p̃( j+1), ..., p̃(n)

}
, with P(n+1) = φ, and (ξ(P( j)) −

ξ(P( j+1))) is the weight vector with
n∑
j=1

(ξ(P( j))

− ξ(P( j+1))) = 1.

Theorem 1 Given a collection of p̃ j =
([

μL
j , μ

U
j

]
,[

υL
j , υU

j

])
( j = 1, 2, ..., n). ξ is a fuzzy measure on P =

{ p̃1, p̃2, ..., p̃n}. Then, the aggregated value by IVPFCA
operator is still an IVPFN.

Some properties of the IVPFCA operator are discussed
below, including idempotency, commutativity, monotonicity,
and boundedness.

Property 1 (Idempotency) Let p̃ j =
([

μL
j , μ

U
j

]
,[

υL
j , υU

j

])
( j = 1, 2, ..., n) be a set of IVPFNs. If p̃ j = p̃

for all j , then I V PFC A( p̃1, p̃2, ..., p̃n) = p̃.

Proof Since
([

μL
j , μ

U
j

]
,
[
υL
j , υU

j

])
= ([

μL , μU
]
,
[
υL , υU

])
for

all j , ξ(P( j)) − ξ(P( j+1)) ≥ 0 and
n∑
j=1

(ξ(P( j)) − ξ(P( j+1))) = 1.

Thus, I V PFC A( p̃1, p̃2, ..., p̃n) = n⊕
j=1

(ξ(P( j)) − ξ(P( j+1))) p̃

=
([

n∑
j=1

(ξ(P( j)) − ξ(P( j+1)))μ
L ,

n∑
j=1

(ξ(P( j)) − ξ(P( j+1)))μ
U

]
,

[
n∑
j=1

(ξ(P( j)) − ξ(P( j+1)))υ
L ,

n∑
j=1

(ξ(P( j)) − ξ(P( j+1)))υ
U

])

=
([

μL
n∑
j=1

(ξ(P( j)) − ξ(P( j+1))), μ
U

n∑
j=1

(ξ(P( j)) − ξ(P( j+1)))

]
,

[
υL

n∑
j=1

(ξ(P( j)) − ξ(P( j+1))), υ
U

n∑
j=1

(ξ(P( j)) − ξ(P( j+1)))

])

= ([
μL , μU

]
,
[
υL , υU

])
��

Property 2 (Commutativity) Let p̃ j =
([

μL
j , μ

U
j

]
,[

υL
j , υU

j

])
( j = 1, 2, ..., n) be a set of IVPFNs and{

p̃1′, p̃2′, ..., p̃n ′} be any permutation of { p̃1, p̃2, ..., p̃n},
then I V PFC A( p̃1, p̃2, ..., p̃n) = I V PF C A( p̃1′, p̃2′, ...,
p̃n ′) .
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Proof Since
{
p̃1′, p̃2′, ..., p̃n ′} denotes any permutation of

{ p̃1, p̃2, ..., p̃n}, based on Definition 7, it is straightforward
to obtain this property. ��

Property 3 (Monotonicity) Let { p̃1, p̃2, ..., p̃n} and
{ p̂1, p̂2, ..., p̂n} be two sets of IVPFNs, where p̃ j =([

μL
j , μ

U
j

]
,
[
υL
j , υU

j

])
, p̂ j =

([
μ̂L

j , μ̂
U
j

]
,
[
υ̂L
j , υ̂U

j

])
,

and p̃ j � p̂ j ( j = 1, 2, ..., n) , then I V PFC A( p̃1, p̃2, ...,
p̃n) > I V PFC A( p̂1, p̂2, ..., p̂n).

Proof I V PFC A( p̃1, p̃2, ..., p̃n)

=
([

n∑
j=1

(ξ(P( j)) − ξ(P( j+1)))μ
L
( j),

n∑
j=1

(ξ(P( j)) − ξ(P( j+1)))μ
U
( j)

]
,

[
n∑
j=1

(ξ(P( j)) − ξ(P( j+1)))υ
L
( j),

n∑
j=1

(ξ(P( j)) − ξ(P( j+1)))υ
U
( j)

])

I V PFC A( p̂1, p̂2, ..., p̂n)

=
([

n∑
j=1

(ξ(P( j)) − ξ(P( j+1)))
̂μL

( j),
n∑
j=1

(ξ(P( j)) − ξ(P( j+1)))
̂μU

( j)

]
,

[
n∑
j=1

(ξ(P( j)) − ξ(P( j+1)))
̂υL

( j),
n∑
j=1

(ξ(P( j)) − ξ(P( j+1)))
̂υU

( j)

])

According to Definition 3, the score value of these two sets
of IVPFNs can be derived as:
S(I V PFC A( p̃1, p̃2, ..., p̃n))

= 1
2

[
(

n∑
j=1

(ξ(P( j))−ξ(P( j+1)))μ
L
( j))

2+(
n∑
j=1

(ξ(P( j)) − ξ(P( j+1)))μ
U
( j))

2

− (
n∑
j=1

(ξ(P( j)) − ξ(P( j+1)))υ
L
( j))

2 − (
n∑
j=1

(ξ(P( j)) − ξ(P( j+1)))υ
U
( j))

2
]

S(I V PFC A( p̂1, p̂2, ..., p̂n))

= 1
2

[
(

n∑
j=1

(ξ(P( j)) − ξ(P( j+1)))
̂μL

( j))
2+ (

n∑
j=1

(ξ(P( j)) − ξ(P( j+1)))
̂μU

( j))
2

− (
n∑
j=1

(ξ(P( j)) − ξ(P( j+1)))
̂υL

( j))
2 − (

n∑
j=1

(ξ(P( j)) − ξ(P( j+1)))
̂υU

( j))

2
]

Since p̃ j � p̂ j , then
(
μL

j

)2 +
(
μU

j

)2 −
(
υL
j

)2 −
(
υU
j

)2
>

(
μ̂L

j

)2 +
(
μ̂U

j

)2 −
(
υ̂L
j

)2 −
(
υ̂U
j

)2
.

Thus, ((ξ(P( j)) − ξ(P( j+1)))μ
L
( j))

2 + ((ξ(P( j))

−ξ(P( j+1)))μ
U
( j))

2 − ((ξ(P( j)) − ξ(P( j+1)))υ
L
( j))

2

−((ξ(P( j)) − ξ(P( j+1)))υ
U
( j))

2 > ((ξ(P( j))

−ξ(P( j+1)))
̂μL

( j))
2 + ((ξ(P( j)) − ξ(P( j+1)))

̂μU
( j))

2

−((ξ(P( j)) − ξ(P( j+1)))
̂υL

( j))
2

−((ξ(P( j)) − ξ(P( j+1)))
̂υU

( j))
2

Then, (
n∑
j=1

(ξ(P( j)) − ξ(P( j+1)))μ
L
( j))

2 + (
n∑
j=1

(ξ(P( j))

−ξ(P( j+1)))μ
U
( j))

2 − (
n∑
j=1

(ξ(P( j)) − ξ(P( j+1)))υ
L
( j))

2

−(
n∑
j=1

(ξ(P( j)) − ξ(P( j+1)))υ
U
( j))

2 > (
n∑
j=1

(ξ(P( j))

−ξ(P( j+1)))
̂μL

( j))
2 + (

n∑
j=1

(ξ(P( j)) − ξ(P( j+1)))
̂μU

( j))
2

−(
n∑
j=1

(ξ(P( j)) − ξ(P( j+1)))
̂υL

( j))
2−(

n∑
j=1

(ξ(P( j)) − ξ(P( j+1)))
̂υU

( j))
2

Thus, S(I V PFC A( p̃1, p̃2, ..., p̃n)) > S(I V PFC A
( p̂1, p̂2, ..., p̂n)), and I V PFC A( p̃1, p̃2, ..., p̃n) >

I V PFC A( p̂1, p̂2, ..., p̂n) is obtained. ��
Property 4 (Boundedness) Let p̃ j =

([
μL

j , μ
U
j

]
,[

υL
j , υU

j

])
( j = 1, 2, ..., n) be a set of IVPFNs. Let NIS be

p̃− =
([

min(μL
j ),min(μU

j )
]
,
[
max(υL

j ),max(υU
j )
])

and

PISbe p̃+=
([

max(μL
j ),max(μU

j )
]
,
[
min(υL

j ),min(υU
j )
])

,

then p̃− ≤ I V PFC A( p̃1, p̃2, ..., p̃n) ≤ p̃+.

Proof SinceμL
j ≥min(μL

j ),μ
U
j ≥ min(μU

j ),υL
j ≤ max(υL

j )

and υU
j ≤ max(υU

j ), based on Property 1 and Property

3, we can obtain p̃− = I V PFC A( p̃−, p̃−, ..., p̃−) ≤
I V PFC A( p̃1, p̃2, ..., p̃n). Similarly, this proves that
I V PFC A( p̃1, p̃2, ..., p̃n) ≤ I V PFC A( p̃+, p̃+, ..., p̃+) =
p̃+. Thus, p̃− ≤ I V PFC A( p̃1, p̃2, ..., p̃n) ≤ p̃+. ��
Remark 1 If the fuzzy measure ξ degenerates to an addi-
tive measure, i.e., ξ(P( j)) = ∑

p̃( j)∈P( j)

ξ (̃p( j)), ∀P( j) ⊆ P ,

then the IVPFCA operator will be degenerated into IVPFWA
operator.

Proof Since ξ is an additive measure, ξ(P( j))− ξ(P( j+1)) =
ξ(̃p( j)). Then, I V PFC A( p̃1, p̃2, ..., p̃n)

= n⊕
j=1

(ξ(P( j)) − ξ(P( j+1)))̃p( j) = n⊕
j=1

ξ(̃p( j))̃p( j) =
n⊕
j=1

ξ( p̃ j ) p̃ j=
([

n∑
j=1

ξ( p̃ j )μ
L
j ,

n∑
j=1

ξ( p̃ j )μ
U
j

]
,

[
n∑
j=1

ξ( p̃ j )υ
L
j ,

n∑
j=1

ξ( p̃ j )υ
U
j

])
, where ξ(̃p( j)) represents

the weight of IVPFN p̃( j). ��

Definition 10 Let p̃ j =
([

μL
j , μ

U
j

]
,
[
υL
j , υU

j

])

( j = 1, 2, ..., n) be a set of IVPFNs and ξ be a fuzzy mea-
sure on P = { p̃1, p̃2, ..., p̃n}, then the IVPFCG operator is
defined as:

I V PFCG( p̃1, p̃2, ..., p̃n) = n⊗
j=1

(̃p( j))
(ξ(P( j))−ξ(P( j+1)))

=
⎛
⎝
⎡
⎣

n∏
j=1

(μL
( j))

(ξ(P( j))−ξ(P( j+1)))
,

n∏
j=1

(μU
( j))

(ξ(P( j))−ξ(P( j+1)))

⎤
⎦ ,

⎡
⎣

n∏
j=1

(υL
( j))

(ξ(P( j))−ξ(P( j+1)))
,

n∏
j=1

(υU
( j))

(ξ(P( j))−ξ(P( j+1)))

⎤
⎦
⎞
⎠

(26)

where (·) represents a permutation on { p̃1, p̃2, ..., p̃n},
such that p̃(1) ≤ p̃(2) ≤ ... ≤ p̃(n) and P( j) ={̃
p( j), p̃( j+1), ..., p̃(n)

}
, with P(n+1) = φ.
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Remark 2 When the fuzzy measure ξ reduces to an addi-
tive measure, i.e., ξ(P( j)) = ∑

p̃( j)∈P( j)

ξ (̃p( j)), ∀P( j) ⊆ P ,

then the IVPFCGoperator will be degenerated into IVPFWG
operator. For brevity, the proof is omitted here.

4.2.2 Interval-valued Pythagorean fuzzy Shapley
aggregation operator

The developed IVPFCA and IVPFCG operators can eluci-
date the correlation between two adjacent coalitions, namely
P( j) and P( j+1) for j = 1, 2, ..., n. To further characterize
the overall interactions among various combinations of input
arguments, the IVPFSA operator is proposed.

Definition 11 Given a collection of IVPFNs p̃ j

=
([

μL
j , μ

U
j

]
,
[
υL
j , υU

j

])
( j = 1, 2, ..., n) and defining ξ

as a fuzzy measure on P = { p̃1, p̃2, ..., p̃n}, then the
IVPFSA operator is defined as:

I V PFSA( p̃1, p̃2, ..., p̃n) = n⊕
j=1

[
ϕP( j) (ξ, P) − ϕP( j+1) (ξ, P)

]
p̃( j)

=
([

n∑
j=1

(ϕP( j) (ξ, P) − ϕP( j+1) (ξ, P))μL
( j),

n∑
j=1

(ϕP( j) (ξ, P) − ϕP( j+1) (ξ, P))μU
( j)

]
,

[
n∑
j=1

(ϕP( j) (ξ, P) − ϕP( j+1) (ξ, P))υL
( j),

n∑
j=1

(ϕP( j) (ξ, P) − ϕP( j+1) (ξ, P))υU
( j)

])
(27)

where (·) represents a permutation on { p̃1, p̃2, ..., p̃n},
satisfying p̃(1) ≤ p̃(2) ≤ ... ≤ p̃(n) and P( j) ={̃
p( j), p̃( j+1), ..., p̃(n)

}
, with P(n+1) = φ, and ϕP( j) (ξ, P) is

the generalized Shapley index of P( j) with respect to fuzzy
measure ξ on P .

Theorem 2 Given a set of p̃ j =
([

μL
j , μ

U
j

]
,
[
υL
j , υU

j

])

( j = 1, 2, ..., n). ξ is a fuzzymeasureon P = { p̃1, p̃2, ..., p̃n}.
Then, the aggregated value by IVPFSA operator is still an
IVPFN.

The IVPFSA operator also has the properties discussed
above, and since the proofs are similar to those already pre-
sented in subsection 3.2.1, the detailed process is omitted
here.

Remark 3 When the fuzzy measure ξ reduces to an addi-
tive measure, the IVPFSA operator will be degraded to the
IVPFWA operator.

Definition 12 Let p̃ j =
([

μL
j , μ

U
j

]
,
[
υL
j , υU

j

])

( j = 1, 2, ..., n) be a set of IVPFNs. ξ is a fuzzy measure on
P = { p̃1, p̃2, ..., p̃n}. Then, the interval-valued Pythagorean
fuzzy Shapley geometric (IVPFSG) operator is defined as:

I V PFSG( p̃1, p̃2, ..., p̃n) = n⊗
j=1

(̃p( j))
(ϕP( j) (ξ,P)−ϕP( j+1) (ξ,P))

=
([

n∏
j=1

(μL
( j))

(ϕP( j) (ξ,P)−ϕP( j+1) (ξ,P))
,

n∏
j=1

(μU
( j))

(ϕP( j) (ξ,P)−ϕP( j+1) (ξ,P))

]
,

[
n∏
j=1

(υL
( j))

(ϕP( j) (ξ,P)−ϕP( j+1) (ξ,P))
,

n∏
j=1

(υU
( j))

(ϕP( j) (ξ,P)−ϕP( j+1) (ξ,P))

])
(28)

where (·) represents a permutation on { p̃1, p̃2, ..., p̃n},
satisfying p̃(1) ≤ p̃(2) ≤ ... ≤ p̃(n) and P( j) ={̃
p( j), p̃( j+1), ..., p̃(n)

}
, with P(n+1) = φ.

Remark 4 If no interaction exists among elements and their
combinations, ξ is reduced to an additive measure. Then the
IVPFSG operator is degenerated to the IVPFWG operator.

4.3 Consensus reaching based on the generalized
Shapley index with IVPFS

Before arriving at a decision, it is necessary to ensure that
the group consensus has reached a certain level. In this sub-
section, the generalized Shapley value is first introduced into
the CRP, and a novel feedback strategy is proposed to guide
the CRP with effective modification suggestions.
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4.3.1 Consensus measurements

In this study,wemeasure the consensus according to the devi-
ation between individual opinions and the collective opinion.

With the developed IVPFSA operator (subsection 3.2.2),
the group evaluation can be derived as:

p̃i j = K⊕
k=1

(ϕE(k) (ξ, E) − ϕE(k+1) (ξ, E))
˜

p(k)
i j

=
([

K∑
k=1

(ϕE(k) (ξ, E) − ϕE(k+1) (ξ, E))μ
(k)L
i j ,

K∑
k=1

(ϕE(k) (ξ, E) − ϕE(k+1) (ξ, E))μ
(k)U
i j

]
,

[
K∑

k=1
(ϕE(k) (ξ, E) − ϕE(k+1) (ξ, E))υ

(k)L
i j ,

K∑
k=1

(ϕE(k) (ξ, E) − ϕE(k+1) (ξ, E))υ
(k)U
i j

])
(29)

where
˜

p(k)
i j =

([
μ

(k)L
i j , μ

(k)U
i j

]
,
[
υ

(k)L
i j , υ

(k)U
i j

])
represents

the decision information from ek on ai over c j , and (·)
is a permutation on

{
p̃1i j , p̃

2
i j , ..., p̃

K
i j

}
, such that

˜

p(1)
i j ≤

˜

p(2)
i j ≤ ... ≤ ˜

p(K )
i j and E(k) =

{̃
p(k)
i j ,

˜

p(k+1)
i j , ...,

˜

p(K )
i j

}
,

with E(K+1) = φ, and ϕE(k) (ξ, E) is the generalized Shap-
ley index of E(k) regarding fuzzy measure ξ on E .

Definition 13 (Consensus at the evaluation level) Let p̃ki j be
the evaluation from ek(k = 1, 2, ..., K ) to ai (i = 1, 2, ...,m)

over c j ( j = 1, 2, ..., n) and p̃i j denotes the group opinion,
then the consensus at ek’s evaluation level is defined as:

CLk
i j = 1 −

∣∣∣ p̃ki j − p̃i j

∣∣∣ (30)

where CLk
i j ∈ [0, 1].

Definition 14 (Consensus at the alternative level) ek’s con-
sensus degree CLk

i at the alternative level can be calculated
as:

CLk
i = 1

n

n∑
j=1

CLk
i j (31)

where CLk
i ∈ [0, 1].

Definition 15 (Consensus at the expert level) ek’s consensus
degree CLk at the expert level can be obtained as:

CLk = 1

m

m∑
i=1

CLk
i (32)

where CLk ∈ [0, 1]. A smaller divergence between ek’s
assessment and the collective opinion means a larger con-
sensus degree.

Definition 16 (Consensus at the group level) The group con-
sensus level GCL is then computed as:

GCL = K⊕
k=1

(ϕM(k) (ξ, M) − ϕM(k+1) (ξ, M))CL(k) (33)

where ϕM(k) (ξ, M) = ∑
T⊆M\M(k)

(K−|M(k)|−|T |)!|T |!
(K−|M(k)|+1)! (ξ(M(k) ∪

T ) − ξ(T )) is the generalized Shapley index of M(k) regard-
ing fuzzy measure ξ on set M , and (·) is a permutation
on

{
CL1,CL2, ...,CLK

}
, such that CL(1) ≤ CL(2) ≤

... ≤ CL(K ) andM(k) = {
CL(k),CL(k+1), ...,CL(K )

}
, with

M(K+1) = φ. Therefore, it is clear that GCL ∈ [0, 1].
Next, GCL is compared with a predefined parameter η

to test whether the consensus level meets the requirements.
If GCL ≥ η, then the extended PROMETHEE method can
be employed to rank alternatives; otherwise, the feedback
strategy should be implemented to improve group consensus.

4.3.2 Feedback mechanismwith maximum consensus
improvement

The feedback strategy includes two steps: first, the IVPFNs
that must be adjusted are identified, and second, we develop
an optimization model to maximize GCL improvement.

First, the assessments that need to bemodified are selected
according to three consensus levels.

(1) First, the DMs that contribute less to a sufficient GCL are
identified:

EXPS =
{
k
∣∣∣CLk < η

}
(34)

(2) Then, for the DMs in EX PS , the alternatives whose
consensus levels are below the threshold are identified:

ALS =
{
(k, i)

∣∣∣k ∈ EXPS ∧ CLk
i < η

}
(35)

(3) For the alternatives in ALS, the specific evaluations that
must be modified are identified:

EVS =
{
(k, i, j)

∣∣∣(k, i) ∈ ALS ∧ CLk
i j < η

}
(36)
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Suppose p̃ki j is one of the identified IVPFNs and group
evaluation p̃i j is used to guide the adjustment to promote

consensus, then the updated pki j can be derived as:

pki j = θ p̃ki j + (1 − θ) p̃i j , (i, j, k ∈ EV S) (37)

where θ ∈ (0, 1) is an adjustment parameter indicating the
degree of modification.

In contrast with the traditional IDR-based model, which
randomly selects the adjustment parameters, this study estab-
lishes an optimization model to determine θ , which could
maximize GCL improvement. The integrated CRP model is
given as follows:

max : �GCL = GCL − GCL

s.t .

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pki j = θ p̃ki j + (1 − θ) p̃i j , i, j, k ∈ EV S,

θ ∈ (0, 1),

p̃i j = K⊕
k=1

(ϕE(k) (ξ, E) − ϕE(k+1) (ξ, E))
˜

p(k)
i j ,

pi j = K⊕
k=1

(ϕE(k) (ξ, E) − ϕE(k+1) (ξ, E))p(k)
i j ,

CLk = 1
mn

m∑
i=1

n∑
j=1

[
1 −

∣∣∣ p̃ki j − p̃i j
∣∣∣
]
,

CLk = 1
mn

m∑
i=1

n∑
j=1

[
1 −

∣∣∣pki j − pi j
∣∣∣
]
,

GCL = K⊕
k=1

(ϕM(k) (ξ, M) − ϕM(k+1) (ξ, M))CL(k),

GCL = K⊕
k=1

(ϕM(k) (ξ, M) − ϕM(k+1) (ξ, M))CL(k).

(38)

where CLk and GCL denote the updated consensus at the
expert and group levels, respectively.

Using the optimal θ determined by Lingo 17.0, the
adjusted IVPFNs can be obtained. These procedures should
be conducted iteratively until GCL ≥ η. Then, the deci-
sion information can be reaggregated based on the IVPFSA
operator to obtain the final group evaluation for the ranking
process.

4.4 The extended IVPF-PROMETHEEmethod with
the Shapley value

In the classical PROMETHEE method, the crisp number
is utilized to represent the preference value between alter-
natives. However, the inevitable uncertainty of MCGDM
problems is not well reflected and cannot be properly han-
dled with crisp values. Additionally, the traditional method
fails to adequately consider criteria interactions. To fill this
gap, we incorporate the generalized Shapley index into the
classical PROMETHEE method with IVPFS to improve the
ranking process.

The key aim of the PROMETHEEmethod is to determine
the preference value from the divergence between alterna-
tives using Eq. (16). In this study, the preference values are
represented with IVPFN to better reflect the inherent ambi-
guity in MCGDM problems.

Let α
j
ts =

([
μ̃(d j L

ts ), μ̃(d jU
ts )

]
,
[
υ̃(d j L

ts ), υ̃(d jU
ts )

])

denote the IVPF preference value of alternative at over
as(t, s = 1, 2, ...,m) on criteria c j ( j = 1, 2, ..., n), where[
μ̃(d j L

ts ), μ̃(d jU
ts )

]
indicates the preference degree of at over

as and
[
υ̃(d j L

ts ), υ̃(d jU
ts )

]
is the degree to which at is not

preferred over as . A qualified IVPF preference value should
meet the following requirements (Chen 2019):

(1) μ̃(d j L
ts ), μ̃(d jU

ts ), υ̃(d jU
ts ), υ̃(d j L

ts ) ∈ [0, 1],
0 ≤ (μ̃(d jU

ts ))2 + (υ̃(d jU
ts ))2 ≤ 1, ∀d ∈ R;

(2) d j
ts

�= p̃t j − p̃s j , then υ̃(d j L
ts ) = μ̃(d j L

st ) and υ̃(d jU
ts ) =

μ̃(d jU
st );

(3) When 0 ≤ d j
ts ≤ q, μ̃(d j L

ts ) = υ̃(d j L
ts ) = μ̃(d jU

ts ) =
υ̃(d jU

ts ) = r ;
(4) When d j

ts ≥ p ≥ 0, μ̃(d j L
ts ) = μ̃(d jU

ts ) = 1 and
υ̃(d j L

ts ) = υ̃(d jU
ts ) = 0;

(5) μ̃(d j L
ts ) and μ̃(d jU

ts ) increase monotonically, whereas
υ̃(d j L

ts ) and υ̃(d jU
ts ) decrease monotonically as d j

ts
increases.

Property (1) guarantees the preference degree is an

IVPFN.Property (2) is reasonable because
[
μ̃(d j L

st ), μ̃(d jU
st )

]

indicates the preference degree of as over at , so it must be

equal to
[
υ̃(d j L

ts ), υ̃(d jU
ts )

]
. Property (3) corresponds to the

situation where the divergence between at and as is below
the indifference threshold q, which implies the deviation is
too small to show any preference to any single alternative.
Additionally, r is a “blind” confidence parameter, which can
be obtained based on how certain the DM is in a given situa-
tion. Property (4) indicates that when the divergence between
at and as is above the strict preference threshold p, the DM
should have an absolute preference of at over as . Property (5)
indicates that the DM’s preference would gradually increase
as the divergence between at and as increases from q to p.

In general, there are five kinds of preference functions
in PROMETHEE method: (i) the usual preference function,
(ii) the quasi-preference function, (iii) the linear preference
function, (iv) the linear preference function with indifference
area, and (v) the Gaussian preference function (Brans et al.
1986). In this paper, (iv) is selected to obtain the preference
index, which is shown in Fig. 2.

The IVPF-PROMETHEEmethod that considers the global
interactions among criteria is developed as follows:
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Fig. 2 Linear preference
function with indifference area.
a and b denote the preference
and nonpreference degrees of
the preference function,
respectively

Step 1. Let
[
p̃i j
]
m×n be the final group decision matrix,

where p̃i j =
([

μL
i j , μ

U
i j

]
,
[
υL
i j , υ

U
i j

])
is the evaluation of

ai (i = 1, 2, ...,m) regarding c j ( j = 1, 2, ..., n).
Step 2.Thedeviation betweenat andas(t, s = 1, 2, ...,m)

over c j can be obtained as:

d j L
ts = hLt j − hLs j (39)

d jU
ts = hUt j − hUs j (40)

where hLt j =
(
μL
t j , υ

L
t j

)
, hUt j =

(
μU
t j , υ

U
t j

)
, and hLs j =(

μL
s j , υ

L
s j

)
, hUs j =

(
μU
sj , υ

U
sj

)
.

Step 3. Based on the linear preference function with indif-
ference area, the deviation ismapped into an IVPFpreference
value as:

μ̃(d j L
ts ) =

⎧
⎪⎨
⎪⎩

r 0 ≤ d j L
ts ≤ q

(1−r)(d j L
ts −q)

p−q + r q < d j L
ts ≤ p

1 d j L
ts > p

(41)

υ̃(d j L
ts ) =

⎧⎪⎨
⎪⎩

r 0 ≤ d j L
ts ≤ q

r(p−d j L
ts )

p−q q < d j L
ts ≤ p

0 d j L
ts > p

(42)

μ̃(d jU
ts ) and υ̃(d jU

ts ) can be determined in the same way.

Since (μ̃(d jU
ts ))2 + (υ̃(d j L

ts ))2 ≤ 1, 2(1 − r)2d jU
ts

2 +
2r2 p2 ≤ 2(1 − r)2 p2 + 2r2 p2 ≤ 1. Thus, r ∈ [0, 1

2 ].
Step 4. The IVPF preference value of at over as(t, s =

1, 2, ...,m) on c j ( j = 1, 2, ..., n) can be represented as:

α
j
ts =

([
μ̃(d j L

ts ), μ̃(d jU
ts )

]
,
[
υ̃(d jU

ts ), υ̃(d j L
ts )
])

(43)

Step 5. Considering the correlations among criteria, the
overall IVPF preference value of at over as can be aggregated
based on the developed IVPFSA operator.

αts = ([
μL
ts, μ

U
ts

]
,
[
υU
ts , υ

L
ts

]) = IVPFSA(α1
ts, α

2
ts, ..., α

n
ts) = n⊕

j=1

[
ϕC( j) (ξ,C) − ϕC( j+1) (ξ,C)

]
α

( j)
ts

=
([

n∑
j=1

(ϕC( j) (ξ,C) − ϕC( j+1) (ξ,C))μ̃(d( j)L
ts ),

n∑
j=1

(ϕC( j) (ξ,C) − ϕC( j+1) (ξ,C))μ̃(d( j)U
ts )

]
,

[
n∑
j=1

(ϕC( j) (ξ,C) − ϕC( j+1) (ξ,C))υ̃(d( j)U
ts ),

n∑
j=1

(ϕC( j) (ξ,C) − ϕC( j+1) (ξ,C))υ̃(d( j)L
ts )

])
(44)

where (·) is a permutation on
{
α1
ts, α

2
ts, ..., α

n
ts

}
, such that

α
(1)
ts ≤ α

(2)
ts ≤ ... ≤ α

(n)
ts andC( j) =

{
α

( j)
ts , α

( j+1)
ts , ..., α

(n)
ts

}
,

with C(n+1) = φ, and ϕC j (ξ,C) is the generalized Shapley
index of C( j) regarding fuzzy measure ξ on C .
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Then, the IVPF preference relation matrix R can be estab-
lished as:

R =

⎡
⎢⎢⎢⎣

− ([
μL
12, μ

U
12

]
,
[
υU
12, υ

L
12

]) · · · ([μL
1m, μU

1m

]
,
[
υU
1m, υL

1m

])
([

μL
21, μ

U
21

]
,
[
υU
21, υ

L
21

]) − · · · ([μL
2m, μU

2m

]
,
[
υU
2m, υL

2m

])
...

...
. . .

...([
μL
m1, μ

U
m1

]
,
[
υU
m1, υ

L
m1

]) ([
μL
m2, μ

U
m2

]
,
[
υU
m2, υ

L
m2

]) · · · −

⎤
⎥⎥⎥⎦
m×m

(45)

Step 6. The IVPF positive and negative outranking flow
of at can be calculated as:

δ+(at ) = 1

m − 1

m⊕
s=1,s �=t

αts = 1

m − 1

m⊕
s=1,s �=t

([
μL
ts, μ

U
ts

]
,
[
υU
ts , υ

L
ts

])
(46)

δ−(at ) = 1

m − 1

m⊕
s=1,s �=t

αst = 1

m − 1

m⊕
s=1,s �=t

([
μL
st , μ

U
st

]
,
[
υU
st , υ

L
st

])
(47)

Step 7. Thus, the final ranking result is obtained according
to the net outranking flow, which is calculated as:

δ(at ) = S(δ+(at )) − S(δ−(at )) (48)

4.5 Flowchart and algorithm of the proposed
MCGDMmethod

The detailed steps of the proposed method are shown in Fig.
3 and Algorithm 1 to illustrate our method more clearly.

5 Case study

To illustrate the superiority of the proposed method, a prac-
tical problem concerning sustainable supplier evaluation is
given.

5.1 Problem description

The increasing scientific and public awareness about climate
change and ecological challenges has driven organizations
to implement sustainable production processes. Thus, sus-
tainable supplier selection and performance evaluations have
become key components in supply chain management. This
section works through a supplier evaluation problem involv-
ing a company located in Beijing, China. To achieve the
sustainable development goals, this company must select the
most suitable supplier from the social, economic, and envi-
ronmental perspectives.

Algorithm 1: The proposed MCGDM method.
Phase 1: Establish and standardize the decision matrix

Step 1: Collect each DM ek(k = 1, 2, ..., K ) ’s evaluation on
alternatives ai (i = 1, 2, ...,m) over each criterion

c j ( j = 1, 2, ..., n) to form an IVPF decision matrix
[
pki j

]
m×n

.

Step 2: Standardize
[
pki j

]
m×n

by converting cost-type criteria

into benefit-type criteria.
Phase 2: Develop the generalized Shapley IVPF

aggregation operator
Step 3: Obtain the λ-fuzzy measure on the set of expert via Eq.
(24).
Step 4: Determine the generalized Shapley value ϕE(k) (ξ, E) on
the expert set by Eq. (13).
Step 5: Propose the IVPFSA and IVPFSG operators that reflect
the global correlations among input arguments.
Step 6: Apply the IVPFSA operator to generate the group

opinion

[̃
p(0)
i j

]

m×n
by Eq. (29).

Phase 3: Consensus-reaching process
Step 7: Let ε denote the iteration time, and let[̃
p(ε)
i j

]

m×n
=
[̃
p(0)
i j

]

m×n
. Calculate the consensus levels CLk(ε)

i j ,

CLk(ε)
i , CLk(ε), and GCL(ε) using Eqs. (30–33). If GCL(ε) ≥ η,

skip to Step 11; otherwise, the feedback strategy should be
implemented.
Step 8: Identify the IVPFNs that must be modified according to
three consensus levels.
Step 9: Determine the adjustment parameter θ(ε) via Model (38)
to maximize GCL improvement.
Step 10: Update the decision information. Let ε = ε + 1, and
return to Step 6.

Step 11: Let
[
p̃i j

]
m×n

=
[̃
p(ε)
i j

]

m×n
and output the final group

opinion
[
p̃i j

]
m×n

.

Phase 4: Rank the alternatives based on the
IVPF-PROMETHEE method
Step 12: Compute the optimal fuzzy measure on the criteria set
using Model (23).
Step 13: Obtain the generalized Shapley value ϕC j (ξ,C) on the
criteria set by Eq. (13).
Step 14: Obtain the deviation between alternatives over each
criterion by Eqs. (39)–(40).
Step 15: Use the IVPFSA operator to derive the IVPF preference
relation matrix R via Eq. (41)–(45).
Step 16: Determine the IVPF positive δ+(ai ) and negative
outranking flow δ−(ai ) using Eqs. (46)–(47).
Step 17: Rank the alternatives based on the net-outranking flow
δ(ai ) via Eq. (48).
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Fig. 3 Detailed steps of the proposed MCGDM method

Following preliminary analyses, four suppliers comprise
the alternative set A = {a1, a2, a3, a4}. A group of five
experts E = {e1, e2, ..., e5} of the company are gathered
to address the MCGDM problem. After a careful discus-
sion, three attributes are selected to assess these suppliers:
c1-social responsibility; c2-research and development capac-
ity; c3-green manufacturing.

5.2 Specific procedures of the proposedMCGDM
method for sustainable supplier selection

Phase 1: Establish and standardize the decision matrix
Step 1. The performance of four alternatives ai (i =

1, 2, 3, 4) are assessed by each expert ek(k = 1, 2, ..., 5)
considering three criteria c j ( j = 1, 2, 3) with IVPFN pki j ,
which is presented in Table 1.

Step 2. All criteria belong to benefit type. Therefore, we
do not need to normalize the decision information. Thus,[
p̃ki j

]
4×3

=
[
pki j

]
4×3

.

Phase 2: Develop the generalized Shapley IVPF aggre-
gation operator

Step 3. The importance of DMs is given in advance: ξ1 =
0.4, ξ2 = 0.2, ξ3 = 0.3, and ξ4 = 0.4. According to Eq. (11),
λ is obtained as -0.41. Subsequently, the λ-fuzzy measures
on the expert set is computed by Eq. (10), which are given in
Table 2.

Step 4. Then, the generalized Shapley values of the DMs
are determined using Eq. (13), which gives the results in
Table 3.

Step 5. Based on the developed IVPFSA operator, the ini-

tial group opinion

[̃
p(0)
i j

]

4×3
can be obtained as:
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Table 1 Original decision information from the experts

a1 a2 a3 a4

e1 c1 ([0.80, 0.90] , [0.20, 0.35])
c2 ([0.65, 0.80] , [0.40, 0.50])
c3 ([0.30, 0.40] , [0.70, 0.80])

([0.40, 0.50] , [0.60, 0.70])
([0.30, 0.40] , [0.70, 0.80])
([0.50, 0.65] , [0.50, 0.60])

([0.30, 0.40] , [0.70, 0.80])
([0.65, 0.80] , [0.40, 0.50])
([0.80, 0.90] , [0.20, 0.35])

([0.90, 0.95] , [0.10, 0.15])
([0.50, 0.65] , [0.50, 0.60])
([0.65, 0.80] , [0.40, 0.50])

e2 c1 ([0.90, 0.95] , [0.10, 0.15])
c2 ([0.50, 0.65] , [0.50, 0.60])
c3 ([0.10, 0.20] , [0.85, 0.90])

([0.10, 0.20] , [0.85, 0.90])
([0.50, 0.65] , [0.50, 0.60])
([0.65, 0.80] , [0.40, 0.50])

([0.50, 0.65] , [0.50, 0.60])
([0.80, 0.90] , [0.20, 0.35])
([0.90, 0.95] , [0.10, 0.15])

([0.65, 0.80] , [0.40, 0.50])
([0.50, 0.65] , [0.50, 0.60])
([0.30, 0.40] , [0.70, 0.80])

e3 c1 ([0.40, 0.50] , [0.60, 0.70])
c2 ([0.65, 0.80] , [0.40, 0.50])
c3 ([0.05, 0.10] , [0.90, 0.95])

([0.65, 0.80] , [0.40, 0.50])
([0.80, 0.90] , [0.20, 0.35])
([0.50, 0.65] , [0.50, 0.60])

([0.50, 0.65] , [0.50, 0.60])
([0.20, 0.30] , [0.80, 0.85])
([0.50, 0.65] , [0.50, 0.60])

([0.80, 0.90] , [0.20, 0.35])
([0.65, 0.80] , [0.40, 0.50])
([0.65, 0.80] , [0.40, 0.50])

e4 c1 ([0.30, 0.40] , [0.70, 0.80])
c2 ([0.80, 0.90] , [0.20, 0.35])
c3 ([0.65, 0.80] , [0.40, 0.50])

([0.65, 0.80] , [0.40, 0.50])
([0.50, 0.65] , [0.50, 0.60])
([0.90, 0.95] , [0.10, 0.15])

([0.50, 0.65] , [0.50, 0.60])
([0.30, 0.40] , [0.70, 0.80])
([0.50, 0.65] , [0.50, 0.60])

([0.80, 0.90] , [0.20, 0.35])
([0.50, 0.65] , [0.50, 0.60])
([0.20, 0.30] , [0.80, 0.85])

Table 2 λ-fuzzy measure on the
expert set E

Coalition λ-fuzzy measure Coalition λ-fuzzy measure Coalition λ-fuzzy measure

ξ (e1) 0.400 ξ (e1, e3) 0.651 ξ (e1, e2, e3) 0.797

ξ (e2) 0.200 ξ (e1, e4) 0.734 ξ (e1, e2, e4) 0.874

ξ (e3) 0.300 ξ (e2, e3) 0.475 ξ (e1, e3, e4) 0.940

ξ (e4) 0.400 ξ (e2, e4) 0.567 ξ (e2, e3, e4) 0.800

ξ (e1, e2) 0.567 ξ (e3, e4) 0.660 ξ (e1, e2, e3, e4) 1.000

Table 3 Generalized Shapley values of the DMs

Coalition Generalized Shapley value Coalition Generalized Shapley value Coalition Generalized Shapley value

ϕ{e1} 0.281 ϕ{e1,e3} 0.553 ϕ{e1,e2,e3} 0.700

ϕ{e2} 0.201 ϕ{e1,e4} 0.638 ϕ{e1,e2,e4} 0.785

ϕ{e3} 0.226 ϕ{e2,e3} 0.380 ϕ{e1,e3,e4} 0.870

ϕ{e4} 0.311 ϕ{e2,e4} 0.465 ϕ{e2,e3,e4} 0.700

ϕ{e1,e2} 0.465 ϕ{e3,e4} 0.553 ϕ{e1,e2,e3,e4} 1.000

[̃
p(0)
i j

]

4×3
=

⎡
⎢⎢⎣

([0.748, 0.840], [0.275, 0.380]) ([0.697, 0.829], [0.331, 0.458]) ([0.429, 0.566], [0.638, 0.729])
([0.697, 0.829], [0.331, 0.458]) ([0.573, 0.706], [0.449, 0.578]) ([0.709, 0.809], [0.322, 0.411])
([0.453, 0.595], [0.553, 0.654]) ([0.568, 0.702], [0.483, 0.607]) ([0.729, 0.836], [0.284, 0.394])
([0.827, 0.913], [0.177, 0.285]) ([0.541, 0.694], [0.475, 0.575]) ([0.530, 0.679], [0.535, 0.629])

⎤
⎥⎥⎦ (49)

Phase 3: Consensus-reaching process
Step 6. Let ε = 0, then the initial consensus at the eval-

uation level CLk(0)
i j , at the alternative level CLk(0)

i , and at

the expert level CLk(0) can be obtained using Eqs. (30)–
(32), respectively; the outcomes are compiled in Table 4 and
Table 5

Then, the temporary GCL is determined using Eq. (33)
as: GCL(0) = 0.801.

Step 7.We set the consensus parameter as η = 0.85; there-
fore, the feedback strategy should be activated to promote
group consensus.

Step 8. According to the identification rule, the IVPFNs
need to be adjusted are determined through three levels. From
Table 5, we can obtain EXPS = {1, 2, 3, 4}, and from Table
4, we can determine that

ALS =
{(1, 2), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (4, 1), (4, 3)}

EVS =⎧
⎨
⎩

(1, 2, 1), (1, 2, 2), (1, 2, 3), (2, 1, 1), (2, 1, 2), (2, 1, 3), (2, 2, 1),
(2, 3, 2), (2, 3, 3), (2, 4, 1), (2, 4, 3), (3, 1, 1), (3, 1, 3), (3, 2, 2),
(3, 2, 3), (3, 3, 2), (3, 3, 3), (4, 1, 1), (4, 1, 3), (4, 3, 2), (4, 3, 3)

⎫⎬
⎭

Step 9. Based on Model (38), the optimal adjustment
parameter θ(0) can be generated bymaximizing the improve-
ment in GCL, as θ(0) = 0.381. Table 6 shows the adjusted
IVPFNs.

Step 10. The group opinion is reaggregated using the
IVPFSA operator to obtain the following matrix:
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Table 4 The initial consensus at the evaluation level CLk(0)
i j

A1 A2 A3 A4

e1 C1 0.907 0.618 0.802 0.902

C2 0.945 0.686 0.877 0.949

C3 0.873 0.760 0.891 0.841

e2 C1 0.776 0.370 0.938 0.773

C2 0.750 0.923 0.684 0.949

C3 0.702 0.918 0.757 0.748

e3 C1 0.572 0.945 0.938 0.957

C20.945 0.690 0.530 0.856

C3 0.613 0.760 0.723 0.841

e4 C1 0.493 0.945 0.938 0.957

C2 0.863 0.923 0.705 0.949

C3 0.717 0.721 0.723 0.600

Table 5 Initial consensus at the alternative level CLk(0)
i and at the

expert level CLk(0)

a1 a2 a3 a4 CLk(0)

e1 0.908 0.688 0.857 0.897 0.838

e2 0.742 0.737 0.793 0.823 0.774

e3 0.710 0.798 0.730 0.885 0.781

e4 0.691 0.863 0.789 0.835 0.795

[̃
p(1)
i j

]

4×3
=

⎡
⎢⎢⎣

([0.741, 0.839], [0.280, 0.398]) ([0.705, 0.838], [0.320, 0.448]) ([0.426, 0.540], [0.653, 0.745])
([0.631, 0.776], [0.417, 0.526]) ([0.553, 0.692], [0.464, 0.584]) ([0.768, 0.860], [0.252, 0.333])
([0.453, 0.595], [0.553, 0.654]) ([0.583, 0.722], [0.468, 0.587]) ([0.742, 0.849], [0.269, 0.387])
([0.833, 0.916], [0.169, 0.276]) ([0.541, 0.694], [0.475, 0.575]) ([0.544, 0.695], [0.522, 0.615])

⎤
⎥⎥⎦

Step 11. Based on the current group opinion

[̃
p(1)
i j

]

4×3
,

the updated consensus levels are presented in Table 7 and
Table 8.

Then, the group consensus is recalculated as: GCL(1) =
0.896 > 0.85. Figure 4 and Fig. 5 show the improvement
in consensus at the evaluation and the alternative levels,
respectively. It is clear that the consensus has been improved
significantly after one iteration, which indicates the effec-
tiveness of the proposed method.

Phase 4: Rank the alternatives based on the
IVPF-PROMETHEE method

Step 12. From the final group evaluation, the PIS is
p̃+ = ([0.833, 0.916] , [0.169, 0.276]), and the NIS is p̃− =
([0.426, 0.540] ,
[0.653, 0.745]). Then, the optimization model is established
to derive the optimal fuzzy measures on the criteria set with
incomplete weight information:

max 0.205ξ(C1) − 0.121ξ(C2) − 0.084ξ(C3) + 0.084ξ(C1,C2)

+0.121ξ(C1,C3) − 0.205ξ(C2,C3) + 2.044

s.t .

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ξ(φ) = 0, ξ(C1,C2,C3) = 1
ξ(S) ≤ ξ(T ),∀S, T ∈ {C1,C2,C3} , S ⊆ T
ξ(C1) ∈ [0.25, 0.35]
ξ(C2) ∈ [0.30, 0.40]
ξ(C3) ∈ [0.30, 0.35]

Thus, we obtain ξ (C1) = 0.35, ξ (C2) = 0.3, ξ (C3) =
0.3, ξ (C1,C2) = 1, ξ (C1,C3) = 1, ξ (C2,C3) = 0.3, and
ξ (C1,C2,C3) = 1. For example, the sum of ξ (C1) and
ξ (C2) is less than ξ (C1,C2), which implies that a positive
synergistic interaction exists betweenC1 andC2.On theother
hand, the sum of ξ (C2) and ξ (C3) is larger than ξ (C2,C3),
which indicates that a negative synergistic interaction exists
between C2 and C3.

Step 13. Using Eq. (13), the generalized Shapley values
of C j is determined as: ϕ{C1}(ξ,C) = 0.583, ϕ{C2}(ξ,C) =
0.208, ϕ{C3}(ξ,C) = 0.208, ϕ{C1,C2}(ξ,C) = 0.85,
ϕ{C1,C3}(ξ,C) = 0.85, ϕ{C2,C3}(ξ,C) = 0.475, and
ϕ{C1,C2,C3}(ξ,C) = 1.

Step 14. The deviation between alternatives at and
as(t, s = 1, 2, 3, 4) over each criterion can be calculated
using Eqs. (39)–(40). The linear preference function with
indifference area is adopted, in which the preference values
increase proportional to the divergence from indifference to
strict preference. In this study, the strict preference thresh-
old is set as p = 0.4, the indifference threshold is q = 0,
and the “blind” confidence parameter is r = 0.5. Then, the
IVPF preference relation of alternatives over each criterion
α
j
ts(t, s = 1, 2, 3, 4, j = 1, 2, 3) can be obtained via Eqs.

(41)–(43), which are shown in Table 9.

123



A generalized Shapley index-based interval-valued Pythagorean fuzzy... 6645

Table 6 The modified decision information in the first iteration

A1 A2 A3 A4

e1 C1 ([0.800,0.900], [0.200,0.350]) ([0.617,0.750] ,[0.415,0.539]) ([0.300,0.400], [0.700,0.800]) ([0.900,0.950] ,[0.100,0.150])

C2 ([0.650,0.800], [0.400,0.500]) ([0.496,0.625] ,[0.532,0.654]) ([0.650,0.800], [0.400,0.500]) ([0.500,0.650] ,[0.500,0.600])

C3 ([0.300,0.400], [0.700,0.800]) ([0.646,0.761] ,[0.381,0.475]) ([0.800,0.900], [0.200,0.350]) ([0.650,0.800] ,[0.400,0.500])

e2 C1 ([0.825,0.898], [0.187,0.266]) ([0.581,0.716] ,[0.504,0.617]) ([0.500,0.650], [0.500,0.600]) ([0.774,0.881] ,[0.241,0.353])

C2 ([0.617,0.777], [0.387,0.508]) ([0.500,0.650] ,[0.500,0.600]) ([0.684,0.807], [0.345,0.492]) ([0.500,0.650] ,[0.500,0.600])

C3 ([0.349,0.474], [0.684,0.790]) ([0.650,0.800], [0.400,0.500]) ([0.817,0.897], [0.191,0.273]) ([0.462,0.602] ,[0.593,0.689])

e3 C1 ([0.661,0.762], [0.370,0.479]) ([0.650,0.800], [0.400,0.500]) ([0.500,0.650], [0.500,0.600]) ([0.800,0.900] ,[0.200,0.350])

C2 ([0.650,0.800], [0.400,0.500]) ([0.686,0.809], [0.330,0.477]) ([0.476,0.605], [0.585,0.690]) ([0.650,0.800] ,[0.400,0.500])

C3 ([0.387,0.461], [0.757,0.822]) ([0.646,0.761] ,[0.381,0.475]) ([0.663,0.783], [0.353,0.463]) ([0.650,0.800] ,[0.400,0.500])

e4 C1 ([0.648,0.749], [0.393,0.504]) ([0.650,0.800], [0.400,0.500]) ([0.500,0.650], [0.500,0.600]) ([0.800,0.900] ,[0.200,0.350])

C2 ([0.800,0.900], [0.200,0.350]) ([0.500,0.650] ,[0.500,0.600]) ([0.492,0.621], [0.556,0.674]) ([0.500,0.650] ,[0.500,0.600])

C3 ([0.556,0.683], [0.534,0.631]) ([0.900,0.950] ,[0.100,0.150]) ([0.663,0.783], [0.353,0.463]) ([0.200,0.300] ,[0.800,0.850])

Table 7 The updated consensus at the evaluation level CLk(1)
i j

A1 A2 A3 A4

e1 C1 0.903 0.970 0.802 0.910

C2 0.932 0.922 0.899 0.970

C3 0.889 0.834 0.912 0.859

e2 C1 0.883 0.908 0.938 0.921

C2 0.893 0.945 0.871 0.970

C3 0.935 0.845 0.900 0.898

e3 C1 0.882 0.969 0.936 0.949

C2 0.931 0.830 0.860 0.856

C3 0.866 0.834 0.891 0.858

e4 C1 0.864 0.969 0.936 0.914

C2 0.876 0.945 0.883 0.970

C3 0.842 0.957 0.891 0.630

Step 15. Based on the developed IVPFSA operator, the
overall IVPF preference relation of alternatives can be estab-
lished as:

R =

⎡
⎢⎢⎣

− ([1, 1] , [0, 0]) ([1, 1] , [0, 0]) ([0.668, 0.689] , [0.311, 0.332])
([0.263, 0.282] , [0.716, 0.753]) − ([0.677, 0.735] , [0.271, 0.327]) ([0.780, 0.844] , [0.159, 0.222])
([0.136, 0.152] , [0.885, 0.898]) ([0.343, 0.368] , [0.642, 0.676]) − ([1, 1] , [0, 0])
([0.321, 0.337] , [0.664, 0.680]) ([0.259, 0.287] , [0.736, 0.780]) ([0.226, 0.234] , [0.835, 0.843]) −

⎤
⎥⎥⎦

Step 16. The IVPF positive and negative outranking flow
of ai (i = 1, 2, 3, 4) is computed using Eqs. (46)–(47), and
the results are presented in Table 10.

Step 17.Based on the net outranking flow, the final ranking
of alternatives can be acquired as: a1 � a2 � a3 � a4. In
other words, a1 is selected as the most suitable supplier.

5.3 Comparison and discussions

To further demonstrate the effectiveness of the proposed
method, a comprehensive comparison with several studies
is conducted. First, qualitative comparisons are made from
the following aspects: (i) the representation and fusion of
decision information, (ii) the correlation among criteria and
DMs, (iii) the consensus-reaching strategy, (iv) and the rank-
ing method. The details are presented in Table 11.

Few studies onCRP forMCGDMhave considered various
correlations among criteria (Long et al. 2021; Du et al. 2021;
Cheng et al. 2018), which could lead to inaccurate results,
while in our method, a novel IVPFSA operator is defined
based on the generalized Shapley value to capture the global
relationships among input arguments, thereby comprehen-
sively representing vague information. When the criteria or
DMs are independent, the IVPFSG operator can reduce to
the IVPFWGoperator (Haktanır andKahraman2019),which
verifies that thismethod can handleMCGDMproblemsmore
flexibly.

Additionally, unlike studies that used IDR-based methods
(Du et al. 2021) or the optimization models (e.g., mini-
mum cost model (Cheng et al. 2018), minimum adjustment

model (Long et al. 2021)) as consensus-reaching strategies,
an integrated approach has been proposed herein. Specif-
ically, the adjustment parameter in the direction rule (Eq.
(37)) is obtained by maximizing the improvement in group
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consensus, which could significantly enhance the consensus
efficiency.

Compared with utility theory-based approaches, the
PROMETHEE method considers dominance relations to
determine how much an alternative is preferred over the
others, which could retain the original information to a
larger extent. The proposed method extends the classical
PROMETHEE into the IVPF context to better model the
uncertainty inherent to the MCGDM problem. Furthermore,
the preference function and the positive andnegative outrank-
ing flows are all characterized by IVPFNs. To our knowledge,
our work is the first to incorporate the generalized Shapley
value into the PROMETHEE method to address MCGDM
problems with IVPFS.

Following qualitative comparisons frommultiple aspects,
a quantitative comparison is also conducted with the same
example. Since the evaluation structure varies among differ-
ent methods, some transformation should be made to suit
different conditions. The IVPFN can be converted into dif-
ferent evaluation structures as follows: (i) PFS—given the

IVPFN p̃ki j =
([

μkL
i j , μkU

i j

]
,
[
υkL
i j , υkU

i j

])
, the converted

PFN can be obtained as α̃k
i j =

(
μkL
i j +μkU

i j
2 ,

υkL
i j +υkU

i j
2

)
; (ii)

numerical values—this transformation can be achieved by
applying the score function given in Eq. (6); (iii) BPA—the

closeness index of IVPFN p̃ki j can be denoted as κ( p̃ki j ) =
d( p̃ki j , p̃

−)

d( p̃ki j , p̃
−)+d( p̃ki j , p̃

+)
, then the converted BPA can be derived as

mk
j (Ai ) = κ( p̃ki j )

m∑
i=1

κ( p̃ki j )
. First, three typical methods with CRP

(Long et al. 2021; Du et al. 2021; Cheng et al. 2018) are
selected to compare the information deviation with the pro-
posed method and it can be determined as:

I nDek = 1

mn

m∑
i=1

n∑
j=1

∣∣∣ p̃ki j − p̃i j
∣∣∣ (50)

where p̃ki j (k = 1, 2, 3, 4) and p̃i j denote the initial individual
evaluation and the adjusted group assessment, respectively.
Figure 6 shows that our approach has the ability to retain
the individual decision information to the greatest extent
in consensus-reaching process, which reduces the loss of
information. Therefore, our approach can more effectively
preserve the initial decision information.

Then, the overall ranking results of different methods are
presented in Table 12. It is clear that the same best and worst
alternatives are generated, which supports the effectiveness
of the proposedmethod. However, there are some differences
in the ranking order. The main reason is that previous meth-
ods (Chen 2019; Haktanır and Kahraman 2019) ignore the
correlative characteristics among criteria and DMs, whereas

Table 8 Updated consensus at the alternative level CLk(1)
i and at the

expert level CLk(1)

a1 a2 a3 a4 CLk(0)

e1 0.908 0.909 0.871 0.913 0.900

e2 0.904 0.899 0.903 0.930 0.909

e3 0.893 0.878 0.896 0.888 0.889

e4 0.861 0.957 0.903 0.835 0.889

the proposed method considers the positive or negative influ-
ences contained in the fuzzy measure. It can be concluded
that our method is more reasonable and effective.

However, it is not convincing enough to demonstrate the
effectiveness of our method with a single calculation. There-
fore, we conduct the following simulation experiment with
the same case in Section 5. MATLAB is used to generate
10000 sets of criteria weights randomly. Afterward, these six
methods in Table 12 are applied to determine the alternative
ranking. Then, we analyze the proportion of each alternative
in the final ranking under these methods, which is shown in
Fig. 7.

We can observe from Fig. 7 that the largest proportion
of alternatives with the highest ranking determined by each
method is a1, which further illustrates the effectiveness of our
method. Besides, we also found that in the proposed method,
the alternative with the largest percentage has an obvious
advantage: the percentage of a1 in the highest rank in our
method is 89%, which is larger than the percentages obtained
with other methods (i.e., 78% in Chen (2019), 73% in Fei and
Feng (2021), 81% in Long et al. (2021), 77% in Bakioglu and
Atahan (2021), and 68% in Haktanır and Kahraman (2019)).
As a result, compared with other methods, our approach can
better distinguish the ranking of alternatives.

6 Conclusion

This paper develops an extended IVPF-PROMETHEEmethod
based on the generalized Shapley value with a consensus-
reaching process for MCGDM problems. The novelty and
implications of this work are summarized as follows:

(1) IVPFS is utilized to handle vague and uncertain deci-
sion information. The generalized Shapley value is firstly
extended into the IVPF environment, which can compre-
hensively reflect the importance of input arguments and
globally depict the mutual influences among them.

(2) The weights of criteria and DMs are determined using
the generalized Shapley value by simultaneously consid-
ering the importance of the element itself and the overall
influence from the other elements; this allows flexible
characterization of realistic MCGDM situations.
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Fig. 4 Improvements in
CLk

i j (i = 1, 2, 3, 4, j = 1, 2, 3)
regarding each expert
ek(k = 1, 2, 3, 4) are shown in
(a–d), respectively

Fig. 5 Improvement in
consensus at the alternative level
CLk

i (i, k = 1, 2, 3, 4)
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Table 9 IVPF preference relation of alternatives over each criterion

a1 a2 a3 a4

c1 a1 − ([0.648, 0.689] , [0.311, 0.323]) ([0.930, 0.938] , [0.063, 0.070]) ([0.669, 0.681] , [0.319, 0.331])

a2 ([0.311, 0.323] , [0.648, 0.689]) − ([0.741, 0.810] , [0.190, 0.259]) ([0.796, 0.870] , [0.130, 0.204])

a3 ([0.063, 0.070] , [0.930, 0.938]) ([0.190, 0.259] , [0.741, 0.810]) − ([1, 1] , [0, 0])

a4 ([0.319, 0.331] , [0.669, 0.681]) ([0.130, 0.204] , [0.796, 0.870]) ([0, 0] , [1, 1]) −
c2 a1 − ([0.739, 0.779] , [0.221, 0.261]) ([0.696, 0.726] , [0.274, 0.304]) ([0.628, 0.638] , [0.363, 0.373])

a2 ([0.221, 0.261] , [0.739, 0.779]) − ([0.548, 0.558] , [0.443, 0.453]) ([0.433, 0.441] , [0.559, 0.568])

a3 ([0.274, 0.304] , [0.696, 0.726]) ([0.443, 0.453] , [0.548, 0.558]) − ([0.559, 0.568] , [0.433, 0.441])

a4 ([0.363, 0.373] , [0.628, 0.638]) ([0.484, 0.488] , [0.513, 0.516]) ([0.513, 0.516] , [0.484, 0.488]) −
c3 a1 − ([1, 1] , [0, 0]) ([1, 1] , [0, 0]) ([0.693, 0.740] , [0.260, 0.308])

a2 ([0, 0] , [1, 1]) − ([0.548, 0.549] , [0.451, 0.453]) ([0.835, 0.868] , [0.133, 0.165])

a3 ([0, 0] , [1, 1]) ([0.451, 0.453] , [0.548, 0.549]) − ([0.798, 0.819] , [0.181, 0.203])

a4 ([0.260, 0.308] , [0.693, 0.740]) ([0.133, 0.165] , [0.835, 0.868]) ([0.181, 0.203] , [0.798, 0.819]) −

Table 10 Positive, negative, and
net outranking flow of
alternatives

δ+(ai ) δ−(ai ) δ(ai )

a1 ([1, 1] , [0, 0]) ([0.253, 0.269] , [0.750, 0.772]) 1.011

a2 ([0.646, 0.710] , [0.315, 0.380]) ([1, 1] , [0, 0]) −0.161

a3 ([1, 1] , [0, 0]) ([1, 1] , [0, 0]) 0

a4 ([0.272, 0.306] , [0.742, 0.765]) ([1, 1] , [0, 0]) −0.984

Table 11 Qualitative comparisons of various published methods

Method Evaluation struc-
ture

Information
fusion method

Correlation
among criteria
and DMs

Consensus reach-
ing strategy

Ranking method

Chen (2019) PFS PFWA operator Not considered Not considered PF-
PROMETHEE

Fei and Feng
(2021)

PFS DST Not considered Not considered Utility theory

Long et al.
(2021)

Crisp values WA operator Not considered Minimum adjust-
ment model

Prospect theory

Bakioglu
and Atahan
(2021)

PFS PFWA operator Not considered Not considered PF-VIKOR

Du et al.
(2021)

BPA DST Not considered IDR-based model Utility theory

Haktanır and
Kahraman
(2019)

IVPFS IVPFWG opera-
tor

Not considered Not considered Utility theory

Cheng et al.
(2018)

Crisp values WA operator Not considered Minimum cost
model

Utility theory

This paper IVPFS IVPFSA operator Considered The integrated
method

IVPF-
PROMETHEE

†PFS: Pythagorean Fuzzy Set;DST : Dempster-Shafer Theory;WA: Weighted Average; PFWA: Pythagorean FuzzyWeighted Average; PF-VIKOR:
Pythagorean Fuzzy-VIKOR; BPA: Basic Probability Assignment; IDR: Identification and Direction Rule; IVPFS: Interval-valued Pythagorean
Fuzzy Set; IVPFWG: Interval-valued Pythagorean Fuzzy Weighted Geometric; IT2FS: Interval Type-2 Fuzzy Set; IT2FWA: Interval Type-2
Fuzzy Weighted Average; FPR: Fuzzy Preference Relation; IVPFSA: Interval-valued Pythagorean Fuzzy Shapley Average; IVPF-PROMETHEE:
interval-valued Pythagorean fuzzy RPOMETHEE
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Fig. 6 Information deviation of
different methods regarding
each DM

Table 12 Quantitative comparison of this work with previously published methods

Method Information format Ranking index Decision result

Chen (2019) PFS �β(a1) = 0.694,�β(a2) =
0.462,�β(a3) = 0.548,�β(a4) =
−0.283

a1 � a3 � a2 � a4

Fei and Feng (2021) PFS RI (a1) = 0.349, RI (a2) =
0.217, RI (a3) = 0.136, RI (a4) =
0.061

a1 � a2 � a3 � a4

Long et al. (2021) Crisp values V c,1
1 = 1.351, V c,1

2 =
1.280, V c,1

3 = 0.894, V c,1
4 =

−0.678

a1 � a2 � a3 � a4

Bakioglu and Atahan (2021) PFS ξ(x1) = 0.193, ξ(x2) =
−0.264, ξ(x3) = −0.359, ξ(x4) =
−0.571

a1 � a2 � a3 � a4

Haktanır and Kahraman (2019) IVPFS ˜CPR(a1) = 0.597, ˜CPR(a2) =
0.396, ˜CPR(a3) =
0.432, ˜CPR(a4) = 0.153

a1 � a3 � a2 � a4

This paper IVPFS δ(a1) = 1.011, δ(a2) =
−0.161, δ(a3) = 0, δ(a4) =-0.984

a1 � a2 � a3 � a4

†PFS: Pythagorean Fuzzy Set; IVPFS: Interval-Valued Pythagorean Fuzzy Set

123



6650 Z. Hua, X. Jing

Fig. 7 a, b, c, d, e, and f
represent the percentages of
alternatives in the highest rank
in Chen (2019), Fei and Feng
(2021), Long et al. (2021),
Bakioglu and Atahan (2021),
Haktanır and Kahraman (2019),
and the proposed method,
respectively

(3) The classical operators of IVPFS are built on the principle
of nonnegative additive set function. However, ignoring
the interaction effect in the aggregation process may lead
to confusing results. Thus, IVPFCA and IVPFSA opera-
tors are developed to reflect the global importance of the
factors and the interactions among them.

(4) We establish an integrated consensus-reaching model by
integrating the IDR-based approach and the optimization
model. Ultimately, the maximum consensus improve-
ment can be achieved to reduce the conflicts within the
group.

(5) For the first time, the generalized Shapley index and
IVPFS are introduced into the classical PROME-THEE

method to overcome the limitations of additive measures
and to better handle imprecise decision information.

This paper describes the construction of a comprehensive
framework on CRP for MCGDM problems. The proposed
method could be tuned further to address problems in more
complex situations, such as large-scale MCGDM prob-
lems. Furthermore, owing to the diverse backgrounds of the
experts, they tend to utilize different evaluation structures to
represent their opinions. Therefore, it would be interesting
to study heterogeneous MCGDM problems in subsequent
research.
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