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Abstract
Structural reliability is defined as the safety probability of the structure under the influence of uncertain factors over a given

period of time. The direct integration method from the definition of reliability is closer to the true value. However, the

complex integration domain and the calculation of multiple integrals bring difficulties for reliability calculation. This study

proposes a multiple correlation neural networks (MCNN) method to solve these problems. In the first step, a set of artificial

neural networks (ANNs) are built to approximate the safety domain of structural reliability. Then, the trained ANNs are

connected with improved dual neural networks to form the MCNN method. Using the correlation of ANNs in MCNN, the

solution of multiple definite integrals with the implicit integral domain is obtained. The proposed method has significant

accuracy and efficiency compared with other existing methods and increases the computational stability of ANN-based

reliability calculation methods. The performances of the newly proposed method in calculation accuracy and efficiency are

analyzed for several structural reliability problems.

Keywords Structural reliability � Direct integral approach � Multiple definite integrals � Multiple correlation neural

networks

1 Introduction

It is well known that uncertainties in engineering structures

may cause severe accidents and should be reasonably

analyzed and controlled. Reliability calculation takes these

uncertainties into account when evaluating structural sys-

tem safety. From the middle of the last century, many

methods have been developed for structural reliability

calculation, mainly can be summarized into three cate-

gories. (1) Analytical methods. The first-order reliability

(Liu and Kiureghian 1991) and second-order reliability

methods (Tvedt 1990; Zhang and Du 2010; Liu and Peng

2012; Zhang et al. 2015; Zhang and He 2018) are

considered to be the most popular in the past few decades.

These methods require an iterative process. With the non-

normal variables changed into standard variables by non-

linear transformation, the most probable point is located by

the sensitivity of the performance function. Although the

method can give acceptable accuracy in solving some

realistic problems, the most probable point is difficult to

locate as the nonlinearity of the performance function

increases. (2) Simulation-based methods. The direct Monte

Carlo simulation (MCS) methods (Rubinstein and Kroese

2007) and other improved MCS methods (Nie and

Ellingwood 2000; Niederreiter and Spanier 2000; Au and

Beck 2001; Papadopoulos et al. 2012; Shayanfar et al.

2018) are the most widely used simulation methods, and

the calculation results can be regarded as the exact value

and used to verify the accuracy of other methods. However,

the computation of the required large number of samples is

very time-consuming. (3) Direct integration methods.

Starting from the definition of reliability, the direct inte-

gration methods (Genz and Malik 1980; Zhang and Cui

1997) calculate the integral formula of reliability. Even

though some numerical integration methods (Place and
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Stach 1999; Allahviranloo 2005; Simos 2009) have been

developed, there are still difficulties in solving the complex

multiple integrals.

In recent years, various machine intelligence methods,

particularly artificial neural network (ANN) methods, have

been widely used in reliability calculation (Jin and Liu

2008; Chojaczyk et al. 2015; Dey et al. 2020; Li et al.

2022). ANN is an adaptive nonlinear dynamic system that

can approximate highly nonlinear function accurately (Liao

et al. 2015; Wang and Li 2017; Aljarah et al. 2018; Asteris

et al. 2019). ANN is composed of a large number of simple

neurons which are interconnected. Training an ANN to

approximate the limit state function (LSF) and performing

MCS in terms of the trained ANN can reduce the number

of finite element calculations in reliability calculation

(Papadrakakis et al. 1996; Papadrakakis and Lagaros 2002;

Cardoso et al. 2008; Chojaczyk et al. 2015; Yoon et al.

2020). However, these methods are still time-consuming

for complex LSF. Alternatively, ANN is combined with a

gradient-based method like FORM or SORM for reliability

calculation (Chojaczyk et al. 2015; Goh and Kulhawy

2003; Yan and Lin 2016), which can reduce the conver-

gence problem. However, the inherent limitations of gra-

dient-based methods limit the computational accuracy.

Several studies (Gomes and Awruch 2004; Bucher and

Most 2008; Dai et al. 2015; Nezhad et al. 2019) show that

the ANN-based response surface methods are efficient in

some specific reliability calculation problems. The key to

the direct integration methods for reliability calculation is

the solution of multiple definite integrals. Zeng et al.

(2006) proposed an ANN-based integration solution

method by training weights with cosine basis function to

fit the integrand, resulting in satisfactory computational

accuracy. However, the variable must be within a fixed

interval, which seriously affects the use in science and

engineering practice. Lloyd et al. (2020) proposed a novel

numerical integration technique that uses a shallow neural

network design to approximate the integrand function

within a bounded set. Experiments show that the method

is feasible and works best on predictable integral func-

tions, but is less effective on singular and non-smooth

functions.

Li et al. (2018) proposed a dual neural networks (DNN)

method to calculate the multiple definite integrals in reli-

ability calculation. The DNN consists of neural network A

(NETA) and neural network B (NETB), which is con-

structed by training NETA to approximate the integrand.

The NETB corresponding to the primitive function is

directly obtained with the functional relations between the

two neural networks. However, this method is effective

only when the integral concerns a single definite integral or

the integral domain of multiple definite integrals is a

hypercube. Then, Li et al. (2019) solved multiple definite

integrals for the arbitrary integral domain by repeatedly

applying DNN. This method has the characteristics such as

numerical stability and does not need to know the inte-

grand. The method has been successfully applied in the

reliability calculation of several engineering problems (Li

et al. 2018; Li et al. 2019; Du and Li 2019). These

advantages have made DNN quickly attracts extensive

attention.

This paper proposes a multiple correlation neural net-

work (MCNN) method for reliability calculation based on

DNN. The integral domain is difficult to determine for

most reliability calculation problems because of the

implicit performance function. In MCNN, a set of ANN

models are trained to approximate the reliability integral

domain. Through a novel transformation process, the

interval domain of each variable is determined by the

trained ANN and then combined with the DNN to form the

MCNN. In this paper, the integrand is the joint probability

density function of all random variables. The integrand is a

continuous, differentiable, real-valued function, and the

training accuracy of the NETA can be fully guaranteed.

The DNN with a new activation function pair is used for

more efficient reliability calculation. By iteratively com-

puting the definite integral of each variable, the solution of

the multiple definite integrals corresponding to the relia-

bility is obtained. Several representative examples show

that the proposed method is an efficient and accurate reli-

ability calculation method and can be used as a paradigm.

This paper is organized as follows: In Sect. 2, the basic

integral form of structural reliability calculation is briefly

presented. Section 3 presents the fundamental theories of

DNN for calculating multiple definite integrals. Section 4

details the newly proposed method for reliability calcula-

tion. Illustrative numerical examples and results are dis-

cussed in Sect. 5. In Sect. 6, the conclusion of this work is

outlined.

2 The integral form of structural reliability
calculation

Structural reliability analysis frequently involves the cal-

culation of a component probability of safety:

R ¼ RfGðXÞ[ 0g ¼
Z

� � �
Z
GðXÞ[ 0

f ðxÞdX ð1Þ

where X ¼ x1; x2; . . .xNf gT represents N dimensional basic

input random variables, G Xð Þ is a performance function

and G Xð Þ[ 0 represents the safety event. f xð Þ is the joint

probability density function of variables X, typically rep-

resenting the loads, material properties and geometry.

It is challenging to directly solve the integrals in Eq. (1)

due to the implicit performance function. An indicator
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function IðGðXÞÞ is introduced. If GðXÞ[ 0, let

IðGðXÞÞ ¼ 1, otherwise, IðGðXÞÞ ¼ 0. Then Eq. (1)

becomes:

R ¼ RfGðXÞ[ 0g ¼
Z þ1

�1
� � �
Z þ1

�1
IðGðXÞÞ � f ðxÞdX

ð2Þ

Let y Xð Þ ¼ IðGðXÞÞf ðxÞ, the integrand is a piecewise

function. The explicit expression of integrand y Xð Þ is not

available, because the performance function G Xð Þ is

always expressed implicitly. The multiple definite integrals

in Eq. (2) are also difficult to solve with the traditional

numerical methods.

3 Review of DNN and direct integration
method

3.1 Introduction of DNN and direct integration
method

The DNN (Li et al. 2018) and direct integration method is

proposed to calculate the multiple definite integrals with

implicit integrand, which provides a new thought for reli-

ability calculation with ANN method. The main thought is

training a three-layered NETA to approximate the inte-

grand in integral Eq. (2), and another three-layered NETB

is analytically derived to approximate the primitive func-

tion. The derived primitive function is taken as the inte-

grand in the next step, the solution of multiple definite

integrals is obtained by repeating this step.

The DNN consists of two interrelated forward-type BP

neural networks A and B, the NETA is used to approximate

the integrand in Eq. (2), and the NETB corresponds to the

primitive function. The structure of the NETA is shown in

Fig. 1:

The functional relation between the outputs and inputs

of NETA can be expressed as:

y ¼
Xm
j¼1

h
Xn
i¼1

w1
jixi þ #j

 !
W2

j ð3Þ

The structure of the NETB is shown in Fig. 2:

The functional relation between the outputs and the

inputs of NETB can be written as:

Y ¼
Xm
j¼1

g
Xn
i¼1

w1
jixi þ #j

 !
w2
j þ b ð4Þ

The relations of NETA and NETB are, respectively,

integrand and primitive function of the variable xi, their

function relations of weight coefficients and activation

functions are as below:

W2
j ¼ w2

j � w1
ji;

ogðxÞ
ox

¼ hðxÞ ð5Þ

where h xð Þ and g xð Þ are called a set of activation function

pairs.

According to the fundamental theories of DNN, the

solution of the reliability integral in Eq. (2) can be

achieved by using DNN repeatedly (Li et al. 2019). The

flowchart is shown in Fig. 3.

3.2 Remarks on the DNN and direct integration
method

The three-layer ANN structure is shown in Fig. 4. DNN has

a broader range of applications than traditional numerical

integration methods. The performance function G Xð Þ is

always an implicit expression, only some sample data

points that can reflect the function relation between the

input and output of the integrand in Eq. (2) are known. The

traditional numerical integration methods are challenging

to calculate under this situation, and the DNN can be

directly used to calculate reliability integral; when the

Fig. 1 The structure of NETA Fig. 2 The structure of NETB
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interval domain of a variable is a function concerning other

variables, the DNN shows excellent performance; the

accuracy of reliability calculation can be controlled by

increasing the number of hidden neurons and training steps

in the DNN. However, the integrand in Eq. (2) is a

piecewise function, which may influence the approxima-

tion accuracy of NETA. The integrand in Eq. (2) is dif-

ferent for different reliability calculation problems, so all

the ANNs in DNN need to be rebuilt for different reliability

calculation problems. Therefore, the reliability calculation

of DNN deserves further study.

This paper firstly constructs a set of ANNs to approxi-

mate the reliability integral domain. The trained ANN can

represent the interval domain of each variable without the

need to know the expression of the performance function.

Unlike the DNN and direct integration method for relia-

bility calculation, the NETA is used to approximate the

joint probability density function of f xð Þ in Eq. (1). f xð Þ is
a continuous, differentiable and real-valued function, and

the model accuracy of the trained NETA can be guaran-

teed. For different reliability problems with the same dis-

tribution of random variables, the previously trained ANNs

can be used directly without needing to reset network

parameters and be trained again. Therefore, the newly

proposed MCNN method is significant for computational

accuracy, stability and efficiency of reliability.

4 The proposed MCNN method

4.1 Reliability integral domain estimation
with ANN

The expression of the performance function G x1; x2xnð Þ is
always implicit, and only some sample points are available,

so the reliability integral domain is difficult to estimate and

perform in function form. This section constructs a set of

ANNs to achieve high precision approximation of the

integral domain.

For the first integral inxi, fx1; x2; � � �xi�1; xiþ1; � �
�xn;Gðx1x2 � � � xnÞg are selected as the inputs and xi as the

output. The three-layered ANN structure is as follow:

The functional relation between the outputs and inputs

can be written as:

xi ¼ chðk1x1 þ . . .þ ki�1xi�1 þ kiþ1xiþ1 � � � þkn�1xn
þ knGðXÞþb2Þ ð6Þ

where k is the weight vector from the input layer to the

hidden layer, b2 represents the bias in the hidden layer, c is

the weight vector from the hidden layer to the output layer,

and function sigmoid() is selected as the activation function

hðÞ.
After training the ANN, the weight and bias vectors in

Eq. (6) are obtained. Set the performance function in the

limit state G Xð Þ ¼ 0, the relationship between the input

random variable xi and other variables

fx1; x2; xi�1; xiþ1; xng in the limit state can be expressed as:

xi ¼ chðk1x1 þ . . .þ ki�1xi�1 þ kixiþ1 � � � þkn�1xnþb2Þ
ð7Þ

Then the integral interval of the first variable xi is suc-

cessfully determined by other n� 1 random variables. For

Fig. 3 Flowchart of DNN method for solving multiple definite

integrals

Fig. 4 Structure of the neural network
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the second integral of another random variable, also repeat

the same step as the first integral. Set the performance

function G Xð Þ ¼ 0 and xi ¼ 0, the integral interval of the

second variable expressed by other n� 2 random variables

is obtained. Finally, the integral intervals of all variables

are derived.

4.2 The MCNN method for structural reliability
calculation

This section elaborates on the newly proposed MCNN for

structural reliability calculation. To illustrate the MCNN

method more clearly, the reliability calculation with two

variables is considered. The definition of reliability can be

expressed as:

R ¼ RfGðx1; x2Þ[ 0g ¼
Z Z

Gðx1;x2Þ[ 0

f ðx1; x2Þdx1dx2

ð8Þ

The detailed calculation steps of the MCNN method are

as follows, and Fig. 5 illustrates the flowchart of the cal-

culation process.

Step 1 Set the network parameters. The initial network

weights and bias are random values in the interval ½0; 1�,

and the Levenberg-Marquardt algorithm (Hagan and

Menhaj 1994) is used to update the network weights and

bias of all ANNs.

Step 2 Construct the input points x j
1; x

j
2

� �
and output

points f ðx j
1; x

j
2Þ, and train a three-layered neural network

A1(NETA1) to approximate the joint probability density

function f x1; x2ð Þ. The function sigmoid() is selected as the

activation function hðxÞ in the hidden layer. The functional

relation between the outputs and inputs of NETA1 can be

expressed as:

y ¼ Whðw1x1 þ w2x2 þ #Þ ð9Þ

Step 3 According to the functional relations of DNN in

Eq. (5), the three-layered network B1(NETB1) corre-

sponding to the primitive function of integrand f x1; x2ð Þ in
x1 is analytically derived. The functional relation between

the outputs and inputs of NETB1 can be expressed as:

Y ¼ W1gðw1x1 þ w2x2þ#Þ ð10Þ

where W1 ¼ W=w1 and hðxÞ ¼ ogðxÞ=ox, the weight vec-

tors w1;w2 and bias # are same with the values in Eq. (9),

the activation function gðxÞ is function softplus().

Step 4 Construct a three-layered neural network C1

(NETC1) to estimate reliability integral domain, set

x2;G x1; x2ð Þf g as the inputs and x1 as the output. The

expression of the trained NCEC1 is:

x1 ¼ chðk1x2þk2Gðx1; x2Þþb1Þ ð11Þ

Set the performance function in limit state G Xð Þ ¼ 0,

the functional relation between variables x1 and x2 can be

expressed as:

x1 ¼ chðk1x2þb1Þ ð12Þ

Step 5 With the maximum and minimum values of the

variable ranges, the NETC1 can accurately determine the

variable interval. The computational result of the first

definite integral in x1 has been completed, the final result

can be expressed as:

Y1 ¼ W1gðw1x1 þ w2x2þ#Þ NETC1j ð13Þ

Step 6 Construct a three-layered neural network A2

(NETA2) to approximate the function in Eq. (13). The

function in Eq. (13) is just about variablex2, the NETA2 is

trained with x2 as the input and Y1ðx2Þ as output. The

functional relation of the input and output variables is

expressed as follow:

y2 ¼ W2hðw3x2þb2Þ ð14Þ

Step 7With the functional relations ofW3 ¼ W2=w3 and

hðxÞ ¼ ogðxÞ=ox, the neural network B2(NETB2) corre-

sponding to the primitive function is directly obtained. The

functional relation of input and output variables can be

expressed as:
Fig. 5 The flowchart of the MCNN method
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Y2 ¼ W3gðw3x2þb2Þ ð15Þ

where the weight and bias vectors are the same as those of

NETA2.

Step 8 Substitute the upper bound ax2 and lower bound

bx2 of variable x2 into NETB2, the calculation of the sec-

ond definite integral in x2 is completed. The upper and

lower bounds are the maximum and minimum values of

variable x2. The final result is as follow:

Y3 ¼ W3gðw3ax2þb2Þ �W3gðw3bx2þb2Þ ð16Þ

Step 9 Get the result of the reliability calculation.

5 Numerical example

5.1 Example 1

In this example, the usability reliability of cantilever beam

with rectangular section under uniform distributed load is

estimated. Usability failure will occur when maximum

deflection at the free exceeds L/325, where L is the length

of beam. The young modulus E and length L are set as

L ¼ 600mm and E ¼ 2:6104MPa, the performance func-

tion is (Rajashekhar and Ellingwood 1993):

GðXÞ ¼ 0:01846154� 74:76923
x1
x32

The intensity x1 of distributed uniform load and the

height x2 of the beam follow mutually independent normal

distributions, their statistics are listed in Table 1.

The reliability is calculated by solving the following

multiple integrals.

R ¼ RfGðXÞ[ 0g

¼
Z Z

GðXÞ[ 0

1

2p� 200� 37:5
� e�1

2

x1�1000

200ð Þ2þ x2�250

37:5ð Þ2
� �

dx1dx2

ð17Þ

The variables of x1 and x2 are transformed into two

standard normal distributed variables to generate the

training samples. The ranges of ½ly1 � 4dy1� and ½ly2 �
4dy2� are, respectively, divided into 40 parts, two variables

cross each other forming the input sample points of

NETA1. The joint probability density function of y1 and y2
is taken as the output. After considering the accuracy and

efficiency, the number of neurons in the hidden layer and maximum training steps are determined and listed in

Table 2.

Table 1 The statistics of

random variables for example 1
Variable Mean l Standard deviation d Dimension Distribution

Intensity x1 1000.0 200.0 MPa Normal

Height x2 250 37.5 mm Normal

Table 2 The network parameters of all ANNs

Method NETA1 NETB1 NETA2 NETB2 NETC1

Hidden neuron 100 100 30 30 30

Training step 500 0 1000 0 1000
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Fig. 6 Training error curve of NETA1 in example 1

0 100 200 300 400 500 600 700 800 900 1000

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

Training step

Tr
ai

ni
ng

 e
rr

or

Performance is 2.99901e-012, Goal is 0

Fig. 7 Training error curve of NETA2 in example 1
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The error convergence curves of NETA1 and NETA2

are shown in Figs. 6 and 7, which show that all ANNs have

good training performance under the set network parame-

ters. NETC1 is trained to construct the integral domain, and

some relevant network parameters are shown in Table 2.

The number of sample points along each variable axis is 40

to generate the training samples and calculate the corre-

sponding performance function values. Variable x2 and

performance function G x1; x2ð Þ are used as the inputs of

NETC1, while x1 is taken as the output. Set the perfor-

mance function in limit state G x1; x2ð Þ ¼ 0, the trained

NETC1 becomes a function of x1 with respect to x2. The

reliability integral domain is easily determined based on

the trained NETC1 and the variable ranges, as shown in

Fig. 8.

Following the calculation process in Sect. 4.2, we get

the reliability result by the newly proposed MCNN method.

Using the same neural network parameters as the proposed

method, we also calculate the reliability by DNN and

Optimized DNN (ODNN) methods. The approximate

solutions obtained by the ANN-based response surface

method (ANNRSM) (Ren and Bai 2011), uniform design

method with artificial neural network based genetic algo-

rithms (UDM-ANN-GA) (Cheng and Li 2008), DNN

method, ODNN method, MCS method (Rajashekhar and

Ellingwood 1993) and newly proposed MCNN method are

compared in Table 3.

As shown in Table 3, the proposed method has higher

calculation accuracy of reliability than other methods when

compared to the MCS result, and the calculation error is

less than 1e—6. Only finite training steps show the high

running efficiency of the newly proposed method. The

trained NETA1 in this example can be used in other reli-

ability calculation problems when the random variables

0 200 400 600 800 1000 1200 1400 1600 1800 2000
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300
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x 2
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Fig. 8 The determined reliability integral domain by NETC1

Table 3 Reliability calculation

results by different methods for

Example 1

Method ANNRSM UDM-ANN-GA DNN ODNN MCNN MCS

Reliability 0.990305 0.990405 0.990786 0.990498 0.990393 0.990393

Relative error (%) 0.0089 0.0012 0.0397 0.0106 0 0
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Fig. 9 The absolute error of each simulation
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Fig. 10 Training error curve of NETA2 in example 2
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have identical probability distributions, which can signifi-

cantly improve the computational efficiency of reliability.

To illustrate the stability of the method in calculation

accuracy of reliability, we conducted 20 independent

experiments and the absolute errors of reliability results

calculated for each experiment are shown in Fig. 9. It is

seen from Fig. 9 that the absolute error of each simulation

is less than 1e—6, which shows that the proposed method

is stable with high accuracy in reliability calculation.

5.2 Example 2

A nonlinear exponential performance function (Kim and

Na 1997; Kaymaz and McMahon 2005; Roussouly et al.

2013) is considered in this example, the function can be

expressed as:

GðXÞ ¼ exp½0:4ðx1þ2Þþ6:2� � exp½0:3x2þ5� � 200

where variables x1 and x2 are assumed to be independent

and have a standard normal distributions with zero mean

and unit standard deviation.

The variables in this example have a similar distribution

to those in example 1, so the NETA1 trained in example 1

can be used directly. The network parameters listed in

Table 2 are used in this example. The convergence curve

error of NETA2 is shown in Fig. 10, which shows the high

training efficiency. The NETC is constructed to approxi-

mate the reliability integral domain. The ranges of ½lx1 �
4dx1� and ½lx2 � 4dx2� are, respectively, divided into 40

parts, two variables cross each other to form the sample

points, and the corresponding G x1; x2ð Þ is calculated.

Variable x2 and G x1; x2ð Þ are selected as the input variables

and x1 as the output variable. After adjustment, the number

of neurons in hidden layer is set as 30, the maximum

number of training steps is set as 500. The convergence

curve of the training errors is shown in Fig. 11.

Figure 11 shows that the NETC has good training per-

formance under the set network parameters, which ensures

the accuracy of the reliability interval domain expressed by

NETC. After training NETC, the performance function is

set to the limit state G x1; x2ð Þ ¼ 0. The NETC is equivalent

to a single input variable x2 and a single output variable x1,

which reflects the functional relationship between the two

variables in the limit state. Combining the variable ranges,

the reliability integral domain determined is determined by

the trained NETC.

Following the calculation process in Sect. 4.2, we get

the reliability result of the example. The reliability is cal-

culated using the same training steps and network param-

eters by DNN and ODNN methods, respectively. The

approximate solutions obtained by improved sequential

response surface method (ISRSM) (Kim and Na 1997),

doubly weighted moving least squares (DWMLS) method

(Li et al. 2012), response surface using downhill simplex

algorithm (DSA-RSM) (Su et al. 2019), DNN method,

ODNN method, MCS (Li et al. 2012) and the newly pro-

posed MCNN method are compared in Table 4.

As shown in Table 4, the proposed method has higher

accuracy of reliability calculation than other methods when

compared to the MCS result. Only finite training steps

show the high efficiency of the newly proposed method.

6 Conclusion

IN this paper, a newly multiple correlation neural network

(MCNN) method is developed for the direct integration

method of reliability calculation. The computational

accuracy and efficiency of the method have been tested by

representative examples and compared with some existing

methods. The results show that the proposed reliability

calculation method has higher accuracy and efficiency, and

the computational results are stable at high accuracy. This

paper details the proposed ANN-based reliability calcula-

tion method, which can be used as a paradigm for many

other numerical applications.
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Fig. 11 Training error curve of NETC in example 2

Table 4 Reliability calculation

results by different methods for

Example 2

Method ISRSM DWMLS DNN ODNN DSA-RSM MCNN MCS

Reliability 0.99644 0.99639 0.99463 0.99653 0.99661 0.99629 0.99632

Relative error (%) 0.0120 0.0070 0.1696 0.02108 0.0291 0.0030 0
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