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Abstract
Pile foundations are often subjected to lateral pressures in addition to axial loads due to earthquakes, ground pressure, and

wind pressures in various buildings. As a result, pile foundations have gotten more research than any other type of

foundation. Furthermore, estimating the lateral load capacity of a pile (LLCP) accurately is a difficult undertaking, and

there has been relatively little study in this field. To overcome these problems, in this study, the adaptive neuro-fuzzy

inference system (ANFIS) was ustilized to construct forecasting models for the indirect assessment of LLCP embedded in

clay in this work. The fuzzy c-means clustering technique (FCM) and the subtractive clustering method (SCM) were

implemented as ANFIS models. The data from open-source literature were used to evaluate the two ANFIS models. In

these models, pile length (L), pile diameter (D), undrained shear strength of soil (Su), and eccentricity of load (e) were used

as the inputs, while the measured LLCP in clay was the output. To compare the performance of the estimating models,

several statistical performance measures were used. The modeling results show that the relationships determined for

estimating the LLCP in clay by ANFIS models (ANFIS-SCM and ANFIS-FCM) are accurate and close to the real value. It

can also be concluded that the use of ANFIS models to predict the LLCP in clay is very efficient.
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1 Introduction

Deep foundations are utilized to avoid low-quality soils or

to transfer enormous loads to the earth under the buildings.

In recent decades, researchers have focused on the design

and analysis of deep foundations under various loading

situations (Rasouli and Fatahi 2021; Talal Alfach and Al

Helwani 2021; Tan et al. 2021). The use of static equilib-

rium equations to construct axially loaded piles can be a

useful strategy; however, solving nonlinear differential

equations is the only way to design laterally loaded piles,

according to several research contributions (Brinch-Hansen

1961; Broms 1964a, b; Matlock and Reese 1962;

Muthukkumaran et al. 2008; Poulos and Davis 1980).

Brinch-Hansen (1961) and Bromes (1964a, b) made the

first efforts at predicting laterally loaded piles using earth

pressure theories. Poulos and Davis (1980) utilized Win-

kler’s soil model to create dynamic equations. Laterally

laden piles, on the other hand, are difficult to construct and

require the solution of differential equations. The analysis

used by Poulos and Davis (1980) is not appropriate for

complex soil behavior. Nonlinear PY curves were utilized

by Matlock and Reese (1962) to forecast the lateral load

capacity for piles. Muthukkumaran et al. (2008) suggested

a new approach for drawing the PY curves in level ground

subjected to a lateral load for piles. Slope’s influence on

PY curves was also investigated (Brown et al. 1994).

However, due to changes in soil characteristics, these

approaches were shown to have a high level of uncertainty

in their predictions. As a result, several empirical approa-

ches are used, such as Brinch-Hansen (1961) and Bromes

(1964a, b). Begum and Muthukkumaran (2009) investi-

gated the behavior of pile on sloping terrain under lateral

load and presented correction factors for calculating their

maximum bending moment and lateral load capacity.

Muthukkumaran (2014) used a model to investigate the
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loading direction on laterally loaded pile and impact of

slope ain soil.

Although previous efforts have been valuable, empirical

models such as the ones discussed above are typically

incapable of recognizing the complex patterns seen in

datasets. These have been the primary drivers of interest in

determining the relationship between output and input

factors and proposing a more exact and certain solution. It

is helpful to employ existing methods for this purpose, such

as computational intelligence approaches, which can suc-

cessfully simulate the performance of nonlinear and linear

involved in data (Das et al. 2011; Mohammadi and Rah-

mannejad 2010; Muduli et al. 2013; Tarawneh and Imam

2014). For example, the ultimate LLCP estimated by an

artificial neural network (ANN) outperformed the Hiley

formula, Janbu formula, and Engineering News formula,

according to Goh (1995, 1996). Later studies to forecast

LLCP using ANN in clayey soils revealed that ANN had a

stronger prediction power than previous empirical

approaches (Chan et al. 1995; Elgamal et al. 2021; Kiefa

1998; Teh et al. 1997). Using another artificial intelligence

method, support vector machine, Samui (2008) found a

better forecast than ANN. In other research, Das and

Basudhar (2006) applied the ANN model to predict the

LLCP in clay. Also, Alkroosh and Nikraz (2013) used a

artifitial intelligence model (gene expression program-

ming) for forecasting the LLCP in clay.

In this study, the application of soft computing methods

for data analysis named ANFIS model based on FCM and

SCM to estimate LLCP in clay is demonstrated.

The advantages of fuzzy systems, which deal with

explicit knowledge that can be explained and understood,

and ANNs, which deal with implicit knowledge that can be

learned, are combined in hybrid systems known as ANFIS.

To satisfy particular standards and decrease expenses and

design time, ANN learning is an excellent technique to

change the expert’s knowledge and automatically produce

membership functions and extra fuzzy rules. When

extrapolation beyond the boundaries of the training data is

necessary, fuzzy logic increases an ANN’s generalization

potential by producing more dependable output. The

learning process is data driven rather than knowledge

based. Recently, the ANFIS method has been applied by

several scientists all over the world in the study of rock/soil

mechanics (Fattahi 2016a, 2017; Karimpouli and Fattahi

2018). The well–known research works are discussed in

this study. Fattahi et al. (2013) used ANFIS approach to

predict damaged zone around underground spaces. Jahed

Armaghani et al. (2021) suggested an ANFIS model to

estimat bearing capacity of the thin-walled foundations.

After constructing the database, numerous models were

created and suggested to estimate the carrying capacity of

the aforementioned foundations in order to meet the

study’s goal. Also, based on an ANFIS and a grasshopper

optimization method, Fattahi and Hasanipanah (2021) built

a novel integrated intelligent model to approximate flyrock.

A complete database was employed to achieve the study’s

goal, which was gathered from three quarry sites in

Malaysia. Li et al. (2019) proposed a estimation model

based on ANFIS to evaluate and predict curtain grouting

efficiency. Geological variables (rock quality designation

before grouting, Lugeon value, and fracture intensity),

effective grouting operation variables, and tested interval

depth are selected as inputs for estimation methods. The

indicators for evaluating grouting efficiency (rock quality

designation, Lugeon value value, and fracture filled rate

after grouting) are chosen as outputs for efficiency evalu-

ation. Fattahi (2016b) proposed using ANFIS to develop a

model for prediction of a rock mass’s deformation modu-

lus. Grid partitioning, SCM, and FCM were used to

implement three ANFIS models. Using field data from

railway and road building sites in Korea, the estimating

abilities afforded by three ANFIS models were demon-

strated. The input parameters for these models were the

elastic modulus of intact rock, uniaxial compressive

strength of intact rock, depth, and rock mass rating.

Fig. 1 A typical ANFIS

architecture for a two-inputs

Sugeno model (after Jang 1993)
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Babanouri and Fattahi (2020) trained an ANFIS approach

combined with a teaching–learning-based optimization

algorithm for prediction of the shear strength criteria of

rock joints.

In this paper, in ANFIS–FCM and ANFIS–SCM mod-

els, length of the pile (L), the diameter of the pile (D),

undrained shear strength (Su), and eccentricity of load

(e) are used as input parameters while LLCP is the output.

Data from open-source literature are used to show the

estimating abilities of ANFIS models.

2 The methodology of ANFIS

When extrapolation beyond the constraints of the training

dataset is necessary, the ANFIS increases the generaliza-

tion capacity of an ANN by producing more accurate

output. Rather than being knowledge based, the learning

process is data driven. Figure 1 depicts the ANFIS archi-

tecture with two inputs.

The ANFIS architecture is composed of five layers

(Fig. 1), and the following is a quick overview of the

concept.

Layer 1 The linguistic label membership grades are

provided by each node i in this layer. For example, the ith

node’s node function is stated in Eq. (1).

Q1
i ¼ lAiðxÞ ¼

1

1þ x�vi
ri

� �2� �bi ð1Þ

where Ai is the linguistic label for this node, x is the input

to node i, and ri;Vi; bif g is the variable set that alters the

membership function’s shape.

Layer 2 Calculate the ‘‘firing strength’’ of rule (Eq. (2)).

Q2
i ¼ Wi ¼ lAiðxÞ � lBiðyÞ i ¼ 1; 2 ð2Þ

Layer 3 As per Eq. (3), determine the ratio of the ith

rule’s firing strength to the aggregate of all the rule’s firing

strengths.

Q3
i ¼ Wi ¼

wiP2
j¼1 wj

; i ¼ 1; 2 ð3Þ

Layer 4 Each node i is a node that is stated as in Eq. (4),

Q4
i ¼ Wifi ¼ Wiðpixþ qiyþ riÞ ð4Þ

Wi is the output.

Layer 5 Compute the ‘‘overall output,’’ as shown in

Eq. (5).

Q5
i ¼ Overall output ¼

X
Wifi ¼

P
wifiP
wi

ð5Þ

Various identification procedures may be used to create

different ANFIS models for a given dataset. The approa-

ches used in this paper to determine the antecedent mem-

bership functions were SCM and FCM.

2.1 SCM

The SCM is an appealing solution to ANFIS network

synthesis since it automatically calculates cluster location

Table 1 The partial dataset utilized in this investigation (Rao and

Suresh Kumar 1996)

Inputs Output

D (m) L (m) e (m) Su (kN/m
2) LLCP (N)

0.0635 1.461 0.0191 38.8 69.5

0.13 2.60 0 24 225

0.125 1.30 0 24 106

0.135 3.00 0.050 3.4 30

0.135 3.00 0.050 4 36

0.135 3.00 0.050 5.5 50

0.13 1.321 0.0338 38.8 53

0.18 3.00 0.050 10 89

0.18 3.00 0.050 3.4 39

0.204 3.00 0.050 4 46

Table 2 Descriptive statistics for all datasets

Parameter Min Max Average

D(m) 0.0635 0.333 0.1778

Su(kN/m
2) 3.4 38.8 9.94

e(m) 0 0.050 0.04416

L(m) 1.30 3.00 2.7889

LLCP (N) 29.5 225 73.68

Table 3 The ANFIS models’ characterizations (ANFIS–SCM and

ANFIS–FCM)

Parameters Value

Output membership function Linear

Fuzzy rules number 15

Nodes number 157

Membership function type Gaussian

Linear parameters number 75

Total number of parameters 195

Testing data pairs number 8

Nonlinear parameters number 120

Training data pairs number 30
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Fig. 2 Membership functions

achieved using ANFIS–SCM
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and cluster number. In SCM, each sample is seen as a

potential cluster center of all data. This strategy makes

computing time proportional to the size of the data while

staying independent of the problem dimension (Chopra

et al. 2006; Smuda et al. 2007). The SCM was used to find

the cluster center. Using the number of subtractive centers,

automated membership functions and rule bases, as well as

the position of membership function inside dimensions,

were constructed. Chiu (1994) proposed an SCM in which

data points are assessed as cluster center candidates. The

algorithm is the same as before:

Step 1: In a M–dimensional space, evaluate a collection

of n data points X1;X2;X3; :::;Xnf g: Because each data

point might be a candidate for a cluster center, a density

measure at data point Xi is defined as follows:

Di ¼
Xn
j¼1

exp �
xi � xj
�� ��2

ra
2

� �2
 !

ð6Þ

A neighborhood is defined by the radius ra, and data

points outside of this radius contribute only a little pro-

portion to the density measure.

Step 2: After each data point’s density value is

computed, the dataset with the greatest density measure

is chosen as the center of initial cluster. Let Dc1 be the

density measure and Xc1; be the selected point. The

density value at each dataset xi is then changed to

Eq. (7),

Di ¼ Di � Dci exp � xi � xcik k2
rb
2

� �2
 !

ð7Þ

where rb is a constant.

Step 3: Choose the next center of cluster Xc2 and review

all of the data point density estimates once again. This

method is continued until there are a sufficient number of

cluster centers.

2.2 FCM

The FCM is a data clustering approach that assigns any

dataset to a cluster based on its membership grade. This

algorithm was created by Bezdek (Bezdek 1973). The

following are the steps of the FCM technique:

Step 1: Select the centers of cluster ci; i ¼ 1; 2; :::; c;

Step 2: Using Eq. (8), calculate the membership matrix

U

lij ¼
1

Pc
k¼1

dij
dkj

� �2=m�1
ð8Þ

The fuzziness index is denoted by the letter m.

Step 3: Calculate the objective function using Eq. (9):

JðU; c1; . . .; c2Þ ¼
Xc
i¼1

Ji ¼
Xc
i¼1

�
Xn
j¼1

lmij d
2
ij ð9Þ

step 4: Calculate new c fuzzy cluster centers according to

Eq. (10).

ci ¼
Pn

j¼1 l
m
ij xjPn

j¼1 l
m
ij

ð10Þ

go to step 2.

3 Data source and data structure

The major scope of this study is to apply the approaches

described above to the problem of LLCP forecasting. The

dataset used in this study to ascertain the link between the

Fig. 2 continued
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Fig. 3 Membership functions

achieved using ANFIS–FCM
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set of input and output variables was compiled from open-

access literature (Rao and Suresh Kumar 1996). There were

a total of 38 datasets gathered. The pile length (L), pile

diameter (D), undrained shear strength of soil (Su), and

eccentricity of load (e) and LLCP are all included in each

dataset. A detailed explanation of the reasons for selecting

these input parameters, can be found in Rao and Suresh

Kumar (1996). Table 1 shows the partial dataset utilized in

this investigation. Table 2 also includes descriptive statis-

tics for all datasets.

4 Models performance evaluation

In order to remove any outliers, missing values, or inac-

curate data, several preprocessing techniques are often

utilized in data-driven system modeling methodologies

before any computations. This procedure assures that the

raw data obtained from the database is ideal for modeling.

All data samples are normalized to fit the range [0, 1] using

the following linear mapping function to optimize training

and improve prediction accuracy.

xM ¼ x� xmin

xmax � xmin

ð11Þ

where x represents the original value of the dataset, xM
represents the mapped value, and xmin (xmax) denotes the

min. (max.) raw input values, respectively.

The the Nash–Sutcliffe efficiency (NSE), squared cor-

relation coefficient (R2), and mean square error (MSE)

were chosen as the accuracy measures to test the ANFIS

models’ performance.

The following are the definitions of MSE, R2, and NSE:

NSE ¼ 1�
Pn

k¼1 ðtk � t̂kÞ2Pn
k¼1 ðtk � tkÞ2

ð12Þ

MSE ¼ 1

n

Xn
k¼1

ðtk � t̂kÞ2 ð13Þ

R2 ¼ 1�
Pn

k¼1 ðtk � t̂kÞ2
Pn

k¼1 t
2
k �

Pn

k¼1
t2
k

n

ð14Þ

where tk and t̂k are the measured and estimated values,

respectively, and n is the sample size.

5 Indirect estimation of LLCP in clay using
ANFIS models

The ANFIS models (ANFIS-FCM model and ANFIS-SCM

model) were used to construct a forecasting models for

indirect prediction of LLCP from existing dataset using the

MATLAB software. A dataset comprising 38 data points

was utilized in this study, with 30 data points (80%) used to

create the model and the remaining data points (20%) used

to evaluate the degree of reliability. The process of training

the models now was done in 100 epochs. The MSE, NSE,

and R2 values obtained for training datasets show the

capacity to learn the structure of data samples, whereas the

testing dataset results reflect the generalization capacity

and resilience of the system modeling methodologies.

Table 3 shows the ANFIS models’ characterizations. The

characterizations of the best models are established through

trial and error in this work.

The fuzzy rules number achieved for the ANFIS-FCM

and ANFIS-SCM models is 15 rules. In Figs. 2 and 3, the

Fig. 3 continued
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membership functions of the inputs for ANFIS models are

presented.

A comparison of the performance of two models for

training and testing datasets is shown in Table 4. Both the

ANFIS–SCM and ANFIS–FCM models were capable of

predicting the LLCP in clay, as demonstrated in this

Table 4; however, the ANFIS–SCM performs better in

training and testing datasets than the ANFIS–FCM.

Table 4 shows that the both ANFIS models performs

well and could be used to estimate LLCP indirectly in clay.

In addition, throughout the testing and training stages,

correlations between estimated LLCP values and measured

are provided in Figs. 4 and 5.

Figures 6 and 7 show a comparison of estimated LLCP

values from ANFIS models vs observed values for datasets

during the training and testing phases following modeling.

The findings of the ANFIS–SCM in connection to real data

are presented in Figs. 6 and 7. The ANFIS–SCM has a high

level of precision, as shown in Figs. 6 and 7.

Table 4 Indices of performance for two intelligence models

ANFIS

model

Traning Testing

MSE R2 NSE MSE R2 NSE

ANFIS–SCM 0.0012 0.9814 0.9813 0.0018 0.9275 0.9057

ANFIS–FCM 0.0016 0.9769 0.9763 0.0023 0.9154 0.9148

(a) 

(b)

R² = 0.9814

0

50

100

150

200

250

0 50 100 150 200 250

Pr
ed

ic
te

d 
 L

L
C

P(
N

)

Measured LLCP(N)

R² = 0.9275

0

20

40

60

80

100

0 20 40 60 80 100

Pr
ed

ic
te

d 
 L

L
C

P(
N

)

Measured LLCP(N)

Fig. 4 Correlations between measured and estimated LLCP values

using ANFIS–SCM model: a training dataset, b testing dataset
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Fig. 5 Correlations between measured and estimated LLCP values

using ANFIS–FCM model: a training dataset, b testing dataset
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6 Discussions

As was already indicated, it appears that ANFIS is a more

precise approach for predicting LLCP throughout the

testing and training phases. This assertive remark still

requires further endorsements. In reality, there is still one

point in this area that has to be addressed: Can the per-

formance of the models be altered by varying the training

and testing data fractions? To demonstrate how the per-

formance of the models may alter with varied quantities of

training and testing data, several tries with various fractions

of data would be necessary to answer this question (Fattahi

and Bazdar 2017).

Table 5 shows that in virtually all cases, the MSE and R2

of the ANFIS models (for training/testing = 80/20) are

lower than those of the other models, indicating that it

would be a preferable choice for the prediction process.

7 Conclusion

The analysis for indirect LLCP estimate was examined in

this study utilizing ANFIS-FCM and ANFIS-SCM models,

and the following findings were reached:

• D, L, e, and Su are incorporated in order to predict

LLCP in clay.

• The modeling results show that the relationships

determined for estimating the LLCP in clay by ANFIS

models (ANFIS-SCM and ANFIS-FCM) are accurate

and close to the real value after a comparison of two

ANFIS models utilizing 38 data samples and perfor-

mance indices: NSE, MSE, and R2.

• As a result, ANFIS models may be considered a robust

system modeling methodology for forecasting LLCP in

clay with a high degree of precision.

• This study illustrates how the ANFIS approach may be

used to simulate a wide range of mining and civil

engineering problems.
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