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Abstract

Multi-criteria group decision-making (MCGDM) problems, where correlations commonly exist among input arguments,
are becoming increasingly complex. However, most of the existing consensus-reaching methods for MCGDM problems
fail to adequately consider the effects of these interactions among criteria and experts, which may bring about inaccurate
results. Therefore, this paper establishes a novel MCGDM framework based on the generalized Shapley value to solve the
consensus-reaching problem with interval-valued Pythagorean fuzzy sets (IVPFS). First, experts’ evaluations are collected
using IVPFS, which offers a more flexible way to express this vague information. Second, the interval-valued Pythagorean
fuzzy Choquet integral operator and the interval-valued Pythagorean fuzzy Shapley aggregation operator are developed to
fuse the decision information with complementary, redundant, or independent characteristics. Third, an integrated consensus-
reaching algorithm is established to improve group consensus by iteratively updating the evaluations until the group consensus
level reaches the preset threshold. Then, the classical PROMETHEE method is extended using the generalized Shapley value
within an IVPFES context to derive a more scientific ranking result. Finally, a case study for a sustainable supplier evaluation
problem is presented to validate the proposed method. The results and comparative analysis show that the proposed method
can represent experts’ evaluations more flexibly, integrate inputs with interrelationships more effectively, and improve group
consensus more efficiently.

Keywords Multi-criteria group decision-making (MCGDM) - Interval-valued Pythagorean fuzzy set (IVPFS) - Fuzzy
measure - The generalized Shapley index - Consensus-reaching process (CRP)

1 Introduction

With continuous economic and technological development,
the associated decision-making problems are becoming
increasingly complex (Yan and Pei 2022; Serif Ozlii 2022).
Therefore, multi-criteria group decision-making (MCGDM)
has recently emerged as a research hotspot and has been
widely applied in multiple fields, such as scenic spots recom-
mendation (Ma et al. 2023) and risk management problems
(Huaet al. 2023). MCGDM involves a series of techniques to
effectively support experts in obtaining the optimal solution
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within a set of alternatives. This process generally involves
the following three aspects: (i) information expression and
aggregation; (ii) consensus-reaching process (CRP); (iii)
ranking method of alternatives.

In a practical MCGDM problem, the conventional rep-
resentation structure (e.g., crisp values) is incapable of
depicting the situation with strong uncertainty and ambigu-
ity (Khan et al. 2022). To better handle such circumstances,
various information expression structures have been investi-
gated. Zadeh reported his pioneering work regarding fuzzy
set theory (FST) in 1965 (Zadeh 1965); however, the fuzzy
set could not adequately reflect the degree of hesitancy in
human perception. Then, Atanassov (1986) extended the
FST to intuitionistic fuzzy sets (IFS). However, the sum of
membership and nonmembership degrees of IFS is restrained
within the range of [0,1], which is unrealistic because human
conception cannot perfectly fit within this constraint. To
address this concern, Yager (2014) further extended the IFS to
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Pythagorean fuzzy sets (PFS). More recently, Zhang (2016)
extended the PFS to interval-valued Pythagorean fuzzy sets
(IVPES), wherein the membership, nonmembership, and
indeterminacy degrees are characterized as interval numbers,
rather than crisp numbers. Given the capacity of IVPFS to
model the actual MCGDM process with strong fuzziness, it is
employed in this work to represent the uncertain information
given by the decision-makers (DMs).

Another fundamental issue in MCGDM involves how
to integrate the decision evaluations in a reasonable and
structured manner. Although the existing interval-valued
Pythagorean fuzzy weighted average (IVPFWA) and the
interval-valued Pythagorean fuzzy weighted geometric
(IVPF-WG) operators can successfully aggregate interval-
valued Pythagorean fuzzy numbers (IVPFN) from multiple
sources (Peng and Yang 2016), these additive measures fail
to reflect the correlations among input arguments. However,
interaction phenomena commonly exist among criteria and
DMs, ranging from redundancies to synergies (Teng and Liu
2021). Investigating the effects of the interactions inherent
to the MCGDM process provides an opportunity to compre-
hensively analyze the importance of each element. The fuzzy
measure and Choquet integral can overcome the deficiency
of additive measures and have been explored in various fuzzy
environments. However, the Choquet integral only takes the
interactions between the adjacent coalitions of elements into
account (Chen et al. 2020). To overcome this limitation,
the generalized Shapley index can be introduced to reflect
the overall importance of each element and the global cor-
relations among them. This motivates us to investigate the
generalized Shapley function under an IVPFS environment
and develop the interval-valued Pythagorean fuzzy Choquet
integration (IVPFCI) and interval-valued Pythagorean fuzzy
Shapley aggregation (IVPFSA) operators to fuse the infor-
mation from correlated criteria and interrelated DMs.

At the beginning of an MCGDM problem, the experts’
opinions may vary considerably. Therefore, it is necessary to
reach a designated level of consensus to ensure the group
evaluation is satisfactory to most DMs, which could fur-
ther benefit the implementation of the decision result (Hua
et al. 2022; Hua and Xue 2022). Various consensus mod-
els have been proposed, and they can generally be divided
into two categories. The first is an iterative model based
on identification and direction rules (IDR). Individual eval-
uations that deviate far from the group are first identified
and then modified based on a specific recommendation rule
until the group consensus reaches a preset threshold. The
second category is the optimization-based model. Optimiza-
tion algorithms are utilized to find the best available solution
under the given constraints and have been widely applied in
different fields (Agushaka et al. 2022; Abualigah et al. 2021,
2022). The mathematical and metaheuristic approaches
are two well-known strategies for tackling optimization
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problems (Oyelade et al. 2022; Abualigah et al. 2021, 7).
Inspired by optimization methods, the optimization-based
consensus-reaching model has been proposed. Although the
optimization-based CRP models can significantly improve
consensus efficiency, the results derived only from a math-
ematical model cannot ensure individual participation. To
overcome this limitation, this study develops an integrated
model that combines the advantages of IDR-based methods
and optimization models to maximize the improvement in
group consensus.

Once a group evaluation with adequate consensus has
been obtained, the MCGDM proceeds to the ranking process.
To date, various methods have been explored to facilitate
MCGDM, including Techniques for Order Preferences by
Similarity to Ideal Solution (TOPSIS) (Wang et al. 2022),
ELimination and Choice Translating REality (ELECTRE)
(Chen 2020), Preference Ranking Organization METHod
for Enrichment Evaluations (PROMETHEE) (Wang et al.
2022), and Vlsekriterijumska Optimizacija I Kompromisno
Resenje (VIKOR) (Raj Mishra et al. 2022), among others.
In particular, PROMETHEE is one of the most effective out-
ranking techniques based on dominance relations between
alternatives. However, the classical PROMETHEE method
has difficulty dealing with highly uncertain information.
Additionally, the heterogeneous correlations among criteria
and DMs are neglected, which could reduce the rationality
of the decision result. Considering this limitation, we aim
to extend the traditional PROMETHEE into the IVPFS con-
text to propose IVPF-PROMETHEE. Then, the generalized
Shapley value is introduced into the [VPF-PROMETHEE
method to analyze the correlative characteristic in MCGDM
problems. The main contributions of this study are outlined
as follows:

(1) The decision information is represented by IVPFS, which
offers a flexible way to assess the MCGDM problem from
both positive and negative perspectives with indetermi-
nacy. More importantly, the generalized Shapley value
is integrated into the IVPFS to handle the correlation
between variables and their combinations.

(2) An optimization model is constructed based on TOP-
SIS to derive the fuzzy measures on the criteria set,
and A-fuzzy measure is applied to reduce the compu-
tational complexity when the number of input arguments
becomes relatively large.

(3) The interval-valued Pythagorean fuzzy Choquet inte-
gral and the interval-valued Pythagorean fuzzy Shapley
aggregation operators are developed to aggregate the
decision information with complementary, redundant, or
independent characteristics.

(4) Toresolve conflicts among DMs, an integrated consensus-
reaching model is constructed, which can simultaneously



A generalized Shapley index-based interval-valued Pythagorean fuzzy...

6631

ensure expert participation and maximize consensus
enhancement.

(5) The classical PROMETHEE method is extended to the
IVPES for the first time to our knowledge, and the
generalized Shapley index is incorporated into the [IVPF-
PROMETHEE,; these processes make the ranking result
more scientific.

The remainder of this paper is structured as follows:
Sect. 2 reviews the representation of fuzzy information,
consensus-reaching strategies, and alternative ranking meth-
ods. A brief introduction to PFS, IVPFS, fuzzy measures,
and the PROMETHEE method is presented in Sect. 3. In
Sect. 4, the extended IVPF-PROMETHEE method based on
the generalized Shapley value with CRP is described. A case
study and comparative analysis are presented in Sect. 5, and
in Sect. 6, the conclusions are summarized.

2 Literature review
2.1 Representation of fuzzy information

Considering the inherent ambiguity in human cognition,
various fuzzy set theories have been introduced to better
express experts’ evaluations in MCGDM problems. Liu et al.
(2022) used intuitionistic fuzzy values to model the opin-
ions from DMs with particle swarm optimization. Ke et al.
(2022) proposed an MCGDM framework for photovoltaic
poverty alleviation project site selection under an intuitionis-
tic fuzzy environment. Given that the traditional intuitionistic
fuzzy aggregation operators cannot reflect the correlative
relationships of criteria, Jia and Wang (2022) proposed the
Choquet integral-based intuitionistic fuzzy arithmetic aggre-
gation operator to support MCGDM. However, the sum of
membership and nonmembership degrees of intuitionistic
fuzzy numbers is constrained within O and 1. Additionally,
the Choquet integral only considers the correlation between
adjacent coalitions of the elements, ignoring the global inter-
actions between them.

To overcome the limitation of IFS, Pythagorean fuzzy sets
(PFS) were proposed and applied to MCGDM problems.
For example, Zhang and Chen (2022) employed Pythagorean
fuzzy preference relations in group decision-making to select
excellent doctors for international exchange. Zhou et al.
(2022) developed a statistical estimation method for handling
Pythagorean fuzzy information in a green credit problem.
Recently, Zhang (2016) extended PFS to IVPES to better
describe the uncertainty in membership, nonmembership,
and indeterminacy degrees. Mohagheghi et al. (2020) used
IVPES to evaluate high-technology project portfolios in
port operations. Fu et al. (2020) established a new product
ranking method combining the opinions represented with

IVPES. However, the existing IVPF operators cannot con-
sider the relationship among input arguments. Therefore,
to take advantage of IVPFS’s ability to express uncertain
information and overcome the shortcomings of the existing
operators, we introduce the generalized Shapley index into
IVPF operators to reflect the overall importance of elements
and their global correlations in information fusion.

2.2 Consensus-reaching strategies

Consensus-reaching is essential in MCGDM since a consen-
sual decision outcome can benefit its further implementation.
The consensus-reaching strategies can mainly be categorized
into two types. The first one is the IDR-based consensus
model. Liu et al. (2022) proposed an IDR-based model to
determine the DMs with inadequate consensus and to gen-
erate the modified evaluations. Liao et al. (2021) addressed
the large-scale GDM problems considering local and global
consensus with an IDR-based model. In Liu et al. (2022), the
DM whose evaluations deviate most from the group is first
identified and then modified toward those they trust in the
social network.

The second one is the optimization-based method. Wu
et al. (2022) developed a two-fold personalized feedback
approach by minimizing the adjustment cost of the consensus-
reaching process. Yuan et al. (2021) proposed a minimum
adjustment consensus method to obtain the updated eval-
uations with incomplete decision information. Wang et al.
(2022) extended the traditional minimum adjustment model
to handle large-scale MCGDM issues with a two-stage con-
sensus feedback mechanism. Recently, Yuan et al. (2022)
established a minimum conflict model with a limited bud-
get to improve group consensus in a pollution remediation
assessment problem.

The traditional IDR-based models often involve updat-
ing evaluations for iterations to improve the group con-
sensus, which reduces the efficiency of the consensus-
reaching process. Though optimization-based methods can
greatly enhance consensus efficiency, the results obtained
from mathematical models cannot reflect experts’ partici-
pation. To take advantage of both IDR-based models and
optimization-based methods, we proposed an integrated
consensus-reaching strategy to maximize the consensus
improvement at each modification, which can ensure both
expert participation and consensus efficiency.

2.3 Alternative ranking methods

Based on the achieved consensual group evaluation, the
optimal solution can be obtained with alternative ranking
methods. Corrente and Tasiou (2023) utilized the TOPSIS
method for MCGDM problems with hierarchical and non-
monotonic criteria. Kumar and Chen (2022) extended the
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traditional TOPSIS with the weighted distance measure of
linguistic intuitionistic fuzzy sets to prioritize the alterna-
tives. In terms of the outranking methods, Kirisci et al.
(2022) proposed the Fermatean fuzzy ELECTRE method for
biomedical material selection problems. Zahid et al. (2022)
extended the ELECTRE method to complex spherical fuzzy
sets to rank water treatment technologies. Raj Mishra et al.
(2022) modified the traditional VIKOR method based on
Fermatean hesitant fuzzy sets and proposed the remoteness
index for alternative ranking. Wang et al. (2022) used the
PROMETHEE method to assist with nested information rep-
resentation of multi-dimensional decision problems.

Among these ranking methods, PROMETHEE stands
out as the most effective outranking technique since it can
obtain the ranking of alternatives with their dominance
relations. PROMETHEE method is characterized by the
elimination of scale effects between criteria and managing
incomparability with comprehensive rankings. However, the
classical PROMETHEE cannot handle uncertain information
and does not consider the correlations between input argu-
ments. To address this issue, we first extend the traditional
PROMETHEE into the IVPES environment to propose IVPF-
PROMETHEE. Then, we introduce the generalized Shapley
value into IVPF-PROMETHEE to investigate the correlated
property in MCGDM problems.

3 Preliminaries

In this section, some important fundamental concepts are
reviewed, including IVPFES, the generalized Shapley index,
and the PROMETHEE method.

3.1 Interval-valued Pythagorean fuzzy set

Definition 1 (Zhang 2016). X is a universe of discourse, then
the IVPFS H on X is given as:

H= [<x [u%,(x), MZ(X)] : [vﬁ(x), UZ(X)]>|x € X] (1

where pf; (), 1 (%), v (), vy (0) € [0, 11,0 < (uy (x))?
+ (UU()C))2 < 1. The indeterminacy degree of x €
X to H is defined as mgy(x) = [nfl(x),nll_lj(x)] with
2
J1= @Yo’ - when? and 7Y@ =
V1= (ahy(0)? = W5 (). For brevity, we define h =
([nh @), 1], [UH()C) UH(X)]) as an IVPEN. If
,uf_l(x) = /L%(X) and UH(x) = vy U(x), the IVPES is reduced
to a PFS. If ,u%(x) + UZ (x) < 1, then the IVPFS is reduced

to an IVIFS. Thus, the IVPFS can be considered as a gener-
alization of PFS and IVIFS.

77 (x)
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The fundamental operations of IVPEN are presented as
follows.

Definition 2 (Peng and Yang 2016). Let p; = ([/LlL
[hof]) 5 = (ub.nd]. [vbof)). and p
= ([u", nY], [vh, vY]) be three IVPENs where > 0,
then their operations are defined as follows:

Y],

p1®pz—([\/(u ) +(u) — (uf )? (Mz ,

D + ) — w2 ) J
[vfvhofvf]) @

@ = [tk ud ],

[\/ Wb + Wb = Wh h’,
Jo? + ¥ - ey )ZJ) 3)

AP = ([\/1 —a—@ny i wU)z)A],

[ (-)]) @
= (o] ]

Definition 3 (Peng and Yang 2016). Let p = ([u”, nY],
[UL, UU]) be an IVPFS, then its score function and accuracy
function are calculated as:

s01= [ () (- ()]0
S0+ )+ () + ()]
where S (5) € [-1, 1], A (p) € [0, 1].

Then, for any two IVPFNs pj and p3, the comparison
rules are given as:

A(p) =

(1) If S (p1) > S (p2), then p1 > po;
(2) If S (p1) = S (p2), then

() If A (p1) > A (p2), then p1 > pa,
(b) If A(p1) = A (p2), then p1 = pa.

Definition 4 (Peng and Yang 2016). Let p1 = ([uf, u¥],

[vE, vY])and pr = ([, uY]. [vF. vY]) be twoIVPENS,
then the distance between them is calculated as:

R (I
(o) = (o) |+ (o)~ (o)

- +
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(nt) = () |+ ()= (4)'))

®)

3.2 Fuzzy measure and the generalized Shapley
index

The fuzzy measure, introduced by Sugeno (1974), is a power-
ful tool to determine the correlations among input arguments.
It replaces additivity with monotonicity and has been widely
employed in different fields.

Definition 5 (Michio 1974). Suppose X = {x1, x2, ..., X}
denotes a universe of discourse and P(X) is the power set
of X, then & is a fuzzy measure on X that satisfies cer-
tain boundary conditions (i.e.,£(¢) = 0 and £(X) = 1)
and monotonicity (i.e., if A, B € P(X) and A C B, then
£(A) <&(B)).

Considering the difficulty in calculating the fuzzy mea-
sure when large numbers of elements are involved, Sugeno
proposed the A-fuzzy measure.

Definition 6 (Michio 1974). Suppose X = {x1, x2, ..., X»}
denotes a universe of discourse. If the fuzzy measure & on X
meets Eq. (9),

§(AUB) =§(A) +§(B) + A8§(A)§(B) ©))

where A N B = ¢ and X represents the interaction between
A and B, with A € [—1, 400], then it is A-fuzzy measure.
Specifically, A > 0 indicates a positive interrelation between
A and B, whereas A < 0 indicates a negative interaction, and
A = 0 denotes that A and B are mutually independent.
Given a finite set X, the A -fuzzy measure is denoted as:

! [[[1 (14 260)) — 1} 1#0

§X)=1 » (10)
3 éG) r=0

With £(X) = 1, Eq. (10) can be rewritten as:

ot 1= [T+ 250 (1)

i=1
Then, A can be uniquely derived.
Definition 7 (Choquet 1955). Suppose f is a positive real-

valued mapping on X = {x1, x2, ..., x,} and & is a fuzzy
measure. The Choquet integral regarding & can be given as:

Ce(f(x1), f(x2), ..o, f(xn))
=Y (EAw) — EAGH)) f (@) (12)

i=1

where (-) denotes a permutation on X, such that f(x()) <

f(x@) < oo < f(xm) and Ay = {xiy, X1, -or X() }
with A,41) = ¢.

To evaluate the importance of each coalition rather than
each element, Marichal (2000) introduced the concept of the
Shapley index to the game theory.

Definition 8 (Marichal 2000). Let £ be a fuzzy measure on
X = {x1, x2, ..., x»}, then the generalized Shapley value for
VS C X can be determined as:

(XIS =TT
s, X) = Z
rexs  (XI=ISI+ D!

ESUT) —&(T)) (13)

where | X|, |S|, and |T' | denote the number of elements in the
subsets. ps(&, X) is an expected value that reflects the global
correlation between set S and each set in N\S. If § = {i}
for Vi € X, then Eq. (13) is reduced to the Shapley function
(Shapley 1953):

X|—=|T|—=DT|!
pen= Y X ||)|(“ ) IT]

TeX\{i}

EGUT)—-&T))

(14)

3.3 The classical PROMETHEE method

The PROMETHEE method, initially proposed by Brans
et al. (1986), is an effective outranking technique based
on pairwise comparisons and preference functions. The
fundamental principle of PROMETHEE is to obtain the
net outranking flow of alternatives. Its basic processes are
described as follows:

Let [x;;],, ., denote the decision information, where x;;
indicates the evaluation of the alternatives a; i = 1, 2, ..., m)
over criteriac;(j = 1,2,...,n),and letw;(j = 1,2, ...,n)

n
represent the weight of ¢j, withw; € [0, 1]and ) w; = 1.

j=1

Step 1: Normalize the decision information [xi j]mxn into
[“al'j]mxn‘

Step 2: Calculate the divergence between each pair of
a; and as(t,s = 1,2, ...,m) over each criterion c;(j =
1,2,...,n):
dj(as, as) = Xjj — X5j (15)
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Phase 1: Establish and standardize decision matrix with IVPFS

A 4

Phase 2: Develop the IVPFCA and IVPFSA operators

A 4

Phase 3: Improve group consensus with an integrated CRP model

A 4

Phase 4: Rank the alternatives with [VPF-PROMETHEE method

Fig.1 General procedures the proposed method

Step 3: Obtain the preference value of a; over ag on ¢;:
PVi(a;,a5) = PV;i(dj(a,, ay)) (16)

where PV (-) denotes the preference function governing the
mapping of the divergence of different alternative to a pref-
erence value.

Step 4: Determine the overall preference value of a; over
as:

n
T, a0) =y PVj(as, as)w; (17)
j=1

Step 5: Obtain the positive and negative outranking flow
of alternatives a;:

1
8 (ar) = m;uat,x) (18)
1
() = — D T a) (19)
xeA

Step 6: Obtain the alternative ranking by computing the
net outranking index:

8ay) = 8% (a) — 8 (a) (20)

4 The extended IVPF-PROMETHEE method
based on the Shapley value with CRP

The proposed MCGDM framework includes four main steps:
(1) Establish and standardize the decision matrix; (ii) Develop
the generalized Shapley interval-valued Pythagorean fuzzy
aggregation operator; (iii) Implement the consensus-reaching
process; (iv) Rank the alternatives. The general procedures
of the proposed method are illustrated in Fig. 1.

@ Springer

4.1 Determination of fuzzy measures on the criteria
set and the expert set

Suppose there is a MCGDM problem where m alterna-
tives A = (a1, a2, ..., a;,) are evaluated by K experts £ =
(e1, ea, ..., ex) on n criteria C = (cy, ¢, ..., ¢,) to form an
interval-valued Pythagorean fuzzy decision matrix as:

1.2 K
P11 P12 0 Pin

1 2 K
‘ P21 P2 o Py
P= I:pij:lmxn - : oo, . (21)

1 2 K
Pm1 Pm2 """ Pmn

where pfj = ([MZL, Mf,’U] , [vl.kjL, v{‘/.UD is an IVPFN rep-
resenting ex(k = 1,2,...,K) ’s assessment of a;(i =
1,2,..,m)onc;(j=1,2,..,n).

Afterward, [plk] is standardized into [plk] by
. T dmxn . . J Imxn
converting cost-type attributes into benefit-type attributes.

1;]; _ { pl].‘j for benefit criterion
ij

22
( pfj)c for cost criterion (22)

Most existing studies assume that criteria and DMs are
independent. However, this premise is rarely true in practi-
cal MCGDM problems, where correlative effects commonly
exist among criteria and DMs. Thus, the generalization of
additive measures, namely non-additive measures, should be
implemented to reflect the mutual influences between input
arguments.

Based on the principle of TOPSIS, the best option should
be the furthest from the negative ideal solution (NIS) and
the nearest to the positive ideal solution (PIS). To maximize
the performance of alternatives, we construct an optimiza-
tion model to derive the fuzzy measure on the criteria set as
follows:

m n

max Y. Y. CCij (577, B )¢, (6. C)
i=1j=1

E(¢) = 0,£(C) =1,

§(cj) € W;, 8(cj) =0,

EWS)<&M),VS, TeC,SCT,

0, (6,0)= Y HTEDITe(c, UT) — £(T)),
TCC\cj

L(ET Sy — dij (pij.P~)
CCiPij PT) = Tt 5 v 5

s.r.

(23)

where p;; denotes the group decision matrix; pt =

([max (uf7), max(u{)], [min(u)), min(w)]) and p~ =

([min(MiLj), min(ug ), [max(ug), max(ug. )]) indicate the
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PIS and NIS, respectively; CC;;(pi;, p) is the close-
ness coefficient of evaluation 1371 from the NIS, where
dij(pij, pt) is the distance measure from pj; to pT;
@c;(§, C) is the generalized Shapley value of ¢; on fuzzy
measure &; W; denotes the known weight information.

Then, with the optimal fuzzy measure &, the generalized
Shapley indices of the criteria and their combinations can be
calculated using Eq. (13).

Next, the fuzzy measure of expert ex(k = 1,2, ..., K) is
discussed. Practical MCGDM problems typically involve a
series of correlated DMs. Because £ is given on the power
set, this computation would become exponentially complex
if a large number of factors is involved. To address this issue,
the A-fuzzy measure is introduced.

Given an expert set E, the A-fuzzy measure satisfies

E(E) = Zs(ek)ﬂz Z

ki=1ky=ki+1

(E(ex))E(ery) 4+ -+ A" 1E(er) - -

1 K
=5 (H (1+ A& (er)) — 1)
k=1

&(ex))

(24)

Since E(E) =1, A = ]_[ (1 + X&(er)) — 1. Then, based

on the importance of smgle experts &(ex) and Eq. (9), the
fuzzy measure of the subsets of E, namely &(E)), can be
easily obtained.

4.2 The generalized Shapley interval-valued
Pythagorean fuzzy aggregation operator

When correlations exist, aggregating the individual eval-
uations without considering the interaction effects would
lead to unreliable results. Therefore, to derive more accu-
rate importance values, all subsets including the specific
element must be considered apart from their individual
importance. The prominent advantage of the Shapley value is
that the correlations between elements can be characterized
by fuzzy measures, which ensures the weight can be allo-
cated to elements and their coalitions simultaneously. Thus,
the generalized Shapley value is introduced to represent each
element’s average contribution value in all coalitions.

This subsection develops the interval-valued Pythagorean
fuzzy Choquet integral and the interval-valued Pythagorean
fuzzy Shapley aggregation operators and briefly describes
their basic properties and some special cases.

4.2.1 Interval-valued Pythagorean fuzzy Choquet integral

operator
(wt.09] [ )

n) is a set of IVPFNs and & be a fuzzy mea-

Definition9 Suppose p; =
(G=12..,

sure on P = {p1, P2, ..., Pn}, then the IVPFCA operator is

defined as:

~ ~ ~ n —~—
IVPFCA(p1, P2, --r Pn) = ,@I(S(Pm) —&PG+))P()H
=

= ([Z (EPG)—EPG)IIG)» Z(&(P(,»)s(P(jH))mg)} ,

=1 =

[Z (E(PG)) = EPG+)IVG)s Y EPG) — s<P<j+1>>>vf_§)D

j=1 j=1

(25)

where (-) represents a permutation on {py, p2, ..., Pn}»
satisfying p(l) < Pa < < P and P;) =
{PG). PG+ s Py} With Pgyry = ¢, and (E(P(j)) -

E(Pj+1y)) is the
—§(PG+1)) =1

weight vector with Z(é (P))
iz

Theorem 1 Given a collection of p; = ([/LJL,/LY]

|:U]-L, UJU]) (j=1,2,...,n). & is a fuzzy measure on P =
{P1, P2, ..., Pn}. Then, the aggregated value by IVPFCA
operator is still an IVPFN.

Some properties of the IVPFCA operator are discussed
below, including idempotency, commutativity, monotonicity,
and boundedness.

Property 1 (Idempotency)  Let p; = ([MJL, uﬁj] ,
[UJL, U]) (j=1,2,...,n) be aset of IVPFNs. If p; = p
forall j, then IVPFCA(p1 D2y s D) = P.

Proof Since ([ut,u?].[vh v?]) = ([t nV]. [vh, 0¥
all j, £(Pj)) —&(P¢j+1y) > 0 and i E(Py) —&E(PGi+1)) = L.

]) for

Thus, 1V PFCAG s, . i) = & (6P — EP )P

j=1 j=1

= ( i E(PG)) — E(PG4n)Int, Z EPG)) — (P(_,'+1)))MU},

Z (E(P)) — E(PG4+1)VE, Z &P — S(P(j+1)))UUi|>

j=1

= ( L i (E(PG)) — E(PG41)), nY Z EPy) —%‘(P(;+1)))i|
=
L

j=1

vt Y (P — E(PG)), v

j=1

v il (&P — S(P(_f+1)))i|>
L /=
= ([u". 1Y) " 0Y])

O

Property 2 (Commutativity) Ler p; = ([Mf,ﬂy]
[U]LUJUD (j=1,2,....,n) be a set of IVPFNs and

{P\. P2\ ... Pa'} be any permutation of {pi, p3, .. ,ﬂ},
then IVPFCA(p1, p2, ..., pn) = IVPF CA(pY/, p?/, ...,

pn') -
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Proof Since {pi’, 2, ..., pn'} denotes any permutation of ~ Thus, S(/VPFCA(p1, p2.....pn)) > SUVPFCA
{P1, P2, ..., Pn}, based on Definition 7, it is straightforward  (pi, P2, ..., pn)), and IV PFCA(pP1, P2y ..., Pn) >
to obtain this property. o IVPFCA(pi, P2, ..., Pn) is obtained. ]

. Pnt  and

Property 3 (Monotonicity) Let {p1, p2, ..

{P1, P2, .... Pu} be two sets of IVPFNs, where p; =
L U —_ __ /Z /D /2 /l\]

([ ] [0 v ]) 7i = (w5 nf ] [oh o))

and pj > p;(j = .,n), then IVPFCA(py, pa, ...,

Dn) > IVPFCA(pl, D2y ooy D)

Proof 1VPFCA(py, P2, ... Pn)

[Z EPG)) = EPGLD)IIE)s ; ECPG)) —S(P(jﬂ)))ﬂg)}’
Z E(P(j)) = E(PG+1)IVf),s Z EP)) = E(P(_i+1)))v(l§)})
PFCA(p1, P2, - Pn)

{zl (E(PG) — EPGIE. 3 E(PG) — S(P(_,-H)))uf;)} ,
= j=

.
i

[21 &) — S(P(j'i'l)));(ij\)’ > EPG) — S(P(H')))“&D
j= =1

According to Definition 3, the score value of these two sets
of IVPFNSs can be derived as:
SUVPFCA(p1, P2+ .- Dn))

n n 2
= % |:(Zl (5(1’(;))—%’(P<j+1)))li(Lj))2+(Zl EPG)) — s(P(j+l)))M(l§))
Jj= j=

n n 2
_ (Zl (%‘(P(j)) — §(P(_]'+1)))U(Lj))2 — (Zl (S(P(j)) - S(P(jJrl)))U(L;)) ]
j= =
SUIVPFCA(pL, P2, ... Dn))
oy [(il &Py~
i=

S(P<j+1)))M(Lj))2+ (_Zl E(PG)) — é(P<j+1)))ijj))2
=

n — n 2
— (X EPy) = EPG+n)IV)* = (X GGy —§(PG4n))v)) }
j=1 ‘ = '

2 2 2 2

Since pj > pj, then (Mf‘) + (,uﬁj) - (UJL) — (UJU) >
—_\2 —~\2 —~\2 —\2

() + (@) - () - ()

Thus, (§(P()) — §(PG+n)K()” + ((E(P)

—E(Pn)Idi)* = ((E(P(j) — E(P+1))v)?

—(E(Pj)) — EPG)IVG)? > (EPG)

—E(Pan) il + (E(PG) — E(PGa)IRY, )2

—((E(P(jy) = EPG+1))VE)?

—((E(Py) — S(P<j+1>))v<l§))2

Then, (Zl (f(P(j))—E(P(jH)))M(Lj))z + (Zl(é(P(j))
j= j=

—E(PG+)IBG)’ = (2 Py = E(PG+1)IV(;))?
=

—(Z] (E(Pj) —EPG)IVG)> > (Zl(é(P(j))
i= i=

—S(P(j+1)))Z;Lj\))2 + (Zl("s“(P(j)) - S(P(j+l)));(l§\))2
]:

~(3 (PG = EPGrVE=(Y E(Py) — EPr)VY)?
j=1 j=1

@ Springer

Property 4 (Boundedness) Let p; =

[u}, UU]) (=12, ..,

~.

P = ([mm(uj) min(u )] [max(vL) max (v )]) and

PISbe p =([max(uj) max(u )] [mm(vl‘) mln(u )])
then p— < IVPFCA(P1, P2s.es Pn) < D

()

n) be a set of IVPFNs. Let NIS be

Proof SinceulL. zmin(,uJL.),,ui.] > min(uy),vf < max(UjL)

and UJL»/ < max(vjl./), based on Property 1 and Property

3, we can obtain p— = IVPFCA(p—,p ,...p ) <
IVPFCA(p1, p2, ..., pn). Similarly, this proves that
IVPFCA(p1, P2, Pn) < IVPFCA(PT, pt, ... pT) =
pT.Thus, p~ < IVPFCA(pP1, P2y ... Pn) < pT. |

Remark 1 If the fuzzy measure & degenerates to an addi-

> £(p(j)), VP < P,
PGHEPG)
then the IVPFCA operator will be degenerated into [IVPFWA

operator.

tive measure, i.e., §(P(j)) =

Proof Since & is an additive measure, & (P(;)) —&(P(j+1))

£(p(j))- Then, IVPFCA(p1, P2, ... Pn)
n —~— n —~—
= jG_BI(é(P(j)) — §(PG+0)pg) = 6_9 Epi)rG) =
n e n
© Ejpj= PRI Zé(p,)u]
J= j=1
n - n —
> é(pj)ij, 3 E(pj)vj , where £(p(j)) represents
j=1 j=1
the weight of IVPEN p(j). O

Definition 10 Let p; =

([ w5 ] [o- 7))

(j =1,2,...,n) be a set of IVPFNs and & be a fuzzy mea-
sure on P = {p1, P2, ..., Pn}, then the IVPFCG operator is
defined as:

IVPFECG(Pi, Pr, ooy Pr) = é (p(\j)/)(é(l’(j))—é(lj(jﬂ)))
j=1

(E(P</>) E(PG+1))) E(Pj)—E(Pj+1))
({H( 1_[( ) } ;
Jj=1
- EPG—EPGY) T E(PG)—EPG11)
l_[ (U(Lj)) ) G+D , l_[ (U(Kj)) ) G+D

j=1 j=1

(26)

where () represents a permutation on {P1. P2sooes Pi)s
such that p(l) < pp < < Do and Py =
{p(J) p(]"r])a ceey p(n)} Wlth P(n+1) = ¢
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Remark 2 When the fuzzy measure & reduces to an addi-

tive measure, i.e., §(P;)) = Y. &(p(j). VP, < P,
P(7HEP)
then the IVPFCG operator will be degenerated into IVPFWG

operator. For brevity, the proof is omitted here.

4.2.2 Interval-valued Pythagorean fuzzy Shapley
aggregation operator

The developed IVPFCA and IVPFCG operators can eluci-
date the correlation between two adjacent coalitions, namely
P(jy and P(jiyy for j = 1,2, ..., n. To further characterize
the overall interactions among various combinations of input
arguments, the IVPFSA operator is proposed.

IVPFSG(p1, P, s ) = & (pin) ¥ &P or &P
]:

The IVPFSA operator also has the properties discussed
above, and since the proofs are similar to those already pre-
sented in subsection 3.2.1, the detailed process is omitted
here.

Remark 3 When the fuzzy measure & reduces to an addi-
tive measure, the IVPFSA operator will be degraded to the
IVPFWA operator.

Definition 12 Let  p; = ([,uf, ;1,5]] , [ij, UJU])
(j =1,2,...,n) be aset of IVPENSs. £ is a fuzzy measure on
P = {p1, P2, ..., Pn}. Then, the interval-valued Pythagorean
fuzzy Shapley geometric (IVPFSG) operator is defined as:

n n
(pp & P)—pp . (. P)) (op & P)—pp ;. (. P))
= <|:]‘[ (Mf},)) or € PPj+1) , 1‘[ (ufj)) PPj) PP(j1) :| , 28)
Jj=1 j=l1
n n _
|:H (U(Lj))(wp(_,.)(S,P)ﬂ/)p(jﬂ)(S,P))’ 1—1 (Ug))(wP(j)({:',P) (pp(j+1)(f,P)):|)
j=l1 j=1
Definition 11 Given a collection of IVPFNs p;  Where (-) represents a permutation on {P1. P2, .o Pu}s

= ([uj‘, uﬁj] , |:U]l-‘, UJUD (j =1,2,...,n) and defining &
as a fuzzy measure on P = {pi, p2,..., Pn}, then the
IVPEFSA operator is defined as:

satisfy@ < ?(27 < < /p?,j and P, =
{p(])’ p(j+1)s -~-vm, with P(n+1) = ¢

~ ~ ~ n —_
IVPESA(PL. P2 Pr) = @ [or,, & P) = op,. & P) PG
J=

= <|:Zl (‘PP<_,-) (‘51 P) - goP(_H_])(";:? P))/’Lf})v Zl (‘PP(_,-) (‘51 P) - ¢P(_/+1)(‘%—9 P))Mg)} )
J= J=

27

Zl ((/’P(j) (é’ P) — (pP(j+l) (E? P))U(l})9 Zl (‘PP(” (Eﬂ P) — (PP(j+1) (S’ P))U(Lj)j|>
J= J=

where (-) represents a permutation on {pi, p2, ..., Pn}»
satisfying p(iy < p@) < < P and Py =
{p(j), DPGi+1)s ...,m, with P(,11) = ¢, and @p) (&, P)is
the generalized Shapley index of P(;y with respect to fuzzy

measure £ on P.
(g ] [of o ])

(j =1,2,...,n).& isafuzzymeasureon P = {p1, p2, ..., Pn}-
Then, the aggregated value by IVPFSA operator is still an
IVPFN.

Theorem 2 Given a set of p; =

Remark 4 1f no interaction exists among elements and their
combinations, & is reduced to an additive measure. Then the
IVPESG operator is degenerated to the IVPFWG operator.

4.3 Consensus reaching based on the generalized
Shapley index with IVPFS

Before arriving at a decision, it is necessary to ensure that
the group consensus has reached a certain level. In this sub-
section, the generalized Shapley value is first introduced into
the CRP, and a novel feedback strategy is proposed to guide
the CRP with effective modification suggestions.
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4.3.1 Consensus measurements

In this study, we measure the consensus according to the devi-
ation between individual opinions and the collective opinion.

With the developed IVPFSA operator (subsection 3.2.2),
the group evaluation can be derived as:

e

Definition 16 (Consensus at the group level) The group con-
sensus level GCL is then computed as:

K
GCL = & (pu, (€ M) = o) € MNCLY  (33)

K
(PEgy (€. E) — 0Eg, & ENuiy", X @0 € B~ 950 & E))u,?jf)”] : (29)

~ K (k)
Dij = k€=91((ﬂE<k) (6, E) — @E(Hl)(é’ E))pij
K
:<z
k=1
K (k)L K (kU
3 e € B = 0ri 6 DU S (0ry (6 5) = prg 0 (6 DY) )

ij iy ij ij
the decision information from e; on a; over cj, and (-)

where pl-(]].‘) = ([u(k)L ,u(]f)U] , I:U-(]F)L, v@U]) represents

- - SRS T o
is a permutation on {pij, P> Pij } such that P =

o)

D <.
with E(x4+1) = ¢, and PE, (&, E) is the generalized Shap-
ley index of E ) regarding fuzzy measure & on E.

— —

k) (k+1)

)
Pij - Pij

LERARR] l] ’

K
< pjj and Egy = {

Definition 13 (Consensus at the evaluation level) Let pl].‘j be
the evaluation fromex(k = 1,2, ..., K)toa; (i = 1,2, ..., m)
overcj(j =1,2,...,n) and 137! denotes the group opinion,
then the consensus at ¢;’s evaluation level is defined as:

k
CLj; =1-

Pk - i) (30)
where CL; € [0, 1].

Definition 14 (Consensus at the alternative level) e;’s con-
sensus degree CLf.C at the alternative level can be calculated
as:

1 n
k __ k
CLf=- Y cLk 31)
j=1

where CL¥ € [0, 1].

Definition 15 (Consensus at the expert level) e;’s consensus
degree CL* at the expert level can be obtained as:

1 m
cLt=—=>"cLf (32)
m
i=1

where CL¥ € [0, 1]. A smaller divergence between ej’s
assessment and the collective opinion means a larger con-
sensus degree.

@ Springer

(K= Mg |=ITDIT]!

(K—|M(k)|+1)! (E(M(k) U

where gy, (6, M) = )]
TCTM\M )
T) —&(T)) is the generalized Shapley index of M ) regard-
ing fuzzy measure & on set M, and (-) is a permutation
on {CL',CL?,..,CLX}, such that CLV < CL® <

L= CL® and Mgy = {cL®, LD CcLE)}, with
Mk +1) = ¢. Therefore, it is clear that GCL € [0, 1].

Next, GCL is compared with a predefined parameter n
to test whether the consensus level meets the requirements.
If GCL > n, then the extended PROMETHEE method can
be employed to rank alternatives; otherwise, the feedback
strategy should be implemented to improve group consensus.

4.3.2 Feedback mechanism with maximum consensus
improvement

The feedback strategy includes two steps: first, the IVPFNs
that must be adjusted are identified, and second, we develop
an optimization model to maximize GCL improvement.

First, the assessments that need to be modified are selected
according to three consensus levels.

(1) First, the DMs that contribute less to a sufficient GCL are
identified:

EXPS = [k ‘CL" < r]] (34)

(2) Then, for the DMs in EXPS , the alternatives whose
consensus levels are below the threshold are identified:

ALS = {(k, )

k € EXPS A CLK < ] (35)

(3) For the alternatives in AL S, the specific evaluations that
must be modified are identified:

EVS = {(k, ) ‘(k,i) € ALS A CLE; < n} (36)



A generalized Shapley index-based interval-valued Pythagorean fuzzy...

6639

Suppose pl].‘j is one of the identified IVPFNs and group
evaluation p;; is used to guide the adjustment to promote

consensus, then the updated pl].‘j can be derived as:

Pl =0pf; + (L —=0)pij, i, j, k € EVS) (37)
where 0 € (0, 1) is an adjustment parameter indicating the
degree of modification.

In contrast with the traditional IDR-based model, which
randomly selects the adjustment parameters, this study estab-
lishes an optimization model to determine 6, which could
maximize GCL improvement. The integrated CRP model is
given as follows:

max : AGCL = GCL — GCL
Pl =0pf; + (1 =0)pij.i, j, k€ EVS,
6 €(,D),
~ K ")
pij = kfl(ﬁoE(k) &, E) = ¢E;1) (&, E))pij ’
Y "G
pij = 121 (PEwW G, E) = 9Eu (. E)pyys
m n ~ — (38)
sia.]cLf=-L Zl Zl [1 ~ | P — Pij ]
1= =
TE_ 1 v " K
Lkzmzlzl[l— il
=1 j=
K
GCL = & (Puy) M) = a6 M)CLY,
- K T
GCL = ® (@my (5. M) = i) (5. M)CLEO.

where CL¥F and GCL denote the updated consensus at the
expert and group levels, respectively.

Using the optimal 6 determined by Lingo 17.0, the
adjusted IVPFNSs can be obtained. These procedures should
be conducted iteratively until GCL > 7. Then, the deci-
sion information can be reaggregated based on the IVPFSA
operator to obtain the final group evaluation for the ranking
process.

4.4 The extended IVPF-PROMETHEE method with
the Shapley value

In the classical PROMETHEE method, the crisp number
is utilized to represent the preference value between alter-
natives. However, the inevitable uncertainty of MCGDM
problems is not well reflected and cannot be properly han-
dled with crisp values. Additionally, the traditional method
fails to adequately consider criteria interactions. To fill this
gap, we incorporate the generalized Shapley index into the
classical PROMETHEE method with IVPFS to improve the
ranking process.

The key aim of the PROMETHEE method is to determine
the preference value from the divergence between alterna-
tives using Eq. (16). In this study, the preference values are
represented with IVPEN to better reflect the inhe