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Abstract
The transportation problems, which consist of multiple objectives with heterogeneous conveyances, are the pragmatic rep-
resentation of the transportation occurring in the real world. However, situations do exist where the solutions obtained by
the classical optimization techniques do not reflect the acumen of the decision-maker. Against this backdrop, a systematic
algorithm is proposed in this paper to generate an initial population to tackle the multi-objective solid transportation problem
efficiently. In addition, the non-dominated sorting genetic algorithm (NSGA) III is carried out to acquire solutions that can
demonstrate the varying degrees of objectives. Furthermore, two problems of different sizes are framed, and their performance
is compared via NSGA II, hybrid genetic algorithm, and fuzzy programming technique.

Keywords Multi-objective solid transportation problem · Genetic algorithm · NSGA II · NSGA III

1 Introduction

The ability to deal with complex optimization problems in
limited timemakesmeta-heuristic algorithms (Lee andGeem
2005; Sang-To et al. 2022; Rao 2016; Kennedy and Eberhart
1995; Booker et al. 1989) as locus of attraction. Researchers
are also modifying these algorithms according to the need of
problem definition (Le Thanh et al. 2022; Das 2022; Huang
andHao 2009; Cuong-Le et al. 2021;Minh et al. 2021a, b; To
et al. 2022). Evolutionary algorithms, a class of population-
based meta-heuristic algorithms, in principle, mimic natural
evolution in view to obtain and maintain multiple solutions
in a single simulation run. Genetic algorithm(GA), which is
a member of a family of evolutionary algorithms and cen-
tered on natural selection and natural genetics, is a precise
and systematic optimization technique, therefore, effectively
implemented for various sophisticated optimization prob-
lems. Following Darwin’s theory of “Survival of the fittest,”
its development was commenced by John Holland in early
1960. This algorithm, in a nutshell, uses a set of the pop-
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ulation in order to generate stochastic solutions and then
mimic genetic operators to obtain the optimal solutions In
the presence of multiple objectives, non-dominated solu-
tions, loosely speaking, more than one optimal solutions
typically exist. In this regard, Schaffer (1985) modified GA
to unfold a multi-objective optimization problem. Since, at
each generation, the population is segregated into several
sub-populations according to objectives considered, each
sub-population is assigned a fitness based on distinct goals;
therefore, this algorithm is also named vector evaluated
genetic algorithm. In addition, this algorithm tends to con-
verge in a specific part of the Pareto-optimal front, which
highlights the need for suitable modification in GA accord-
ing to the problem of interest. Thereupon, several GA were
introduced formultiple objective problems likeweight-based
genetic algorithm by Hajela et al. (1993), multi-objective
GA of Fonseca and Fleming (1993), etc. A revolution came
when in 1989, Goldberg (1989) recommended the use of the
concept of domination in the multi-objective evolutionary
algorithm. The first direct implementation of non-dominated
sorting was done by Srinivas and Deb (1994) in his algo-
rithm, NSGA. Through this algorithm, the non-dominated
solutionswere obtained by the non-dominated sorting (NDS)
procedure, and the diversity between the solutions was main-
tained by the sharing function approach. Because of the
need to specify user-defined parameters, lack of elitism,
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and high computational complexity, this algorithm comes
out to be inefficient. Later, Deb et al. (2002) proposed its
updated version, NSGA II, which is free from user-defined
parameters and equipped with a remarkable diversity pre-
serving operator. Moreover, Deb also modified the NDS
approach and called it a fast non-dominated sorting approach.
In literature, some exciting applications of NSGA II can be
found, for instance, generation expansion planning (Kannan
et al. 2008), spectrum sharing networks (Martínez-Vargas
et al. 2016), fault diagnosis in power system (Wang et al.
2019), and feature selection for facial expression (Soyel
et al. 2011). In view to ease the high computational com-
plexities of crowded comparison operator in NSGA II, Deb
and Jain (2013) came up with NSGA III, which is predomi-
nantly based on a reference point strategy in which decision
maker tried to obtain a solution near the predefined reference
points.NSGA III is successfully employed to solve economic
and environmental dispatch problems by Bhesdadiya et al.
(2016). Ji et al. (2021) figured out the applicable region of the
MMC controller parameter for satisfying the stability con-
stants by NSGA III.
Furthermore, GA and its derivative algorithms are utilized
to address a variety of real-world optimization problems
with multiple objectives. One of them is the transportation
problem. In the current progressive world, an efficient trans-
port system, especially in terms of cost and time, is the
foundation of productive trade. Such systems channelize
commodities from numerous origins (for example, ware-
houses, plants, factories, etc.) to their ultimate destinations
(for example, retailers, customers, warehouses, etc.). In lit-
erature, the aforesaid systems have been scrutinized in great
detail under the framework of the transportation problem
(TP). In connection with the above discussion, it is impor-
tant to point out that the distinctive feature of a conventional
transportation problem is that sources have a fixed amount
of capacity for transfer, while destinations need a specific
volume at the same time that might differ from the source
capacity. Owing to these concerns, the prime goal of the
DM is to optimize transportation costs, subject to the study’s
source and demand constraints. In this regard, Hitchcock
(1941) was the first who studied its mathematical structure in
1941 andDantzig (1963) proposed the solution procedure for
the conventional transportation problem through lp concepts.
Multi-dimensional objectives, on the other hand, instead of
uni-dimensional objectives, became the need of the hour to
take care of emerging transportation problems. As compared
to uni-dimensional objectives, multi-dimensional objectives
are substantially conflicting in nature, for instance, reducing
transportation costs, further improving the product quality,
enhancing the users’ readiness, and many more. The large-
scale occurrence of the multi-objective scenarios in the real
world has shifted the paradigm from the conventional TP to
the multi-objective transportation problems.

Furthermore, in practice, it is often infeasible to maintain
conveyance homogeneity for shipment; therefore, hetero-
geneous conveyances, particularly ships, cargo, trains, or
any particular combination of these, etc., are exercised.
As a result, an additional constraint is required in order
to figure out the influence of heterogeneous conveyances.
Shell (1955) first studied this specific framework, named
the solid transportation problem (STP). Haley (1965, 1962)
did a remarkable job in the field of multi-objective STP
(MOSTP). He designed the solution procedure of MOSTP
by extending the modified distributionmethod and laid down
the necessary and sufficient conditions to obtain a feasible
solution. Ever since many authors developed a consider-
able amount of utilitarian and efficient approaches to solve
MOSTP, such as Bit et al. (1993) solved MOSTP by FPT,
Giri et al. (2015) provided a few methods for calculating
the total fuzzy transportation cost for a fully fuzzy fixed
charge multi-item STP. Rani and Gulati (2016) proposed
a method for finding an optimal compromise solution of
completely fuzzy multi-objective multi-item STP with all
parameters represented by trapezoidal fuzzy integers. (Dal-
man et al. 2016) introduced a new interval programming
approach for solving multi-objective multi-item STP with
limits on somecommodities and conveyances, such that some
specified commodities cannot be transported by certain con-
veyances. Chen et al. (2019) introduced entropy-based STP
where parameters were independent uncertain variables and
used the interior pointmethod tofind its solution. Todealwith
imprecise data in the realistic transportation system, Roy and
Midya (2019) structured a multi-objective fixed charge STP
with product blending as an additional constraint and added
a triangular fuzzy number as a parameter. Ghosh et al. (2021)
employed three methods, viz. goal programming, fuzzy pro-
gramming, and intuitionistic fuzzy programming, to find the
best Pareto-optimal solutions of multi-objective fixed charge
STP.
However, Vignaux andMichalewicz (1991) first used genetic
algorithms to solve transportation problems.Henceforth, var-
ious transportationproblemswereunfoldedby the researchers
through variants of genetic algorithms. For example, Gen
et al. (1994) solved the bi-criterion STP in which cost matrix,
supply, demand, and conveyance constraints are treated as the
fuzzy number; Jimenez et al. (1996); Jimenez and Verdegay
(1997) determined the solution of the multi-objective inter-
val STP by non-standard genetic algorithm and fuzzy STP
where supply, demand, and conveyance are fuzzy numbers.
Ojha et al. (2010) developed GA to apply on an STP with
fixed charges, discounted costs, and vehicle costs which is
formulated as a linear programming problem.
Since evolutionary algorithms begin with population gener-
ation, they can yield multiple solutions in a single simulation
run. They also require only objective function values to solve
the problem; as a result, they can be used to solve complex
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problems. In light of this, this work has been carried out. The
main contribution can be summed up as follows:

1. As literature survey reveals thatMOSTPup to three objec-
tives is dealt with classical approaches. This article is a
first attempt to give insight into the direction of MOSTP
with more than three objectives.

2. Hybrid GA, NSGA II, andNSGA III are first time utilized
to deal with MOSTP.

3. A stochastic matrix-based initial population generation
technique is provided in view to applying variants of GA.

4. A comparison of NSGA III is made with other variants
(HGA and NSGA II) to show the sustainability and effi-
cacy of NSGA III in the case of problems having multiple
objectives.

5. Finally, experimental validation and statistical test named
Z-test are utilized to show the quality and quantity of the
solutions obtained.

This paper consists of five sections. Section 2 throws light on
preliminary knowledge about multi-objective optimization,
followed by the mathematical model of MOSTP. Section
3 addresses the solution procedure of genetic algorithm,
hybrid GA, NSGA II, and NSGA III. Section 4 consists of
two numerical examples to show the effectiveness of these
methods with sensitivity analysis. Finally, the conclusion is
outlined, followed by references.

2 Preliminaries

This section introduces two basic fundamentals namely
Pareto-optimal solution and elitism in the light of multi-
objective optimization.

2.1 Pareto-optimal solution

A solution x is said to dominate another solution y iff:

1. fq(x) ≤ fq(y) for all indices q ∈ {1, 2, · · · Q}
2. fq̄(x) < fq̄(y) for at least one index q̄ ∈ {1, 2, · · · Q}.

If there is no other solution y in the feasible space that meets
the above two conditions, a solution x is said to be Pareto-
optimal.

2.1.1 Elitism

During crossover and mutation, unfortunately, some good
solutions may be lost. As a result, the generated children
lose their fitness compared to the parents. In order to main-
tain the said fitness, sometimes it becomes essential that some

good solution must be passed on to the next generation with-
out change. This process is called elitism, and the selected
chromosomes are called elites. Elitism helps in improving
the convergence of the algorithm by preventing the loss of
reasonable solutions.

3 Mathematical formulation of MOSTP

Assume that there are R originsOr , each having capacity ar ,
S destination ds having demand bs and T number of trans-
portation modes tt with capacity ct . Suppose homogeneous
items/commodities are to be delivered from r th origin to sth

destination through t th transportation mode. Let there are
penalties frst associated with unknown quantity transferred
from r th origin to sth destination utilizing t th transportation
mode. According to Bit et al. (1993), a MOSTP mathemati-
cally can be outlined as:
Model 1

min Zq(x) =
R∑

r=1

S∑

s=1

T∑

t=1

f qrst xrst , q ≥ 2, (1)

subject to the constraints

S∑

s=1

T∑

t=1

xrst = ar , r = 1(1)R, (2)

R∑

r=1

T∑

t=1

xrst = bS, s = 1(1)S, (3)

R∑

r=1

S∑

s=1

xrst = ct , t = 1(1)T , (4)

xrst ≥ 0,∀r , s, t,

where

ar ≥ 0,∀r; bs ≥ 0,∀s; ct ≥ 0,∀t, f qrst ≥ 0 ∀r , s, t, q,

x p
rst stands for the number of transported commodities from
the origin Or to destination ds using the conveyance tT .

R∑

r=1

ar =
S∑

s=1

bs =
T∑

t=1

ct Balanced Condition (5)

For the existence of a feasible solution to model 1, the equa-
tion 5 is a necessary and sufficient condition ( Bit et al.
(1993)).
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4 Solutionmethodology

As hybrid GA, NSGA II, and NSGA III are derivatives of
GA, it is essential to understand GA before understanding
their working procedure. Therefore, the working procedure
of GA is given first; then, hybrid GA, NSGA II, and NSGA
III are outlined in detail in the successive subsections.

4.1 Genetic algorithm

Owing to its connectionwith genetics, genetic algorithms use
a vocabulary predominantly borrowed from natural genetics.
The fundamental steps involved in a basic genetic algorithm
may be sequentially expressed in the following points:

Step 1 initialization procedure Taking note of all the con-
straints, a population comprising individuals / solutions,
known as genotypes or chromosomes, is constructed. In
the literature, several approaches, in order to construct a
population, are discussed. Besides, researchers (Liu et al.
2008; Gen and Cheng 1999; Eckert and Gottlieb 2002)
have been contributing in this area by developing appro-
priate approaches according to the problem of interest.
To generate initial population for MOSTP, authors have
designed a stochastic solution approach such that the
solutions are qualified to satisfy demand, supply, and con-
veyance constraints simultaneously which is discussed in
Sect. 4.5.
Step 2 fitness evaluation The second inherent step (see
Sivanandam and Deepa 2008), involved in GA, is the
examination of the solution’s fitness through which one
figures out the goodness of the solutions as well as its
proximitywith the optimal one. For this purpose, we have
calculated the objective function of model MOSTP satis-
fying all the constraints for the hybrid genetic algorithm.
Following (Deb 2001) suggestion, in most cases, fitness
function is made equal to the objective function value.
However, for NSGA II and NSGA III, Pareto-optimality
concept is hybridized with objective function value to
evaluate fitness.
Step 3 selection operator This operator is used to choose
the potential ones from the population of strings based
on their fitness information. In this study, we considered
a binary tournament selection operator through which a
chromosome is preferred over the others if its fitness is
better than the others.
Step 4 crossover operation In this step, fit individuals,
as obtained in step 3, crossed over in order to produce
better individuals / children. In this study, we have used
the arithmetic crossover operator. For understanding, if
P1 and P2 are parents, then C1 = x1P1 + x2P2 and
C2 = x2P1 + x1P1 are children, where x1 + x2 = 1 and
x1, x2 > 0. This technique assures that both children are

feasible because the initialization procedure generates a
feasible solution and the constraint set is convex.
Step 5 mutation operation In order to preserve diversity
and avoid the trap in local minima, a mutation operator is
generally applied which in turn induces a slight change
in the chromosomes.
In this study, we have extracted a sub-matrix from the
selected parent by randomly selecting rows and columns.
The row and column sums of this sub-matrix represent
supply and demand capacity, respectively. Then, follow
initialization procedure 2 to reallocate xi j . Thus, child
individual can be obtained by inserting this sub-matrix
into the parent matrix.

Algorithm 1 Initialization procedure 2
Require: A parent matrix M
Ensure: Child matrix
begin;
M

′ ← pick a sub − matri x f rom M ;
n ← si ze o f M

′
;

Supply ← a vector of row sum of M
′
;

Demand ← a vector of column sum of M
′
;

Row ← I denti f y row of M
′
wi th respect to M ;

Column ← I denti f y columns of M
′
wi th respect to M ;

for K = 1 : n do
val = min(Supply(Row(K ), Demand(Column(K ));
N (Row(K ),Column(K )) = val;
supply = supply − val;
demand = demand − val;

end for

Step 6 Steps 2–5 are replicated until the termination cri-
terion is attained.

This subsection presents hybrid GA for MOSTP to deter-
mine the best efficient solutionwith different aspiration levels
(ALs) of DM.

4.2 GA-based hybrid approach to solve MOSTP

In a multi-objective optimization setting, it is argued that
a solution should portray the decision maker’s perception.
More specifically, a solution should highlight themultiplicity
of value judgment as well as complex dynamic changes that
occurred in the process of decision making. In this regard,
the Al effectively provides a rationalized trade-off channel.
Following this idea, Dhodiya and Tailor (2016); Tailor and
Dhodiya (2021) developed a hybrid GA. The procedure of
the algorithm is as follows :

1. Consider the mathematical model of MOSTP described
in model 1.

2. Calculate the positive ideal solution (PIS) and negative
ideal solution (NIS) for each objective functions (see
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Gupta et al. 2013)as:
PISfor fq NISfor fq
f P I S
q = min fq f N I S

q = max fq
Subject to the constraints:(2)to(4) Subject to the constraints : (2)to(4).

3. Compute fuzzy exponential membership value μ fq for
fq .

μ fq (x) =

⎧
⎪⎨

⎪⎩

1; if fq ≤ f P I S
q ,

exp(−s∗ψq (x))−exp (−s)
1−exp (−s) ; if f P I S

q ≤ fq ≤ f N I S
q ,

0; if fq ≥ f N I S
q ,

(6)

where ψq(x) = fq− f P I S
q

f N I S
q − f P I S

q
and S is nonzero shape

parameter(Sp), regulated by the DM and 0 ≤ μ fq (x) ≤
1. It should be noted that the membership function
in [ f P I S

q , f N I S
q ] is strictly convex (concave) for S <

0, (S > 0).
4. According to Gupta et al. (2013), MOSTP is converted in

the single-objective optimization problem as follows.
model-2 objective function:

maxW =
Q∏

q=1

μ fq , (7)

Subject to the constraints: (2) to (4)
and

μ fq (x) − μ fq (x) ≥ 0; q = 1, 2, · · · Q. (8)

Where the required AL of fuzzy goals corresponding to
each objective isμ f q(x). However, the above-mentioned
model can be solved by altering the DM’s ALs to achieve
various fuzzy goals.

5. Discover various transportation schemes for the model-2,
developed in step-4, through GAwith different choices of
the Sp.

4.3 NSGA II

The key to understand working methodology of NSGA II
is to understand its two special operators—non-dominated
sorting (NDS) operator and crowded distance tournament
selection (CDTS) operator, discussed as below:

4.3.1 Non-dominated sorting (NDS) operator

In this operator, we have evaluated following two entities for
each considered solution:

1. Domination count n p, the non-negative integer used to
reflect the number of solutions that dominate the solution
p ,

2. Sp a set of solutions dominated by solution p.

Now we begin the process by comparing each member of
the population to each other member of the population using
the idea of domination, which provide the first/principal
non-dominated front. The domination count for all solutions
belonging to the principal non-dominated front will be zero.
Now, for each solutionwith n p = 0,we go over eachmember
q of its set Sp and apply the idea of dominance to each one,
lowering the domination count by one. During this process,
every member with a domination count of zero is moved to
a different list. The member of this new list is referred to as
the second non-dominated front. Similarly, the third front is
determined by repeating this technique with each member of
Sq . This procedure is repeated until all possible fronts have
been found.

4.3.2 Crowded distance tournament selection (CDTS)
operator

The compactness of a given solution i in the population is
measured after the NDS procedure by taking the average
distance between two solutions on both sides of the solution i
along each of the objectives. The crowding distance is used to
calculate the perimeter of the cuboid using nearest neighbors
as vertices (see Deb 2001).
The algorithm for determining the crowding distance
By theNDSprocedure,we get non-dominated fronts (F1, F2,
· · · and so on). All the solutions of front F1 have assigned
rank 1, members of front F2 have assigned rank 2, and
similarly, solutions of other fronts are assigned ranks. For
calculating crowding distance, we arrange the solutions with
the same rank in worse order of their objective values. Now
boundary solutions of each front are assigned crowding dis-
tance infinity, and crowding distance for rest members is
calculated as follows:

l(I qj )
= l(I qj )

+ f
(I qj+1)

q − f
(I qj−1)

q

f max
q − f min

q
. (9)

where I j is the j th solution in the sorted list . f max
q and

f min
q are the maximum and minimum objective values for

qth criterion.
A solution x wins CDTS with y if the following two con-

ditions are satisfied:

1. It has lesser rank, i.e., rx < ry .
2. If rx = ry , then lx should be greater then ly .

In NSGA II, a binary tournament selection operator is
utilized; however, the selection criterion is based on the
crowding distance tournament operator (see Deb et al. 2002).
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4.3.3 Process

In this section, the NSGA II algorithm is outlined in the fol-
lowing two phases. In phase 1, the initial population (At ) of
size N is generated, which is further segregated into differ-
ent fronts employing the non-dominated sorting procedure.
Next, we have assigned fitness to solutions. Then, we have
applied three genetic operators viz. selection, crossover, and
mutation and obtained the offspring population (Bt ) of size
N . In second phase, initial population At and offspring pop-
ulation Bt are combined to form population Ct of size 2N .
Then, implement the NDS procedure on combined popula-
tion Ct and get different fronts (such as F1, F2 and so on). In
order to select N members, we first choose fronts according
to their ranking and add them into a new empty set St and
check whether the cardinality of St is greater than or equal
to N and start adding fronts to St until cardinality of St is
greater than or equal to N . If St has exactly N population
members, then we apply genetic operators on it and get new
population At+1 else we apply crowded distance tournament
selection operator to choose N − cardinality ofSt population
members then apply genetic operator. This phase continued
until the termination criterion is met.

However, some of the Pareto-optimal solutions from the
first front give way to other non-dominated yet non-Pareto-
optimal solutions when the number of solutions in the first
non-dominated front exceeds the population size. These non-
Pareto-optimal solutions are then replaced by another Pareto-
optimal solution in subsequent iterations.But this cycle slows
down the process of NSGA II to get a well-distributed set of
solutions (Deb 2001). However, the reference point strategy
prevents NSGA III from experiencing such an issue.

4.4 NSGA III

Despite its similarity with NSGA II, NSGA III differs in
the way its selection operator works. More specifically, in
NSGA II, the crowding distance operator works as a diver-
sity preserving operator while NSGA III is incorporated with
reference point strategy to maintain diversity among Pareto-
optimal solution.

In order to select individuals, the process started like in
NSGA II, but if the situation arises to select a partial number
of elements from the critical front,whichdo, then theworking
process ofNSGA III differs. To illustrate theworking process
of selecting a partial number of members from the last front,
we follow the following steps:

Step 1 We began the algorithm by obtaining Zmin
q (q =

1, 2, · · · Q) from ∪t
τ=0Sτ and form translated

objective function as f
′
q(x) = fq(x) − Zmin

q .

Step 2 In this step, Q- dimensional hyperplane is gener-
ated with the help of Q extreme vectors obtained
in the previous step. Nowwe calculate intercept xq
of the qth axis and normalize objective functions

using f nq (x) = f
′
q (x)
xq

, ∀q = 1, 2, · · · Q.
Step 3 Now the reference points using Das and Dennis

approach (Das and Dennis 1998) are generated.
Step 4 In this step, we create reference lines by linking the

reference points and the origin. Then, perpendicu-
lar distance between each populationmember of St
and reference line is calculated and the reference
point with the minimum perpendicular distance
considered to be associated with population mem-
ber.

Step 5 Finally, niche preservation operator is used to
choose member from last front to fulfill vacant
position of At+1.

4.4.1 Niche preservation operator

To begin, calculate the niche count ρh for the hth reference
point as the number of individuals in St/Fl who are linked
to the hth reference point. Then, look for

Hmin = {h : argminhρh}.

When |Hmin| ≥ 1, one h̄ ∈ Hmin is chosen at random. There
are two possibilities now:

1. If ρh̄ = 0, one or more individuals may be associated
with h̄ in front Fl . In this scenario, the individual with the
shortest perpendicular distance to h̄ is chosen for the At+1

population, and if there is no member associated with h̄,
reference point h̄ is removed from consideration for the
current generation.

2. if ρh̄ ≥ 1, then if there exist individuals in the set Fl
that are associated with h̄, then any one can be chosen
randomly.

Each time after addition of new individual to At+1, ρh̄ incre-
mented by one.

This process is repeated k number of times.

4.5 Procedure to generate initial population for
MOSTP

We introduce a new matrix-based representation for a
MOSTP capable of generating initial feasible solutions
within the positive and negative ideal solution range. The
proposed method is illustrated through one example in this
section (Table 1).
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Table 1 Cost matrix Demands 7 6 9 Supply

9 12 9 6 9 7 3 7 7 8

5 6 5 9 11 3 6 8 6 9

2 2 1 2 7 7 1 9 3 5

Conveyance capacity 10 5 7 10 5 7 10 5 7

Table 2 Matrix corresponding to first conveyances

for E = 10

9 6(5) 3 8

5 9 6 9

2(5) 2 1 5

7 6 9

Table 3 Matrix corresponding to second conveyance

for E= 5 • • • •
12 9(1) 7 3

6 11 8(4) 9

2 1 9

Table 4 Matrix corresponding
to third conveyance

for E = 7

9(2) 7 2

5 6(5) 5

2 5

Consider a transportation cost matrix related to a solid
transportation problem with three origins having supply (8,
9, 5), demand centers having demands (7, 6, 9), and trans-
portation mode of capacity (10, 5, 7).

Now, Table 2 corresponding to first transportation mode
is obtained by picking column {1, 4, 7}.

After that, we randomly select a cell corresponding to the
third rowandfirst columnof this table andfill theminimumof
supply, demand, and capacity of transportation mode. Since
the third supply is fulfilled, so we remove the third row and
update supply, demand, and capacity of transportation mode
by subtracting the minimum value from each of them. Now,
we select another cell corresponding to the first row and sec-
ond column and fill the minimum of supply, demand, and
capacity of transportation mode. Since E(1) = 0 and third
row is deleted therefore, for next step we choose {1, 2} row
and {2, 5, 8} column; this provides Table 3.

We repeat the process by randomly selecting cells corre-
sponding to thefirst rowand second column, then second-row
third column.

Since in this step demand of the second column is ful-
filled, we remove all{4, 5, 6} columns and make Table 4 by
selecting row {1, 2} and column {3, 9} from the original table
and repeat the process to fulfill supply, demand, and capacity
of transportation mode (Table 5).

So, final table is · · ·

Algorithm 2 Initial population procedure
Require: supply, demand, conveyance capacity, f1, f2
Ensure: Initial Population (A), Objective values (obj1, obj2)
begin
for 1:Population size do

ocount ← 1 : numberof origins;
Dcount ← column number of locations belonging to conveyance1;
for 1:number of conveyances do

while E(k) > 0 do
temp1 ← randi(length(ocount );
if (length(o) = length(ocount )) then

row ← temp1;
rowm = temp1;

else
row ← ocount (temp1);
rowm ← temp1;

end if
temp2 = randsample(Dcount ,1);
Zn ← which destination temp2 belongs;
val ← min(E(k), o(rowm), D(Zn));
A(row, temp2) ← val;
N1(row, temp2) ← f1(rowm, coln) ∗ L1;
N2(row, temp2) ← f2(rowm, coln) ∗ L1;
o(rowm) ← o(rowm) − val;
D(temp2) ← D(temp2) − val;
E(k) ← E(k) − val;
if o(rowm) = 0 then

ocount (rowm) = φ;
orowm = φ;

end if
if D(Zn) = 0 then

Dcount (Zn) ← φ;
D(Zn) ← φ

end if
end while
Dcount (k + 1) = Dcount (k) + 1;

end for
obj1 ← sum(N1,′ all ′);
obj1 ← sum(N2,′ all ′)

end for
end
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Table 5 Encoded chromosome Demands 7 6 9 Supply

9 12 9(2) 6(5) 9 (1) 7 3 7 7 8

5 6 5 9 11 3 6 8 (4) 6 (5) 9

2(5) 2 1 2 7 7 1 9 3 5

Conveyance capacity 10 5 7 10 5 7 10 5 7

Table 6 Transportation cost for
MOSTP-1

Destinations → 1 2 3

Origin ↓/Conveyances→ 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 9 2 7 5 2 11 3 4 9 8 2 9 8 2 8

2 7 7 2 2 5 9 6 6 8 3 2 5 6 6 9

3 11 7 3 5 4 7 6 8 2 9 9 6 3 3 6

4 12 5 6 3 7 7 13 6 4 9 8 7 9 5 4

5 23 2 4 1 3 2 8 4 6 1 5 7 12 2 5

Destinations → 4 5

Origin ↓/Conveyances→ 1 2 3 4 5 1 2 3 4 5

1 2 6 8 2 9 3 9 1 3 5

2 8 3 6 2 5 12 5 8 5 1

3 4 6 9 1 6 9 7 9 2 9

4 9 4 2 9 6 9 2 7 5 5

5 11 5 1 6 8 4 8 1 6 4

5 Numerical illustrations for MOSTP

5.1 Multi-objective solid transportation problem-1

To demonstrate the applications of the method, we con-
sider a MOSTP with five sources, five destinations, and five
conveyances. The capacity of origins, destinations, and trans-
portation mode is below given by the notations ai , b j , and ck
corresponding to i th source, j th destination, and kth trans-
portation mode, respectively.
Supplies a1 = 7, a2 = 9, a3 = 8, a4 = 6, a5 = 13,
Demands b1 = 11, b2 = 9, b3 = 5, b4 = 8, b5 = 10,
Conveyance capacity c1 = 13, c2 = 6, c3 = 7, c4 = 9, c5 =
8.
Coefficients f1, f2, f3, and f4 are shown in Tables 6, 7, 8
and 9:

The considered problem can be modeled as follows:

min Zq(x) =
5∑

r=1

5∑

s=1

5∑

t=1

f qrst xrst , q = 1(1)4,

subject to the constraints

5∑

s=1

5∑

t=1

x1st = 7,
5∑

s=1

5∑

t=1

x2st = 9,
5∑

s=1

5∑

t=1

x3st = 8

5∑

s=1

5∑

t=1

x4st = 6,
5∑

s=1

5∑

t=1

x5st = 13,
5∑

r=1

5∑

t=1

xr1t = 11,

5∑

r=1

5∑

t=1

xr2t = 9,
5∑

r=1

5∑

t=1

xr3t = 5,
5∑

r=1

5∑

t=1

xr4t = 8

5∑

r=1

5∑

t=1

xr5t = 10,
5∑

r=1

5∑

s=1

xrs1 = 13,
5∑

r=1

5∑

s=1

xrs2 = 6,

5∑

r=1

5∑

s=1

xrs3 = 7,
5∑

r=1

5∑

s=1

xrs4 = 9,
5∑

r=1

5∑

s=1

xrs5 = 8,

xrst ≥ 0, r = 1(1)5 s = 1(1)5, t = 1(1)5.

A chromosome with given supply, demand, and con-
veyance capacity can be encoded as in matrix 10.

Mutation For demonstrating mutation, we have here cho-
sen the encoded chromosome shown in Table 10 as the
parent matrix. Then, the two rows {4, 5} and three columns
{17, 20, 21} of the parent matrix are randomly chosen, which
lead to the corresponding submatrix Y as shown in Table 11.

Thus, supply at origins of Y is 3, 10, and demands are
3, 2, 8, respectively. After re-initialization of Y , the matrix
may get the form shown in Table 12

Finally, the child offspring after mutation corresponding
to parent matrix 10 is obtained as shown in Table 13.
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Table 7 Distance for MOSTP-1 Destinations → 1 2 3

Origin ↓/Conveyances→ 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 1 6 9 2 5 9 8 8 6 5 5 7 3 6 1

2 6 9 5 7 8 1 9 6 7 9 2 11 9 8 9

3 2 5 2 9 5 3 5 8 8 12 4 5 6 9 7

4 6 1 5 8 9 7 2 5 3 11 9 4 8 6 8

5 1 2 4 2 7 5 2 7 9 4 8 2 8 6 9

Destinations → 4 5

Origin ↓/Conveyances→ 1 2 3 4 5 1 2 3 4 5

1 4 6 9 9 2 3 3 6 4 7

2 8 9 5 2 2 4 6 7 3 6

3 9 2 9 3 6 5 1 6 5 9

4 3 1 5 4 3 6 4 2 8 9

5 5 9 6 5 4 6 9 5 7 3

Table 8 Product deterioration
for MOSTP-1

Destinations → 1 2 3

Origin ↓/Conveyances→ 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 3 5 8 7 1 6 2 3 7 5 2 6 3 9 9

2 8 8 1 2 2 2 9 7 1 3 4 8 7 6 2

3 9 5 9 6 3 6 3 6 9 4 7 12 8 2 4

4 7 1 13 6 9 8 9 9 5 3 1 5 7 7 3

5 23 8 6 7 8 1 4 5 4 2 8 7 5 1 5

Destinations → 4 5

Origin ↓/Conveyances→ 1 2 3 4 5 1 2 3 4 5

1 3 2 3 9 6 6 1 4 5 4

2 5 3 5 1 2 6 9 5 8 8

3 9 6 11 9 8 12 2 7 9 5

4 9 6 2 11 7 6 8 4 6 8

5 2 4 6 7 3 4 5 2 8 4

Table 9 Risk of MOSTP-1 Destinations → 1 2 3

Origin ↓/Conveyances→ 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 1 9 7 8 2 6 9 8 3 6 2 3 6 4 9

2 3 2 9 5 3 5 7 5 8 6 5 7 2 6 5

3 4 3 5 1 2 4 8 5 12 3 6 9 5 4 3

4 11 4 6 9 3 5 3 6 9 1 6 3 6 2 6

5 2 9 7 12 8 4 4 5 2 9 7 4 3 2 5

Destinations → 4 5

Origin ↓/Conveyances→ 1 2 3 4 5 1 2 3 4 5

1 7 3 2 11 7 2 9 8 9 3

2 8 9 6 1 4 9 5 3 4 8

3 1 5 4 3 2 9 1 2 6 8

4 2 3 3 1 6 6 1 5 9 8

5 9 6 11 1 4 9 6 8 5 5
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Table 10 Encoded chromosome
for MOSTP-1

Destinations → 1 2 3

Origin ↓/Conveyances→ 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 0 0 0 0 1 0 0 0 4 2 0 0 0 0 0

2 0 0 7 0 2 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 3 0 0 0 5 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

Destinations → 4 5

Origin ↓/Conveyances→ 1 2 3 4 5 1 2 3 4 5

1 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0

4 0 3 0 3 0 0 0 0 0 0

5 0 0 0 0 2 8 0 0 2 0

Table 11 Sub-matrix
corresponding to encoded
chromosome 10

3 0 0

0 2 8

Table 12 Sub-matrix after
re-initialization 1 1 1

2 1 7

The PIS and NIS for the considered example are provided
in Table 14.

Hybrid GA We have shown the results of hybrid GA for
MOSTP-1 in Table 16 by taking different estimations of the
ALs for each combination of the Sp shown in Table 15.
The ESs of objective values at different combinations of SP
andALare shown inTable 15 inFig. 1. Thedegree of satisfac-

Table 14 Positive and negative ideal solution

objective functions Z1 Z2 Z3 Z4

PIS 76 68.5 60 65

NIS 565 388 554 438.5

Table 15 Cases taken by DM for MOSTP-1

Cases Shape parameter Aspiration level

1 (−5,−10,−15,−20) (.80,.95,.70,.85)

2 (−10,−15,−20,−5) (.78,.85,.75,.89)

3 (−15,−20,−5,−10) (.74,.83,.80,.90)

4 (−20,−5,−10,−15) (.70,80,.85,.80)

Table 13 Mutated chromosome
for MOSTP-1

Destinations → 1 2 3
Origin ↓/Conveyances→ 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 0 0 0 0 1 0 0 0 4 2 0 0 0 0 0

2 0 0 7 0 2 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 3 0 0 0 5 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

Origin ↓/Conveyances→ 4 5
Origin ↓/Conveyances→ 1 2 3 4 5 1 2 3 4 5

1 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0

4 0 1 0 3 1 1 0 0 0 0

5 0 2 0 0 1 7 0 0 2 0
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Fig. 1 Efficient solution of MOSTP-1 at different combination of SP and AL

Fig. 2 Degree of satisfaction of MOSTP-1
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Fig. 3 Convergence curve of GA for MOSTP-1

Fig. 4 Pareto-optimal set by NSGA II

Table 16 Summary results for MOSTP-1

Case Product Degree of
satisfaction

Membership func-
tion value

Objective value

1 0.9981 0.9982 (.9982,.9999,1,1) (116,141,116,159)

2 0.9998 0.9998 (.9998,.9999,1,1) (178,201,147,103)

3 0.9992 0.9992 (1,1,.9992,1) (210,170,109,206)

4 0.9947 0.9953 (1,.9953,.9994,1) (195,130,221,178)

tion for various combinations of SP andAL given in Table 15
is shown in Fig. 2. The variation in SP values affects each
objective, as shown in Fig. 2.

The hybrid GA convergence curve for MOSTP-1 is
depicted in Fig. 3 for case 1 of Table 15. The convergence
curve remains the same for all additional occurrences of
Table 15.

Parameter settings To make a fair comparison between
NSGA II and NSGA III, simulations have been done on the

Table 17 Parameters for Taguchi orthogonal array for MOSTP-1

Popsi ze No of iterations Division nc nm

50 25 4 0.4 0.03

80 50 5 0.6 0.06

120 80 6 0.7 0.2

Table 18 Results obtained from NSGA II

NSGA II
Z1 Z2 Z3 Z4

118 242 177 272

150 227 176 285

154.8902 240.3904 160.5608 203.939

155.1098 239.6096 161.4392 204.061

157.573 246.5125 146.5082 213.9384

158.1228 256.2403 138.6815 194.324

158.8944 240.8112 150.0636 218.3215

223 209 210 164

239 281 225 153

same value of Parameter used in algorithms using Taguchi
Orthogonal Array (Karna and Sahai 2012). Parameters
which are utilized in employing Taguchi Orthogonal Array
are given in Table 17. However, the parameters which proves
best in terms of run time and performance measure are given
in the comparison table.

Results of NSGA II and NSGA III Simulation has been
doneby18 times, and each timeperformancemeasure param-
eter coverage is calculated. Tables 18 and 19 show the results
obtained at 120 population size, 80 iterations, 0.6 crossover
rate, and 0.03 mutation rate with the best coverage value
(Fig. 4).

NSGA II gives a Pareto-optimal set containing 6 solutions
which are listed in Table 18.

NSGA III
From simulations, it is observed that NSGA III gives more
number of Pareto-optimal solution then NSGA II. Tables 18
and 19 show that some of the solutions obtained by NSGA
II are dominated by NSGA III’s solutions.

Figure 6 shows variation in population size and iteration
affect the objective values. The compromise solution of the
problem by FPT under the linear membership function is
given in Table 20.

From Fig. 5, it is clear that we obtained multiple solutions
with varying degrees of objective values.

5.1.1 Discussion for MOSTP-1

The run time of FPT for MOSTP-1 is less compared to
other adopted evolutionary algorithms ( Table 21) but it pro-
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Table 19 Pareto-set obtained from NSGA III

NSGA III
Z1 Z2 Z3 Z4

212.9291 183.1461 186.0058 151.8577

214.276 187.8865 189.2946 149.9126

211.7431 185.9753 187.7999 151.4812

209.1259 178.2122 185.5112 155.4322

212.9903 187.7096 189.7683 150.3659

216.2047 187.9905 189.4505 149.4268

216.7171 186.6469 187.5835 150.3843

211.1662 184.1375 187.6906 152.3767

209.215 186.7883 188.7575 151.7955

Fig. 5 Pareto-front by NSGA III

Fig. 6 Variation in objective value with respect to population size

Fig. 7 Convergence rate for MOSTP-2

vides a single solution in the single run by converting the
multi-objective problem into a single objective. On the other
hand, Table 15 shows the four particular cases taken by DM,
and Table 16 represents the obtained optimally compromised
solutions by hybrid GA. DM, according to their convenience
to reflect their aspiration level, may choose any solution
(Fig. 7). On the other hand, NSGA II on different combi-
nations of parameters (made by Taguchi orthogonal array)
provides a number of Pareto-optimal solutions; all of them
are non-dominated by FPT. Furthermore, all solutions from
the Pareto-optimal set are equally important as well as all
are non-dominated. So, DM may choose any solution from
the Pareto-optimal set compatible with his criteria. On the
other hand, some of the solutions from the Pareto-optimal
set of NSGA III clearly dominate the NSGA II’s solutions.
NSGA III gives more options to DM to choose a solution
representing his aspiration level. A table containing compar-
ative results is shown in Table 21. Moreover, Table 21 shows
the run time for each algorithm from which it can be con-
cluded that NSGA III provides multiple alternatives to DM
in comparatively less time by treating numerous objectives
simultaneously.

5.2 Multi-objective solid transportation problem-2

In a company, there are five construction machines N1, N2,

N3, N4, and N5, which can produce 10, 7, 17, 4, and 11
units of a commodity, respectively. These quantities were
transported to four required destinations D1, D2, D3 and
D4 with demands 20, 9, 6, 14 utilizing four different con-
veyances with capacity 13, 5, 16, and 15 units, respectively.

Table 20 Solution of MOSTP-1
by fuzzy programming
technique

Objective functions Z1 Z2 Z3 Z4

Optimal compromise solution 254.6731 129.0394 212.6324 163.4137
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Table 21 Comparison table describes developed technique for MOSTP-1

Method Parameter Solution Runtime

FPT (254.6731, 129.0394, 212.6324, 163.4137) 0.12 seconds

HGA SP-(−5, −10, −15, −20) AL-(.80, .95, .70, .85) (116, 141, 116, 159) 17 seconds

NSGA-II Ps = 120, iterations = 80 , Pc = 0.6, Pm = 0.03 (118, 242, 177, 272)

(150, 227, 176, 285)

(154.8902061, 240.3903782, 160.5608245, 203.9390034) 28 seconds

(158.1228493, 256.240296, 138.6815013, 194.3240439)

(239, 281, 225, 153)

(223, 209, 210, 164)

NSGA-III Ps = 120, iterations = 80, dn =6, Pc =0.6, Pm = 0.03 (212.9290554, 183.1461385, 186.0058352, 151.8576746)

(214.2760234, 187.8864514, 189.294598, 149.9125609)

(211.7430969, 185.9752689, 187.7998692, 151.4812201)

(209.1259012, 178.2122097, 185.5112195, 155.4322214) 20 seconds

(212.9903015, 187.709627, 189.7682912, 150.3659035)

(216.204666, 187.9905044, 189.4504529, 149.4268101)

(216.7170599, 186.6469254, 187.5835463, 150.3843242)

(211.1661629, 184.1375345, 187.6905804, 152.3766549)

Table 22 Transportation cost
for MOSTP-2

Destination 1 2 3 4

Origin ↓ / Conveyances→ 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 10 8 20 2 1 6 7 9 2 3 6 1 2 3 6 2

2 1 12 11 4 5 7 5 3 11 2 2 8 5 4 3 3

3 4 9 21 9 5 1 2 8 1 4 6 5 8 6 5 7

4 2 5 2 8 9 6 9 7 8 2 3 7 2 7 6 9

5 9 5 2 5 9 1 5 9 5 4 16 11 2 4 3 5

Table 23 Product deterioration
for MOSTP-2

Destination 1 2 3 4

Origin ↓ / Conveyances→ 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 6 8 2 7 6 4 8 2 5 9 7 3 6 3 8 2

2 3 1 8 8 6 9 5 2 8 1 9 4 4 9 5 11

3 2 7 3 5 7 6 2 5 9 7 3 11 2 2 9 7

4 2 11 6 8 1 9 4 6 12 2 5 9 9 6 5 15

5 9 3 9 4 2 8 11 1 2 8 9 6 5 9 12 4

Transportation cost, product deterioration, weight, distance,
and risk of that are given in Tables 22, 23, 24, 25, and 26,
respectively:

The considered problem MOSTP-2 can be modeled as
follows:

min Zq(x) =
5∑

r=1

4∑

s=1

4∑

k=1

f qrst xrst , q = 1(1)5,

4∑

s=1

4∑

t=1

x1st = 10,
4∑

s=1

4∑

t=1

x2st = 7,
4∑

s=1

4∑

t=1

x3st = 17,

4∑

s=1

4∑

t=1

x4st = 4,
4∑

s=1

4∑

t=1

x5st = 11,
5∑

r=1

4∑

t=1

xr1t = 20,

5∑

r=1

4∑

t=1

xr2t = 9,
5∑

r=1

4∑

t=1

xr3t = 6,
5∑

r=1

4∑

t=1

xr4t = 14,

5∑

r=1

4∑

s=1

xrs1 = 13,
5∑

r=1

4∑

s=1

xrs2 = 5,
5∑

r=1

4∑

s=1

xrs3 = 16,

5∑

r=1

4∑

s=1

xrs4 = 15,
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Table 24 Weight of the product
for MOSTP-2

Destination 1 2 3 4

Origin ↓ / Conveyances→ 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 5 2 3 6 1 5 1 6 11 4 21 2 17 18 10 3

2 11 8 8 8 7 20 11 1 15 5 6 8 5 14 1 4

3 6 5 9 3 6 2 9 4 2 3 8 5 15 10 4 1

4 3 12 5 5 4 9 4 2 5 16 6 11 16 18 19 13

5 8 3 6 4 9 5 3 1 3 5 7 1 12 10 5 6

Table 25 Distance for
MOSTP-2

Destination 1 2 3 4

Origin ↓ / Conveyances→ 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 11 3 5 15 18 18 5 13 1 12 7 6 19 4 2 18

2 10 14 12 2 16 18 3 12 2 9 15 8 3 15 12 12

3 20 13 10 18 11 6 7 2 18 19 4 2 15 3 15 1

4 11 9 19 11 4 8 9 19 5 4 11 17 1 5 6 14

5 15 6 20 9 9 10 14 10 16 17 3 3 13 2 6 1

Table 26 Risk involved in
MOSTP-2

Destination 1 2 3 4

Origin ↓ / Conveyances→ 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 14 3 3 10 16 19 16 15 12 20 4 8 14 6 7 12

2 7 12 11 3 14 18 3 20 4 7 6 13 10 11 16 6

3 5 13 8 3 4 10 15 18 14 4 2 20 5 14 17 7

4 2 19 16 2 9 2 13 14 2 9 13 3 14 20 10 16

5 7 15 6 16 2 11 15 12 3 4 4 14 3 19 5 15

xrst ≥ 0, r = 1(1)5, s = 1(1)4, t = 1(1)4.

Chromosome encoding
Encoded chromosome shown in Table 27.

Mutation Let the above-encoded chromosome be selected
as the parent solution for mutation (Table 27). Then, ran-
domly choose two rows {3, 5} and two columns {6, 10} of
the selected matrix (Table 28), then corresponding subma-
trix Y is

Supply at origins of Y is 4, 2, and demands are 5, 2. After
re-initializationY , thematrixmay convert inmatrix as shown
in Table 29

Table 28 Sub-matrix Y
corresponding to encoded
chromosome 27

4 0

1 1

Table 29 Matrix Y after
re-initialization 3 1

2 0

So, finally, the child offspring after mutation operator cor-
responding to parent matrix 27 is shown in Table 30:

Table 27 Encoded chromosome
for MOSTP-2

Destination 1 2 3 4

Origin ↓ / Conveyances→ 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 0 0 8 0 0 0 0 0 0 0 0 0 2 0 0 0 10

2 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7

3 0 0 0 0 0 0 0 4 0 5 0 0 0 0 8 0 17

4 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 4

5 0 0 0 5 0 0 0 1 0 0 0 1 0 0 0 4 11

20 9 6 14
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Table 30 Child offspring for
MOSTP-2

Destination 1 2 3 4
Origin ↓ / Conveyances→ 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 0 0 8 0 0 0 0 0 0 0 0 0 2 0 0 0 10

2 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7

3 0 0 0 0 0 0 0 3 0 5 0 1 0 0 8 0 17

4 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 4

5 0 0 0 5 0 0 0 2 0 0 0 0 0 0 0 4 11

20 9 6 14

Table 31 Compromise solution
obtained from fuzzy
programming technique

Objectives Z1 Z2 Z3 Z4 Z5

Optimal compromise solution 276.1947 255.8996 241.2663 454.3892 361.1782

Table 32 Positive and negative ideal solution for MOSTP-2

Objectives Z1 Z2 Z3 Z4 Z5

NIS 636 463 609 855 814

PIS 94 99.5 99 189.5 152

Table 33 Different cases taken by DM for MOSTP-2

Cases Shape parameter Aspiration level

1 (−10,−15,−10,−10,−5) (.93,.90,.93,.95,.90)

2 (−5,−10,−15,−15,−15) (.80,.85,.95,.90,.90)

3 (−15,−5,−5,−5,−20) (.85,.80,.93,.92.,87)

Results obtained from fuzzy programming technique using
linear membership function and PIS and NIS for MOSTP-2
are given in 31 and 32, respectively:
Different shape parameters corresponding to different ALs
for MOSTP-2 are considered in Table 33, and the result is
obtained as shown in Table 34. Figure 6 shows the ESs of
objectives at different combination of SP and AL given in
Table 33. The degree of satisfaction and the resulting ALs
are depicted in Fig. 8. It also implies that changes in SP
values influence all objectives.
Figure 9 represents the convergence rate for the MOSTP-2.
This graph is drawn among population size, iterations, and
the values of max W = ∏5

q=1 Zq . The hybrid GA started
converging after 50 population sizes and 5 iteration for case
1 given in Table 33.

Table 35 Parameters for Taguchi Orthogonal Array for MOSTP-2

Popsi ze No of iterations Division nc nm

80 30 4 0.4 0.03

100 50 5 0.6 0.06

150 80 6 0.7 0.2

Parameter setting Table 35 shows the values of parameter of
NSGA II and NSGA III which are used in making Taguchi
Orthogonal Array to decide the parameters for the simula-
tion of MOSTP-2 by NSGA II and NSGA III. However, the
parameters which prove best in terms of run time and perfor-
mance measure are given in comparison Table 38 NSGA II
and NSGA III gives Pareto-optimal set. Some of the points
from this set are listed in Tables 36 and 37, respectively.

It is apparent from Table 38 that some of the solution
obtained by NSGA III dominates the solutions obtained by
NSGA II. The figure also represents the varying degree of
objective values.

Figure 10 indicates that the variation in the number of
divisions affects the objective values.

5.2.1 Discussion for MOSTP-2

Table 33 shows different cases considered by DM, and
the obtained optimally compromised solutions are shown
in Table 34. Solution (197, 256, 278, 311, 223) obtained
corresponding to the considered case-1 is better in four objec-

Table 34 Summary result for MOSTP-2

Case Product Degree of satisfaction Membership function value Objective value

1 0.993 0.9952 (.9997, .9998, .9985, .9998, .9952) (197, 256, 278, 311, 223)

2 0.9949 0.9973 (.9993, .9985, .9973, .9998, .9998) (105, 227, 408, 474, 388)

3 0.9639 0.9862 (.9995, .9891, .9885, .9862, 1) (359, 169, 200, 337, 379)
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Fig. 8 Efficient solution of MOSTP-2 at different combinations of SP and AL

Fig. 9 Degree of satisfaction of goal for MOSTP-2
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Table 36 Pareto-optimal
solution of NSGA II for
MOSTP-2

NSGA II
Z1 Z2 Z3 Z4 Z5

399 281 394 464 308

359 239 262 465 371

413 167 225 470 402

227 221 342 471 358

372 230 434 545 232

250 212 437 542 329

270 250 341 384 318

Table 37 Result of NSGA III for MOSTP-2

NSGA III
Z1 Z2 Z3 Z4 Z5

248.2543 220.9844 233.1556 413.6322 352.9539

248.2323 218.2334 238.2148 417.862 347.3912

249.1861 217.0001 239.1602 418.0123 348.5754

243.1485 221.4001 238.786 420.407 347.6837

232.4459 224.624 237.3856 431.1607 338.9921

245.6324 219.9033 238.2953 422.1329 343.7029

248.3052 218.463 238.0203 415.3688 346.1694

Fig. 10 Effect of number of division on objective values

tives from the fuzzy programming technique’s result. From
Table 36, we can conclude that most of the points from the
Pareto-optimal set obtained by NSGA II (Fig. 11) are bet-
ter in three or four objectives from the solution obtained by
fuzzy programming technique and hybrid GA. Furthermore,
the result obtained by NSGA III contains a Pareto-optimal
solution shown in Table 37 which is better in most of the
solutions(Fig. 12) in 3 objectives from NSGA II, and some
of the solutions dominate NSGA II (Fig. 13).

Fig. 11 Pareto-optimal set obtained from NSGA II

Fig. 12 Pareto-front by NSGA III

Fig. 13 Variation in objective values with population size and iteration

Although genetic algorithms and their derivative algorithms
have been utilized to tackle a variety of engineering issues, no
work has been done on STP with more than three objectives
so far. In addition, traditional methods are used on MOSTP,
even though they all produce a single solution in a simula-
tion run. NSGA III, on the other hand, when equipped with a
stochasticmatrix-based population, can provide several solu-
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tions in a single simulation run. Moreover, Table 38 shows
that NSGA III is also a better approach in terms of time as
it takes less time to provide multiple solutions because of its
inherent property of optimizing several objectives simulta-
neously.

6 Experimental validation and statistical
analysis

To check the claim that NSGA III covers a wide range
of optimal solutions from the Pareto-optimal set, eighteen
times simulations have been conducted with the help of the
Taguchi Orthogonal Array. Also, Z- test is applied with the
null hypothesis that there is no significant difference between
the number of solutions provided by NSGA II and NSGA III,
while the alternative hypothesis is considered as NSGA III
provides more optimal solutions. At the 5% level of signifi-
cance, null hypothesis is rejected, which proves our claim.
The performance of NSGA III is evaluated based on the per-
formance metric “coverage.” Coverage is defined as

Cov(A, B) = | {b ∈ B|∃a ∈ A : a ≺= b} |
|B|

Cov (NSGA II, NSGA III) comes out to 0.25385 while
Cov(NSGA III, NSGA II) comes out to 0 for MOSTP-1 and
Cov(NSGA II, NSGA III) and Cov(NSGA III, NSGA II)
come out 0.4537 and 0.012 for MOSTP-2. The values of
coverage imply that NSGA III dominates NSGA II more
efficiently.

7 Conclusion

Multi-objective solid transportation problem is a common
problem faced by enterprises. This study focuses on pro-
viding multiple transportation schemes to MOSTP. In this
regard, twoproblems of different sizes and a different number
of objectives are considered, and a stochastic matrix-based
initial population generation technique is provided in view to
applying variants of GA. Moreover, provided chromosome
generation technique is able to generate chromosomes for
MOSTP having even greater than three objectives keeping
the computational complexity of NSGA III at MN 2. NSGA
II and NSGA III provide multiple solutions in a single simu-
lation run, but the time taken by NSGA III is less than NSGA
II, and also, NSGA III provides more number of solutions in
the Pareto set than NSGA II. On the other hand, hybrid GA
provides an alternate solution, but there is a need to set shape
parameters and aspiration levels for each run. FPT, being a
classical approach, provides a single solution. Moreover, the
solutions obtained by variants of GA are non-dominated by

each other and from FPT. Thus, our study shows that vari-
ants of GA are a better approach to dealing with MOSTP.
Especially, NSGA III proves to be a better candidate from the
class of variants of GA to deal withMOSTP in less time. But,
the NSGA III equipped with the proposed initial population
generation technique is problem specific, i.e., to apply on dif-
ferent variants of STP or on different optimization problems
like traveling salesman problem, vehicle routing problem,
VLSI, or chip design needed some modification. Despite all
these limitations, this approach can be modified to deal with
STP in a different environment like fuzzy, stochastic, uncer-
tain, etc.
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