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Abstract
The article deals with the correspondence between soft ideal topological spaces and ideal topological ones. Investigation of
soft ideal topological spaces is based on methods of general topology, and the application of results for soft omega open and
strongly soft omega open sets is given.
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1 Introduction

Molodtsov (1999) initiated the concept of soft sets as a com-
pletely different approach for dealing with uncertainties, and
over the past few years, the fundamentals of the soft set the-
ory have been studied by many authors. Since the concept
of soft topology was introduced by Shabir and Naz (2011),
many terms of general topology have found their analogy in
soft topological spaces.

There are several papers that document certain problems
relating to the fundamentals of the soft set theory and soft
topological spaces. (Shi and Pang 2014, 2015; Shi and Fan
2019) demonstrate the redundancies concerning the increas-
ing popular soft set approaches to general topology, and
they claim that soft topology is exactly a special subcase
of general topology. Matejdes (2016) also states that a soft
topology is nothing more than a topology on Cartesian prod-
uct, and each soft topological concept has its topological
equivalent. Some soft terms (for example, soft homogeneity,
soft compactness, soft paracompactness, soft Lindelöfness,
soft normality, soft connectedness, soft hyperconnectedness,
soft topological sum; see Al Ghour and Bin-Saadon (2019);
Al-shami et al. (2020); El-Shafei et al. (2018); Terepeta
(2018)) correspond to known, commonly used and stud-
ied topological terms. Others (for example, soft separation
axioms, see El-Shafei et al. (2018)) correspond to topologi-
cal terms that bring new challenges to research. In principle,
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any soft concept can be studied by standard topologicalmeth-
ods. Recently publishedworks byAlcantud (2021);Matejdes
(2021a);Matejdes (2021b);Matejdes (2021c) also document
that soft topology is basically part of general topology, and
concepts of soft topology can be reduced to the correspond-
ing concepts in topology. More precisely, a soft topological
space stemming from a topological space and vice versa is
investigated byAlcantud (2021) (with application to base and
separability), soft homogeneity is investigated by Matejdes
(2021b), enriched soft topology, topological sum, soft regu-
larity, soft compactness and soft Lindelöfness are studied by
Matejdes (2021a), and soft continuity is studied in Matejdes
(2021c). In all cases, topological counterparts were used as
a substitute for soft methods. Based on these facts, we can
say that the cumbersome methods used in the theory of soft
topological spaces, which are often unnecessary imitations
of topological methods, can be effectively overcome by iden-
tifying a set-valued mapping with its graph. From this point
of view, it is a fundamental transformation of the existing
methods used in soft topological spaces into corresponding
topological methods. This is a major step forward in improv-
ing and simplifying the existing methods used in the current
literature.

The aim of the article is to continue the above-mentioned
transformations of topological methods into soft topological
ones. Namely, the results of ideal topological spaces will be
used in the field of soft ideal topological spaces. We espe-
cially focus on the results fromAlGhour andHamedWorood
(2020). It should be noted that many other results concerning
soft ideal topological spaces (see, for example, Gharib and
Abd El-latif (2019); Kandil et al. (2014) where one will find
further references to the issue of soft ideal topological spaces)
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can be investigated within the framework of ideal topological
spaces whose known results can be directly applied.

This research article is organized as follows: Sects. 2 and
3 are devoted to the basic concepts of the theory of ideal topo-
logical spaces. In order to achieve the specific objectives of
the article by Al Ghour and Hamed Worood (2020), we only
focus on some results of ideal topological spaces. One may
recall these are known facts, but for the sake of complete-
ness and purpose, we present them with proofs unless they
are trivial. In Sects. 2 and 3, the choice of ideal topologi-
cal terms, theorems and lemmas is determined by their use
in Sects. 6 and 7 concerning soft omega open and strong
soft omega open sets, where the results from Al Ghour and
Hamed Worood (2020) are proved as direct consequences.

In Sects. 4 and 5, we show that soft topologies can be fully
characterized in terms of standard topologies on a crisp set.
This characterization is based on two constructions (see Def-
inition 6, Theorem 4). The first one yields a soft topological
space that is associated with any crisp topology on a certain
Cartesian product of two sets. The second works in the oppo-
site direction: With any soft topological space, it produces a
crisp topology on the Cartesian product.

Both constructions are explicit and ensure a transition
from one setting to the other. Their fundamental properties
and mutual links are investigated in Theorem 5. We show
that such notions as a soft subspace, a soft topological sum,
a soft ideal topological space, a soft base and their properties
can be transferred from crisp topologies to soft topologies or
the other way round (Definition 7, Lemma 7, Lemma 8). This
achievement has several remarkable consequences. Concepts
from soft topology can be reduced to the corresponding con-
cepts in topology, and results from topological spaces may
be exported to soft topological spaces. We give examples of
these fundamental advances, namely: softω-open sets, strong
soft ω-open sets is identified with countable sets, sets with
countable sections, respectively (Definition 8, Remark 5).

In Sect. 6, the results are specified into the soft ideals
Is and I0, and the last section summarizes the results from
Al Ghour and Hamed Worood (2020), which are the direct
consequence of the obtained results. One may recall that all
the results of Al Ghour and Hamed Worood (2020) can be
transformed into corresponding topological results and they
can be extended for arbitrary soft ideal.

2 Ideal topological spaces

(X , τ ) denotes a topological space, clτ (S), intτ (S) the clo-
sure (the interior) of S ⊂ X , respectively. If A ⊂ X , then by
(A, τA) we denote a topological subspace of (X , τ ) where
τA is a subspace topology.

An ideal I on X is a nonempty collection of subsets of X
which satisfies the followingproperties: If A ∈ I and B ⊂ A,

then B ∈ I, and if A ∈ I and B ∈ I, then A∪B ∈ I.An ideal
topological space is a topological space (X , τ ) with an ideal
I on X , and it is denoted by (X , τ, I), see, for example, Al-
Omari and Noiri (2013); Ekici and Noiri (2008); Kaniewski
et al. (1998), where one can find rich references.

If (X , τ, I) is an ideal topological space and S ⊂ X ,
then the set of all points in which S is locally not in I with
respect to τ , i.e., {x ∈ X : S ∩ U /∈ I for every open
set U containing x} is called the local function of S with
respect to τ and I, and it is denoted by Dτ,I(S) (denoted
also S∗(I, τ ), see, for example, Al-Omari and Noiri (2013);
Ekici and Noiri (2008); Kaniewski et al. (1998)). Obviously
Dτ,I(S) is a closed subset of clτ (S). For a subset S of A ⊂ X
by DτA,IA (S), we denote the set {x ∈ A : S ∩ U /∈ IA for
every setU ∈ τA containing x} where IA = {A∩ I : I ∈ I}.
It is clear IA is an ideal on A and IA ⊂ I. An ideal I is
called τ -codense, see Kaniewski et al. (1998) if I ∩ τ = {∅}.
A subset A of X locally belongs to I if A ∩ Dτ,I(A) = ∅,
i.e., for any x ∈ A there is G ∈ τ containing x such that
A ∩ U ∈ I, see Kaniewski et al. (1998).

A topological space (X , τ ) is Lindelöf (weakly Lindelöf,
see Frolík (1959)) if every open cover U of X has a countable
subfamily V such that X = ∪V (X = clτ (∪V)). Note U can
be replaced by a cover from a base of (X , τ ).

LetBτ,I = {G\ I : G ∈ τ, I ∈ I},BτA,IA = {G\ I : G ∈
τA, I ∈ IA}. By (τ )I (briefly τI ), (τA)IA , we denote a topol-
ogy on X , A generated by the baseBτ,I ,BτA,IA , respectively.
In the literature, τI is usually denoted by τ ∗(I) or briefly τ ∗.
By coX ,I , we denote a family {X \ I : I ∈ I} ∪ {∅}, which
is a topology on X .

Lemma 1 (see Al-Omari and Noiri (2013); Ekici and Noiri
(2008)) The operator clτI (S) = S∪ Dτ,I(S) is a Kuratowski
closure operator generating the topology τI . That means a
set S is closed in (X , τI) if and only if Dτ,I(S) ⊂ S. Recall
if I = {∅}, then clτI (S) = clτ (S).

Remark 1 Let I and J be the ideals on X . Then

(1) τ ⊂ Bτ,I ⊂ τI , coX ,I ⊂ Bτ,I . Moreover, (X , coX ,I),
(X , τI) is a topological space in which any set I ∈ I is
closed, respectively (see Lemma 1). It is clear if τ id is
the indiscrete topology on X , then (τ id)I = coX ,I .

(2) (τI)I = τI .
(3) The next conditions are equivalent

(a) coX ,I ⊂ τ ,
(b) τ = Bτ,I ,
(c) τ = τI .

(4) (coX ,I)I = coX ,I .
(5) If I ⊂ J , then

(a) coX ,I ⊂ coX ,J ,
(b) τ ⊂ Bτ,I ⊂ Bτ,J , so τ ⊂ τI ⊂ τJ ,
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(c) τA ⊂ BτA,IA ⊂ BτA,JA , so τA ⊂ τA,IA ⊂ τA,JA ,
(d) Dτ,J (S) ⊂ Dτ,I(S),
(e) (τI)J = (τJ )I = τJ ,
(f) if coX ,J ⊂ τ , then τI = τJ .

Proof Wewill prove the items (2), (3), (4), (5e) and (5f). The
rest of the items are clear.

(2): Denote τI = θ . Then (τI)I = θI . Since Bτ,I ⊂
Bθ,I ⊂ τI , τI = θI and τI = (τI)I .

(3): (a) ⇒ (b): The inclusion τ ⊂ Bτ,I is clear. Let
S ∈ Bτ,I . Then S = G \ I = G ∩ (X \ I ), G ∈ τ , I ∈ I.
Since X \ I ∈ coX ,I ⊂ τ , S ∈ τ .

(b) ⇒ (c): The inclusion τ ⊂ τI is clear. Let S ∈ τI .
Then S = ∪t∈T Ht where Ht ∈ Bτ,I = τ , so S ∈ τ .

(c) ⇒ (a): Let S ∈ coX ,I . Then S = X \ A, A ∈ I. Since
X \ A ∈ τI = τ , S ∈ τ .

(4): Denote τ = coX ,I . Since coX ,I ⊂ τ , by (3) τ = τI
so coX ,I = (coX ,I)I .

(5e): Since I ⊂ J , τI ⊂ τJ . So (τI)J ⊂ (τJ )J = τJ ,
by item (2). Since τ ⊂ τI , τJ ⊂ (τI)J . That means τJ =
(τI)J .

The inclusion τJ ⊂ (τJ )I is clear. Let H ∈ (τJ )I . Then
H = ∪t∈T (Gt \ It ) where Gt ∈ τJ and It ∈ I ⊂ J .
Moreover, Gt = ∪s∈S(Rs

t \ I s
t ) where Rs

t ∈ τ and I s
t ∈ J .

Then H = ∪t∈T (∪s∈S(Rs
t \ I s

t )\ It ) = ∪t∈T (∪s∈S(Rs
t \(I s

t ∪
It ))). Since I s

t ∪ It ∈ J , H ∈ τJ . That means τJ = (τJ )I .
(5f): The inclusion τI ⊂ τJ follows from the item (5b).

Since coX ,J ⊂ τ , τJ = τ ⊂ τI , by (3). 	

Lemma 2 If (X , τ, I) is an ideal topological space, then
(τA)IA = (τI)A where (τI)A is a subspace topology on
A ⊂ X.

Proof If H ∈ (τI)A, then H = H0 ∩ A where H0 ∈ τI ,
H0 = ∪t∈T Ht

0, Ht
0 = Gt

0 \ I t
0, Gt

0 ∈ τ , I t
0 ∈ I. Since

H = (∪t∈T Ht
0) ∩ A = ∪t∈T ((Gt

0 ∩ A) \ (I t
0 ∩ A)) and

Gt
0 ∩ A ∈ τA, I t

0 ∩ A ∈ IA, H ∈ (τA)IA .
If H ∈ (τA)IA , then H = ∪t∈T Ht where Ht = Gt \ It ,

Gt = St ∩ A ∈ τA, St ∈ τ , It ∈ IA ⊂ I. Since H =
∪t∈T Ht = ∪t∈T (St ∩ A \ It ) = (∪t∈T (St \ It )) ∩ A and
St \ It ∈ τI , H ∈ (τI)A. 	

Corollary 1 Let (X , τ, I) be an ideal topological space. If G
is open in (X , τI) and A ⊂ X, then G ∩ A ∈ (τA)IA .

Proof Since G ∈ τI , G ∩ A ∈ (τI)A = (τA)IA , by Lemma
2. 	

Lemma 3 Let (X , τ, I) be an ideal topological space. If I ∩
τ = {∅} (i.e., if I is τ -codense), then clτ (G) = clτI (G) =
Dτ,I(G) for any G ∈ τI .

Proof The inclusion clτI (G) ⊂ clτ (G) is clear. Suppose
there is x ∈ clτ (G) \ clτI (G). Then there is H ∈ τ , x ∈ H
and I ∈ I such that (H \ I ) ∩ G = (H ∩ G) \ (I ∩ G) = ∅.

Since H ∩ G ⊂ I ∩ G ∈ I, H ∩ G ∈ I. On the other hand,
x ∈ clτ (G) and x ∈ H , so H ∩ G �= ∅. Since G ∈ τI ,
there are H0 ∈ τ , H0 ⊂ H and I0 ∈ I such that H0 \ I0 ⊂
G ∩ H ∈ I. Since I ∩ τ = {∅}, H0 \ I0 /∈ I, a contradiction.

The inclusion Dτ,I(G) ⊂ clτ (G) is clear. Let x ∈ clτ (G)

and x ∈ H ∈ τ . Then H ∩ G �= ∅. Since G ∈ τI , there are
H0 ∈ τ , H0 ⊂ H and I0 ∈ I such that H0 \ I0 ⊂ G ∩ H .
Since I ∩ τ = {∅}, H0 \ I0 /∈ I; consequently, G ∩ H /∈ I,
so x ∈ Dτ,I(G). That means Dτ,I(G) = clτ (G). 	


Lemma 4 Let (X , τ, I) be an ideal topological space. Then

(1) I ∩ τ = {∅} if and only if I ∩ τI = {∅},
(2) if I contains all singletons, then

(a) X locally belongs to I if and only if Dτ,I(X) = ∅ if
and only if (X , τI) is a discrete space if and only if
{x} ∈ Bτ,I for any x ∈ X,

(b) (X , τI) is a T1-space.

(3) If (X , τI) is Lindelöf, then (X , τ ) is Lindelöf.
(4) If I ∩ τ = {∅}, then (X , τ ) is weakly Lindelöf if and only

if (X , τI) is weakly Lindelöf.
(5) If for any A ∈ I and any cover U ⊂ Bτ,I of A contains

a countable subfamily V of U such that A ⊂ ∪V , then
(X , τ ) is Lindelöf if and only if (X , τI) is Lindelöf.

(6) If X = ∪∞
i=1Xi and (Xi , τXi ) is weakly Lindelöf for any

i , then (X , τ ) is weakly Lindelöf.
(7) If (X , τ ) is separable, then (X , τ ) is weakly Lindelöf.
(8) If (X , τ ) is Lindelöf, then (X , τ ) is weakly Lindelöf.

Proof The items (1), (2), (3), (7), (8) are trivial.
(4) Let (X , τ ) be weakly Lindelöf and U = {Ut \ It : t ∈

T } be an open cover of (X , τI) where Ut ∈ τ , It ∈ I. Since
(X , τ ) is weakly Lindelöf and {Ut : t ∈ T } is open cover of
(X , τ ), there is a countable set T0 ⊂ T such that ∪t∈T0Ut is
dense in (X , τ ). We will show S := ∪t∈T0(Ut \ It ) is dense
in (X , τI). Let G \ I ∈ Bτ,I . Then G ∩ (∪t∈T0Ut ) �= ∅, so
G∩Ut0 �= ∅ for some t0 ∈ T0. SinceI∩τ = {∅},G∩Ut0 /∈ I.
That means (G \ I ) ∩ (Ut0 \ It0) /∈ I, so (G \ I ) ∩ S �= ∅
and S is dense in (X , τI). We have proved (X , τI) is weakly
Lindelöf.

Suppose (X , τI) is weakly Lindelöf. If U = {Ut : t ∈ T }
is an open cover of (X , τ ), then there is a countable set T0 ⊂
T such that∪t∈T0Ut is dense in (X , τI). That means∪t∈T0Ut

is also dense in (X , τ ), so (X , τ ) is weakly Lindelöf.
(5) Let (X , τ ) be Lindelöf and U = {Ut \ It : t ∈ T } be an

open cover of (X , τI) where Ut ∈ τ , It ∈ I. Since (X , τ ) is
Lindelöf and {Ut : t ∈ T } is an open cover of (X , τ ), there is
a countable set T0 ⊂ T such thatV = {Ut : t ∈ T0} is a cover
of (X , τ ). For any It , t ∈ T0 there is a countable subfamily
Vt of U such that It ⊂ ∪Vt . It is clear that V ∪ (∪t∈T0Vt )

is a countable subfamily of U and V ∪ (∪t∈T0Vt ) is a cover
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of (X , τI). That means (X , τI) is Lindelöf. The opposite
implication is clear, see item (3).

(6) Let U = {Ut : t ∈ T } be open cover of (X , τ ). Then
Ui = {Ut ∩ Xi : Ut ∈ U} is an open cover of (Xi , τXi ),
i = 1, 2, 3, ... Since (Xi , τXi ) is weakly Lindelöf for any i ,
there is a countable subfamily Vi of Ui , such that Ai := ∪Vi

is dense in (Xi , τXi ). Let V = ∪∞
i=1{Ut : Ut ∩ Xi ∈ Vi }. It is

clear V is a countable subfamily of U . Let G be a nonempty
open set from τ . Then G ∩ Xi �= ∅ for some i . Since Ai is
dense in (Xi , τXi ), Ai ∩ G ∩ Xi �= ∅, so G ∩ (∪V) �= ∅. That
means ∪V is dense in (X , τ ), so (X , τ ) is weakly Lindelöf.

	


3 Ideals and topologies on the Cartesian
product, topological sum

Definition 1 Let E, U be two nonempty sets. A nonempty
family I ⊂ 2E×U is called an ideal on E × U if

(1) A ∪ B ∈ I for any A, B ∈ I,
(2) if B ∈ I and A ⊂ B, then A ∈ I.

For A ⊂ 2U , B ⊂ 2E×U , A ⊂ U , B ⊂ E × U and e ∈ E
we denote

IB = {B ∩ I : I ∈ I} (it is an ideal on B).
ϕe : U → E × U where ϕe (u) = (e, u) for any u ∈ U ,
A[e] = ϕe(A) = {e} × A,
A[e] = {ϕe(A) = A[e] : A ∈ A},
Be = ϕe

−1(B) = {u ∈ U : (e, u) ∈ B},
Be = {ϕe

−1(B) = Be : B ∈ B},
AE = {S ⊂ E × U : Se ∈ A for any e ∈ E}.

In some cases, we use the notation A[e] = (A)[e], A[e] =
(A)[e], Be = (B)e, Be = (B)e, AE = (A)E . If Ie = I f for
any e, f ∈ E , then I is called a constant ideal.

Remark 2 In this remark, we specify the families A and B.
Let τ be a topology on U , U [e], E ×U , respectively, and J ,
I be an ideal on U , E × U , respectively. Then

(1) if τ is a topology on U , then τ [e] is a topology on U [e]
and (U , τ ) is homeomorphic to (U [e], τ [e]) (the function
ϕe : U → U [e] is a homeomorphism, i.e., ϕe(G) ∈ τ [e]
if and only if G ∈ τ ),

(2) if τ is a topology on U [e], then τe is a topology on U
and ϕe : U → U [e] is a homeomorphism from (U , τe)

to (U [e], τ ), i.e., ϕe(G) ∈ τ if and only if G ∈ τe.
(3) if τ is a topology on E × U , then τe is a topology on U

for any e ∈ E . For a subspace topology τU [e] on U [e],
(U , (τU [e])e) and (U [e], τU [e]) are homeomorphic (see
item (2)). Since (τU [e])e = τe, (U , τe) and (U [e], τU [e])
are homeomorphic, i.e., ϕe(G) ∈ τU [e] if and only if
G ∈ τe for any e ∈ E .

(4) If τ is a topology on U , E × U , then (τ [e])e = τ ,
(τe)[e] = τU [e] for any e ∈ E , respectively.

(5) J [e], Ie is an ideal on U [e], U , respectively. Moreover,
(J [e])e = J , (Ie)[e] = IU [e] and I ∈ Ie if and only if
ϕe(I ) ∈ IU [e] for any e ∈ E .

(6) JE is a constant ideal on E × U and (JE )e = J for any
e ∈ E .

Definition 2 Let {(U , σe) : e ∈ E} be an indexed family
of topological spaces. By (E × U ,⊕e∈Eσe) we denote a
topological sum of {(U , σe) : e ∈ E}. Note that ⊕e∈Eσe

is a topology defined as the finest topology on ⊕e∈EU =
∪e∈E {e}×U = ∪e∈EU [e] = E ×U for which all canonical
injections ϕe : (U , σe) → (E × U ,⊕e∈Eσe) defined by
ϕe(u) = (e, u) for u ∈ U are continuous.

The following lemma will be useful for further investiga-
tion, see Engelking (1977).

Lemma 5 Let {(U , σe) : e ∈ E} be an indexed family of
topological spaces. Then

(1) a canonical injection ϕe is a continuous, open and closed
map for any e ∈ E, so it is a homeomorphic embedding,
i.e., ϕe : (U , σe) → (U [e], σe[e]) is a homeomorphism.

(2) S ⊂ E × U is closed (open, dense) in (E × U ,⊕e∈Eσe)

if and only if Se is closed (open, dense) in (U , σe) for any
e ∈ E if and only if S ∩ U [e] is closed (open, dense) in
(U [e], σe[e]) for any e ∈ E,

(3) (E ×U ,⊕e∈Eσe) is compact (Lindelöf, weakly Lindelöf)
if and only if E is finite (E is countable) and (U , σe) is
compact (Lindelöf, weakly Lindelöf) for any e ∈ E.

Remark 3 If {(U , σe) : e ∈ E} is an indexed family of topo-
logical spaces and I is an ideal on E × U , then

(1) By Remark 2 item (1), (U , σe) is homeomorphic to
(U [e], σe[e]). Since ϕe(G) = ϕe(H)\ϕe(I ) for any base
element G = H \ I of (σe)Ie where ϕe(H) ∈ σe[e] (see
Remark 2 item (1)) and ϕe(I ) ∈ IU [e] (see Remark 2
item (5)), ϕe is a homeomorphism from (U , (σe)Ie ) to
(U [e], (σe[e])IU [e]).

(2) D⊕e∈E σe,I(S), Dσe[e],IU [e](S ∩ U [e]), Dσe,Ie (Se) is the
set of all points inwhich S, S∩U [e], Se is locally not inI,
IU [e], Ie with respect to ⊕e∈Eσe, σe[e], σe, respectively.

Theorem 1 Let (E ×U , τ, I) be an ideal topological space.
Then

(1) for any set G ∈ τI and any e ∈ E, Ge ∈ (τe)Ie ,
(2) (τI)e = (τe)Ie .

Proof (1): Put A = U [e]. Then G ∩ U [e] = G ∩ A ∈
(τI)A = (τA)IA = (τU [e])IU [e] , by Lemma 2. That means
G ∩ U [e] = ∪t∈T (Ht \ It ) where Ht ∈ τU [e] and It ∈ IU [e].
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By Remark 2 item (3), item (5), ϕ−1
e (Ht ) = (Ht )e ∈ τe and

ϕ−1
e (It ) = (It )e ∈ Ie, respectively. So (Ht )e \ (It )e ∈ (τe)Ie

and Ge = (G ∩ U [e])e = ∪t∈T ((Ht )e \ (It )e) ∈ (τe)Ie .
(2): If H ∈ (τI)e, then H = Ge for some G ∈ τI . By (1),

H = Ge ∈ (τe)Ie , so (τI)e ⊂ (τe)Ie .
Let H ∈ (τe)Ie . Then H = ∪t∈T (Gt \ It ) where

Gt ∈ τe and It ∈ Ie. So Gt = (St )e, It = (Rt )e for some
St ∈ τ and Rt ∈ I. Than means ∪t∈T (St \ Rt ) ∈ τI ,
so (∪t∈T (St \ Rt ))e ∈ (τI)e. Since (∪t∈T (St \ Rt ))e =
∪t∈T ((St )e \ (Rt )e) = ∪t∈T (Gt \ It ) = H , H ∈ (τI)e.
So (τe)Ie ⊂ (τI)e. 	

Theorem 2 Let {(U , σe) : e ∈ E} be an indexed family of
topological spaces and S ⊂ E × U and I be an ideal on
E × U. Then

D⊕e∈E σe,I(S) = ∪e∈E Dσe[e],IU [e](S ∩ U [e]).

Proof Let (e, u) ∈ D⊕e∈E σe,I(S) and H ∈ σe[e], (e, u) ∈ H .
Since H ∈ ⊕e∈Eσe and H ∩ S = H ∩ S ∩U [e] /∈ I, H ∩ S ∩
U [e] /∈ IU [e]. That means (e, u) ∈ Dσe[e],IU [e](S ∩U [e]), so
(e, u) ∈ ∪e∈E Dσe[e],IU [e](S ∩ U [e]).

Let (e, u) ∈ Dσe[e],IU [e](S ∩ U [e]) and (e, u) ∈ H ∈
⊕e∈Eσe. Since (e, u) ∈ H ∩ U [e] ∈ σe[e] (by Lemma 5
item (2)), H ∩ U [e] ∩ S /∈ IU [e]. That means H ∩ S /∈ I, so
(e, u) ∈ D⊕e∈E σe,I(S). 	

Theorem 3 Let {(U , σe) : e ∈ E} be an indexed family of
topological spaces and I be an ideal on E × U. Then

(⊕e∈Eσe)I = ⊕e∈E (σe)Ie .

Proof G ∈ (⊕e∈Eσe)I if and only if G = ∪t∈T (Gt \ It ) and
Gt ∈ ⊕e∈Eσe, It ∈ I if and only if (by Lemma 5 item (2))
G = ∪t∈T (Gt \ It ) and (Gt )e ∈ σe, (It )e ∈ Ie for any e ∈ E
if and only if G = ∪t∈T (Gt \ It ) and ∪t∈T ((Gt )e \ (It )e) ∈
(σe)Ie for any e ∈ E if and only if Ge = ∪t∈T ((Gt )e \
(It )e) ∈ (σe)Ie for any e ∈ E if and only if G ∈ ⊕e∈E (σe)Ie ,
by Lemma 5 item (2). 	

Corollary 2 A subset S of E × U is closed (open) in (E ×
U , (⊕e∈Eσe)I) if and only if S ∩ U [e] is closed (open) in
(U [e], (σe[e])IU [e]) for any e ∈ E if and only if Se is closed
(open) in (U , (σe)Ie ) for any e ∈ E.

Proof A proof follows from Theorem 3, Lemma 5 item (2)
and from Remark 3 item (1), i.e., from a homeomorphism
between (U [e], (σe[e])IU [e]) and (U , (σe)Ie ). 	


4 Relations and set-valuedmappings

Any subset S of the Cartesian product E × U is a binary
relation from a set E to a set U . By R(E, U ), we denote

the set of all binary relations from E to U . Two relations
A, B are equal if and only if Ae = Be for any e ∈ E . The
operations of the sum S ∪ T , ∪t∈T St , intersection S ∩ T ,
∩t∈T St , complement Sc and the difference S \ T of relations
are defined in the obvious way as in the set theory.

By F : E → 2U we denote a set-valued mapping (mul-
tifunction) from E to power set 2U of U . The set of all
set-valued mappings from E to 2U is denoted by F(E, U ).
A set-valued mapping F for which F(e) = {u} and it is
empty-valued otherwise is denoted by Fu

e .
If F, G are two set-valued mappings, then F ⊂ G

(F = G) means F(e) ⊂ G(e) (F(e) = G(e)) for any e ∈ E .
So if G ∈ F(E, U ), then Fu

e ⊂ G ⇔ u ∈ G(e). The differ-
ence F \ G of F and G is defined as a set-valued mapping
given by (F \ G)(e) = F(e) \ G(e) for any e ∈ E . The
intersection (union) of family {Gt : t ∈ T } of set-valued
mappings is defined as a set-valued mapping H : E → 2U

for which H(e) = ∩t∈T Gt (e) (H(e) = ∪t∈T Gt (e)) for any
e ∈ E , and it is denoted by ∩t∈T Gt (∪t∈T Gt ). For the inter-
section (union) of two set-valued mappings F and G, we use
notation F ∩G (F ∪G). The complement Fc of F is defined
as a set-valued mapping for which Fc(e) = U \ F(e) for all
e ∈ E .

A graph of G ∈ F(E, U ) is a set Gr(G) = {(e, u) ∈
E × U : u ∈ G(e)} and it is a subset of E × U , hence
Gr(G) ∈ R(E, U ). So, any set-valued mapping G deter-
mines a relation from R(E, U ) denoted by RG where

RG = Gr(G) = ∪e∈Eϕe(G(e)),

(RG)e = (Gr(G))e = ϕ−1
e (Gr(G)) = G(e).

On the other hand, any relation S ∈ R(E, U ) determines a
set-valued mapping FS from E to 2U where

FS(e) = ϕ−1
e (S) = Se.

From the definitions of RG and FS and from the equality of
two relations and the equality of twomultifunctions, we have
FRG (e) = (RG)e = G(e) and (RFS )e = FS(e) = Se for any
e ∈ E , so

FRG = G, RFS = S.

It is useful to note the next conditions are equivalent:

(1) FS = G,
(2) FS(e) = G(e) for any e ∈ E ,
(3) Se = G(e) for any e ∈ E ,
(4) Se = (RG)e for any e ∈ E ,
(5) S = RG .
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5 Soft ideal topological space and ideal
topological space

Definition 3 (Maji et al. 2003; Shabir and Naz 2011) Let
E, U be two nonempty sets.

(1) If F : E → 2U is a set-valued mapping, then F is called
a soft set overU with respect to E . A soft set F for which
F(e) = ∅ (F(e) = U ) for any e ∈ E is called the null
soft set (the full soft set) and Fu

e is called a soft point.
(2) A soft set F is a soft subset of G (F is contained in G

or G contains F), if F(e) ⊂ G(e) for any e ∈ E . The
complement of soft set F is defined as a soft set Fc where
Fc(e) = U \ F(e) for all e ∈ E . The intersection (union)
of a family of soft sets {Gt : t ∈ T } is defined as a soft
set G where G(e) = ∩t∈T Gt (e) (G(e) = ∪t∈T Gt (e))
for all e ∈ E .

(3) The family of all soft sets over U with respect to E is
denoted by SS(E, U ). It is clear SS(E, U ) = F(E, U ).
The family of all soft points is denoted by S P(E, U ).

Definition 4 (Maji et al. 2003; Shabir and Naz 2011) Let
E, U be two nonempty sets. A soft topological space over U
with respect to E is a triplet (E, U , τ ) where τ ⊂ SS(E, U )

is closed under finite intersection, arbitrary union of soft sets
and contains the null soft set and the full soft set. A soft set
from τ is called a soft open set, and its complement is called
a soft closed set. If H is a soft set, then a soft closure (a
soft interior) of H denoted by sclτ (H) (sintτ (H)) is defined
as the intersection (union) of all soft closed (soft open) sets
containing H (contained in H ).

Definition 5 (Al Ghour and Hamed Worood (2020); Gharib
and Abd El-latif (2019); Kandil et al. (2014)) A nonempty
family I ⊂ SS(E, U ) of soft sets is called a soft ideal on U
with respect to E if

(1) A ∪ B ∈ I for any A, B ∈ I,
(2) if B ∈ I and A ⊂ B, then A ∈ I.

If τ is a soft topology over U with respect to E , then
(E, U , τ, I) is called a soft ideal topological space over U
with respect to E .

Definition 6 Let S ∈ R(E, U ) and G ∈ F(E, U ). We say
S, G corresponds to G, S if S = RG , G = FS , respec-
tively. Moreover, S and G are mutually corresponding if
S = RG and G = FS . A family C ⊂ R(E, U ),B ⊂ F(E, U )

corresponds to a family B ⊂ F(E, U ), C ⊂ R(E, U ) if
C = RB := {RG : G ∈ B}, B = FC := {FS : S ∈ C},
respectively. Finally C and B are mutually corresponding if
C corresponds to B and B corresponds to C.

The following theorem deals with the mutual corre-
spondence between ideal topological spaces and soft ideal

topological spaces, and plays an important role in the trans-
formation of soft topological problems into topological ones.
For the correspondence between topological spaces and soft
topological spaces, see Matejdes (2016) ; Matejdes (2021a),
Matejdes (2021c).

Theorem 4 There is a one-to-one correspondence between
the family of all soft ideal topological spaces over U with
respect to E and the family of all ideal topological spaces on
E × U as follows:

(1) If (E, U , τ, I) is a soft ideal topological space, then (E×
U , Rτ ,RI) is an ideal topological space where Rτ =
{RG : G ∈ τ }, RI = {RI : I ∈ I}, i.e., G ∈ τ ⇔ RG ∈
Rτ and A ∈ I ⇔ RA ∈ RI . We say (E × U , Rτ ,RI) is
corresponding to (E, U , τ, I).

(2) If (E × U , τ, I) is a ideal topological space, then
(E, U ,Fτ ,FI) is a soft ideal topological space where
Fτ = {FG : G ∈ τ }, FI = {FI : I ∈ I}, i.e.,
G ∈ τ ⇔ FG ∈ Fτ and A ∈ I ⇔ FA ∈ FI . We
say (E, U ,Fτ ,FI) is corresponding to (E × U , τ, I).

(3) Similar correspondence holds between (E, U , τ ) and
(E×U ,Rτ ), (E×U , τ ) and (E, U ,Fτ ), respectively, see
Matejdes (2016); Matejdes (2021a), Matejdes (2021c).

Remark 4 By the above theorem, (E × U , RFτ ,RFI ) =
(E × U , τ, I) is corresponding to (E, U ,Fτ ,FI) and vice
versa. So (E×U , τ, I) and (E, U ,Fτ ,FI) ((E, U , τ, I) and
(E ×U ,Rτ ,RI)) are mutually corresponding. Similarly, we
say a topology τ (a soft topology τ ) and a soft topology Fτ (a
topology Rτ ) (an ideal I (a soft ideal I) and a soft ideal FI
(an idealRI )) aremutually corresponding. If (E ×U , τ1, I1)
is an ideal topological space and (E, U , τ2, I2) is a soft
topological space, then they are mutually corresponding if
Fτ1 = τ2 andFI1 = I2 if and only ifRτ2 = τ1 andRI2 = I1.

Any subset of E × U uniquely corresponds to a soft set.
The set E × U (∅) corresponds to the full soft set FE×U (the
null soft set F∅). Any set from a soft topology τ (a topology
τ ) corresponds to an open set (a soft open set) from Rτ (Fτ ),
and its complement corresponds to a closed set (a soft closed
set).

The next theorem summarizes the properties of the oper-
ators F : R(E, U ) → F(E, U ) and R : F(E, U ) →
R(E, U ). For item (1), see the conditions at the end of the
previous section and item (2) is trivial. For items (3)-(9), see
Matejdes (2021c).

Theorem 5 Let (E × U , τ1) and (E, U , τ2) be mutually
corresponding. If H , G, Gt ∈ SS(E, U ) and A, B, St ∈
R(E, U ), t ∈ T , then

(1) the next conditions are equivalent

(a) H and B are mutually corresponding,
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(b) H = FB,
(c) H(e) = FB(e) for any e ∈ E,
(d) H(e) = Be for any e ∈ E,
(e) (RH )e = Be for any e ∈ E,
(f) RH = B.

(2) F{(e,u)} = Fu
e , RFu

e
= {(u, e)},

(e, u) ∈ A if and only if Fu
e ⊂ FA,

Fu
e ⊂ H if and only if (e, u) ∈ RH .

(3) H is soft open (soft closed) in (E, U , τ2) if and only
if RH is open (closed) in (E × U , τ1) and A is open
(closed) in (E × U , τ1) if and only if FA is soft open
(soft closed) in (E, U , τ2).

(4) FA∩B = FA ∩ FB, FA∪B = FA ∪ FB,
F∩t∈T St = ∩t∈TFSt , F∪t∈T St = ∪t∈TFSt .

(5) RH∩G = RH ∩ RG, RH∪G = RH ∪ RG,
R∩t∈T Gt = ∩t∈TRGt , R∪t∈T Gt = ∪t∈TRGt .

(6) RFA = A, FRH = H,
FA\B = FA \ FB, RH\G = RH \ RG.

(7) sclτ2(H) = Fclτ1 (RH ), sintτ2(H) = Fintτ1 (RH ),
sclτ2(FA) = Fclτ1 (A), sintτ2(FA) = Fintτ1 (A).

(8) clτ1(A) = Rsclτ2 (FA), intτ1(A) = Rsintτ2 (FA),
clτ1(RH ) = Rsclτ2 (H), intτ1(RH ) = Rsintτ2 (H).

(9) sclτ2(H ∪ G) = sclτ2(H) ∪ sclτ2(G),
sintτ2(H ∩ G) = sintτ2(H) ∩ sintτ2(G).

The methods of constructing new topological spaces from
old ones and the one-to-one correspondence between the
family of topological spaces and soft topological spaces
allow the introduction of soft topological spaces. Some of
them are introduced in the following definition.

Definition 7 In this definition, we introduce a soft topolog-
ical sum, a soft topological subspace, and a soft topology
corresponding to τI .

(1) Let {(U , σe) : e ∈ E} be an indexed family of topo-
logical spaces. A soft topological sum of {(U , σe) :
e ∈ E} is defined as a soft topology F⊕e∈E σe and it
is denoted by ⊕s

e∈Eσe. Note F⊕e∈E σe is equal to {H :
E → 2U : H(e) ∈ σe for all e ∈ E} which is a
soft topology and Fσe[e] = {H : E → 2U : H(e) ∈
σe and H( f ) = ∅ f or f �= e} is its soft subbase. So
F⊕e∈E σe = ⊕s

e∈Eσe (see notation ⊕e∈Eσe in Al Ghour
and Hamed Worood (2020)). Specially if σe = J for
any e ∈ E , then F⊕e∈EJ = ⊕s

e∈EJ = τ(J) where
τ(J) = {F ∈ SS(E, U ) : F(e) ∈ J for any e ∈ E}
is a soft topology from Al Ghour and Hamed Worood
(2020).

(2) If Y ⊂ U , then a soft topological subspace of (E, U , τ )

on Y is defined as the corresponding soft topological
space to a topological subspace (E ×Y , (Rτ )E×Y )where
(Rτ )E×Y is a subspace topology on E × Y derived from
Rτ . A soft topological subspace of (E, U , τ ) on Y is

denoted by Al Ghour and Hamed Worood (2020) by
(E, Y , τY ), see Lemma 9.

(3) If (E × U , τ, I) is an ideal topological space, then we
can define a soft ideal topological space by (E, U ,FτI ),
see Lemma 6 and Lemma 8 (1).

Lemma 6 Let (E × U , τ, I) be an ideal topological space.
Then FτI = (Fτ )FI where (Fτ )FI denotes a soft topology
generated by a soft base {G \ I : G ∈ Fτ , I ∈ FI} = FBτ,I .

Proof The equation {G \ I : G ∈ Fτ , I ∈ FI} = FBτ,I and
the fact that {G \ I : G ∈ Fτ , I ∈ FI} is a soft base is trivial.

H ∈ FτI if and only if RH ∈ τI if and only if RH =
∪t∈T (Gt \ It ) where Gt ∈ τ and It ∈ I if and only if
H = ∪t∈T (FGt \ FIt ) (by Theorem 5 (4), (6)) where FGt ∈
Fτ and FIt ∈ FI if and only if H ∈ (Fτ )FI . That means
FτI = (Fτ )FI . 	


In the following, τ , τ̂ (I, Î) denotes a topology on E × X ,
a soft topology over U with respect to E (an ideal on E × X ,
a soft ideal on U with respect to E), respectively.

Lemma 7 Let (E × U , τ, I), (E, U , τ̂ , Î) be an ideal topo-
logical space, soft ideal topological space, respectively. Then

(1) For any e ∈ E the families τ̂e := {F(e) : F ∈ τ̂ }
and τe := {Ge : G ∈ τ } are the topologies on U. If
(E × U , τ ) and (E, U , τ̂ ) are mutually corresponding,
then (Rτ̂ )e = τe = τ̂e = (Fτ )e for any e ∈ E.

(2) τ̂ = Fτ and Î = FI (τ̂ = Fτ ) if and only if τ = Rτ̂

and I = RÎ (τ = Rτ̂ ) if and only if (E × U , τ, I) and

(E, U , τ̂ , Î) ((E × U , τ ) and (E, U , τ̂ )) are mutually
corresponding.

(3) The next conditions are equivalent.

(a) (E × U , τ ) and (E, U , τ̂ ) are mutually correspond-
ing,

(b) FB is a soft base of (E, U , τ̂ ) for any base B of (E ×
U , τ ),

(c) RB̂ is a base of (E × U , τ ) for any soft base B̂ of
(E, U , τ̂ ).

Proof (1) It is clear that τ̂e and τe are the topologies on U .
Since Rτ̂ = τ and Fτ = τ̂ , (Rτ̂ )e = τe and (Fτ )e = τ̂e.

Since G ∈ τ and FG ∈ τ̂ are mutually corresponding, by
Theorem 5 (1) (c), (d), Ge = FG(e) for any e ∈ E . That
means A ∈ τe if and only if A = Ge = FG(e) for some
G ∈ τ if and only if A = FG(e) for some FG ∈ τ̂ if and only
if A ∈ τ̂e.

(2) follows from Remark 4.
(3) In the following, we use the rules of Theorem 5. (a) ⇒

(b)Let (E ×U , τ ) and (E, U , τ̂ ) bemutually corresponding.
Let B = {Gt : t ∈ T } be a base of (E × U , τ ). If G ∈ τ̂ ,
thenRG ∈ τ soRG = ∪t∈∈T0⊂T Gt and Gt ∈ B. That means
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G = FRG = F∪t∈∈T0⊂T Gt = ∪t∈∈T0⊂TFGt and FGt ∈ FB.
That means FB is a soft base of (E, U , τ̂ ).

(b) ⇒ (c) Let B̂ = {Gt : t ∈ T } be a soft base of
(E, U , τ̂ ). If G ∈ τ , then G = ∪s∈SGs where Gs ∈ B0

for some base B0 of τ . So FG = F∪s∈S Gs = ∪s∈SFGs and
FGs ∈ FB0 . Since FB0 is a base of τ̂ , FGs ∈ τ̂ . Then for
any s ∈ S, FGs = ∪i∈I Hi

s where Hi
s ∈ B̂. That means

FG = ∪s∈S ∪i∈I Hi
s , so G = R∪s∈S∪i∈I Hi

s
= ∪s∈S ∪i∈I RHi

s
and RHi

s
∈ RB̂. That means RB̂ is a base of τ .

(c) ⇒ (a) By item (2), it is sufficient to prove τ = Rτ̂ .
Let B̂ ⊂ τ̂ be a base of (E, U , τ̂ ). Then RB̂ ⊂ τ is a base of
(E × U , τ ). If A ∈ τ , then A = ∪t∈T Gt where Gt ∈ RB̂ ⊂
Rτ̂ . SinceRτ̂ is a topology (see Theorem 4), A ∈ Rτ̂ . On the
other hand, if A ∈ Rτ̂ , then A = RS where S ∈ τ̂ . Since B̂ is
a soft base of (E, U , τ̂ ), S = ∪t∈T Gt where Gt ∈ B̂. Then
A = R∪t∈T Gt = ∪t∈TRGt where RGt ∈ RB̂ ⊂ τ . Since τ is
a topology, A ∈ τ . 	


Lemma 8 Let (E × U , τ, I) and (E, U , τ̂ , Î) be mutually
corresponding (i.e., τ̂ = Fτ and Î = FI ) and {(U , σe) : e ∈
E} be an indexed family of topological spaces. Then

(1) FτI = (Fτ )FI = τ̂Î and Rτ̂Î = (Rτ̂ )RÎ = τI . That
means τI and τ̂Î are mutually corresponding.

(2) (⊕s
e∈Eσe)Î = (⊕s

e∈Eσe)FI = (F⊕e∈E σe )FI =
F(⊕e∈E σe)I = F⊕e∈E (σe)Ie

= ⊕s(σe)Ie .
So, (⊕s

e∈Eσe)Î and (⊕e∈Eσe)I = ⊕e∈E (σe)Ie are mutu-
ally corresponding.

(3) clτ (G) = Rsclτ̂ (FG ), sclτ̂ (H) = Fclτ (RH ) for any subset
G of E ×U, for any soft set H, respectively where sclτ̂ is
the soft closure operator with respect to τ̂ , see Definition
4.

Proof (1) By Lemma 6, FτI = (Fτ )FI = τ̂Î , so τI = Rτ̂Î .
By Lemma 6, F(Rτ̂ )(RÎ )

= (FRτ̂
)(FRÎ ) = τ̂Î , so Rτ̂Î =

(Rτ̂ )RÎ = τI .
(2) follows from Definition 7, Lemma 6, Theorem 3, Def-

inition 7.
(3) follows from Theorem 5 (7), (8). 	


6 Soft!-open sets and strongly soft!-open
sets

In the next remark, we specify the above results to those of Al
Ghour and Hamed Worood (2020) concerning soft ω-open
sets and strongly soft ω-open sets. Readers are referred to Al
Ghour and Hamed Worood (2020) for the following nota-
tions: coc(U , E), scoc(U , E), C SS(U , E), SC SS(U , E),
S P(E, U ), τ̂c, τ̂sc, τ̂ω, τ̂sω where τ̂ is a soft topology over U
with respect to E .

Definition 8 By Is , I0, we denote an ideal of all countable
subsets of E ×U , an ideal of all subsets I of E ×U such that
Ie ⊂ U is countable for any e ∈ E , respectively. Let Î0, Îs

be the corresponding soft ideal to I0, Is , i.e, FI0 = Î0 ⇔
RÎ0 = I0, FIs = Îs ⇔ RÎs = Is , respectively.

Remark 5 Let (E ×U , τ, ) and (E, U , τ̂ ) be mutually corre-
sponding, i.e., Fτ = τ̂ ⇔ Rτ̂ = τ . Then

(1) Is , I0 is a constant ideal on E × U , respectively, i.e.,
Is

e = I0
e (= an ideal of all countable subsets of U ) and

Is
U [e] = I0

U [e] (= an ideal of all countable subsets of

U [e]) for any e ∈ E . It is clear Is ⊂ I0, Îs ⊂ Î0.
(2) I0 corresponds to the collection of all countable soft

sets C SS(U , E) (G ∈ C SS(U , E) ⇔ G(e) is count-
able for any e ∈ E), i.e., C SS(U , E) = FI0 = Î0 ⇔
RC SS(U ,E) = I0 = RÎ0 .

(3) Is corresponds to the collection of all strongly count-
able soft sets SC SS(U , E) (G ∈ SC SS(U , E) ⇔
G(e) is countable for any e ∈ E and {e : G(e) �= ∅}
is countable), i.e., SC SS(U , E) = FIs = Îs ⇔
RSC SS(U ,E) = Is = RÎs .

Since Îs ⊂ Î0, SC SS(U , E) ⊂ C SS(U , E), see Al
Ghour and Hamed Worood (2020), Proposition 11.
Moreover, Is = I0 if and only if E is countable, so
SC SS(U , E) = C SS(U , E) if and only if E is count-
able, seeAlGhour andHamedWorood (2020) Theorem
16.

(4) The baseBτ,I0 corresponds to the soft base τ̂c = {G\I :
G is soft open, I ∈ C SS(U , E)} = FB

τ,I0 ⇔ Rτ̂c =
Bτ,I0 . So, FB

τ,I0 is a soft base for τ̂ω, by Lemma 7, see
Al Ghour and Hamed Worood (2020) Theorem 2.

(5) The base Bτ,Is corresponds to the soft base τ̂sc =
{G \ I : G is soft open, I ∈ SC SS(U , E)} = FBτ,Is ⇔
Rτ̂sc = Bτ,Is . So, FBτ,Is is a soft base for τ̂sω, by
Lemma 7, see Al Ghour and Hamed Worood (2020)
Theorem 18.

(6) The topology coE×U ,I0 corresponds to the cocountable
soft topology coc(U , E), so
coc(U , E) = FcoE×U ,I0 ⇔ Rcoc(U ,E) = coE×U ,I0 =
(coE×U ,I0)I0 , by Remark 1 (4).
The topology coE×U ,Is corresponds to the strongly
cocountable soft topology scoc(U , E), so
scoc(U , E) = FcoE×U ,Is ⇔ Rscoc(U ,E) = coE×U ,Is =
(coE×U ,Is )Is , by Remark 1 (4).
Clearly coE×U ,Is ⊂ coE×U ,I0 , see Remark 1 (5) and
coE×U ,Is = coE×U ,I0 if and only if E is countable. So,
scoc(U , E) = coc(U , E) if and only if E is countable.

(7) A ∈ τ̂ω if and only if A = ∪t∈T Gt where Gt ∈ τ̂c

if and only if A = ∪t∈T (Ft \ It ) where Ft ∈ τ̂ and
It ∈ C SS(U , E) = FI0 if and only if A ∈ (τ̂ )FI0 .
Similarly A ∈ τ̂sω if and only if A ∈ (τ̂ )FIs . By Lemma
8 (1),
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τ̂ω = (τ̂ )FI0 = (τ̂ )Î0 = (Fτ )FI0 = FτI0 ,
τ̂sω = (τ̂ )FIs = (τ̂ )Îs = (Fτ )FIs = FτIs .

(8) By item (7), τI0 and τ̂ω, τIs and τ̂sω are mutually cor-
responding, respectively. Consequently
(⊕e∈Eσe)I0 and (⊕s

e∈Eσe)ω,
(⊕e∈Eσe)Is and (⊕s

e∈Eσe)sω,
(coE×U ,I0)I0 and (coc(U , E))ω,
(coE×U ,Is )Is and (scoc(U , E))sω

are mutually corresponding, respectively. So
F(⊕e∈E σe)I0 = (⊕s

e∈Eσe)ω,
F(⊕e∈E σe)Is = (⊕s

e∈Eσe)sω,
F(coE×U ,I0 )I0 = (coc(U , E))ω,
F(coE×U ,Is )Is = (scoc(U , E))sω.

(9) Since (coc(U , E))ω = F(coE×U ,I0 )I0 = FcoE×U ,I0 =
coc(U , E) and (scoc(U , E))sω = F(coE×U ,Is )Is =
FcoE×U ,Is = scoc(U , E) (see item (8), Remark 1 (4)
and item (6)),
(coc(U , E))ω = coc(U , E),
(scoc(U , E))sω = scoc(U , E),
see Al Ghour and Hamed Worood (2020) Corollary 1
and 7.
If E is countable, then coc(U , E) = scoc(U , E) =
(coc(U , E))ω = (coc(U , E))sω, see item (6).

(10) A set G ∈ τIs (G ∈ τI0 ) is called a strongly ω-open
set (ω-open set) and it corresponds to a strongly soft
ω-open set (soft ω-open set) from τ̂sω (τ̂ω). According
Al Ghour and HamedWorood (2020), τ̂sω (τ̂ω) is called
the soft topology of all strongly soft ω-open sets (soft
ω-open sets).

(11) Since Is
e = I0

e (= an ideal of all countable subsets of
U , see Remark 5 (1)), for any topology σ on U ,

(σ )Is
e

= (σ )I0
e

= σω

whereσω is a topologyonU generated by abase {G\A :
G ∈ σ and A is countable}. Consequently

(τe)Is
e

= (τe)I0
e

= (τe)ω = (τ̂e)ω,
by Lemma 7 (1).

(12) {(e, u)} corresponds to a soft point Fu
e (ex , seeAlGhour

and Hamed Worood (2020)).
(13) {{(e, u)} : e ∈ E, u ∈ U } corresponds to S P(E, U ).
(14) Since τI0 and τ̂ω, τIs and τ̂sω are mutually correspond-

ing, respectively (see Remark 5 (8)), by Theorem 5 (7),
(8)
clτI0 (G) = Rsclτ̂ω (FG ), sclτ̂ω

(H) = FclτI0 (RH ),

clτIs (G) = Rsclτ̂sω (FG ), sclτ̂sω(H) = FclτIs (RH )

where sclτ̂ω
, sclτ̂sω is the soft closure operator with

respect to τ̂ω, τ̂sω, respectively, and G is a subset of
E × X and H is a soft set.

7 Application of results for an ideal of
countable sets

Corollary 3 Let {(U , σe)) : e ∈ E} be an indexed family of
topological spaces and (U , J) be a topological space. Then

(1) (⊕s
e∈Eσe)ω = (⊕s

e∈Eσe)sω = ⊕s
e∈E (σe)ω,

(2) (τ (J))ω = (τ (J))sω = τ(Jω),

see Al Ghour and Hamed Worood (2020) Theorem 8, 26,
Corollary 1, 4, 11, 12, 13.

Proof (1) By Remark 5 (11)) and Theorem 3,
(⊕e∈Eσe)I0 = ⊕e∈E (σe)I0

e
=

⊕e∈E (σe)Is
e

= (⊕e∈Eσe)Is .

That means
F(⊕e∈E σe)I0 = F⊕e∈E (σe)I0

e
=

F⊕e∈E (σe)Is
e

= F(⊕e∈E σe)Is .

By Remark 5 (8),
F(⊕e∈E σe)I0 = (⊕s

e∈Eσe)ω,
F(⊕e∈E σe)Is = (⊕s

e∈Eσe)sω.
By Remark 5 (11) and Definition 7,

F⊕e∈E (σe)Is
e

= F⊕e∈E (σe)I0
e

=
F⊕e∈E (σe)ω = ⊕s

e∈E (σe)ω.
That means

(⊕s
e∈Eσe)ω = ⊕s

e∈E (σe)ω = (⊕s
e∈Eσe)sω.

(2) If σe = J for any e ∈ E , then by (1)
(⊕s

e∈EJ)ω = (⊕s
e∈EJ)sω = ⊕s

e∈E (J)ω.
Using notation from Al Ghour and Hamed Worood (2020)
(see Definition 7),

(τ (J))ω = (τ (J))sω = τ(Jω). 	

Let (E, U , τ̂ ) be a soft topological space and Y ⊂ U . If

F ∈ SS(E, U ), then a soft set FY is defined as FY (e) =
F(e) ∩ Y for any e ∈ E . A family τ̂Y = {FY : F ∈ τ̂ } is
called a relative soft topology on Y , see Al Ghour andHamed
Worood (2020). Similarly, we define a soft ideal ÎY = {IY :
I ∈ Î} where Î is a soft ideal.

Lemma 9 Let (E, U , τ̂ , Î) and (E × U , τ, I) be mutually
corresponding, Y ⊂ U. Then

(1) FτE×Y = τ̂Y = (Fτ )Y ,

(2) FIE×Y = ÎY = (FI)Y ,
(3) (τ̂Y )ÎY

= (τ̂Î)Y .

Proof (1) A set A ∈ τE×Y if and only if A = G ∩ (E × Y )

where G ∈ τ if and only if FA(e) = ϕ−1
e (G ∩ (E × Y )) =
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ϕ−1
e (G) ∩ ϕ−1

e (E × Y ) = FG(e) ∩ Y = (FG)Y (e) where
FG ∈ τ̂ if and only if FA ∈ τ̂Y . So FτE×Y = τ̂Y = (Fτ )Y .

(2) is similar.
(3) By Lemma 2, (τE×Y )IE×Y = (τI)E×Y , so
F(τE×Y )IE×Y

= F(τI )E×Y
. By (1) and Lemma 6,

F(τI )E×Y
= (FτI )Y = ((Fτ )FI )Y = (τ̂Î)Y .

By Lemma 6 and (1), (2),
F(τE×Y )IE×Y

= (FτE×Y )FIE×Y
= (τ̂Y )FIE×Y

=
(τ̂Y )ÎY

. That means (τ̂Y )ÎY
= (τ̂Î)Y . 	


Corollary 4 Let (E, U , τ̂ ) be a soft topological space. Then

(τ̂Y )ω = (τ̂ω)Y ,

(τ̂Y )sω = (τ̂sω)Y ,

see Al Ghour and Hamed Worood (2020) Theorem 15, 34.

Proof Since τ̂Î0 = τ̂ω, τ̂Îs = τ̂sω (see Remark 5 (7)),

(τ̂Î0)Y = (τ̂ω)Y , (τ̂Îs )Y = (τ̂sω)Y . Moreover, Î0
Y , Îs

Y is a
soft ideal of all countable-valued mappings, a soft ideal of all
countable-valued mapping and nonempty-valued mappings
on a countable set, so (τ̂Y )Î0

Y
= (τ̂Y )ω, (τ̂Y )Îs

Y
= (τ̂Y )sω

(see Remark 5 (7)), respectively. Both equations follow from
the equation (τ̂Y )ÎY

= (τ̂Î)Y , see Lemma 9 (3). 	


Corollary 5 Let (E, U , τ̂ ) be a soft topological space. Then

(τ̂ω)e = (τ̂e)ω = (τ̂sω)e,

see Al Ghour and Hamed Worood (2020) Theorem 25, Corol-
lary 10.

Proof Let (E ×U , τ ) be the corresponding topological space
to (E, U , τ̂ ). By Theorem 1 item (2)

(τI0)e = (τe)I0
e
, (τIs )e = (τe)Is

e
.

Since (τe)Is
e

= (τe)I0
e
(see Remark 5 item (11)),

(τI0)e = (τe)I0
e

= (τe)Is
e

= (τIs )e.

Since τI0 and τ̂Î0 are mutually corresponding (see Lemma
8), by Lemma 7 (1) and Remark 5 (11)

(FτI0 )e = (τ̂e)ω = (τ̂e)ω = (FτIs )e.

By Remark 5 (7),
(τ̂ω)e = (τ̂e)ω = (τ̂sω)e. 	


Corollary 6 Let (E, U , τ̂ ) be a soft topological space. If G ∈
τ̂ω, G ∈ τ̂sω, then G(e) ∈ (τ̂e)ω, G(e) ∈ (τ̂e)ω, respectively,
see Al Ghour and Hamed Worood (2020) Corollary 3, 9.

Proof Since τI0 and τ̂ω, τIs and τ̂sω are mutually cor-
responding, respectively (see Remark 5 (8)), RG ∈ τI0 ,
RG ∈ τIs , respectively. By Theorem 5 (1) (d) (e), Theo-
rem 1 and Remark 5 (11), G(e) = (RG)e ∈ (τe)I0

e
= (τ̂e)ω,

G(e) = (RG)e ∈ (τe)Is
e

= (τe)I0
e

= (τ̂e)ω, respectively. 	

Recall an ideal I on E × U is τ -codense where τ is a

topology on E×U ifI∩τ = {∅}, seeKaniewski et al. (1998).
So the corresponding soft variant can be defined as follows:
A soft ideal Î is τ̂ -soft codense if Î ∩ τ̂ = {F∅} where τ̂ is a
soft topology. That means, see Al Ghour and HamedWorood
(2020), (E, U , τ̂ ) is soft anti-locally countable (strongly soft
anti-locally countable) if and only if Î0∩ τ̂ = {F∅} (Îs ∩ τ̂ =
{F∅}) if and only if Î0 is τ̂ -soft codense (Îs is τ̂ -soft codense).

Corollary 7 Let (E, U , τ̂ ) be a soft topological space. Then

(1) (E,U ,τ̂ ) is soft anti-locally countable, i.e., Î0∩τ̂ = {F∅}
(strongly soft anti-locally countable, i.e., Îs ∩ τ̂ = {F∅})
if and only if (E, U , τ̂ω) is soft anti-locally countable,
i.e., Î0 ∩ τ̂Î0 = {F∅} ((E, U , τ̂sω) is strongly soft anti-

locally countable, i.e., Îs ∩ τ̂Îs
= {F∅}), see Al Ghour

and Hamed Worood (2020) Theorem 13, 32.
(2) If (E, U , τ̂ ) is soft anti-locally countable, strongly soft

anti-locally countable, then

sclτ̂ (H) = sclτ̂ω
(H),

sclτ̂ (H) = sclτ̂sω(H),

for any H ∈ τ̂ω, for any H ∈ τ̂sω, respectively, see Al
Ghour and Hamed Worood (2020) Theorem 14, 33.

(3) If (E, U , τ̂ ) is soft anti-locally countable, then

sclτ̂ (H) = sclτ̂ω
(H) = sclτ̂sω(H)

for any H ∈ τ̂sω.

Proof (1)(E,U ,τ̂ ) is soft anti-locally countable (strongly soft
anti-locally countable) if and only if Î0∩ τ̂ = {F∅} (Îs ∩ τ̂ =
{F∅}) if and only if I0 ∩ τ = {∅} (Is ∩ τ = {∅}) if and only
if I0 ∩ τI0 = {∅} (Is ∩ τIs = {∅}) (see Lemma 4 (1)) if
and only if Î0 ∩ τ̂Î0 = {F∅} (Îs ∩ τ̂Îs

= {F∅}) if and only
if (E, U , τ̂ω) is soft anti-locally countable ((E, U , τ̂sω) is
strongly soft anti-locally countable).

(2) Suppose I0 ∩ τ = {∅}, i.e., (E, U , τ̂ ) is soft anti-
locally countable. By Lemma 3

clτ (G) = clτI0 (G) = Dτ,I0(G),

for any G ∈ τI0 . By Theorem 5 (7) and Remark 5 (14),

sclτ̂ (FG) = Fclτ (G) = FclτI0 (G) = sclτ̂ω
(FG).
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Then for any H ∈ τ̂ω = Fτ 0I
(see Remark 5 (7)), H = FS

for some S ∈ τ 0I and

sclτ̂ (FS) = sclτ̂ω
(FS),

sclτ̂ (H) = sclτ̂ω
(H).

Similarly, if Is ∩ τ = {∅}, i.e., (E, U , τ̂ ) is strongly soft
anti-locally countable, then for any H ∈ τ̂sω

sclτ̂ (H) = sclτ̂sω(H).

(3) Suppose I0 ∩ τ = {∅}, i.e., (E, U , τ̂ ) is soft anti-
locally countable. Since Is ∩ τ ⊂ I0 ∩ τ = {∅} (τIs ⊂
τI0 , see Remark 1 (5)), (E, U , τ̂ ) is strongly soft anti-locally
countable. Then

sclτ̂ (H) = sclτ̂ω
(H) = sclτ̂sω(H)

for any H ∈ τ̂sω. 	


Corollary 8 Recall a subset A of (X , τ, I) locally belongs to
I, if A ∩ Dτ,I(A) = ∅, i.e., for any x ∈ A there is G ∈ τ

containing x such that A ∩ U ∈ I, see Kaniewski et al.
(1998). So, X locally belongs to I if and only if for any
x ∈ X there is an open set G containing x such that G ∈ I.
That means (E, U , τ̂ ) is soft locally countable (strongly soft
locally countable), see Al Ghour and HamedWorood (2020)
if and only if for any Fu

e ∈ S P(E, U ) there is a set G ∈ τ̂

containing Fu
e such that G ∈ Î0 (Îs).

Since Fu
e ∈ Î0 (Fu

e ∈ Îs ) for any (e, u) ∈ E × U, then
Theorem 10, 29, Corollary 5, 14 of Al Ghour and Hamed
Worood (2020) follow from Lemma 4 (2a).

Corollary 9 By the correspondence between the family of
soft topological spaces and the family of topological spaces
(see Theorem 4), a soft topological space (E, U , τ̂ ) is soft
Lindelöf (soft weakly Lindelöf), see Al Ghour and Hamed
Worood (2020) if and only if the corresponding topological
space (E × U , τ ) is Lindelöf (weakly Lindelöf). So, the next
assertions of Al Ghour and Hamed Worood (2020) follow
directly from above results: Theorem 35, see Lemma 4 (5),
Theorem 36, see Lemma 4 (3), Theorem 37, see Remark 5 (6),
Lemma 4 (5), Theorem 38, see Lemma 5 (3), Corollary 16,
see Lemma 4 (5), Remark 1 (1), Theorem 39, see Corollary 3
(1), Lemma 4 (5), Theorem 40, see Lemma 4 (8), Theorem 41,
see Lemma 4 (7), Corollary 17, see Lemma 5 (3), Theorem
45, see Corollary 7, Lemma 4 (4).

Recall that many results of Al Ghour and HamedWorood
(2020) hold for arbitrary soft ideal. In addition to Î0 and Îs ,
we can consider a soft ideal Î0 where I0 = {B ⊂ E ×U : Bu

is countable for any u ∈ U} and Bu = {e ∈ E : (e, u) ∈ B}.

The next assertions from Al Ghour and Hamed Worood
(2020) follow directly from the above-obtained results.
Namely

Theorem 2, 3, see Remark 1 (1),
Proposition 9, see Remark 1 (1),
Theorem 4, 21, see Remark 1 (3),
Theorem 5, 22, see Remark 1 (2),
Theorem 7, see Theorem 1 (2),
Theorem 18, see Remark 1 (1), (5),
Theorem 19 (b), see Remark 1 (5f),
Theorem 20, see Remark 1 (1),
Proposition 12, see Remark 1 (1),
Theorem 21, see Remark 1 (3),
Theorem 23, see Remark 1 (5e),
Theorem 11, 30, see Lemma 4 (2b),
Theorem 42, see Lemma 4 (6) (where E ×U = ∪e∈EU [e]

and by Remark 2 (1), (U [e], σe[e]) is weakly Lindelöf if and
only if (U , σe) is weakly Lindelöf).

Note that the examples fromAlGhour andHamedWorood
(2020) also have their topological variants.

8 Conclusion

This paper contributes to the expanding literature on soft
topology. We prove that soft topologies can be character-
ized by crisp topologies. This is based on bilateral transition
that produces soft topologies from crisp topologies and vice
versa. Both constructions are explicit and amenable to math-
ematical manipulations. Various consequences demonstrate
that this transition has far reaching implications for the devel-
opment of soft topology and its extensions.

We have clearly documented the advantage of this bilat-
eral transition in which all notions and results of soft ideal
topological spaces have crisp counterparts in ideal topolog-
ical spaces. This means that the concepts and results that
relate to soft ideal topological spaces are fully covered and
derivable from standard methods of general topology. From
this point of view, we can also evaluate the results from Al
Ghour andHamedWorood (2020) as a copy of known results.
Therefore, in further research of soft topological spaces, we
propose avoiding the methods and results that are counter-
parts (consequences) of topological concepts and rather to
focus on applications of soft topological spaces.
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