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Abstract

Data mining is a thoroughly advanced method that evaluates and makes more sense of a variety in electronic commerce
(e-commerce)-related knowledge, discovering useful ideas, predicting user actions, and assisting enterprises selection in
modifying competitive strategy, minimizing cost, and attaining the finest results. Data mining has already become more
popular in recent years. In this research paper, we propose a multi-attribute group decision-making (MAGDM) method under
T -spherical fuzzy environment for selecting an optimal data mining strategy which is an important part of modern decision-
making research. The information aggregation operators play an important role in solving MAGDM problems. Some point
aggregation operators based on the 2-tuple linguistic 7 -spherical fuzzy numbers, including 2-tuple linguistic 7 -spherical fuzzy
point weighted averaging (2TLT-SFPWA) operator, 2-tuple linguistic T-spherical fuzzy point weighted geometric (2TLT -
SFPWG) operator, 2-tuple linguistic 7'-spherical fuzzy generalized point weighted averaging (2TLT -SFGPWA) operator and
2-tuple linguistic T'-spherical fuzzy generalized point weighted geometric (2TLT-SFGPWG) operator, are proposed which
competently capture all the aspects of human opinions expressible in terms of yes, no, cessation and denial with no limitation.
The proposed aggregation operators are valid and have some basic properties which are keenly analyzed. Furthermore, the
complex proportional assessment (COPRAS) method is developed on the basis of 2-tuple linguistic 7 -spherical fuzzy point
aggregation operators. Finally, a numerical example is illustrated for demonstrating the effectiveness of the proposed work
along with comparative analysis which verifies the reliability and efficacy of its outcomes. In the end, we conclude some
results from the numerical analysis, i.e., to balance the long-term development of e-commerce, data mining can mine massive
amounts of data which boosts the growth of e-commerce in future.

Keywords 2-Tuple linguistic 7-spherical fuzzy set - MAGDM - Point weighted averaging operator - Point weighted
geometric operator - COPRAS method
1 Introduction

Multiple attribute decision-making (MADM) is the tech-
nique for selecting the optimal alternative from a finite
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of MAGDM. Thus, Zadeh (1965) introduced the concept of
fuzzy set (FS) to deal with real-life problems involving vari-
ability or inaccuracy. Atanassov (1986) extended the idea
of FS and proposed the intuitionistic fuzzy set (IFS) which
consists of membership degree (MD) and non-membership
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degree (NMD) to describe the unreliability of an event with a
condition that the sum of the MD and NMD should not exceed
1. Yager (2014) strengthened this concept by introducing
the notion of Pythagorean fuzzy set (PyFS) in which the
range for assigning values to MD and NMD was increased.
Yager (2016) also proposed a generalized orthopair FS com-
monly known as ¢-ROFS. Wang et al. (2019b) developed
some aggregation operators for fusing ¢-ROF information.
They extended the Muirhead mean to g-ROF environment
and proposed a family of g-ROF Muirhead mean operators.
Darko and Liang (2020) proposed some g-ROF Hamacher
aggregation operators, i.e., the ¢g-ROF Hamacher average
operator, the weighted ¢g-ROF Hamacher average operator,
the ¢g-ROF Hamacher Maclaurin symmetric mean operator
and the weighted g-ROF Hamacher Maclaurin symmetric
mean operator along with their special properties. Xing et al.
(2019) developed a novel category of point weighted aggre-
gation operators to aggregate ¢g-ROF information. These
recommended operators can divide g-ROFN membership
and non-membership based on different criteria.

Somehow, the pairs of IFS, PyFS and ¢g-ROFS deal with
inaccuracy that occurs in real life but these duplets discuss
only two dimensions of human opinion, i.e., like and dislike,
although a human opinion also involves certain extent of
abstinence and rejection. Cuong and Kreinovich (2014) sug-
gested that the pair, representing an IFS or its generalized
form, represents the human opinion only in terms of MD
and NMD, where the abstinence degree (AD) and the refusal
degree (RD) are kind of ignored, leading to the loss of knowl-
edge. For thisreason, they proposed the idea of a picture fuzzy
set (PFS) in the form of triplets using MD, AD and NMD
with a limitation that their sum is not greater than 1. Kahra-
man and Giindogdu (2018) originally presented the idea of
spherical fuzzy sets (SFSs). In 2019, FK. Giindogdu and C.
Kahraman, (2019) developed a MAGDM technique, namely
spherical fuzzy TOPSIS (SF-TOPSIS) method, to tackle the
complex decision-making problems. Later, Kahraman et al.
(2019) applied the SF-TOPSIS to choose the most appro-
priate site for a hospital. Mahmood et al. (2019) presented
the T'-spherical fuzzy set (T-SFS) with the basic operations
and aggregation operators which increased the range for
assigning MD, Ashraf and Abdullah (2019); Ashraf et al.
(2020) put forward the decision-making strategies based on
spherical fuzzy aggregation operators. Akram et al. (2020b)
developed novel spherical fuzzy prioritized weighted aggre-
gation operators to solve MAGDM problems. Ullah et al.
(2020) introduced Hamacher aggregation operators based on
T -spherical fuzzy numbers and discussed their basic prop-
erties. They proposed the idea of 7'-SF Hamacher-weighted
averaging and 7'-SF Hamacher-weighted geometric aggrega-
tion operators to incorporate four aspects of human opinion
including yes, no, abstinence and refusal with no limitations.
Ashraf et al. (2019) introduced spherical fuzzy t-norms and

@ Springer

t-conorms, developed spherical fuzzy negator and some clas-
sifications of spherical fuzzy t-norms and spherical fuzzy
t-conorms to aggregate the SF information, and examined
the spaces of spherical fuzzy membership grades and pic-
ture fuzzy membership grades graphically. Zeng et al. (2020)
proposed new operational laws with 7-SF information for
Einstein geometric interaction operators and Einstein aver-
aging interactive aggregation operators. Some fundamental
characteristics and benefits of proposed aggregation oper-
ators are also discussed. Liu et al. (2020) proposed the
linguistic T-SFNss, the linguistic T -spherical fuzzy weighted
averaging operator, and extended multi-attributive border
approximation area comparison method in the linguistic
spherical fuzzy environment. Further, Akram et al. (2020a,
2021a,b,c), Akram et al. (2021), Naz et al. (2022a,b,c),
Liu et al. (2022) and Zahid et al. (2022) introduced several
decision-making methods under generalized fuzzy scenario.

Processing manner of 2-tuple linguistic information can
effectively avoid the distortion and loss of information.
Herrera and Martinez (2000a) proposed the representation
model of fuzzy 2-tuple linguistic term to handle linguistic
decision-making problems. In last few decades, various 2-
tuple linguistic aggregation operators and decision methods
have been proposed to combine the individual preference
information into a collective one, such as the generalized
2-tuple linguistic Pythagorean fuzzy Heronian mean opera-
tor, 2-tuple linguistic Pythagorean fuzzy geometric Heronian
mean operator and its weighted form (Deng et al. 2019).
Ju et al. (2020) developed the g-ROF 2-tuple linguistic
weighted averaging operator and the g-ROF 2-tuple linguis-
tic weighted geometric operator. Furthermore, they proposed
the ¢-ROF 2-tuple linguistic Muirhead mean operator and
the ¢-ROF 2-tuple linguistic dual Muirhead mean operator
on the basis of Muirhead mean operator and dual Muirhead
mean operator. Wang et al. (2019a) proposed a concept of
interval-valued g-ROF 2-tuple linguistic sets and discussed
its properties. They developed some weighted averaging and
geometric aggregation operators for

interval-valued ¢-ROF 2-tuple linguistic sets and charac-
terized their desirable properties. On the basis of
Archimedean t-norm and t-conorm, Mo and Huang (2020)
developed the dual hesitant fuzzy geometric Heronian mean
operator and dual hesitant fuzzy geometric weighted Hero-
nian mean operator. Some properties and special cases are
also discussed. Rong et al. (2020a) introduced the complex
q-ROF 2-tuple linguistic Maclaurin symmetric mean opera-
tor, and the complex ¢g-ROF 2-tuple linguistic dual Maclaurin
symmetric mean operator along with several attractive char-
acteristics of the developed operators. Rong et al. (2020b)
proposed the hesitant fuzzy linguistic Hamy mean operator,
hesitant fuzzy linguistic dual Hamy mean operator, and its
weighted form along with their properties. Even though the
MADM methods provide numerically significant and consis-
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tent rankings in a particular situation, the optimal solution can
be presented in a different manner. The decision-makers’ task
of determining the optimal conclusion in a scenario might be
complicated by the random selection of the most favorable
alternative. Based on the outcome, it is highly challenging to
determine the capacity or capability strengths of more than
100 MADM approaches. This issue is still regarded as a rid-
dle due to the lack of accepted standards in the literature for
analyzing MADM approaches under uncertainty.

The COPRAS method, developed by Zavadskas et al.
(1994), is the most valuable and suitable method to solve
complex MAGDM problems. Based on the benefit and cost
criteria, it gives information accurately on comparing with
other existing approaches. The most crucial advantage of
COPRAS method is that it portrays the ratio to the worst
and the best results simultaneously. In this regard, COPRAS
method was extended under several models of FS theory. To
evaluate the pulmonary disease, Zheng et al. (2018) devel-
oped the hesitant fuzzy linguistic COPRAS approach. Mishra
etal. (2019) introduced extended COPRAS approach to eval-
uate the multiple criteria decision-making problems based
on hesitant FSs. Buyukozkan and Gocer (2019) presented an
integrated model associated with AHP-COPRAS to evaluate
the digital supply chain partner selection within Pythagorean
fuzzy environment. Dorfeshan and Mousavi (2019) devel-
oped a new integrated TOPSIS-COPRAS method to deter-
mine the critical path of projects. Over the past few decades,
considerable research has been done on information aggrega-
tion. The aggregation operator is a method that can combine a
specified number of inputs into a single output. Yager (1988)
developed a class of generalized ordered weighted average
aggregation operators based on the ordered weighted average
operator. Xu and Yager (2006) also developed some geo-
metric aggregation operators. It must be noted that these
aggregation operators are based on original information,
therefore the uncertainty of the aggregated arguments cannot
be minimized. However, in some situations, it is essential to
reduce information ambiguity.

The motivations of this article are as follows:

(1) The T-SFS has been proved to be an efficient tool in
expressing DMs evaluation values in MAGDM proce-
dure. However, the existing theories about 7 -SFS fail to
depict uncertain information through the 2-tuple linguis-
tic representation model. The 2-tuple linguistic model
has stronger capability to describe linguistic informa-
tion and it also can avoid information distortion loss in
dealing with linguistic decision issues. The 2TLT-SFSs
are more powerful than 2TLIFSs, 2TLPyFSs, and 2TLg-
ROFs. It is more efficient to use 2TLT -SFSs to express
evaluation values of the DMs in the MAGDM process.

(2) Some effective information processing and evaluation
methods need to be developed in order to aggregate

the information. So in this article, we give point aggre-
gation operators for 2TLT-SFS, which can reduce the
degree of uncertainty of the information, and pro-
pose 2TLT-SFPWA operator, 2TLT -SFPWG operator,
2TLT-SFGPWA operator and 2TL7T-SFGPWG opera-
tor, as effective tools to aggregate the 2TLT-SFNs. The
point weighted aggregation operator is more appropriate
in considering the redistribution between the different
number of attributes by the variable vector and in reduc-
ing the impact of the inappropriate evaluation values by
measuring the degree of hesitance between any two indi-
viduals.

(3) In some recent publications, COPRAS method has
received much attention from researchers but there is
currently no progress in extending COPRAS to the
2TLT-SF domain. So, we develop a novel 2TLT -SF-
COPRAS method by extending the COPRAS method
into 2TLT-SEN.

In considering the aforementioned justifications and argu-
ments, the novelty of this article is demonstrated in the
following three ways:

(1) To aggregate 2TLT-SFNs, we develop four new aggre-
gation operators based on point operations, such as
2TLT-SFPWA operator, 2TLT-SFPWG operator,
2TLT-SFGPWA operator and 2TLT-SFGPWG opera-
tor. Desirable properties of proposed operators are also
examined.

(2) We design a novel 2TLT-SF-COPRAS method based
on the 2TLT-SFPWA and 2TLT-SFPWG operators.
Specifically, we utilize the 2TLT-SFPWA operator and
2TLT-SFPWG operator to fuse the evaluation prefer-
ences of the DMs. Then, with the integration of the
2TLT-SFPWA operator (2TLT-SFPWG operator) and
the 2TLT -SF-COPRAS method, we appraise the alter-
natives.

(3) Finally, we test the applicability of our proposed 2TLT -
SF-COPRAS method by solving a problem to select the
best data mining task.

In order to accomplish this, we organize the rest of our
paper as follows. In Sect. 2, we review fundamental concepts
associated with T -spherical fuzzy set (T-SFS), 2-tuple lin-
guistic terms and 2TLT'-SFS. In Sect. 3, depending on point
operators on 2TLT -SFNs, we develop 2TLT-SFPWA oper-
ator, 2TLT-SFPWG operator, 2TLT -SFGPWA operator and
2TLT-SFGPWG operator and also discuss their properties.
In Sect.4, we give a novel technique of COPRAS method
for solving MAGDM with 2TLT -SF information. In Sect. 5,
a practical illustration for selecting the optimal user through
data mining tasks is addressed and comparative analysis by
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comparing numerical results with the existing methodologies
is demonstrated. Finally, Sect. 6 summarizes the paper.

2 Preliminaries

In this section, some correlative basic concepts of T-SFS,
2-tuple linguistic terms and 2TLT -SFS are recapped to facil-
itate the next sections.

Mahmood et al. (2019) defined the T-spherical fuzzy set
as an extension of g-ROFS and SFS as follows:

Definition 1 (Mahmood et al. 2019) For any universal set L,
a T-SFS is of the form

T ={({, ar(),br (), cr)|l € L}, ey

where ar, br, ¢ : L — [0, 1] represent the MD, abstinence
degree (AD) and NMD, respectively, with the condition 0 <
a.() + 6%.(1) + ¢L.(1) < 1 for positive number ¢ > 1, and
r(l) = {1/1 — (ad.() + 6% () + ¢L.(1)) isknown as the degree
of refusal of / in 7. To express information conveniently, the

triplet (a, b, ¢) is known as a T-spherical fuzzy number (7 -
SEN).

Definition 2 (Herrera and Martinez 2000b) Let S = {s;]i =
0, ..., k} be a linguistic term set and g € [0, k] is a num-
ber value representing the aggregation result of linguistic
symbolic. Then, the function A used to obtain the 2-tuple
linguistic information equivalent to § is defined as

A:[0,k] = S x[-0.5,0.5),

s;i, I = round(B)
A = 2
b a=p8—1i, xa €[-0.5,0.5), &

where round(.) is the usual round operation, s; has the closest
index label to 8, and « is the value of the symbolic translation.

Definition 3 (Herrera and Martinez 2000b) Let S = {s;|i =
0,...,k} be a linguistic term set and (s;, &) be a 2-tuple
linguistic information, then there exists an inverse function
A~! that restores the 2-tuple linguistic information to its
equivalent numerical value 8 € [0, k], where

A7l S x [-0.5,0.5) — [0, ],
A_l(s,-,oc)zi—l—a:ﬂ. 3)

Inspired by the ideas of 2-tuple linguistic term and 7 -
SFS, Akram et al. (2022) developed the new concept of
2TLT-SFS. The mathematical representation of 2TLT -SFS
is described as follows:

Definition 4 (Akram et al. 2022) Let L be a universal set. A
2TLT-SFS ¥ in L is defined as
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T={{l, ((sa(D), s D). (sp D), YD), (scD), D)) [ 1€ L}, (4)

where (s4(1), (1)), (sp(1), ¥ (1)), and (sc(1), (1)) represent
the MD, abstinence degree, and NMD, respectively, with
the conditions s, (1), sp(l),s.(1) € %, ¢, ¥ (D), pl) €
[-0.5,0.5), 0 < A (s,(), (1)) < k, 0 < A (s (D),
v() < k 0 < A'se(D), (1)) < k and 0 <
(A sa (D, N 4+ (A7 s (D, v (D) + (A se D),
¢(1)))? < k4.Forconvenience,wesay y = ((s4, §), (sp, V),
(S¢, ¢)), a 2TLT-SFN, where 0 < A‘l(s,l,g) < k,
0 < A Nsp¥) < k0 < A M(sc.,9) < kand 0 <
(A (sa, ) 4 (A7 (s, YN + (A (se, 9))7 < k9.

In order to compare any two 2TLT-SFENs, their score and
accuracy functions are defined as follows:

Definition 5 (Akram et al. 2022) Let y = ((s4, <), (sp, V),
(s¢, ¢)) be a 2TLT-SFN. Then, the score function S of a
2TLT-SEN y can be represented as

Siy)=A {% (1 + (%)q B <A_I§fc'(p)>q)} ’
S(r) € [0.k], )
and its accuracy function H is defined as

= Ak ((A74m2)" 4 (A7) )]

H(y) €10, k]. (6)

Definition 6 (Akram et al. 2022) Let y1 = ((s4,, S1).

(sb| ’ 1111)5 (sc| ’ (pl)) and V2 = ((saz’ §2), (szv 1/f2), (SCZ’ (,02))
be two 2TLT -SFNs; then, these two 2TLT -SFNs can be com-
pared according to the following rules:

(D) IfS(y1) > S(y2), then y1 > y»;
(2) IfS(y1) < S(y2), then y < y;
(3) If S(y1) = S(y2), then

o If H(y1) > H(y2), then y; > y2;
o If H(y1) < H(y2), then y; < y2;
o If H(y1) = H(y2), then y1 ~ y».

Definition 7 (Akram et al. 2022) Lety = ((s4, <), (sp, V),

(s(,‘a (p))a Vl == ((Sala 51)7 (Shl ) 1,”1), (SCI ) @1)) and V2 ==
((Saz> 62), (Sby» V), (Scy5 92)) be three 2TLT-SFENs, g > 1,
then

1.

Y19y

[ ()

A7y D\ (A7 epy 02
13 13 ’

| Alk

Ail(szrl v(ﬂl) A71(5¢'2s¢72)
A (k < % 3
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2.
Y1 ® 72
A"V saysp) \ [ A7 Gay.52)
() ()
_ ( (e () <I<Al%,wz>)q)) .
= k k s
A (k‘i - (l B (A’l(icp‘ﬂl))q) (1 B (Al(trz,wz)y))
3.
ry
(<= (- (F2)) )
= A(k(A_lfb"/’))k) A0
A (k (A" (s(-w)k)
3
4,
y)»

Al (2 6a0 )
k .
-1 g\ *
_|a kdl—(l—(A f””))), =0
A

3 2TLT-SF point aggregation operators

In this section, we present a new class of aggregation oper-
ators to aggregate 2TLT -SF information such as the 2TLT -
SFPWA operator, 2TLT -SFPWG operator, 2TLT -SFGPWA
operator and 2TLT-SFGPWG operator. Moreover, we dis-
cuss some properties of the proposed operators.

3.1 2TLT-SFPWA operators

Definition 8 Let 2 be the set of all 2TLT-SFNs, and y; =
((Sa;s Gi)s (Sbys i)y (Se;» 9i))g (@ = 1,2, ..., m) be a collec-
tion of 2TLT-SFNs and &;, ¢; € [0, 1]. Then, the series of
2TLT-SFPWA operators: Q" —  is defined, if

(1) 2TLT — SFPWAD?()/], Y2y
a)zDgz()/z) ®...0 CUngn Ym);
(2) 2TLT —SFPWAF; . (y1, 72, ... vm) = 01 F, [ () ®

U)ZF;LQ(VZ) G...0 meg’“{m (Ym):
(3) 2TLT = SFPWAGL , (1. po. - -« ) =01 G, (1) @

Q)Zng,gz(Vz) ®...0 megm’;-m (Vm);
(4) 2TLT “SFPWAHL (11, 721 - ) =1 HE (1) @

a)2H§nz’§2(V2) b...0 megm’gm (Ym);

. ¥m) = 1Dg (1) @

(5) 2TLT — SFPWAJE (y1. ¥2, .-, ¥m) = @1 (1) @
CU2J£2){2(V2) b...0 wm-]gn‘;m (Yim)»

where as w = (w1, wy, ... a)m)T is the weight vector of
(Y1, ¥2, -+, Ym), satisfying w; € [0, 1]and > /", w; = 1.

By the defined operational laws in Sect.2, we can get the
following Theorem.

Theorem 1 Let y; = ((Sa; i), (Sb;s Vi), (Se;s 9i))g (i =
1,2,...,m) be a collection of 2TLT-SFNs, and &;,¢; €
[0, 1], and & + ¢ < 1, so the aggregated value by the series

of 2TLT -SFPWA operators is also 2TLT -SFNs and

(1) 2TLT-SFPWAD!(y1. V2. - - V)

1
s o q @i\ q
A(k(l— (1_(A(k“151)) +§,'7r31) ) )
=l vi
—1 A\ 4 @i
- A(k(‘ ((A (Skbi"ﬁ’>> +(1—s,-)n3,.) ))
Yi
—1 o q @i
) (k ( (<A(;(CI%)) o _g[)n;]i) ))
i=1 y;
t q

(2) 2TLT-SFPWAF; . (y1, 2, - .-

[fe=E

[fe=E}

[fe=E}

’Vm)

where

(A*‘wi,g;)

S
FL 00

1

_ q q

(A g 1)
k . ! & +&i

Yi
(Afl(Sbl- ; 1//1'))
k n .
FE )

Al v\ —a—g - )Y
=(<k)y“'”w T

(A—l(sc-i,wi>>
k n
FE o )

1

Aleg e\ ima—g-g) |7
_(<k ST e |
1
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3) 2TLT—SFPWAG§”§()/1, V2 ey Vm) where

e <A—1(sa,., 9-)) _ ((A—1<sa,., g-))q
m A a5 \T L, =
A k(],'l:[] (1(k)yi El) ) )* k Jg,—,;,-(Vi) k Vi

_ . N4 A (g0 i) \? 0
Hlae=i) o

1

; 1
m((a o) a7 A CITE 701 NN g !
) "(“(( ‘ )C) )) —( p )yis,-@tzog- (1-8)"

(4) 2TLT-SFPWAH (1. V2. - - . Vm)

Proof We will prove Eq. 1 by the use of mathematical induc-
tion on m, and the others will prove to be equivalent. As

1
m 71(%{[- Si) ! n “iNT
e ml (=Y
m AT I(Ah wl B k ’
el () ) A s V) AT a0 _
= 51 C[(V, A s X <1,
m A_l Sa.» Si a A_l Sh:, Vi 4
R (n( ) )) qzl()S( G g)) +< G 1/&))
= “3 & i) 4 . 4
+ AT (scia (pl) <1
where % ) =h
(A”«vb,w) ~ ((M(sz,l..w,-))q and
© T £

1 ) ’ <A—1<sa,-,gi>)q
A sy ¥0) ; .,
Yi —1 . q
1 A (suiv Si)
IR N =\—7%
) G(Zge ' ra=-a)| )

i

_ L—(—-&—&)
(A 1<sc,-,<p,->) +5i”(qy,.) LA

k Hg ;.(Vi) Et é‘z
1°51

A s ¥ !
_ Ail(st‘l‘,‘Pi) 4 | Ail(‘vfl‘"pi) K 1 1 n < k l
=\\—) *{"-|—F— (== FI ()
Yi Vi i ki

- q
AV Gsarn 60 \? 7 — <A l(sbwl/’i)>
i 5t X n—len—1—t 4 _ .\t - - 4
7<7k )V G (Zipe~a g))) k "

’ gt L2260
(5) 2TLT — SFPWAJg’;()/l, Y2y ooy Vm) () &+ ’

1 <A ](Scivgpi)>q
n - wj “\ 7 k g
Alk (1 - (1 _ <A ‘(;wg’)) ) ) ’ Fe )
1 T2 ) <A1(sc,-, §0i))q
m - Y . q -
=4 (k ( l(A ‘(.Z,,,w/)) sjn))’ k )

1—(1=&—-5)"

m - + '7Tq,
A(k( (A l(z(,w)q%n)) L S
i=1

3
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When m = 2, from the operational laws, we have

2TLT — SFPWAF} £ (V1 2) = 0171 ® 0212
1

-1 q 1\ 7
A k(l—(l—(A (-]Y:livgi)) ) ) i
n
Fgl Is| )
( ](Sb ‘//l ))
El 13} 1)
( l(lc, i) wl )) ®
gl 3] 1)
N
A (sa;. 50 \?
I s
%—2 :Z(VZ)
52 (2(}’2)

(5¢ »‘/71 wz ))
52 o (r2) q
w1
(k( ( (:ﬂg>) ) )+]
E!O'z{l (62))]

(va, 9)>q

éz {2()/2)

]
(Sal Si) 4
Tk
&—1 0 1) /
= @2\ g
—1 A\ 4
(1 B (1 B (A (20,-,;,)) ) )
F§2~{2(y2)
( ((AW%p¢n>w] <A*u%,w»>”2 ))
k n k n ’
Fey o 7D Fgy 5 12)
s 0\ “ise 00 \ 2
T A )
FE o ) FY 62
1 q “1
A (k (1 - (1 - <4A (-;;a,»sﬁ) )
Fg'l_{ll(yl)

q

w2
(] B (A—1<sa,.,g,-))q ) )
k o ’
EZ'EZ(yz)
Alx (A—l(ib[-vf,-))‘”‘ (A"(ibpw,-))‘”z ’
Ff o D) FL o (r2)

Consequently, the result is true for m = 2. If Eq. 1 holds for

m=t,i.e.,

2TLT — SFPWAF. (11, 2, ... 1)
t —1 A\ 4
Ale|1-11 1—<7A (;""‘”) :
Fi g, )

11 w;
(sp; \ Vi
| afx 11(444447) ,
FL o ()

&5

Wi

11 -1
Alk 1—[( (n,%))

=1

n .
Fl o, ()

Next, when m = t + 1, then from the operational laws, we

have

2TLT — SFPWAF;  (v1, ¥2. - .. Vi+1)
=2TLT — SFPWAF; . (v1. v2. - ... ) ©® @11 FE  (vi41)

q @\ i
1 -1
Alel1-11 17(7A ‘Z‘"‘”) :
i=1 Fe o )
! —1¢q @i
Alk 1‘[<7A (“[""”’)> ,
=1 R0

A g0\
Afk|TT | —F+— ]
i=1 Fi g )

Wr41 ql
A (g5 )
e (e :
FE/;+I-5/+I(%+I)

A G500\
FE’;H-QH Vi+1)

(
[
e )
[

A (k ((A‘](Z-,ww))w‘ (A‘l(ic,-wi))wz ))
FE oy 00) Ry oy )

§1.81
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: RPN and
Aleli-11 1_<A 1<ku~9>>
=l FL . ()
Ny (1 (wm 5}))5, )‘”’“ 2TLT — SFPWAF (a1, @72, ... &¥m)
U , oy L
FEHI_{,H(J/H]) ” Ail(sawgi) p awi\ g
o Afkfr—T1 (1=
_ (1 _ ﬁ (1 _ (M)q ) ) i=1 Fe g ()
i=1 Fi g () m “1io u) \ ¥
q oty 4 _| afx (&) ,
= - (A—l(ia,.,g,)) i=1 Fl ()
FL )y D)
m AV (s 0 Qw;
o e ale{ fi (=)
NI (A (Z)"w‘)) (A c;f,w,-)) , i=1 Ff o ) .
i=I B o ) Fl oy )
| o 1 " and hence
A e ) ) A (s 0\
(== 5= L)
i= F o 07) o ()
il St s T Q2TLT — SEPWAFL (V1. V2. V)
q
N aw; ql
+1 A1 cn |4 ! m A" 65050\
Alk|1- 1—(%) Alkft=TT|1- -
i=1 FY ) i=1 Fe o )
| alx 1+l (A ‘(S;,%))wi ol alk A (s ) e
i=1 FL ) N i=1 : o))
i = & (V)
a A"(&»-fpi)>wi aw;
AlKTI (7 (A g0\
( ([—1 k F;A[’,(Vz) p Ak 1_[ ( n
q i=l1 Fsl_{’,(y,’) p
Thus, Eq. 1 holds for m = ¢ + 1. Hence, Eq. 1 holds for all " ] p wiy g
. O N (A <iu,v~;,->>
i=l Fg o i)
Theorem 2 Let )/i = ((Sa,w gi)’ (Sb," Wi)ﬂ (SCi ’ §01))q(1 = m Afl(sb Vi) aw;
1,2,...,m) be a collection of 2TLT -SFNs with the weight = Aalk|II ( 3 )
T [P i=l Fi o i)
vector o = (w1, w2, ....,wy)", satisfying w; € [0, 1] and o
m
Y wi=1a>0,then m A o\
(e (=)
i=1 FL o)
(1) 2TLT — SFPWAD(ay1,ay2, ..., aym) = «2TLT — G4 q
SFPWAD{ (y1,v2, - VYm)s = 2TLT — SEPWAF! (a1, ays. ... aVm)
(2) 2TLT — SFPWAF;C((MVI,OWL e, OYp) = o2TLT —
L] Vm); O

SFPWAF{ . (y1, 72, -

(3) 2TLT — SFPWAGg’g((XVI, Ay, ...,ayy) = a2TLT —
SFPWAGY (Y1, ¥2+ - - - V)

4) 2TLT — SFPWAHS"’{(Olj/l, oy, ..., QYm) = a2TLT —
SFPWAH;;.(]/], 7/27 ey Vm),

5) 2TLT — SFPWAJ;’;(ayl, Y2, ..., AVy) = «2TLT —

Proof We will prove Eq. 2 holds for all m, and the others
can be obtained corresponding. From the operational law in
Sect. 2, we have

1
—1,. S\ 9\ XN 9
(- (-())
= i
A s\ A (e 00\
(B )Y (1 (0
i i q

@ Springer
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Theorem3 Let yi = ((5q4, Gi), (s Vi), (Se;» 9i))q and
Vi = (g )5 (5 W), (56 @) = 1,2, ... m) be two
collections of 2TLT -SFNs, and their weight vector is =
(w1, 2, ..., o), satisfying w; € [0, 1]and Y wi =1,
then

(1) 2TLT-SFPWAD; (1 @ v{, 2 ® 7y, - --
2TLT-SFPWAD; (1, V2, - - -
(V1> Vas oo Vi)

(2) 2TLT-SFPWAF, ((y1 @ ¥{, 72 ® 73, - .-
2TLT-SFPWAF! . (y1, 72, - .
(V15 Vo oo os Vi)

(3) 2TLT-SFPWAGE . (1 ® v, 2 ® V3. --
2TLT-SFPWAGY (1, 72, - -
V15 V2o os V)3

» Vm D V;;;) =
. ¥m) ® 2TLT-SFPWADY,

» Ym © V;;,) =
) Vm)@ZTLT—SFPWAF;,g

~,Vm®7/y;1)=

- Ym)®2TLT-SFPWAGY ,
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(4) 2TLT-SFPWAHL (y1 ® (. V2 ® V3. -
2TLT-SFPWAH, g()/], 1ZIREE
i> v35 ~-’Vm)

(5) 2TLT-SFPWAJL (11 ® v{, 2 ® 7y, -
2TLT-SFPWAJL (Y1, v2, - -
V1 Vas oo s Vi)

Proof We will prove Eq. 2 holds for all m, and the others can
be praved corresponding. From the operational laws, we

—1 q
(Sa, si

A (k( A (va, s) < >
¥
A~ ‘(va, si > (A (54 g, )

Vi ® Vi/ =

l(sb 1//, I(Sb ‘//)

i
A< :
b e5e1)

2TLT-SFPWAF! (1 @ ¥{. 12 ® 13, .-

Yi

S Ym B V)

m —1/0 . q
aleli=11 1_<A cls:,fg,))
i=1 L ()

A*‘(s@-g»’)) (A“(su».;o)q

— 427 + | —A==

k k

( Fg o, ) FE o i)

A” ‘(.v;i,w,f)>wi
3
F)l
w;
m —1 A\ 7
-1 |- (A ia,wg,))
i=I )
w;
A0\
I e :
F o )
M (A sy, i i
Il (T
i=1 FE o )
Ay D\
% , ’
o )

A (s 00\
A H( <v,¢u>>
i=l FL o 00
<A’l(s£,..</7,/)>wi
k
Fl o)

Ak

§isdi

LR J/m @ V,;) =
. Ym)D2TLT-SFPWAH

< Vm D Vy;) =
.y Vm)@ZTLT—SFPWAJg’C

l(3b ‘/’ ) i
k bl
51 I (629)
Ei.gi(y,")))

And

2TLT-SFPWAFY . (v1, 72, - - -
2TLT-SFPWAFL  (y{. 3. ... Vi)

A"(s[’,i.g,)
13

(A e, i i
Akl T ( (Is(, w))
i=1 Fs’j_v{!(y,»

= 2TLT-SFPWAF, . (yi @ ¥{, 72 ®

Moreover, the series of 2TLT -

following properties.

Theorem 4 (Idempotency) If y;

(Se;» 9i)g( = 1,2,...,m) are
((Sas g)s (Sb’ w)s (SC, (P)) thel’l

(1) 2TLT-SFPWAD{ (1, 2, - .-
(2) 2TLT-SFPWAF] .(y1, 72, - -

(3) 2TLT-SFPWAG! .(y1, v2. ..

(4) 2TLT-SFPWAH] ,(y1. 72. ..
(5) 2TLT-SFPWAJL (y1. 72, ..

Theorem 5 (Monotonicity) Let y;
(0> 1) (s U)), (L @G =

(Se;» 9i))g and y{ =

w;
ﬁ | (A (507 g))q
_ — (e
i=l1 g & (vi)

m (g, wj =l(s! ) wj
Alx I—[ (A (»;(hI»]//z)> < ‘h W )
i=1 FE’;,C, i) 5 & )

U NN I(Yh W)
sl ), 2, L))
( (= 5/,5,(1/,) 5/..5’()/,/)

e D)

A"(SL’,[,(/J;) wi
) . FL o)
e
&8 q

Varooos Vi @ Vi)

m}

SFPWA operator have the

= ((Sa,-s gi)a (Sb,'s !/fi),
equal, that is, y; = y =

,ym):
-,Vm)— %‘C;
< VYm) = S{;
"ym)_ Eé"
»Vm)—

((Sa,'s gi)a (sb,'s wi)s

—1 .
1,2, ...,m)betwo collections of 2TLT -SFNs, #(W)
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A7 (s, A (s, )
= ( [ ’ k =

A s, . 00)
k

N CARTA)
<+) and

A5, 9] .
> | —%—— ) holds for all j, then

(1) 2TLT-SFPWAD{ (y1, 2, - -

V1 Vas oo os Vi)
(2) 2TLT-SFPWAF, (11, 72, - .

.. ¥m) < 2TLT-SFPWAD}

s ¥m) = 2TLT-

SFPWAF] . (V{, V3s -+ V)

(3) 2TLT—
SFPWAGY (1. v2.-...vm) < 2TLT-SFPWAGY,
V1 Var v Vs

(4) 2TLT-SFPWAHY . (71, v2, ..
SFPWAHY (¥, V3: -+ Vi)

(5) 2TLT-SFPWAJ .(v1, 72, - -
1 V2o Vin)-

Cym) < 2TLT-

. Vi) <2TLT-SFPWAJL,

Theorem 6 (Boundedness) Let y; = ((sg;, Si)» (Sp;. Vi),
(s¢;» 9i))g(@ = 1,2,...,m) be a collection of 2TLT -SFNs,

then

(1) dpy < 2TLT-SFPWADL (71, ¥, - Ym) < dD,,,

) dF" < 2TLT—SFPWAF£§()/1, Y2y ooy Ym) < an{;

3) d_g.: < 2TLT—SFPWAG§‘,§()/1, V2o Vm) < dG” ;

4 d_é',¢ < 2TLT-SFPWAH£§()/1, V2 eos Ym) < dH,, ;

(5) d;g,,{ < 2TLT—SFPWAJ£§(V1, Vo ooor Ym) =< dfs",:
where dI = max M ,

A
—l/q . -1 .
min ((A (j{b,’y‘//t)) ), min ((A (217[*%)) ) anddZ
i i
A A
= (mn((=52), ) ) o ((2))
= (min (| —== , max | | —F— ,
L A ! A

A_I(S(:ia(Pi)
miax <<T>A> , A denotes DS’ Fs’lg, Gg ¢
n n
H oo g o

We have the special cases, by giving different values to
the parameters n, w, q.

Theorem7 Let yi = ((Sa;» Si)s (Sby> Vi), (¢ 9i))g (i =
1,2,...,m) a collection of 2TLT-SFNs, o = (w1, w3,

.,a)m)T are the weight of (y1,v2, ..., Vm), With w; €
[0,1], ¢ > Land Y_I"| ; =1, then

(1) Ifg = 1, then the series of 2TLT -SFPWA operators will
all be reduced to the series of 2TLPFPWA operators.

(2) If g = 2, then the series of 2TLT -SFPWA operators will
all be reduced to the series of 2TLSFPWA operators.

() Ifn = 0, then the series of 2TLT -SFPWA operators will
all be reduced to the 2TLT -SFWA operator.

@ Springer

@) Ifn =0, g = 1, then the series of 2TLT -SFPWA oper-
ators will all be reduced to a 2TLPFWA operator.

(5) Ifn =0, g = 2, then the series of 2TLT -SFPWA oper-
ators will all be reduced to 2TLSFWA operator.

©) Ifn=00= (L L LT thenthe series of 2TLT -
SFPWA operators will all be reduced to a 2TLT-SFA
operator.

(7) Ifn =0, 0w = (m S s %)T,q = 1, then the series of
2TLT -SFPWA operators will all be reduced to a 2TLPFA
operator.

(8) Ifn =0, 0w = (m PRI %)T, q = 2, then the series of
2TLT -SFPWA operators will all be reduced to a 2TLSFA
operator.

3.2 2TLT-SFPWG operators

Definition 9 Let 2 be the set of all 2TLT-SFNs, and y; =
((Sa,-s gi)v (sbiv wi)s (sCl‘v (pl))q(l = 1’ 27 ] m) be a COHeC—
tion of 2TLT-SFNs and &;, ¢; € [0, 1]. Then, the series of
2TL T-SFPWG operators: Q" —  will define, if

(1) 2TLT — SFPWGD (y1, 2, -+ ¥m) = (Dg (1)
B(DL (1)) ® ... ® (D (ym)™;
(2) 2TLT — SEPWGF (11, 2. .. y) =

DL ()™ ® - ® (L . (y)"
(3) ATLTSSFPWGGL (11, va oY) = (G, ()1 @

(B )

Gl )™ ® - ® (G ()™
() ITLT—SEPWGH] (41, yar . ) = (HE, o 1)) @
(HL o (p)™ ® ... ® (H . (ym)™"

(5) 2TLT —SFPWGJZ (41 2. - ym) = (U (y1)”1 @
U 02D ® . ® (L o ()

(w1, w2, ...wn)T is the weight vector of
. Ym), satisfying w; € [0, 1] and )}

where w =

V1,92, - - i = 1.

From the operational laws defined in Definition 7, we get
the following theorem.

Theorem 8 L6t )/i = ((Sa; ’ gi)v (Sh,' ’ Iﬂi)ﬂ (S(,‘[ s @l))q(l =
1,2,...,m) be a collection of 2TLT -SFNs, taking &;,¢; €

[0, 1], and & + ¢ < 1, then the aggregated value from the
series of 2TL T-SFPWG operators is also 2TLT -SFNs and

(1) 2TLT — SFPWGDg’(yl, V2, ooy Ym)

et )
Lo (R () o)) )
PR
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(2) 2TLT — SFPWGFgg(yl, V2, ...

m 1 @i
($a; :6i)
I1 (7)
i=1 FEA,',I,- i)

where

<A_1(sa,~v gl))
k R 00

A_l -, Gi 4 1
_ << @m,g>) + gt
k i
i)
(

(A' SbMﬁi))
k FL o)
=<<A%%an !
k
(A_l(sc;a¢i))
k )
_ <<A I(Zci,wi)>jyi)+§m

(3) 2TLT — SFPWGGY (11, 2. ...

(R )
s (k (-1

(4) 2TLT — SFPWGH ,(y1. v2. - .

) + {,’7‘[3],
i)

’ Vm)

)

wj -
" Aty 00\ !
Alkl1-T1 1-(%)
= i=1 FL o 00

—(

1

1
1—& —¢)"\*
& + i

= (=& &)

& + & )

) Vm)

1
g1 ==& ="\’
" & + &

where

<A_1(sai7 gz))
k H’l

§idi ()

-((

A—I@m,g)>q
k o)

A_l ai» i 4
+(L—(—l%i2) )m—a—af)
i)

A s, i) \? ,
_( (s]f, 1//)) :, (2
i)

(5) 2TLT — SFPWGJéz’g(yl, V2, ...

m —1 A\ 4
A(k(]_[ <A (Z(,,,g,)> ))
i=l )

o @i\ g
A (s i) )
1 _ ( kb, ) cin
I )

A (se; . 91)
1 (1 a < k

A k(l—
A k(l—

where

s

3

1

oc"‘fa-—&Y))

s Ym)-

1

1

) gin
e o V)

(AW%pw0> :(<Aw%pwn>q
k o) k )
A_l /e q
" (1 B <+w>) ) (1= -5
(i)

Ai] aj»s Si !
_( (Z, S )) G (2
i)

1

ﬁxa““%r—mﬁ>

q))
(1 B <A (smy Vi

m 1o oy \? @i %
A(k(l_n(1_<A 1<skc,.,<p/>> ghi,l) ) )
i=1

m wj
A M (A (5a; g,)> ’
i=1 HE ()
1
m —1 X q @i q
| a k<1—n(1—(A “j{”f""”) g;l) ) ,
- i=l1 (i)

)

k] Vm)

Same as the 2TLT -SFPWA, we have the following prop-
erties of 2TL T-SFPWG. To save space, proofs of those
properties are omitted.

Theorem9 Let y; = ((S4;, Si)> (b ¥i)
1,2,...,

s (sc,' > §0i))q(i =
m) be a collection of 2TLT -SFNs with the weight

vector ® = (w1, @2, - ..., wm) L, satisfying w; € [0, 1] and

Y wi =1, then

(1) 2TLT — SFPWGD!(y{.v§.....v2) =(2TLT —
SFPWGDg (1, v2, - -, Ym))™;

) 2TLT — SFPWGF”C(yf‘,yZ"‘,...,y,‘j,‘) =(2TLT -
SFPWGFZ . (y1, 2, - Ym)™;

(3) 2TLT - SFPWGG ;(V1 Ve oY) =(2TLT —
SFPWGGE (Y1, V2, - s Ym))™;

(4) 2TLT — SEPWGH ISy =(2TLT —

@ Springer



2884

S.Nazetal.

(5) 2TLT — SFPWGJ! (v{'. V5. .. =(2TLT —

SFPWGIJE  (y1, v2s - Ym))™.

L] r?/:)

Theorem 10 Let y; = ((sa;, Gi)s (S, Wi, (Se;, 9i))g and

vi = (s, 6D, (Sl/n’ U, (L. 9)g @ = 1,2,...,m) be

two collections of 2TLT -SFNs, then

(1) 2TLT — SFPWGD; (11 ® V[, V2@ Vys -+ Y ® V) =
2TLT — SFPWGDE(y1.v2,---s¥m) ® 2TLT —
SFPWGD{ (V{, Vys -+ Ym)i

(2) 2TLT — SFPWGF] . (Y1 @ V[, V2 ® V3. -+ Ym D Vi)
= 2TLT — SFPWGF! (y1,v2, .-+ ¥Ym) ® 2TLT —
SFPWGF;"{()/I’, Vs oeos V)i

(3) 2TLT — SFPWGG; (11 ® ¥, V2 V3 -+, Y © ¥y
= 2TLT — SFPWGGY (1,72, .., Ym) ® 2TLT —
SFPWGGY (], V3s -+ Vi)

(4) 2TLT — SFPWGHE" VMOV 1V2 P Vyreo s Ym ® V)

= 2TLT — SFPWGH[  (y1,v2, ... VYm) ® 2TLT —

SFPWGH’f (CZ N2 O |

(5) 2TLT — SFPWGJS")Q»(VI RV V2B Vyses Vi ® Vyy)
= 2TLT — SFPWGJ! (y1, V2, ..., Ym) ® 2TLT —

SFPWGJE”K()/{, Visooos Vi)

The 2TL T-SFPWG operators series have properties
same like the 2TLT -SFPWA operators such as idempotency,
monotonicity and boundedness under some defined condi-
tions, which are omitted in order to save space. We get the
special cases through giving different values to the parame-
tersn, w, q.

Theorem 11 Let y; = ((sq;. Gi)s (Sb;s ¥i), (8¢5 9i))g (0 =
1,2,...,m) a collection of 2TLT -SFNs, w = (w1, w3, ...
wm) ! is the weight of (1, v2, - .., Ym), withw; € [0, 1], ¢
Land ) /L, w; =1, then

v

(1) Ifg = 1, then the series of 2TL T-SFPWG operators will
all be reduced to the series of 2TLPFPWG operators.

(2) If g = 2, then the series of 2TL T-SFPWG operators will
all be reduced to the series of 2TLSFPWG operators.

) Ifn = 0, then the series of 2TL T-SFPWG operators will
all be reduced to the 2TLT -SFWG operator.

@) If n =0, g =1, then the series of 2TL T-SFPWG oper-
ators will all be reduced to 2TLPFWG operator.

5) If n =0, g = 2, then the series of 2TL T-SFPWG oper-
ators will all be reduced to 2TLSFWG operator.

@ Springer

©) Ifn=0,0= (m PRI %)T, q = 1, then the series of
2TL T-SFPWG operators will all be reduced to a 2TLT -
SFG operator.

N Ifn=0w= (m EREEE m)T q = 1, then the series
of 2TL T-SFPWG operators will all be reduced to a
2TLPFG operator

@) Ifn=0,w= (m m,...,%)T,q = 2, then the series
of 2TL T-SFPWG operators will all be reduced to a
2TLSFG operator.

3.3 2TLT-SFGPWA operators

Definition 10 Let 2 be the set of all 2TLT-SFNs, and y; =

(Gsa;»> Gi)s Sty Wi)s (Sei» i) (i = 1,2, ..., m) be a collec-
tion of 2TLT-SFNs and &;,¢ € [0, 1], A > 0. Then, the
series of 2TLT-SFGPWA operators: Q" — Q define, if

1
(1) 2TLT —SFGPWAD( (y1, y2. - - -, ¥m) = (@1 Df (1) *
1 1
® (2D, (¥2)* & ... & (@nDg (Ym))*;

(2) 2TLT —  SFGPWAF] C(yl Y2 s Ym) =
1
(@1Fg ¢, (yl))h B Ff () & ... @
(0m ém,gm(ym))“
(3) 2TLT —  SFGPWAG} (1, V2, -+ ¥m) =
1 1
(legl avNt & (@mGy () & ... &
(0nG (J/m))k
(4) 2TLT- SFGPWAH L Y2 V) =
1 1
(“”Hsnl at @ (mH ()7 & ... @

1
(wm H, émyCm Ym)) %
(5) 2TLT-SFGPWAJL (11, 72, - y) = @10 . (yi)

1 1
& @200 (1) ... ® @ndl. . ()

where = (w1, w2, ...wp)T is the weight vector of
(Y1, Y2+ - -+, ¥m), satisfying @; € [0,1] and > /L, w; = 1.
From operational laws defined in Sect. 2, we get the following
Theorem.

Theorem 12 Let Vi = ((Saiv gi)s (Sbl‘ ’ I//‘l‘)v (SC,'s (pl))q(l =
1,2,...,m) be a collection of 2TLT -SFNs, taking &;, ¢ €
[0, 1], and & + ¢ < 1, then the aggregated value by the

series of 2TLT -SFGPWA operators is also 2TLT -SFNs and
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(1) 2TLT — SFGPWADg(yl, V2 ooy Ym)

. 1 q A\ ¥ ,}
AT a; »Si
aleli=T11 1-((—?“) +s,~n(qyi)>
i=1 (i)

m -1 q M\ %
Alkli=|1-T] 1-(1—(%) —(l—éi)nﬁ,) ,
i=1 (vi)
m -1 q A %
Aleli=|1-11 1-(1-(%) —(1—sl~)ng.>
i=1 vi)
q
(2) 2TLT — SFGPWAF( (1. V2. .- V)
A 0\
" A (sq.60 \
Alk{1-T] 1—(7) :
i=1 FE )
| 1
ARANAN
aleli=li=17)1= 1_(A‘1<pr%>>q
k :
= i=1 Fg‘gi()’i) ’
1 1
AARAN
m A s 00 \ !
Alkli=]1=]]|1- 1—<+>
i=1 Fe o ()
q
where i
_ (Al(s,,,.,xp,-)>q H.nqw !
A sy, i k w1 &G
( ai,§1)>
27 —1 .
k ngzi(yi) , (M)
i k FL o O0)
A (sq. 60 \? 1I-d-&-w"\’ .
=\{l——F7"—") +é&nl —F—"7"—"""]| . —1 q n\ 7
k o T E+G :<<A <scw¢z')> HAnql—(l—&'—G))
(A‘l(sb,', 1//[)) ¢ " ' it
k F2 00 :
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’ ym)

m A_I( ) lj)- i
(o (- o))
i=1 i)

(3) 2TLT — SFGPWAGY (1, 72, ...

1
qh

i\ T\ 4
m A sy )\ 1Y
Alkl1—=]1- 1 - 1—(+) g
= i=1 (Vi)
I\ 7
wi 3
m A Y Gse 00\ ’ '
A k 1— 1—1_[ 1_ 1_< k, ) ;,’n
i=1 vi)
(4) 2TLT — SFGPWAHL (Y1, V25 -+, V)
1
A @i\ g
m IO
(A=) ))
i=1 i)
1 1
AARAN
m m AI(Sb-J//i)>q
Alk I—|1-J]|1- 1—( :
— i=1 i=1 ¢ He ()
| 1
ANAA
m m A_](Sz:-#?i) 4
Alk 1—|1=TJ] |1~ 1—< : )
i i=1 ¢ HE (i)

AL VA ATl hi » Vi K
where (—(“Z” l”) = (<—(2l lﬂ) +
HE i) i)

1
K (srmga- a-)’)) q
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(5) 2TLT —SFGPWAch(yl,yz,...,ym)
1
m q “\
—1 .
Ale|1=T] 1—(A Gy <1) g ,
i=1 Jg o i)
I\ 7
A\ @i\ *
m m —1,. . qr
Aalelnli=-fi-11l1- 1—(#“”) ,
B i=l i=1 ) :
N
A\ @i\ %
m m A (e 00) qr
Alk|TIft=f1=-T1f1-1- (=2
i=l i=l )
q
where
A
w2 (Fl (1)
A_l(saivgi) N 1 é
k A 550 \?
JEe ) NI e ,
FL ¢y )
A (s ) ) i o
N < k ) ) -1 A\ 4 "\
”) aleliz l_(A <1b,,¢f,>>
A" (sq,0 c)\? - ! o ()
+ (1 — <%) ) (1 —a _Ei)n) 2.0
i) o1
1 q : AL ) q \
AT (sp;, i) I 9 . _ (Se; i
_< p i 3 (E;t:ol;in 1 t(l_éi)t) ) Alk]|1 1 — o
i) 8.0
q

Proof We will prove Eq. 2 holds for all m, and similarly,
we can prove the others.We will prove Eq. 2 based on the
mathematical induction on m. When m = 2, we have

A
o1 (Fl ., m)

A @1\ @
A (sa60 \?
Alk|1- 1‘(7) ) ,
F o )
@1
A\ ¢
Alk|1- 1_(“(%%) !
= Ff\ e )
@1
A\ ¢
A Gse 00 \?
Alk|1- 1‘(7) n
Fél_zl(yl)
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o1y] ® w2y}

A @l
-1 . q -1 .
N 1_<A (zai,gl>) 1_<A <2ai,g,)>
anlytl(yl)
op
A\ ¢
1. ) q
_|alk]]1- 1—(#)
Ff o )
2
A\ ¢
1. N\ 4
Al k 1— 1_<A (an‘ﬂt))
anl.(l(}'l)

1
2TLT-SFGPWAFL . (1. ¥2. - . ¥m) = (@1¥] ® woy3)*

w2
qr

n
F52~C2 (VZ)

A sy 1)
1—11- (T)

Ail(Sclw(/)i)
1—11= (T)

q

n
F§2<;2 (y2)

A
q

n
Féz»iz (v2)

A I\ o
2 —1 ~\ 4
Alkl1-T1] 1—(—A ‘i“f’”) ,
i=l1 ng{l(yl)
NCAR: %
2 “1 S\ 7
Alkfi=fi=11]1- 1—(%) ,
A wj % ‘Il
2 —1 S\ 4
Aleli=fi=11]1- 1-(#)
i=l1 Fg{l(%)
q
So, result is hold for m = 2. If Eq. 2 holds for m = t, that is
2TLT—SFGPWAF£{ Y1, V25 -+ V1)
1
wi ar
t —1 2\ 9 ?
Alkl1-T1 1—<A i“"’“) :
i=l Fe o )
wj % 5
! A s, 00 \ !
Alk|1—=1=]]|1-|1- — ,
= i=1 FL o)
1
A\ @i £\ ¢
! AV Gse 00\
Alk|l1—-1=J]|1- 1_(7”)
i=1 Fg ()
q
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(1) 2TLT — SFGPWGDg(yl, Y2y ooy Vm)
1
m -1 q " ’
Alef1=1=T1] 1-(1—(%) —(1—&-)713,«) ;
i=l1 i)
1
. » q A\ Y\ 7
= alcf1-1] 1—((%) +§iﬂ3,«> »
i=1 i)
1
o, . 4 ANAN
Alk{1-T] 1—((#) +;“m3,-)
i=1 (vi)
q
Then, when m = t + 1, we have 2TLT — SFGPWA (2) 2TLT — SFGPWGFgg(yl, Vs ooy Vi)

.

Fe (. v2, ... Vi) = 2TLT-SFGPWAF] . (y1, 72, - .
¥¢). Thus, Eq. 2 is true for m = ¢ 4 1. Hence, Eq. 2 holds for
all m. O

The series of 2TLT-SFGPWA operator have same prop-
erties to 2TLT-SFPWA operators such as idempotency,
monotonicity and boundedness under some defined condi-
tions, which are excluded in order to save space.

3.4 2TLT-SFGPWG operators

Definition 11 Let Q2 be the set of all 2TLT-SFNs, andy; =
((Sar i) (St W) ey 90))g i = 1,2, m) be a collec-
tion of 2TLT-SFNs and &;, ¢ € [0, 1], A > 0. Then, the
series of 2TLT-SFGPWG operators: Q" — € define, if

(1) 2TLT — SFGPWGD} (y1, v2. - - -» ¥m) = 3 ((A D,
()" ® (ADE,(12))” ® ... ® (ADE (vm))™");

(2) 2TLT — SFGPWGF,  (y1, v2, .-, vm) = 3 ((AFL
)" ® (WL, ()7 ® ... @ (AFL . (vm))™");

(3) 2TLT — SFGPWGGY (71, v2, .-, ¥m) = 1 ((AGE, ,
)" ® (AGY, ,, (1) ® ... ® (AGE . (vm))™");

(4) 2TLT-SFGPWGH ,(y1, 2. ... ¥m) = +((AH. ,
()" ® (AHE ,(m))? ©...® (WHL . (vm))™);

(5) 2TLT-SFGPWGJ (71, 2, -+ vm) = 3 (WL,

)" @ (WL, ))7 ®... @ (WL . (rm)™")

where w = (a)l,a)g,...a)m)T is the weight vector of
m
Y1, Y25 - -+ » Ym), satisfying w; € [0, 1]and ) w; = 1.

i=1

Theorem 13 Let y; = ((sq;. Gi)s (Sb;s i), (8¢5 9i))g (0 =
1,2,...,m) be a collection of 2TLT -SFNs, taking &;, ¢ €
[0, 1], and &; + ¢ < 1, thenthe aggregated value by the series

of 2TLT -SFGPWG operators are also 2TLT -SFNs and

n

w; qi
= [ —1 qr i
Alefi- 17<A (xk”f'w") :
i L)
.\
m 1. N\ 47
Al f1- 1_<A (;:-,.,m)
i=1 FE ),
where (A”(sa,.,g,-)) . <<A—1<sai,g,-)>
% =\\—7=%
o)

1

A sy, 0) ! g 1-(1=&-¢)" ’
((7 MR B
(i)
(Al(‘s‘c,"(pi)) _ ((Al(sci’(p[))q
% —\\ R
Fg o ) )

1
1=(=g=5)" )7
+§i713i (s,jg,-g) )q'

3) 2TLT—SFGPWGG2”C()/1, V2, oo Vm)

1
N
m 1 oN\?
Alkfi- =11 [1- 1—<7A “k“"g‘)> ,
i=1 R )

i)

1 1
g 1=(=&-¢)" g [ A Gy ¥ .
g )( 7
FE i)
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N g
m —1 A\ 4
Alelizo |- 1— <1 . (A (2{!,"9)) é:l)
i=1 (vi)
= m -1 qr i q%
N (1 _ ]_I (1 . (A (;{bis‘//i)) dm) ) ’
i=1 i)
m 1 9> i "17
A k(l— il (1_<A (ic,-,(/)i)) gink> )
i=1 i)
(@] ZTLT-SFGPWGHg'"{(yl, Y2y ey Ym)
1
oL
AN
m -1 3\ 4+
Arli={1-T1]1- 1-(A ﬁ“i‘”) ,
i=1 Vi
q “\
— m —1 .
= A k 1 _ 1_[ 1 _ (A (Skbivllfl)) é.in)L ,
i=1 H . (vi)
q “\
m T
aleli-11(i- (A (;:,-,wz)) £
i=1 Hy o (vi)

! (5q;5i K n—1gn—1— ‘
)(1—(1—40")—(“‘,:"“) Gz el 1‘(1—;»)’))
Yi

1

G e - a-)’))

HY ¢ )

A e )\ IO
((k) 1= ==
Yi Yi

—le .
where <7A (A,f"’v")>

A (e 90)
k
H o (i)

A sy 0\ A s\
(( k ) (1 < ¢ )
Yi Yi

A a5\
)(1(19-)")(2‘;)

Yi
(5) 2TLT — SFGPWGJ;”;()Q, V2 ooy Vi)
1
A\ @ 5
Alalicbiomtio o (A‘(s@sg))
k 9
i=1 Jg’1~4“i(yi)
= m 1 q)\ i ‘ii)L
A~ (s, 00)
i=1 ¥i)
m 1 qr i q%
. AT (c-a i)
A k(l—ﬂ_z:l(l—( 2"") C,-"*) )
i)
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7l‘u~si 71Aa4s i 4q
where <#> — ((%) +(1_
Jgi & ) i)

A*l(sav,m)q )( ) <A—'<sb.,wi>)q
—  4iats 1—(1—=&)") — (| —21 =~ .
( k i) ( 5i) k (Vi)&

t
(Znoé.n 1— t( _%.i> )) )

ET.

Theorem 14 Let yi = ((Sq;» Si), (b, Vi), (8¢5 9i))g (0 =
1,2,...,m) bea collection of 2TLT -SFNs with the weight
vector is w = (m PRI %)T, satisfying w; € [0, 1] and
Y wi =1, g > 1, then the operation of complement on

aggregation operator is as follows:

(1) |27LT-SFPWAFL (vE. 5. ...

; Vm)]
= 2TLT-SFPWAF( .(y1, y2, .-

L) Vm)
(2) |2TLT — SFPWGF! {(yF, vE ym)]

=2TLT — SFPWGF{ ((y1, V2, - Ym);
@) [21LT-sFGPWAF] (/8. V8. ... ym)]

=2TLT-SFGPWAF. (1, V2, -+ V)

i c
@) [21L7-sFGPWGFL (vf v5. . v ]

=2TLT-SFGPWGF( [ (y1, V2, - - Ym)-

Theorem 15 LEt Vi = ((Sa,'7 gi)a (Sb,' ’ 1//l')7 (SC," ‘pz))q(l =
1,2,...,m)bea collection of 2TLT -SFNs with their weight
vector is @ = (m rERERES n%)T, satisfying w; € [0, 1] and

YiLiwi=1,¢>1 x>0, then

H hm 2TLT-SFPWAF, {(y1,y2,...,ym)
=TT SFPWAD”; V15 V2s oo s Vs
2) hm 2TLT — SFPWG {()q V2y ooy Vm) = 2TLT —
SFPWGD"{ V1 V25 s Vm);
3 hm 2TLT SFGPWA C(Vl’ V2s o Vm)
=TT SFGPWAD”; V15 V25 oo s Vs
“) hm 2TLT- SFGPWG ;(yl, V2 ooy Ym)
= 2TLT SFGPWGD” (y1 Y2y ooy Ym)-

To save space, proof of the theorem is omitted.

Theorem 16 Let )’i = ((Sai ’ gi)a (sbi ’ I;”l')v (SL‘l'ﬂ (pl))q(l =
1,2,...,m) bea collection of 2TLT -SFNs, with the weight
vector is w = (m PRI %)T, satisfying w; € [0, 1] and
Zi=1w1=1’)t>0 qg=>1.1If& =

(A*1<Xai,gi>>"
—r
i) Gi
(A*I(Sa,-.gf)>q (A’1<Sb,--‘//i>)q 1ot
3 + T

) )
a0 \!
— %

(i)

= — — =~ then
(A l(l]iaivs'l)) +<A (kb,w'ﬂt))
i) )
(1) 2TLT-SFPWAF( . (y1, V2, - - Vm)
= 2TLT-SFPWAFg (Y1, Y2, - -+ Ym);

(2) 2TLT — SFPWGng(yl, Y2y ey Vm)
= 2TLT — SFPWGF¢ (1, V2, -~ Ym);

(3) 2TLT—SFGPWAF£§()/1, Y2y ooy Vm)
= 2TLT-SFGPWAF¢: : (Y1, V2, - -» Ym);

(4) 2TLT - SFGPWGFs W1 V2 oy Vi)
= 2TLT- SFGPWGFg cV1L, V2o Ym)-

Proof We proof Eq. 1 holds, and other can be proved corre-
spondingly. From the Theorem 1, we get

2TLT-SFPWAFL  (y1. 72, .. .. Vi)

m A 1( ) q hd %
— (5q; 560 - '
A k<1—1‘[<1—<7k ) —gm q7<sli{f>> ) ,
i=1 i)
A s \? -1 v
s ) = ’
()
A 500 \! 1 1- , I .
)

(A*‘(sal-,gn)"
k
i)
A (sa: ) q Ail(*‘b-alﬁ') q >
( j(a, Si ) + k, i
) )
—1 q
AT (sp; - ¥i)
k
— Vi)
Afl( .ci) q Ail(“b--‘/") qa >
( Za, Si > + k, i
) )

2TLT—SFPWAF£§(V1, V2 oeos Vm)

1
m —1 A\ 7 _q @i\ g
A k<1_n<1_(A (»;(a,-,g)) _;,zy;,l) ) ’
i=1 ()
mo A\ and |
okl () v5)).
i=l i)
e A (e 00) K ¢y, v
Ak H(( k +Si+V{i
i=l ()

= 2TLT-SFPWAF: (71, Y2, - - » Vi)

Since &; =

&i

we have
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Further, we discuss the relationships and the differences
between 2TLT-SFPWA, 2TLT-SFPWG, 2TLT-SFGPWA
and 2TLT-SFGPWG operators. In case when A = 1, and the
2TLT-SFGPWG operator is reduced to the 2TLT-SFPWG
operator in Definition 9. Contrastingly, 2TLT -SFPWA is the
arithmetic aggregation operator. So, 2TLT-SFPWG opera-
tor behaved its geometric form. Similarly, 2TLT -SFGPWG
operator is geometric form of 2TL7T-SFGPWA operator.
Since [, x?i Yo Aixi when x; > 0,4 > 0,
Y, Ai = 1, therelationship between the aggregated values
obtained by the 2TLT-SFPWA, 2TLT-SFPWG, 2TLT-
SFGPWA and 2TLT-SFGPWG operators is shown as fol-
lows:

Theorem 17 Let v; = ((Sq;. Si)s (Sb;s ¥i), (¢ 9i))g (i =
1,2,...,m) be a collection of 2TLT -SFNs, then

(1) 2TLT-SFPWG Fgg(yl, V2 ooy ¥Ym) < 2TLT-SFPWA

Fg;(yl’ V27 s Vm)y

(2) 2TLT -SFGPWG an‘g(m, V2, ooy Ym) <2TLT-SFGPWA
an’{(]/], 7/27 IR ] Vm);

(3) 2TLT-SFPWG Fgg(yl, V2 ooy Vm) < 2TLT-SFGPWA
FE (vt v -y Yms

(4) 2TLT-SFGPWG F{ (1, v2. ... ym) < 2TLT-SFPWA
Fe e va, s ¥m)

From the Theorem 17, we get that the values obtained
from the 2TLT-SFPWG operators are not bigger than ones
obtained by the 2TLT-SFPWA and 2TLT-SFGPWA oper-
ators. Same as the values obtained from GPFPCG operator
are not bigger than the ones obtained by the 2TLT -SFPWA
and 2TLT-SFGPWA operators for any A; > 0. Thus, DMs
can select the any of four different operators according to the
preference and actual needs.

4 An extended COPRAS method for MAGDM
within 2TLT-SF environment

The COPRAS method is a reliable approach to solve
MAGDM problems. This section introduces a new extended
COPRAS method based on the series of 2TLT-SFPWA and
2TLT-SFPWG operators to build the ranking procedure.

To solve the group decision-making problem, we choose
a set of m alternatives {A1, Ap,..., A,;} and a set of n
attributes {Q1, O, ..., On). Let (w1, wa, ..., wy)T be the
weighting vector of attributes satisfying 0 < w; < 1

n
and ) w; = 1. Suppose {er,ea,...,
j=1
tion of DMs having weights (w1, @2, ..., wg)T, satisfying
0 <o <1and Zle @; = 1. Suppose that the /th expert
has evaluated the alternative A; under Q; and provided the
decision matrices with 2TLT-SFNs, R! = (rl.[j)mxn (=

eg} is the collec-
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1,2,...,8), wherer ((salj,gu) (sb” W,/) (Sw,wu))
0 < A~ l(salj,gl/) <k 0 < A l(sbl/ w[j) <k 0 <

A7Vt #p) < kand (A7 ()0 1) H(AT (s,,,,, w,,))q+
(A~ ](su,(/)l))q<kql—12 m,j=12,.

The 2TLT SF-COPRAS method is constructed to get the
best choice. The computation steps are described as follows:

Step 1. In this step, we integrate the individual decision
matrices into an aggregated decision matrix R =
(rijJmxn by using (3) of Theorem 1 ((3) of Theorem

8).
rij = 2TLT-SFPWAG] . (r}y, 1, .., r). )
Fij = 2TLT-SFPWGG, (). 1}, ... 7). ®)

We will develop an extended COPRAS method

basedonthe 2TLT — SFPWAG” (2TLT SFPWGG" ),

named 2TLT — SFPWAG; -COPRAS QQTLT —
SFPWGG! g-COPRAS) method to tackle the infor-
mation in the aggregated decision matrix.

Step 2. Utilizing the aggregated decision matrix, we sum the
values of benefit attributes. The sum of the values of
the benefit attributes by using 2TLT — SFPWAGg’ ¢
operator can be computed as follows:

Al s m A1 (s, V’))q " a ,
Pi = ( (;1:111\/,; (( ri K
Alk ﬁ (A G w'))q o ‘
i=1;ieNp k ri !
q
©)
The sum of the values of the benefit attributes by
using 2TLT — SFPWGG;” ¢ Operator can be com-
puted as follows: '
()
i=l:ieNg #i
b )

q

(10)

And then find the score function of P; and P,
Step 3. Similarly, utilizing aggregated decision matrix, we
sum the values of cost attributes. The sum of the
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values of the cost attributes by using 2TLT —
SFPWAGg’ ¢ Operator can be computed as follows:

1
m —1 W\ ¢ @i\ g
aleliz {— (A (}r{a,,g,)> % ’
i=1;ieN¢ i

m AV (s 0 ! %
Ak — ¢ ,
Ri= ( (i:l!:[ENC (( : )r, 4) ))
m A’](.y(.,,q;-)) n B
Alk i
(L (C=))
q
(1D
The sum of the values of the cost attributes by using
2TLT — SFPWGGg’ ¢ Operator can be computed as
follows:
u A*‘m.,g,))" u v
Alk 2 ) g ,
( (il;l:[eNc (( : i g ) ))
wj 1
i Ay ! !
5 Alk(1= 1— (=) g ,
Ri = ( ( i—1;111vc( ( k )r’, Ct) ) )

( 1q2)

And, also find the score function of R; and R,

Step 4. Wedetermine each alternative A; (i = 1,2,...,m)’s
relative significance Q; (Qi). Obviously, the more
important the alternative is, the larger the value of
Q; (Qi). The relative significance Q; (Qi) can be
calculated as

SRumin) 2im S(Ri)
S(Ri) Ly S
Y1 S(R)
SRI YL sty
S(Rumin) YIty S(R))

5 S kmin
S(RHYM, —ém)

Y S(Ri)

S(ki) Z;n:] 5(7léi)

Qi =8P +

=8P+ (13)

O =8P+

=S(P) +

(14)

The Q; (Qi) from Eq. (13) (Eq. (14)) reflects the
satisfaction measure of each alternative.

Step 5. Based on the Q; (Qi), the maximal relative sig-
nificance value C (Ié) can be determined. Utilize
Eq. (15) (Eq. 16) to identify the value of K (K).

K = max Q;. (15)

1<i<m

K = max O;. (16)

1<i<m

Thus, the alternative(s) with the associated maximal
relative significance value is selected among the pos-
sible alternatives.

Step 6. Moreover, calculate the utility degree U ;) of
each alternative utilizing the relative significance
Qi (Q,-). The U; (L?,-) can be determined by using
Eq. (17) (Eq. (18)).

U = (%) % 100%. (17)
U = <%> x 100%. (18)
K

Step 7. Rank the alternatives in the descending order of /;
(U;). Hence, the bigger the value U; (U4;), the higher
is the rank of the alternative A; (i = 1,2, ..., m).

5 The problem enumerate and validity
analysis

In this section, we will provide a problem enumerate and a
validity analysis to verify our proposed methods.

5.1 The problem enumerate

Data mining integrated the concept and technique of databases,
artificial intelligence, machine learning, statistics, and other
areas. It is the methodology of searching into content’s
obscured regularities from unique perspectives for catego-
rizing it into valuable data. This information is collected
and assembled in precise aspects such as data warehouses,
efficient analysis, and data mining algorithms, which help
in decision-making as well as other data requirements and
finally reduce costs and increase earnings. It is one of the
most helpful tool for researchers, businesspeople, and users
which enables them to extract the required information from
massive data sets. The terminology

Knowledge discovery in database also refers to data
mining. The methods concerned with knowledge discov-
ery are data cleansing, data unification, data selection, data
modification, data mining, trend interpretation, and data rep-
resentation. Companies employ such techniques to retrieve
particular knowledge from gigantic databases in order to
deal with business challenges. It mainly transforms unpro-
cessed data into insightful knowledge. It is related to data
science carried out by an individual in a particular context,
with a particular set of data and with a specific goal. Var-
ious services, such as text mining, web mining, audio and
video mining, picture data mining, and social media mining,
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are all part of this process. Simple or advanced software is
used to perform these tasks. Data mining can be outsourced
to have the task done quickly and cheaply. E-commerce is
rapidly gaining ground in business world. If the changeover
is performed appropriately, it opens the door for successful
productivity, digital programs, reduced transaction costs, and
enhanced client relations. Data mining technology is becom-
ing more and more dominant in e-commerce. It has grown
into a specialized area of basic and practical computer sci-
ence study, especially when it comes to e-commerce. It has
rich academic value and therefore will effectively fix numer-
ous practical problems when implemented in e-commerce.
When data mining innovation and e-commerce are merged,
enterprises will be more likely to recognize one’s prod-
uct offerings, make smarter choices, achieve a competitive
edge, and have a wide variety of application opportunities. It
will end up making e-commerce sites more productive and
offer more advantages to companies. Web data mining for
e-commerce can expose a plethora of information that is not
visible to enterprises boost sales which enhances enterprise
customer relationships, enhance site effectiveness, boost sys-
tem performance, and grab a growing amount of customers.
In this research, we will study a variety of the most advanced
techniques and strategies utilized in the disciplines of e-
commerce and data mining. It is obvious that e-commerce
has raised and tends to generate latest research challenges
in a very diverse wide range of data domains and data min-
ing tasks. Here, the COPRAS method is utilized to evaluate
the best data mining task for further research process. In this
research article, we choose five different data mining tasks
as a case study to show which one is more precise and better
than others. A group of three DMs (users) {e1, €2, e3} with
weighting vector (0.24, 0.42, O.34)T were invited to evaluate
the five data mining tasks namely

(1) Classification analysis (C.A);
(2) Regression analysis (R.A);
(3) Sequence analysis (S.A);

(4) Prediction analysis (P.A);
(5) Association analysis (AA).

After careful analysis, these four attributes are preferred for
the evaluation: (1) Optimize enterprise resources (OER); (2)
Manage customer data (MCD); (3) Assess business credit
(ABC); (4) Determine the abnormal events (D.AE) with the
corresponding weight vector (0.13, 0.15, 0.41, 0.3 DT . Here,
OER and ABC are benefit attributes, while MCD and DAE
are cost attributes. Then, the individual evaluation matrices
provided by three DMs (users) e, e> and e3, respectively, are
expressed in the form of 2TLT -SF information withn = 1,
k=28,qg =4,& =04and { = 0.5. Generally, n and ¢
can take any values between zero to infinity. However, in
some special situations, if n takes the value of 0, then the
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2TLT — SFPWAG; ¢ 1s reduced to the 2TLT — SFPWA
operator and thus cannot reduce the uncertainty of data.
Hence, from the application point of view, we generally
advise DMs to take the values of n = 1, ¢ = 4, which can not
only effectively control the uncertainty of 2TL7 -SFNs, but
also simplify the process of calculation. Decision matrices
R = (rl.lj)mx,, given by the DMs ¢;(I = 1,2, 3) are shown
in Tables 1, 2 and 3.

5.2 Decision analysis with

2TLT — SFPWAGE’ g-COPRAS method
In this subsection, we utilize the proposed method to select
the best data mining task. The detailed decision-making pro-
cedure from the extended 2TLT — SFPWAGgY g—COPRAS
method is described as follows:

Step 1. We integrate the individual decision matrices given
by three DMs into an aggregated decision matrix
by using 2TLT — SFPWAGg ¢ operator according
to Eq. (7). The aggregated decision matrix R =
(7ijJmxn 1s given in Table 4.

Step 2. Utilizing the aggregated decision matrix, we sum the
collective values of the benefit attributes from Eq. (9)
and obtain the score functionof P;(i = 1,2,...,5)
for each alternative as shown in Table 5.

Step 3. Similarly, utilizing the aggregated decision matrix,
we sum the collective values of the cost attributes
from Eq. (11) and obtain the score function of
Ri(i = 1,2,...,5) for each alternative as shown
in Table 6.

Step 4. For each alternative, we compute the relative signif-
icance Q; from Eq. (13).

Q1 = 3.8167
3.7744 4+ 3.9760 4 3.6511 + 3.9580 + 3.7713

i 0 i i 0
3.7744 (5773 + 39760 + 36511 T+ 39580 T 37713)
= 7.6913,
Qp = 3.9715
3.7744 4+ 3.9760 + 3.6511 4+ 3.9580 + 3.7713
I 0 i I I
3.9760 (57723 + 39760 + 36511 T+ 39580 T 37713)
= 7.6496,
Q3 = 3.8220
3.7744 4+ 3.9760 + 3.6511 4+ 3.9580 + 3.7713
i l i i 0
3.6511 (3773 + 33760 + 76511 T+ 39590 + 377T3)
= 7.8274,
Q4 = 3.9864
3.7744 4+ 3.9760 + 3.6511 + 3.9580 + 3.7713
i i i i 0
3.9580 (57725 + 39760 T 36511 T+ 39580 T 37713)
= 7.6813,
Qs = 3.7827
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Table 1 2-Tuple linguistic 7'-spherical fuzzy decision matrix given by e

OER MCD ABC DAE
CA ((s2,0), (54,0, (52, 0)) ((s3,0), (52,0, (56, 0)) ((s4,0), (54,0, (s5,0)) ((s3,0), (s6, 0), (56, 0))
RA ((s5,0), (52, 0), (52, 0)) ((s6, 0), (54, 0), (52, 0)) ((s3,0), (53,0), (55, 0)) ((s4,0), (51,0, (52, 0))
SA ((s6, 0), (53,0), (54, 0)) ((s4,0), (54,0), (53, 0)) ((s5,0), (54,0, (53, 0)) ((s3,0), (55, 0), (55, 0))
PA ((s5, 0, (55,0), (52, 0)) ((s4,0), (53,0, (s1,0)) ((s6, 0), (54, 0), (52, 0)) ((s7,0), (52,0, (52, 0))
AA ((s7,0), (53,0), (52, 0)) ((s5,0), (54,0), (s3,0)) ((s6, 0), (53,0), (53, 0)) ((s6, 0), (52,0, (53, 0))
Table 2 2-Tuple linguistic T-spherical fuzzy decision matrix given by e

OER MCD ABC DAE
CA ((s3,0), (54,0, (52, 0)) ((ss, 0), (53,0, (52, 0)) ((s3,0), (55,0, (52, 0)) ((s7,0), (53,0, (51,0))
RA ((s5,0), (53,0, (54, 0)) ((s4,0), (53,0, (52, 0)) ((s7,0), (52,0, (s1,0)) ((s5,0), (56, 0), (s1,0))
SA ((ss, 0), (52,0, (s1,0)) ((s7,0), (51,0, (s3,0)) ((s6, 0), (53,0, (54, 0)) ((s6, 0), (52, 0), (s3,0))
PA ((s7,0), (52,0), (s3,0)) ((s5,0), (52,0), (s4,0)) ((s4,0), (55, 0), (52, 0)) ((s4,0), (56, 0), (51, 0))
AA ((s4,0), (55, 0), (s3,0)) ((s6, 0), (54, 0), (s3,0)) ((s5,0), (54,0, (53,0)) ((s3,0), (56, 0), (52, 0))
Table 3 2-Tuple linguistic T-spherical fuzzy decision matrix given by e3

OER MCD ABC DAE
CA ((s6,0), (51, 0), (52, 0)) ((s4, 0), (s6, 0), (52, 0)) ((s2,0), (53,0, (54, 0)) ((s3,0), (54, 0), (56, 0))
RA ((54,0), (55,0), (52, 0)) ((s3,0), (55,0, (53, 0)) ((s5,0), (52,0, (s3,0)) ((s7,0), (53,0, (51,0))
SA ((s3,0), (57,0, (51, 0)) ((s2,0), (57,0, (53, 0)) ((s4,0), (52,0, (s5,0)) ((s2,0), (57, 0), (s3,0))
PA ((ss, 0), (54, 0), (53, 0)) ((s7,0), (53,0, (s1,0)) ((s2,0), (s6, 0), (51, 0)) ((s3,0), (54, 0), (52, 0))
AA ((s5,0), (53,0, (54, 0)) ((s2,0), (53,0, (56, 0)) ((s6, 0), (s1,0), (s5,0)) ((s5,0), (54, 0), (52, 0))

3.7744 + 3.9760 4 3.6511 + 3.9580 + 3.7713

i I I i I
37713 (5775 + 39760 + 36511 T+ 39590 + 3773)
= 7.6605.

Step 5. Based on the Q;, we identify the maximum relative
significance K utilizing Eq. (15). The value of I is
given as

K =17.8274.

Step 6. Now, we calculate the utility degree U; of each alter-
native by using Eq. (17) as follows:

u = (2913 009 = 98,069
=\ 78074 ) < TV TS
7.6496
U = (22220 « 100% = 97.72%,
78274
78274
Uy = (22222 % 100% = 100%,
78274
7.6813
= % 100% = 98.13%,
78274
7.6605
(= % 100% = 97.86%.
78274

Step 7. Based on the utility degree U; (i = 1,2,...,5), we
rank the alternatives in the descending order as

SA>~CA>PA>=AA>RA
. So, S A is the best choice.

5.3 Decision analysis with

2TLT - SFPWGGE, g-COPRAS method
In this subsection, we utilize the proposed method to select
the best data mining task. The detailed decision-making pro-
cedure from the extended 2TLT — SFPWGGY .~COPRAS
method is described as follows:

Step 1. We integrate the individual decision matrices given
by three DMs into an aggregated decision matrix
by using 2TLT — SFPWGGg’ ¢ operator according

to Eq. (8). The aggregated decision matrix R
(7ij)mxn is given in Table 7.

Utilizing the aggregated decision matrix, we sum
the collective values of the benefit attributes from

Step 2.
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Table4 Aggregated decision matrix by 2TLT — SFPWAG} ¢ operator

OER MCD

cA ((s4, —0.2457), (52, 0.0994), (52, —0.3182)) ((s4, 0.0414), (53, —0.1030), (52, 0.1892))

RA ((s4, —0.2373), (53, —0.2771), (s2, 0.2501)) ((s4, —0.3200), (53, 0.2157), (52, —0.0696))

SA ((s4, 0.3560), (53, —0.1620), (51, 0.1728)) ((s5, —=0.3716), (52, 0.2728), (53, —0.4773))

PA ((s5, 0.0529), (53, —0.3477), (52, 0.2888)) ((s5, —0.3306), (52, 0.1277), (52, —0.4948))

AA ((s4, 0.4022), (53, 0.1264), (53, —0.4760)) ((s4, 0.1137), (53, 0.0502), (53, 0.1931))
ABC DAE

cA ((s3, —0.4769), (3, 0.3499), (s3, —0.3477)) ((s5, —0.3901), (3, 0.2854), (52, 0.3772))

RA ((s5, —0.2266), (52, —0.1463), (s2, —0.2023)) ((s5, —0.3306), (53, —0.4071), (51, —0.0069))

SA ((s4,0.2196), (52, 0.3549), (s3, 0.3866)) ((s4, —0.0817), (s3, 0.2082), (53, —0.1483))

PA ((s4, —0.3633), (54, 0.2401), (51, 0.3287)) ((s4, 0.1800), (53, 0.3769), (s1, 0.2570))

AA ((s4, 0.4944), (52, —0.0406), (s3, 0.0012)) ((s4, —0.1150), (s3, 0.3769), (52, —0.1463))

Table 5 Sum up values and

score functions of benefit type Alternative Sum up values (P;) Scores (S(P;))
attributes by CA 0.0322), (s4, 0.2847), (s4, —0.2172 3.8167
2TLT — SFPWAG} , operator (52, 0. )» (54, 0. )» (54, )
4 RA ((s3,0.1362), (s3, 0.4772), (53, 0.3497)) 39715
SA ((s3, —0.0947), (s4, —0.1436), (s4, —0.0099)) 3.8220
PA ((s3, —0.1775), (s5, —0.1351), (s3, —0.0342)) 3.9864
AA ((s3,0.0562), (s4, —0.3783), (s4, 0.1951)) 3.7827
Table 6 Su.m up values and Alternative Sum up values (R;) Scores (S(R;))
score functions of cost type
attributes by CA ((s3. —0.0786), (s5, —0.1862), (s4. 0.1752)) 3.7744
2TLT — SFPWAGY . operator
’ RA ((s3, —0.0988), (s5, —0.4562), (s3, 0.1258)) 3.9760
SA ((s3, —0.2483), (s5, —0.3924), (s5, —0.4876)) 3.6511
PA ((s3, —0.1381), (s5, —0.3647), (s3, 0.2395)) 3.9580
AA ((s3, —0.3994), (s5, —0.1074), (s4, 0.0905)) 3.7713

Eq. (10) and obtain the score function of 75,-(1' =
1,2,...,5) for each alternative as shown in Table 8.

Q3 = 4.4881

4.4836 4 4.6820 + 4.3876 + 4.5919 + 4.4880

Step 3. Similarly, utilizing the aggregated decision matrix, 4.3876 ( 4'41836 + 4.&;20 + 4.31876 + 4‘51919 + 4_41880)
we sum the collective values of the cost attributes = 9.1558,
from Eq. (12) and obtain the score function of O, = 43278
Ri(i = 1,2,...,5) for each alternative as shown 4.4836 + 4.6820 + 4.3876 + 4.5919 + 4.4880
i 1 1 1 1 1
in Table 9. ] S 4.5919 (37555 + 7o520 + 1357 T 15919 T 738%0)
Step 4. For each alternative, we compute the relative signif- = 8.7879,
icance Qi from Eq (14) QS — 4.6053
4.4836 + 4.6820 + 4.3876 + 4.5919 + 4.4880
4 1 1 1 1 1
Q1 = 4.1462 4.4880 (355 + 7o520 T 73876 T 35979 + 7a8%0)
4.4836 + 4.6820 + 4.3876 + 4.5919 + 4.4880 = 9.1686.
1 1 1 1 1
4.4836 (57535 + 7o520 T+ 1357 T 15919 T 738%0) .
= 8.7140, Step 5. Based on the Q;, we identify the maximum relative
9, = 45120 significance K utilizing Eq. (16). The value of K is

4.4836 + 4.6820 + 4.3876 + 4.5919 4 4.4880

given as

i i T T i
4.6820 (7753 + 75820 + 23876 + 75919 T 7a8%0)

= 8.8862,
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Table7 Aggregated decision matrix by2TLT — SFPWGG , operator

OER MCD
cA ((s3, —=0.2602), (53, 0.0373), (52, —0.3182)) ((s4, —0.4800), (s4, —0.0203), (s4, —0.3802))
RA ((s4, —0.3142), (53, 0.3604), (53, —0.2304)) ((s3,0.1795), (54, —0.4671), (52, 0.0900))
SA ((s4, —=0.2302), (55, —0.3506), (52, 0.3685)) ((s3,0.1791), (55, —0.3109), (53, —0.4773))
PA ((s5, —0.1272), (53, 0.3349), (52, 0.3917)) ((s4,0.2258), (52, 0.2770), (53, —0.2824))
AA ((s4, —0.0749), (s4, —0.4600), (s3, —0.1855)) ((s3,0.1437), (53, 0.1501), (s4, 0.0086))
ABC DAE
cA (52, 0.2272), (s4, —0.3494), (53, 0.3349)) ((s3, 0.4055), (s4, —0.1303), (54, 0.4426))
RA ((s4, 0.0515), (52, —0.0055), (53, 0.0889)) ((s4, 0.2258), (54, 0.1575), (s1, 0.2317))
SA ((s4, —0.0208), (s3, —0.3314), (s4, —0.3826)) ((s3, —0.2190), (s5, —0.2081), (53, 0.2201))
PA ((s3, —0.2300), (54, 0.4381), (52, —0.4720)) ((s3, 0.2993), (54, 0.2572), (51, 0.4841))
AA ((s4, 0.4199), (53, —0.1710), (53, 0.4093)) (53, 0.3521), (54, 0.2572), (52, —0.0055))

Table 8 Sum up values and
score functions of benefit type
attributes by

2TLT — SFPWGGY , operator

Table9 Sum up values and
score functions of cost type
attributes by

2TLT — SFPWGGY}, ¢ operator

Table 10 Relative significance
and ranking results according to
the parameter g by

2TLT — SFPWAG'E‘I—COPRAS
method

Alternative Sum up values (751‘) Scores (S (75i))
CA ((s4, —0.3593), (s3, —0.4520), (52, 0.2578)) 4.1462

RA ((s5, —0.1642), (52, —0.1551), (52, 0.1790)) 4.5120

SA ((ss, —0.1857), (s3, —0.4620), (52, 0.4722)) 4.4881

PA ((s4,0.2907), (s3, 0.0681), (51, 0.3424)) 4.3278

AA ((s5,0.0526), (52, 0.1999), (52, 0.3765)) 4.6053
Alternative Sum up values (7%,-) Scores (S (7%,-))
CA ((s5, —0.1150), (s3, —0.2893), (53, —0.0651)) 4.4836

RA ((s5,0.1439), (s3, —0.2338), (51, 0.1565)) 4.6820

SA ((ss5, —0.4819), (s3,0.3101), (s2,0.1087)) 4.3876

PA ((s5, —0.0283), (s3, —0.2939), (51, 0.4843)) 4.5919

AA ((s5, —0.22006), (s3, —0.2289), (52, 0.1675)) 4.4880
Parameter Q Q Q3 Q4 Qs Ranking

qg=1 5.9012 5.8853 6.1764 6.0028 5.9572 SA>PA> AA>CA > RA
q=2 6.8913 6.8459 7.1538 6.9435 6.8983 SA>PA> AA>CA > RA
q=3 7.4166 6.8565 7.6132 7.4261 7.3943 SA>PA>CA>AA>TRA
q=4 7.6913 7.6496 7.8274 7.6813 7.6605 SA>CA>PA> AA>TRA
q=>5 7.8348 7.8048 7.9262 7.8200 7.8063 SA>CA>PA>AA>TRA

Table 11 Relative significance and ranking results according to the parameter ¢ by 2TLT — SFPWGG’E’_ .~COPRAS method

Parameter Ql Qz Q3 Q4 Q5 Ranking

g=1 10.4765 10.4493 10.8019 10.5482 10.7530 SA>AA>PA>CA>RA
qg=2 9.6963 9.8394 10.1901 9.8014 10.1709 SA>AA>RA>PA>CA
qg=3 9.1051 9.2962 9.6100 9.2019 9.6118 AA>SA>RA>PA>CA
qg=4 8.7140 8.8862 9.1558 8.7879 9.1686 AA>SA>RA>PA>CA
qg=>5 8.4632 8.5963 8.8201 8.5139 8.8379 AA>SA>RA>PA>CA
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Step 6. Now, we calculate the utility degree Z],- of each alter-
native by using Eq. (18) as follows:
. 8.7140
=— 1 =95.04
U (9.1686) x 100% = 95.04%,
b= (38892 1000 = 96.929 -
>~ \ 9.1686 0= IR =2
. 9.1558 ——q=3
3 = x 100% = 99.86%,
9.1686 —eq=4
- 8.7879 _)'@qzs
= 1 = 95.84
n (9.1686) x 100% = 95.84%,
. 9.1686
Us (9.1686) x 100% 00%

Step 7. Based on the utility degree L?i (i =12,...,5),
we rank the alternatives in the descending order as
AA > SA = RA = PA = CA. So, AA is the best

choice.

5.4 Analyzing the influence of parameters on
ranking results

In this subsection, we examine the influence of parameters on
the ranking results of the proposed method. In this approach,
n and g are two parameters, different parameter values
show different risk preference attitudes of DMs in solVing
MAGDM problems. The proposed 2TLT — SFPWAG"
COPRAS (2TLT — SFPWGG? g-COPRAS) is a technlque
that enables DMs to expand thelr decision evaluation space
based on the parameters ¢ and n. The main characteristic of
our proposed operator(s) is not only the effective control of
the degree of uncertainty of 2TLT -SFS but also the efficient
and powerful model of practical decision-making problems
for additional parameters.

5.4.1 Influence of the parameter g

To show the influence of parameter on ranking results, we
utilize different values of parameter g to rank the alterna-
tives by the proposed 2TLT — SFPWAGg, ¢ -COPRAS and
2TLT — SFPWGGE” ¢“COPRAS methods. It can be seen in
Tables 10 and 11 and Figs. 1 and 2, there is difference in
the ranking results when parameter changes. The parameter
q is very important and has major impact on the decision
results. Influence of the parameter g on the relative signif-
icance and ranking results is explained by taking the fixed
value of parameter n (n = 1).

5.4.2 Influence of the parameter n

In practical MAGDM problems, the value of n can be seen
as the DM’s attitude parameter toward optimism and pes-

@ Springer

Fig. 1 Ranking results A;(i = 1,2,3,4,5) whenn = 1 and g =
1,2, 3,4, 5 based on the 2TLT — SFPWAGg, C—COPRAS method

Fig. 2 Ranking results A;(i = 1,2,3,4,5) whenn = 1 and g =
1,2, 3,4, 5 based on the 2TLT — SFPWGGg’, g—COPRAS method

simism. If DMs are cautious about their decisions, then n
should be given higher priority, and when decisions are uncer-
tain, lower value of n is taken by DMs. By assigning different
values to parameter 2, we analyze the influence of the param-
eter n on relative significance and ranking results by taking
fixed value of ¢ (¢ = 4). We can see in Tables 12 and 13
and Figs.3 and 4, different ranking results are derived by
different values of n in the 2TLT — SFPWAG" .~COPRAS
and 2TLT — SFPWGG? £..~COPRAS methods Wthh also
demonstrates the elastlclty of our proposed methods.

5.5 Validity analysis of the developed method

For further illustration of the effectiveness and advantages
of the proposed method in this paper, we compare it with
the other methods. Detailed evaluation results gained by
using different MAGDM methods are given in Table 14, in
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Table 12 Relative significance

and ranking results according to Parameter < & s & s Ranking
e B Y copras "= ! 76913 7.6496  7.8274  7.6813  7.6605 SA>CA>PA> AA> RA
method §¢7 n=2 7.7618  7.7010  7.8385  7.7319  7.7119 SA>CA>PA>AA>RA
n=3 7.8237  7.7664  7.8710  7.7916  7.7778 SA>~CA>PA>AA>RA
n=4 7.8722  7.8247 79035  7.8437  7.8358 SA>~CA>PA~AA>RA
n=>5 79083  7.8710  7.9301  7.8849  7.8812 SA>~CA>PA~AA>RA
et RSt e 6 & & 6 & wwm
the parameter n by _
" n=1 8.7140  8.8862  9.1558  8.7879  9.1686 AA>SA>RA>PA>CA
ili%hic; STPWGGE (COPRAS n=2 8.4608  8.5667  8.7440  8.5091  8.7467 AA>SA>RA>PA>CA
n=3 8.2978  8.3618  8.4781  8.3284  8.4765 SA>AA>RA>PA>CA
n=4 8.1924 82307 83071 82116  8.3041 SA>AA>PA>AA>CA
n=>5 8.1245  8.1470  8.1972  8.1363  8.1939 SA>AA>RA>PA>CA

—=n=|

n=2
—A—-n=3
=>=n=4
=¥=n=5

Fig. 3 Ranking results A;(i = 1,2,3,4,5) when ¢ = 4 and n =
1,2,3,4, 5 based on the 2TLT — SFPWAGgJ—COPRAS method

——n=|

n=2
—A—-n=3
=>=n=4
=¥=n=5

Fig. 4 Ranking results A;(i = 1,2,3,4,5) when g = 4 and n =
1,2,3,4, 5 based on the 2TLT — SFPWGGgY {-COPRAS method

which we used linguistic picture fuzzy point weighted aver-
age COPRAS (LPFPWA-COPRAS), linguistic picture fuzzy
point weighted geometric COPRAS (LPFPWG-COPRAS),
linguistic spherical fuzzy point weighted average COPRAS

(LSFPWA-COPRAS), linguistic spherical fuzzy point weighted

geometric COPRAS (LSFPWG-COPRAS), 2-tuple linguis-
tic T-spherical fuzzy point weighted average COPRAS
QTLT — SFPWAG’S” g-COPRAS), and 2-tuple linguistic 7'-
spherical fuzzy point weighted geometric COPRAS (2TLT —
SFPWGGg, ¢~COPRAS) methods.

To explain the effectiveness of the proposed method in
modeling fuzzy information, we present the characteristics
of the proposed operators. We can see that the ranking results
of the above methods are slightly different; however, the best
alternative is SA or AA. This verifies that the developed
2TLT — SFPWAGg’ ¢-COPRAS and 2TLT — SFPWGG; ¢"
COPRAS methods are reasonable and useful for MAGDM
problems with 2TLT-SFNs and provide the powerful infor-
mation in MAGDM.

(1) From the aspect of data articulation, it is obvious that the
valuable feature of our techniques is that they provide a
diverse range of applications since they not only tackle
problems that the existing methods can but also handle a
few more circumstances that they are incapable to handle.
The method proposed in this work is a very efficient tool
for solving aggregated decision-making problems in the
dynamic decision-making today’s environment.

(2) Some commonly utilized weighted aggregation oper-
ators, including 2TL7T-SFWA and 2TLT-SFWG, are
special examples of the proposed operators when n = 0.
As a result, compared to all of those presented in the
latest research, our approaches are more comprehensive
and versatile. Furthermore, based on the parameters, the
proposed operators can include almost all of the geomet-
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Table 14 Comparison of decision results by utilizing different methods

Ranking

Relative significance of alternatives

Parameters

Methods

SA>PA> AA>~CA>RA

59012 5.8853 6.1764 6.0028 5.9572

10.4765

g=1n=1

LPFPWA-COPRAS

SA> AA>PA>=CA>RA

10.4493 10.8019 10.5482 10.7530

g=1,n=1

LPFPWG-COPRAS

SA>PA>AA>~CA>RA

6.8913 6.8459 7.1538 6.9435 6.8983

9.6963 9.8394 10.1901

g=2,n=1

LSFPWA-COPRAS

SA>AA>RA>PA>CA

10.1709

9.8014

g=2,n=1

LSFPWG-COPRAS

SA>CA>PA> AA>TRA
AA > SA>RA>PA>CA

7.6913 7.6496 7.8274 7.6813 7.6605
8.7140 8.8862 9.1558 8.7879 9.1686

4,n=1

2TLT — SFPWAGg’, .~COPRAS
2TLT — SFPWGGg’C—COPRAS

g=4n=1

ric and arithmetic aggregation operators for 2TLIFNs,
2TLPyFNs, and 2TLg-ROFNSs. As a result, the proposed
method is more efficient and general.

(3) To reflect either positive or negative perspectives, DMs
can employ the appropriate point weighted aggregation
operators from the perspective of actual needs. In addition
to the other operators, our techniques also take into con-
sideration other aspects that indicate the DM’s interests,
enabling them to choose different aspects in accordance
with their risk preferences.

5.6 Advantages of the proposed work

Different aggregation operators have different functions, and
the DMs can choose suitable aggregation operators accord-
ing to the real decision-making environment. Our extended
method therefore has some benefits and superiorities when
compared to other methods. The merits of our developed
approach are summarized as follows:

e Proposed methods are preferable to others because
they effectively handle the redistribution of the multi-
input arguments. Moreover, they have monotonicity with
respect to the parameter n and can effect the risk attitude
of the DMs. Thus, we can conclude that the proposed
methods are significantly strong and have more compre-
hensive applications. The 2TLT -SFS can tackle practical
problems both quantitatively and qualitatively. There-
fore, proposed approach is clear and has less loss of data.

e 2TLT —SFPWAGg”g -COPRAS and 2TLT —SFPWGG'S”
COPRAS methods can provide more versatile and robust
information fusion and make it more feasible to tackle
MAGDM problems. From the point view of aggregation
operators, we note that the existing methods are only
based on the original information, and thus cannot control
the uncertainty degree, while our method can redistribute
the MD, AD and NMD in 2TLT-SFNs according to dif-
ferent principles and thus can get more intensive and
objective information from the original 2TLT -SFS.

e Proposed methods consider both the benefit attributes and
the cost attributes which provide more precise informa-
tion compared with simply handling benefit attributes or
cost attributes. Also, it increases the success rate of given
data and the precision of decision results as well.

6 Conclusions

In this article, we covered some commonly used data min-
ing tasks as well as some applications of these tasks toward
e-commerce utilizing the 2TLT-SFS which increases the
range for assigning MD, AD and NMD. The 2-tuple lin-
guistic term can best describe the information given by the
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DMs. Some novel 2TLT-SF point weighted aggregation
operators, such as 2TLT-SFPWA operator, 2TLT-SFPWG
operator, 2TLT-SFGPWA operator and 2TLT-SFGPWG
operator, have been put forward for aggregating 2TLT -SFNs.
As COPRAS method interprets the ratio to the worst and the
best results, therefore, an extended 2TLT -SF point weighted
COPRAS method for MAGDM under the 2TLT-SF envi-
ronment was proposed. Subsequently, a novel approach to
MAGDM based on 2TLT — SFPWAG" -COPRAS method
and 2TLT — SFPWGG" -COPRAS method has been pre-
sented under 2TLT-SF c1rcumstances Further, a numerical
instance related to the data mining tasks toward e-commerce
has been presented to demonstrate the validity of the set for-
ward concepts in MAGDM. Comparison analysis has been
conducted, and the superiorities have been illustrated. As
we have observed, q and n parameters of the aggregation
operator also influence the rankings of the alternative. In
addition to accommodating 2TLT -SFNs, the 2TLT -SFPWA
and 2TLT-SFPWG operators have been distinguished from
other operators by including the redistribution phenomenon
among their attributes. In future, by utilizing point opera-
tors along with different applications of data mining such as
artificial intelligence, science and engineering, automation,
dynamic pricing, transportation, loan payment prediction,
targeted marketing, financial crimes detection and many
more will be extended to (1) 2-tuple linguistic complex
interval-valued T-spherical fuzzy sets; (2) 2-tuple linguis-
tic complex simplified interval-valued T-spherical fuzzy
sets; and (3) 2-tuple linguistic complex hesitant 7'-spherical
fuzzy sets. Although e-commerce is an ideal application,
exploratory research is still required to enhance the market-
ing strategies of data mining, therefore, it is expected to be
as famous and trendy as other relevant technologies in future
study of decision-making.
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