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Abstract
Game theory has found significant applications in a wide range of fields to deal with competitive environments between indi-
viduals or organizations. The researchers investigated several augmentations of ordinary game theory to deal with uncertainty
and ambiguity in payoffs and goals. However, the quantifiable parts of the problems have been studied in matrix games with
payoffs expressed by interval numbers, fuzzy numbers, and intuitionistic fuzzy numbers. In several situations, qualitative
information is critical in describing the payoffs of a game problem. Experts frequently prefer expressing their perspective in
natural linguistic terms rather than numerical values in real-life decision-making challenges. This linguistic representation
has been utilized to resolve plenty of decision-making problems. This paper explores the theory of matrix games under a
qualitative information environment. We use linguistic interval-valued intuitionistic fuzzy numbers (LIVIFNs) to describe the
payoff values as suggested by experts. The LIVIFNs are more efficient tools that provide experts with a flexible information
modeling capability to describe their ambiguous and uncertain perceptions in the form of linguistic terms. The solution of
this class of matrix games is attained by resolving a duo of linear or nonlinear programming problems originating through
nonlinear bi-objective programming problems. Finally, a numerical example is presented to demonstrate the applicability of
the suggested approach.
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1 Introduction

Zadeh (1965) defined the notion of fuzzy sets (FSs) by intro-
ducing a membership degree to each element of the set,
which only expresses the degree of affinity to the FS under
consideration. Atanassov (1986) gave the theory of intu-
itionistic fuzzy sets (IFSs) as a generalization of FSs for
more effectively representing uncertain and vague concepts.
A prominent characteristic of an IFS is that it assigns to each
element a membership degree (MD) and a non-membership
(NMD)with their summation value bounded by 1. In the past
decades, FSs and IFSs have been extensively utilized to solve
many real-life problems associated with different areas such
as (Verma and Sharma 2014, 2015; Garg 2017; Zhang et al.
2017), to name a few.

Atanassov (1994) further generalized the theory of
IFSs and proposed interval-valued intuitionistic fuzzy sets
(IVIFSs) to provide more flexibility to the decision-makers
(DMs) in expressing their membership degree (MD) and
non-membership degree (NMD). An IVIFS specifies MD
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and NMD using interval numbers and offers a more logical
theoretical formulation to convey unclear and vague informa-
tion more efficiently. The IVIFSs have been widely studied
by researchers and presented many valuable results, includ-
ing aggregation operators (Garg 2018; Liu and Wang 2018)
, entropy & divergence measures (Meng and Chen 2015;
Wei et al. 2019; Mishra et al. 2020), distance & similar-
ity measures (Düğenci 2016; Liu et al. 2017; Liu and Jiang
2020; Verma and Merigó 2020), possibility measures Garg
and Kumar (2020b), and applications (Yx et al. 2018; Liu
et al. 2020; Jeevaraj 2020; Li et al. 2021).

Real-life decision-making scenarios are more unpre-
dictable and ambiguous. Also, due to their qualitative nature,
many attributes/criteria cannot be evaluated using numer-
ical values. It is more convenient for decision-makers to
use linguistic variables (LVs) to denote their preference
information. Zadeh (1975) firstly introduced the notion of
LVs to express imprecise or ambiguous facts effectively.
Many researchers have explored LVs to solve many complex
decision-making challenges, (Herrera and Herrera-Viedma
2000; Chen et al. 2015; Meng et al. 2019; Zhang et al. 2021;
Zhu and Zhao 2022), as the linguistic information process
does not result in information degrading ormisconception. In
the literature, various extended linguistic models have been
proposed to deal with qualitative information, such as uncer-
tain linguistic variables (Xu 2006), triangular fuzzy linguistic
variables (Xu 2007), trapezoidal fuzzy linguistic variables
(Xu 2005), 2-dimensional linguistic variables (Zhu et al.
2009), and explored their application in awide range of areas.

Zhang (2014) developed the idea of linguistic intuition-
istic fuzzy sets (LIFSs) by integrating the advantages of
IFSs and LVs into a single model, which provides an abil-
ity for the DMs to represent the MD and NMD in terms of
LVs. Chen et al. (2015) developed a multiple attribute group
decision-making (MAGDM) approach under a linguistic
intuitionistic fuzzy environment. Liu and Qin (2017b) pro-
posed some power average (PA) operators for dealing with
multi-attribute decisionmaking (MADM) problemswith lin-
guistic intuitionistic fuzzy numbers (LIFNs). Later, Liu and
Qin (2017a) studiedMaclaurin symmetricmeanoperators for
LIFNs.Hyet al. (2017) developed anoutranking approach for
multi-criteria decision-making under a linguistic intuitionis-
tic fuzzy environment. Tang and Meng (2019) formulated
linguistic intuitionistic fuzzy Hamacher aggregation opera-
tors for solving decision-making problems. Garg and Kumar
(2019b) utilized set pair analysis to introduce linguistic intu-
itionistic fuzzy PAoperators.Meng et al. (2019) proposed the
theory of linguistic intuitionistic fuzzy preference relations
with applications. Some prioritized aggregation operators
with LIFNs were studied by Arora and Garg (2019). Liu
et al. (2020) developed a novel MAGDM method based on
Dempster–Shafer evidence theory with LIFNs. Cheng et al.
(2021) proposed a novel linguistic intuitionistic fuzzy dis-

tance measure for dealing with MADM problems. Meng and
Dong (2022) extended the PROMETHEE method under a
linguistic intuitionistic fuzzy environment . Verma (2020)
proposed the notion of linguistic trapezoidal fuzzy intuition-
istic fuzzy sets (LTFIFSs) for solving MAGDM problems.
Verma and Merigó (2020) recently introduced a more flex-
ible information representation model called 2-dimensional
linguistic intuitionistic fuzzy sets for dealing with MAGDM
problems with qualitative information.

A further generation of LIFS theory was proposed by
Garg and Kumar (2019a), which is called linguistic interval-
valued intuitionistic fuzzy sets (LIVIFSs). It provides more
flexibility to the DMs in expressing the MD and NMD
regarding the evaluated object/attribute. Garg and Kumar
(2020a) introduced a new possibility measure for ranking
linguistic interval-valued intuitionistic fuzzy numbers (LIV-
IFNs). Zhu et al. (2020) proposed aggregation operators for
LIVIFNs based on Hamacher t-norms. Qin et al. (2022)
introduced some Archimedean prioritized aggregation oper-
ators for dealing MCDM with LIVIFNs. Xu et al. (2021)
discussed some copula power aggregation operators under
a linguistic interval-valued intuitionistic fuzzy environment.
Mohammadi et al. (2021) formulatedmulti-criteria decision-
making models with linguistic interval-valued intuitionistic
fuzzy information.

Game theory is a powerful analytical tool for dealing
with day-to-day problems. In some aspects, this is the study
of strategy or the optimal decision-making of independent
and opposing actors/players in a strategic situation. In 1940,
Neumann and Morgenstern (1944) were two of the most
important architects of game theory. Many researchers have
explored game theory extensively, taking into account a few
(Collins and Hu 2008; Kalpiński and Tamošaitiene, 2010;
Madani 2010; Sanchez-Soranio 2013). However, in real-
life situations, we encounter uncertainty or ambiguity in
the information about a problem, thus, motivating the study
of fuzzy game theory. Butnariu (1978) and Aubin (1981)
were the first to investigate the fuzzy game theory. Campos
(1989) mainly explained the solution procedures for matrix
games with fuzzy payoffs, whereas Sakawa and Nishizaki
(1994) investigated zero-sum fuzzymatrix gameswithmulti-
objectives. Bector et al. (2004) resolved the matrix games
involving fuzzy goals utilizing the fuzzy linear programming
technique. Furthermore, Bector et al. (2004) established the
duality results for linear programming problems with fuzzy
variables and employed these to define the solution procedure
of zero-sum matrix games involving payoffs expressed by
fuzzy numbers. Vijay et al. (2007) used an extensive duality
notion to develop the generalized representation to exam-
ine matrix games with fuzzy goals and payoffs using the
fuzzy relation technique.Li (2012) investigatedmatrix games
involving triangular fuzzy payoffs. Jana and Roy (2018)
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recently explained the matrix game solution approach incor-
porating generalized trapezoidal fuzzy payoffs.

Atanassov (1995) pioneered the comprehensive analy-
sis of matrix games involving payoffs described by IFSs.
Li and Nan (2009) suggested the nonlinear programming
technique for deriving the solution of matrix games having
IFSs payoffs. (Aggarwal et al. 2012a, b) extended the fuzzy
duality results of (Bector et al. 2004; Vijay et al. 2005) to
deal with matrix games with intuitionistic fuzzy payoffs and
goals. Khan et al. (2017) introduced a technique to resolve
indeterminacy frommatrix games having intuitionistic fuzzy
goals. Naqvi et al. (2021) outlined a novel Tanaka and Asai’s
technique to explain the solution procedure for intuitionistic
fuzzy matrix games. Xing and Qiu (2019) also contributed to
intuitionistic fuzzy matrix games by adopting a linear accu-
racy function to resolve the solution of matrix games where
the payoffs involved are triangular IFNs. Several initiatives to
discover solutions for intuitionistic fuzzy matrix games have
been conducted so far, (Khan et al. 2016;Bhaumik et al. 2017;
Nan et al. 2017), to mention only some. Li (2010) developed
a solution approach to matrix games with payoffs denoted
by IVIFSs. Xia (2018) utilized Archimedean t-conorm and
t-norm to formulate a generalized method for dealing with
matrix games under an IVIF information environment.

Firstly, Arfi (2006) presented a study on matrix games
based on linguistic fuzzy logic. Singh et al. (2018) stud-
ied a zero-sum matrix game with 2-tuple linguistic payoffs
and formulated a solution process for it. Further, Verma and
Aggarwal (2021a) developed some optimization models for
solving matrix games with payoffs represented by LIFNs.
Singh and Gupta (2018) discussed matrix game problems
with LIVIFNs. Later, Verma and Aggarwal (2021b) general-
ized the work of Singh et al. (2018) and studiedmatrix games
under a 2-tuple linguistic intuitionistic fuzzy environment.

1.1 Motivations of the present study

The following are the key motivations for the present study :

• LIVIFS theory, developed by Garg and Kumar (2019a),
extends the concepts of LVs, uncertain linguistic vari-
ables (UAVs), and LIFS theory. So, it has wider applica-
bility in different areas.

• LIVFNs providemore freedom and flexibility to theDMs
in representing their MD and NMD in terms of interval
linguistic numbers.

• Up to now, there has been no study on matrix games
with payoffs denoted by LIVIFNs. Thus, this work will
contribute to developing the basic concepts and solution
procedures for such a class of matrix games.

• The existing optimization models (Li and Nan 2009; Li
2010; Xia 2018; Verma and Aggarwal 2021a) cannot be
used to solve matrix games under a linguistic interval-

valued intuitionistic fuzzy environment. Therefore, it is
necessary to formulate new optimization models for effi-
ciently handling matrix game problems with LIVIFN
payoffs.

1.2 Contributions of this work

The main contributions of this work are summarized in the
following.

• The basic concepts, definitions, and mathematical for-
mulations are introduced for matrix games with payoffs
represented by LIVIFNs.

• Linear/nonlinear programming optimization models are
designed to deal with such a class of matrix games.

• The mixed strategies are also obtained corresponding to
both the players with the value of the game.

• A real-life competitive decision problem is considered to
show the application of the presented work.

• Finally, a comparative study with previous methods is
also presented to illustrate the effectiveness of the devel-
oped optimization models.

The remaining part of the paper is structured as follows:
Sect. 2 describes some basic concepts and definitions related
to IFS, IVIFS, LVs, LIFSs, and LIVIFSs. Section 3 presents
themathematical formulation and solution process formatrix
games with payoffs represented by LIVIFNs. In Sect. 4,
a real-life numerical problem is considered to show the
working process of the developed approach. In Sect. 5, a
comparative study with existing methods is also carried out
to validate the efficiency of the presented work. Finally, a
summary of themain results from this work is given in Sect. 6
with some future directions.

2 Preliminaries

This section briefly reviews basic concepts and definitions of
IFSs, IVIFSs, LVs, LIFSs, and LIVIFSs, which will be used
in the further development of the work.

2.1 Intuitionistic fuzzy Set

Definition 1 (Atanassov 1986) Let X be the finite universe
of discourse. An IFS M̂ in X is defined as

M̂ = {〈x, μM̂(x), νM̂(x)〉| x ∈ X
}
, (2.1)

where μM̂, νM̂ : X → [0, 1], and the numbers μM̂ and
νM̂, respectively, denote, the MD and NMD of element x

to the IFS M̂, such that μM̂(x) + νM̂(x) ≤ 1 ∀ x ∈ X .
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The hesitancy degree (HD) of element x to an IFS M̂ can be
calculated by using the expression πM̂(x) = 1− μM̂(x) −
νM̂(x).

2.2 Interval valued intuitonistic fuzzy set

Definition 2 (Atanassov andGargov1989)Let X be thefinite
universe of discourse and D[0, 1] be the set of all the closed
subintervals of the interval [0, 1]. An IVIFS V̂ in X is defined
as

V̂ =
{〈
x,
[
μ−
V̂

(x), μ+
V̂

(x)
]
,
[
ν−
V̂

(x), ν+
V̂

(x)
]〉

| x ∈ X
}

(2.2)

where
[
μ−
V̂
(x), μ+

V̂
(x)
]

∈ D[0, 1] and
[
ν−
V̂

(x), ν+
V̂

(x)
]

∈
D[0, 1], with the condition μ+

V̂
(x) + ν+

V̂
(x) ≤ 1, ∀x ∈

X . Here, the intervals [μ−
V̂
(x), μ+

V̂
(x)] and [ν−

V̂
(x), ν+

V̂
(x)],

respectively, represent the MD and NMD of the element

x ∈ X to an IVIFS V̂. The interval
[
π−
V̂

(x), π+
V̂

(x)
]

=
[
1 − μ+

V̂
(x) − ν+

V̂
(x), 1 − μ−

V̂
(x) − ν−

V̂
(x)
]
is called theHD

of element x to an IVIFS V̂.

2.3 Linguistic term set

Many decision-making challenges in real-world circum-
stances have qualitative characteristics that are difficult to
determine using numerical figures. In such instances, LVs
are a more practical and appropriate instrument for evaluat-
ing qualitative data.

Definition 3 (Herrera andMartinez 2000) Let S = {s f | f =
0, 1, ..., t} be a finite LTS with an odd cardinality, where
s f represents a possible linguistic value for a LV and t be
the positive integer. The LTS S should satisfy the following
properties:

• Well ordered: sp ≤ sq ⇔ p ≤ q;
• Negation operator: neg(sp) = st−p;
• Maximum operator: max(sp, sq) = sp ⇔ p ≥ q;
• Minimum operator: min(sp, sq) = sp ⇔ p ≤ q.

For example, a set of seven linguistic terms can be defined
as:

S = {s0 = Extremely slow (ES), s1 = Very slow (VS),
s2 = Moderately slow (MS),
s3 = Neither slow nor fast (NSNF),
s4 = Moderately fast (MF), s5 = Very fast (VF),
s6 = Extremely fast (EF)}
To conserve all the specified information, Xu et al. (2017)
broadened the discrete term set S = {s0, s1, . . . , st } to a

continuous term set S[0,t] = {s f | s0 ≤ s f ≤ st , w ∈ [0, t]}.
The components of the set S[0,t] exhibits all the features of
the set S. If s f ∈ S, then s f is known as the original linguistic
term, else, s f is known as virtual linguistic term.

2.4 Linguistic intuitionistic fuzzy set

To better deal with uncertain qualitative information, Zhang
et al. (2012) introduced the notion of LIFS, characterized by
a pair of LVs defining the linguistic MD and the linguistic
NMD, respectively.

Definition 4 Let X be the finite universe of discourse and
S[0,t] = {s f | s0 ≤ s f ≤ st } be a continuous LTS. A LIFS
set L̂ in X is given by

L̂ =
{〈
x, sα

L̂
(x), sβ

L̂
(x)
〉
| x ∈ X

}
(2.3)

where sα
L̂
(x), sβ

L̂
(x) ∈ S[0,t] stand for the MD and NMD

of the element x to L̂, respectively, and satisfying α
L̂

(x) +
β
L̂

(x) ≤ t ∀ x ∈ X . For a given element x ∈ X , the pair〈
sα

L̂
, sβ

L̂

〉
is called a LIFN, which can be simply expressed

by ϒ̂ =
〈
sα

ϒ̂
, sβ

ϒ̂

〉
.

Definition 5 Let ϒ̂ =
〈
sα

ϒ̂
, sβ

ϒ̂

〉
, ϒ̂1 =

〈
sα

ϒ̂1
, sβ

ϒ̂1

〉
and

ϒ̂2 =
〈
sα

ϒ̂2
, sβ

ϒ̂2

〉
be the three LIFN and λ > 0 be a real

number. Then we have the following operational laws on
LIFNs:

(i) ϒ̂1 ⊕ ϒ̂2 =
〈

s
α

ϒ̂1
+α

ϒ̂2
−

α
ϒ̂1

α
ϒ̂1

t

, s β
ϒ̂1

β
ϒ̂2

t

〉

,

(ii) ϒ̂1 ⊗ ϒ̂2 =
〈

s α
ϒ̂1

α
ϒ̂2

t

, s
β

ϒ̂1
+β

ϒ̂2
−

β
ϒ̂1

β
ϒ̂2

t

〉

,

(iii) λϒ̂ =
〈

s
t−t
(
1− α

ϒ̂
t

)λ , s
t

(
β
ϒ̂
t

)λ

〉

,

(iv) ϒ̂λ =
〈

s
t
( α

ϒ̂
t

)λ , s
t−t

(
1− β

ϒ̂
t

)λ

〉

.

2.5 Linguistic interval-valued intuitionistic fuzzy set

Definition 6 (Garg andKumar 2019a) Let X be the finite uni-
verse of discourse and S[0,t] be a continuous LTS. A LIVIFS
P̃ in X is defined as

P̃ =
{〈
x, sξP̃ (x), sϑP̃ (x)

〉
| x ∈ X

}
, (2.4)

where sξP̃ (x) = [sξ−
P̃

(x), sξ+
P̃

(x)] and sϑP̃ (x) = [sϑ−
P̃

(x),

sϑ+
P̃

(x)] are the subsets of [s0, st ] and represent the MD
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and NMD of the element x ∈ X to the set P̃ , respec-
tively, such that sξ+

P̃
(x) + sϑ+

P̃
(x) ≤ st ∀ x ∈ X , which

implies ξ+
P̃ (x) + ϑ+

P̃ (x) ≤ t ∀ x ∈ X always exists. The

HD of x to P̃ is defined as sπP̃ (x) = [sπ−
P̃

(x) , sπ+
P̃

(x)] =
[st−ξ+

P̃ (x)−ϑ+
P̃ (x), st−ξ−

P̃ (x)−ϑ−
P̃ (x)]. Usually for a given x ∈ X ,

the pair
〈[
sξ−

P̃
(x), sξ+

P̃
(x)
]
,
[
sϑ−

P̃
(x), sϑ+

P̃
(x)
]〉

is called a

LIVIFN, which can be simply denoted by δ =
〈[
sξ−

δ
, sξ+

δ

]
,

[
sϑ−

δ
, sϑ+

δ

]〉
. Let B be the set of all LIVIFNs defined in X .

Definition 7 (Garg andKumar2019a)Let δ1 =
〈[
sξ−

δ1
, sξ+

δ1

]
,

[
sϑ−

δ1
, sϑ+

δ1

]〉
and δ2 =

〈[
sξ−

δ2
, sξ+

δ2

]
,
[
sϑ−

δ2
, sϑ+

δ2

]〉
be two

LIVIFNs, then it follows that:

(a) δ1 ≤ δ2 if ξ
−
δ1

≤ ξ−
δ2
, ξ+

δ1
≤ ξ+

δ2
, ϑ−

δ1
≥ ϑ−

δ2
and ϑ+

δ1
≥ ϑ+

δ2
;

(b) δ1 = δ2 if and only if ξ−
δ1

= ξ−
δ2
, ξ+

δ1
= ξ+

δ2
, ϑ−

δ1
= ϑ−

δ2

and ϑ+
δ1

= ϑ+
δ2
;

(c) δC1 =
〈[
sϑ−

δ1
, sϑ+

δ1

]
,
[
sξ−

δ1
, sξ+

δ1

]〉
;

(d) δ1 ∪ δ2 =
〈[
max

{
sξ−

δ1
, sξ−

δ2

}
, max

{
sξ+

δ1
, sξ+

δ2

}]
,

[
min
{
sϑ−

δ1
, sϑ−

δ2

}
, min

{
sϑ+

δ1
, sϑ+

δ2

}]〉
;

(e) δ1 ∩ δ2 =
〈[
min
{
sξ−

δ1
, sξ−

δ2

}
, min

{
sξ+

δ1
, sξ+

δ2

}]
,

[
max

{
sϑ−

δ1
, sϑ−

δ2

}
, max

{
sϑ+

δ1
, sϑ+

δ2

}]〉
.

Definition 8 Garg andKumar (2019a)Let δ =
〈[
sξ−

δ
, sξ+

δ

]
,

[
sϑ−

δ
, sϑ+

δ

]〉
, δ1 =

〈[
sξ−

δ1
, sξ+

δ1

]
,
[
sϑ−

δ1
, sϑ+

δ1

]〉
and δ2 =

〈[
sξ−

δ2
, sξ+

δ2

]
,
[
sϑ−

δ2
, sϑ+

δ2

]〉
be three LIVIFNs and λ > 0 be

a real number. Then, we have the following operational laws
on LIVIFNs:

1. δ1 ⊕ δ2 =
〈⎡

⎢
⎣s(

ξ−
δ1

+ξ−
δ2

−
ξ
−
δ1

ξ
−
δ2

t

), s(
ξ+
δ1

+ξ+
δ2

−
ξ
+
δ1

ξ
+
δ2

t

)

⎤

⎥
⎦ ,

⎡

⎢
⎣s( ϑ

−
δ1

ϑ
−
δ2

t

), s( ϑ
+
δ1

ϑ
+
δ2

t

)

⎤

⎥
⎦

〉

;

2. δ1 ⊗ δ2 =
〈⎡

⎢
⎣s( ξ

−
δ1

ξ
−
δ2

t

), s( ξ
+
δ1

ξ
+
δ2

t

)

⎤

⎥
⎦ ,

⎡

⎢
⎣s(

ϑ−
δ1

+ϑ−
δ2

−
ϑ

−
δ1

ϑ
−
δ2

t

), s(
ϑ+

δ1
+ϑ+

δ2
−

ϑ
+
δ1

ϑ
+
δ2

t

)

⎤

⎥
⎦

〉

;

3. λδ =
〈⎡

⎢
⎣s

t

(

1−
(
1− ξ

−
δ
t

)λ
), s

t

(

1−
(
1− ξ

+
δ
t

)λ
)

⎤

⎥
⎦ ,

⎡

⎣s
t

(
ϑ

−
δ
t

)λ , s
t

(
ϑ

+
δ
t

)λ

⎤

⎦
〉

;

4. δλ =
〈⎡

⎣s
t

(
ξ
−
δ
t

)λ , s
t

(
ξ
+
δ
t

)λ

⎤

⎦ ,

⎡

⎢
⎣s

t

(

1−
(
1− ϑ

−
δ
t

)λ
), s

t

(

1−
(
1− ϑ

+
δ
t

)λ
)

⎤

⎥
⎦

〉

.

Definition 9 (Garg and Kumar 2019a) Let δ j =〈[
sξ−

δ j
, sξ+

δ j

]
,

[
sϑ−

δ j
, sϑ+

δ j

]〉
, (where j = 1, 2, . . . , n) be

a collection of n LIVIFNs and � = (�1, . . . ,�n)
T

be the weight vector, such that 0 ≤ � j ≤ 1, j =
1, 2, . . . , n,

n∑

j=1

� j = 1. The LIVIFWA operator is a map-

ping L I V I FW A : Bn −→ B, and is given by

L I V I FW A (δ1, δ2, ..., δn) =
n⊕

j=1

� jδ j =
n⊕

j=1

� j

〈[
sξ−

δ j
, sξ+

δ j

]
,

[
sϑ−

δ j
, sϑ+

δ j

]〉

=
〈
⎡

⎢⎢
⎣s

t

⎛

⎝1−∏n
j=1

(

1−
ξ
−
δ j
t

)� j
⎞

⎠
, s

t

(

1−∏n
j=1

(

1− ξ
+
δ2
t

)� j
)

⎤

⎥⎥
⎦ ,

⎡

⎢⎢
⎣s

t

⎛

⎝∏n
j=1

(
ϑ

−
δ j
t

)�r
⎞

⎠
, s

t

⎛

⎝∏n
j=1

(
ϑ

+
δ j
t

)� j
⎞

⎠

⎤

⎥⎥
⎦

〉

,

(2.5)

then, LIVIFWA is known as the linguistic interval-valued
intuitionistic fuzzy weighted average (LIVIFWA) operator.

3 Matrix games with linguistic
interval-valued intuitionistic fuzzy payoffs:
proposedmodel

The matrix games with pay-off matrix involving LIVIFNs
can be explained as follows:

Let χ = {χ1, χ2, . . . , χm} and τ = {τ1, τ2, . . . , τn}, be
two finite sets of pure strategies for player I and player II,
respectively. Let I = {1, 2, . . . ,m} and J = {1, 2, . . . , n}.
Let Ã denotes a pay-off matrix with entries expressed by
LIVIFNs. Let player I choose pure strategy χi ∈ χ (i ∈ I)

123



788 D. R. Naqvi et al.

and the player II choose pure strategy τ j ∈ τ ( j ∈ J ).
Player I gains a pay-off δi j represented by the LIVIFN δi j =〈[
sξ−

δi j
, sξ+

δi j

]
,

[
sϑ−

δi j
, sϑ+

δi j

]〉
, where sξ−

δi j
, sξ+

δi j
, sϑ−

δi j
, sϑ+

δi j
∈

S[0,t] and the intervals

[
sξ−

δi j
, sξ+

δi j

]
and

[
sϑ−

δi j
, sϑ+

δi j

]
are the

subset of [s0, st ]with the property sξ+
δi j

+sϑ+
δi j

≤ st or specif-

ically ξ+
δi j

+ ϑ+
δi j

≤ t . Hence, the pay-off matrix Ã of player
I can be expressed as

Ã =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

〈[
sξ−

δ11
, sξ+

δ11

]
,
[
sϑ−

δ11
, sϑ+

δ11

]〉 〈[
sξ−

δ12
, sξ+

δ12

]
,
[
sϑ−

δ12
, sϑ+

δ12

]〉
. . .

〈[
sξ−

δ1n
, sξ+

δ1n

]
,

[
sϑ−

a1n
, sϑ+

δ1n

]〉

〈[
sξ−

δ21
, sξ+

δ21

]
,
[
sϑ−

δ21
, sϑ+

δ21

]〉 〈[
sξ−

δ22
, sξ+

δ22

]
,
[
sϑ−

δ22
, sϑ+

δ22

]〉
. . .

〈[
sξ−

δ2n
, sξ+

δ2n

]
,

[
sϑ−

δ2n
, sϑ+

δ2n

]〉

...
...

...〈[
sξ−

δm1
, sξ+

δm1

]
,

[
sϑ−

δm1
, sϑ+

am1

]〉 〈[
sξ−

δm2
, sξ+

δm2

]
,

[
sϑ−

δm2
, sϑ+

δm2

]〉
. . .
〈[
sξ−

δmn
, sξ+

δmn

]
,
[
sϑ−

δmn
, sϑ+

δmn

]〉

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

The player II gains a payoff δCi j =
〈[
sϑ−

δi j
, sϑ+

δi j

]
,

[
sξ−

δi j
, sξ+

δi j

]〉
.

LetRn denote the n-dimensional Euclidean space andRn+ be
its nonnegative orthant. Let xi (i ∈ I) be the probability that
the player I chooses the pure strategy χi ∈ χ and y j ( j ∈ J )

be the probability that the player II chooses the pure strategy
τ j ∈ τ , then the probability vectors x = (x1, x2, . . . , xm)T

and y = (y1, y2, . . . , yn)T are called the mixed strategies
for the player I and player II, respectively. Let Sm = {x ∈
Rm+|∑m

i=1 xi = 1} and Sn = {y ∈ Rn+|
∑

n
j=1y j = 1}

be the mixed strategy spaces for the player I and player II,

respectively. A linguistic interval-valued intuitionistic fuzzy
matrix game can be expressed as follows

L I V I FMG = (Sm, Sn, Ã,S[0,t]).

If the player I and player II choose the mixed strategies
x ∈ Sm and y ∈ Sn , respectively, the expected payoff of
player I can be calculated as follows:

E Ã(x, y) = xT Ãy,= [x1 x2 . . . xn
]⊗

⎡

⎢⎢⎢
⎣

δ11 δ12 . . . δ1n
δ21 δ22 . . . δ2n
...

...
...

δm1 δm2 . . . δmn

⎤

⎥⎥⎥
⎦

⊗

⎡

⎢⎢⎢
⎣

y1
y2
...

yn

⎤

⎥⎥⎥
⎦

= [x1 x2 . . . xn
]

⊗

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

〈[
sξ−

δ11
, sξ+

δ11

]
,
[
sϑ−

δ11
, sϑ+

δ11

]〉 〈[
sξ−

δ12
, sξ+

δ12

]
,
[
sϑ−

δ12
, sϑ+

δ12

]〉
. . .

〈[
sξ−

δ1n
, sξ+

δ1n

]
,

[
sϑ−

δ1n
, sϑ+

δ1n

]〉

〈[
sξ−

δ21
, sξ+

δ21

]
,
[
sϑ−

δ21
, sϑ+

δ21

]〉 〈[
(sξ−

δ22
, sξ+

δ22

]
,
[
(sϑ−

δ22
, sϑ+

δ22

]〉
. . .

〈[
(sξ−

δ2n
, sξ+

δ2n

]
,

[
(sϑ−

δ2n
, sϑ+

δ2n

]〉

...
...

...〈[
(sξ−

δm1
, sξ+

δm1

]
,

[
(sϑ−

δm1
, sϑ+

δm1

]〉 〈[
(sξ−

δm2
, sξ+

δm2

]
,

[
(sϑ−

δm2
, sϑ+

δm2

]〉
. . .
〈[

(sξ−
δmn

, sξ+
δmn

]
,
[
(sϑ−

δmn
, sϑ+

δmn

]〉

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

⊗

⎡

⎢⎢⎢
⎣

y1
y2
...

yn

⎤

⎥⎥⎥
⎦

.

According to the Definition 9, E Ã(x, y) can be expressed as
follows

E Ã(x, y) =
〈
⎡

⎢⎢
⎣s

t

⎛

⎝1−∏n
j=1
∏m

i=1

(

1−
ξ
−
δi j
t

)xi y j
⎞

⎠
,

s
t

⎛

⎝1−∏n
j=1
∏m

i=1

(

1−
ξ
+
δi j
t

)xi y j
⎞

⎠

⎤

⎥⎥
⎦ ,
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⎡

⎢⎢
⎣s

t

⎛

⎝∏n
j=1
∏m

i=1

(
ϑ

−
δi j
t

)xi y j
⎞

⎠
, s

t

⎛

⎝∏n
j=1
∏m

i=1

(
ϑ

+
δi j
t

)xi y j
⎞

⎠

⎤

⎥⎥
⎦

〉

=
〈[
sξ−

δxy
, sξ+

δxy

]
,

[
sϑ−

δxy
, sϑ+

δxy

]〉
(3.1)

where

sξ−
δxy

= s
t

⎛

⎝1−∏n
j=1
∏m

i=1

(

1−
ξ
−
δi j
t

)xi y j
⎞

⎠
∈ S[0,t],

sξ+
δxy

= s
t

⎛

⎝1−∏n
j=1
∏m

i=1

(

1−
ξ
+
δi j
t

)xi y j
⎞

⎠
∈ S[0,t],

sϑ−
δxy

= s
t

⎛

⎝∏n
j=1
∏m

i=1

(
ϑ

−
δi j
t

)xi y j
⎞

⎠
∈ S[0,t] and

sϑ+
δxy

= s
t

⎛

⎝∏n
j=1
∏m

i=1

(
ϑ

+
δi j
t

)xi y j
⎞

⎠
∈ S[0,t].

Without loss of generality, let us assume that the player I
is a maximizing player, and player II is a minimizing player.
Thus, player I and player II will select the mixed strategies
x� ∈ X and y� ∈ Y according to maximin and minimax
principles, respectively, such that

x�T Ãy� = max
x∈Sm min

y∈Sn
{
xT Ãy

}
= min

y∈Sn max
x∈Sm

{
xT Ãy

}
.

Here, x�T Ãy� is a LIVIFN with linguistic interval-valued
membership and linguistic interval-valued non-membership
values, which are usually conflicting. In general, the opti-
mal strategies x� and y� do not exist for player I and player
II. According to the Definition 8 and Eq. (3.1), the optimiza-
tionmodel x�T Ãy� is a bi-objective linguistic interval valued
intuitionistic fuzzy-programming problem. The first objec-
tive is the linguistic interval-valued function

sξ =

⎡

⎢⎢
⎣s

t

⎛

⎝1−∏n
j=1
∏m

i=1

(

1−
ξ
−
δi j
t

)xi y j
⎞

⎠
, s

t

⎛

⎝1−∏n
j=1
∏m

i=1

(

1−
ξ
+
δi j
t

)xi y j
⎞

⎠

⎤

⎥⎥
⎦ ;

(3.2)

and the second is the linguistic interval-valued function

sϑ =

⎡

⎢⎢
⎣s

t

⎛

⎝∏n
j=1
∏m

i=1

(
ϑ

−
δi j
t

)xi y j
⎞

⎠
, s

t

⎛

⎝∏n
j=1
∏m

i=1

(
ϑ

+
δi j
t

)xi y j
⎞

⎠

⎤

⎥⎥
⎦ .

(3.3)

Consequently, the concept of solutions of the matrix game
Ã with payoffs denoted by the LIVIFNs can be defined in
a manner similar to that of the Pareto optimal solutions as
follows:

Definition 10 Let γ̃1 and γ̃2 be two LIVIFNs. If there exists
x∗ ∈ Sm and y∗ ∈ Sn such that (x∗)T Ãy ≥ γ̃1 and
xT Ãy∗ ≤ γ̃2 for any x ∈ Sm , y ∈ Sn , then x∗ (y∗) is called
the reasonable strategies player I (player II); and γ̃1 (γ̃2) is
called the reasonable value for player I (player II). More-
over, (x∗, y∗, γ̃1, γ̃2) is known as the reasonable solution of
the matrix game Ã

Definition 11 LetF1 andF2 denotes the sets of all reasonable
values for player I and player II, respectively. Assume that
there exists γ̃ �

1 ∈ F1 and γ̃ �
2 ∈ F2. If there do not exist any

γ̃1 ∈ F1 (γ̃1 �= γ̃ �
1 ) and γ̃2 ∈ F2 (γ̃2 �= γ̃ �

2 ) such that γ̃1 ≥ γ̃ �
1

and γ̃2 ≤ γ̃ �
2 . Then, x

� (y�) is called the maximin (minimax)
strategy for player I (player II); γ̃ �

1 and γ̃ �
2 are called the value

of the game Ã corresponding to the player I and player II.
(x�, y�, γ̃ �

1 , γ̃ �
2 ) is called a solution of the matrix game Ã

with payoffs represented by LIVIFNs.

3.1 Model construction and solution approach for
LIVIFMG

Since player I is a maximin player, let Θ be the its minimum
expected gain which can be defined as

Θ = min
y∈Sn E Ã(x, y) = min

y∈Sn

〈[
sξ−

δxy
, sξ+

δxy

]
,

[
sϑ−

δxy
, sϑ+

δxy

]〉

=
〈
min
y∈Sn

{[
sξ−

δxy
, sξ+

δxy

]}
,max
y∈Sn

{[
sϑ−

δxy
, sϑ+

δxy

]}〉

=
〈[
sξ−

Θ
, sξ+

Θ

]
,
[
sϑ−

Θ
, sϑ+

Θ

]〉

It may be noted thatΘ is a function of x only. Player I prefers
to choose a mixed strategy x� ∈ Sm in such a way that it will
maximize its minimum expected gain. Therefore,

Θ� = max
x∈Sm Θ = max

x∈Sm
〈[
sξ−

Θ
, sξ+

Θ

]
,
[
sϑ−

Θ
, sϑ+

Θ

]〉

=
〈
max
x∈Sm min

y∈Sn

{[
sξ−

δxy
, sξ+

δxy

]}
, min
x∈Sm max

y∈Sn

{[
sϑ−

δxy
, sϑ+

δxy

]}〉

(3.4)

The mixed strategy x� ∈ Sm is called the maximin strategy
with the value of the game Θ� for player I.
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Similarly, player II is a minimax player, let Ψ be the its
maximum expected loss

Ψ = max
x∈Sm E Ã(x, y) = max

x∈Sm

〈[
sξ−

δxy
, sξ+

δxy

]
,

[
sϑ−

δxy
, sϑ+

δxy

]〉

=
〈
max
x∈Sm

[
sξ−

δxy
, sξ+

δxy

]
, min
x∈Sm

[
sϑ−

δxy
, sϑ+

δxy

]〉

=
〈[
sξ−

Ψ
, sξ+

Ψ

]
,
[
sϑ−

Ψ
, sϑ+

Ψ

]〉

Itmay be noted thatΨ is a function of y only. Player II prefers
to choose a mixed strategy y� ∈ Sn in such a way that it will
minimize its maximum expected loss. Therefore,

Ψ � = min
y∈Sn Ψ = min

y∈Sn
〈[
sξ−

Ψ
, sξ+

Ψ

]
,
[
sϑ−

Ψ
, sϑ+

Ψ

]〉

=
〈
min
y∈Sn max

x∈Sm

[
sξ−

δxy
, sξ+

δxy

]
, max

y∈Sn min
x∈Sm

[
sϑ−

δxy
, sϑ+

δxy

]〉

(3.5)

The mixed strategy y� ∈ Sn is called the minimax strategy
with the value of the game Ψ � for player II.

3.2 Mathematical model for player I

We shall consider two cases as follows:
Case I : When s0 ≤ sξ−

Θ
, sξ+

Θ
, sξ−

δi j
, sξ+

δi j
< st and

s0 < sϑ−
Θ
, sϑ+

Θ
, sϑ−

δi j
, sϑ+

δi j
≤ st , i ∈ I, j ∈ J .

The maximin strategy x� and the maximum gain Θ�

for player I are derived by resolving through nonlinear bi-
objective linguistic interval-programming problem which is
framed as follows:

(PI-1) Θ� =
〈
max

[
sξ−

Θ
, sξ+

Θ

]
,min

[
sϑ−

Θ
, sϑ+

Θ

]〉

subject to
⎡

⎢⎢
⎣s

t

⎛

⎝1−∏n
j=1
∏m

i=1

(

1−
ξ
−
δi j
t

)xi y j
⎞

⎠
, s

t

⎛

⎝1−∏n
j=1
∏m

i=1

(

1−
ξ
+
δi j
t

)xi y j
⎞

⎠

⎤

⎥⎥
⎦

≥
[
sξ−

Θ
, sξ+

Θ

]
for any y ∈ Sn

⎡

⎢⎢
⎣s

t

⎛

⎝∏n
j=1
∏m

i=1

(
ϑ

−
δi j
t

)xi y j
⎞

⎠
, s

t

⎛

⎝∏n
j=1
∏m

i=1

(
ϑ

+
δi j
t

)xi y j
⎞

⎠

⎤

⎥⎥
⎦

≤ [sϑ−
Θ
, sϑ+

Θ
] for any y ∈ Sn

sξ−
Θ

, sξ+
Θ

, sϑ−
Θ
, sϑ+

Θ
, sξ−

δi j
, sξ+

δi j
, sϑ−

δi j
, sϑ+

δi j
∈ S[0,t],

i ∈ I, j ∈ J
0 ≤ ξ+

Θ + ϑ+
Θ ≤ t, 0 ≤ ξ+

δi j
+ ϑ+

δi j
≤ t, i ∈ I, j ∈ J

m∑

i=1

xi = 1, xi ≥ 0, , i ∈ I

where sξ−
Θ

= min
y∈Sn

⎧
⎪⎪⎨

⎪⎪⎩
s
t

⎛

⎝1−∏n
j=1
∏m

i=1

(

1−
ξ
−
δi j
t

)xi y j
⎞

⎠

⎫
⎪⎪⎬

⎪⎪⎭
, sξ+

Θ
=

min
y∈Sn

⎧
⎪⎪⎨

⎪⎪⎩
s
t

⎛

⎝1−∏n
j=1
∏m

i=1

(

1−
ξ
+
δi j
t

)xi y j
⎞

⎠

⎫
⎪⎪⎬

⎪⎪⎭
, sϑ+

Θ
=

max
y∈Sn

⎧
⎪⎪⎨

⎪⎪⎩
s
t

⎛

⎝∏n
j=1
∏m

i=1

(
ϑ

−
δi j
t

)xi y j
⎞

⎠

⎫
⎪⎪⎬

⎪⎪⎭
and sϑ+

Θ
=

max
y∈Sn

⎧
⎪⎪⎨

⎪⎪⎩
s
t

⎛

⎝∏n
j=1
∏m

i=1

(
ϑ

+
δi j
t

)xi y j
⎞

⎠

⎫
⎪⎪⎬

⎪⎪⎭
.

It may be noted that the objective function is equivalent to

max
{[

sξ−
Θ
, sξ+

Θ

]}
⇔ min

{[
st−ξ+

Θ
, st−ξ−

Θ

]}

⇔ min

⎧
⎨

⎩

⎡

⎣s
ln

(
1− ξ

+
Θ
t

), s
ln

(
1− ξ

−
Θ
t

)

⎤

⎦

⎫
⎬

⎭
,

min
{
[sϑ−

Θ
, sϑ+

Θ
]
}

⇔ min

⎧
⎨

⎩

⎡

⎣s
ln

(
ϑ

−
Θ
t

), s
ln

(
ϑ

+
Θ
t

)

⎤

⎦

⎫
⎬

⎭

and the constraints are equivalent to

⎡

⎢⎢
⎣s

t

⎛

⎝1−∏n
j=1
∏m

i=1

(

1−
ξ
−
δi j
t

)xi y j
⎞

⎠
, s

t

⎛

⎝1−∏n
j=1
∏m

i=1

(

1−
ξ
+
δi j
t

)xi y j
⎞

⎠

⎤

⎥⎥
⎦

≥
[
sξ−

Θ
, sξ+

Θ

]

⇔

⎡

⎢⎢
⎣s
⎛

⎝∏n
j=1
∏m

i=1

(

1−
ξ
+
δi j
t

)xi y j
⎞

⎠
, s⎛
⎝∏n

j=1
∏m

i=1

(

1−
ξ
−
δi j
t

)xi y j
⎞

⎠

⎤

⎥⎥
⎦

≤
⎡

⎣s(
1− ξ

+
Θ
t

), s(
1− ξ

−
Θ
t

)

⎤

⎦

⇔
⎡

⎢
⎣s(∑n

j=1
∑m

i=1 xi y j

(

ln

(

1−
ξ
+
δi j
t

))), s(
∑n

j=1
∑m

i=1 xi y j

(

ln

(

1−
ξ
−
δi j
t

)))

⎤

⎥
⎦

≤
⎡

⎣s
ln

(
1− ξ

+
Θ
t

), s
ln

(
1− ξ

−
Θ
t

)

⎤

⎦ ,

⎡

⎢⎢
⎣s

t

⎛

⎝∏n
j=1
∏m

i=1

(
ϑ

−
δi j
t

)xi y j
⎞

⎠
, s

t

⎛

⎝∏n
j=1
∏m

i=1

(
ϑ

+
δi j
t

)xi y j
⎞

⎠

⎤

⎥⎥
⎦
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≤ [sϑ−
Θ
, sϑ+

Θ
]

⇔
⎡

⎢
⎣s(∑n

j=1
∑m

i=1 xi y j ln

(
ϑ

−
δi j
t

)), s(
∑n

j=1
∑m

i=1 xi y j ln

(
ϑ

+
δi j
t

))

⎤

⎥
⎦

≤
⎡

⎣s
ln

(
ϑ

−
Θ
t

), s
ln

(
ϑ

+
Θ
t

)

⎤

⎦ .

Therefore, problem (PI-1) becomes equivalent to

(PI-2)

min

⎧
⎨

⎩

⎡

⎣s
ln

(
1− ξ

+
Θ
t

) s
ln

(
1− ξ

−
Θ
t

)

⎤

⎦

⎫
⎬

⎭
, min

⎧
⎨

⎩

⎡

⎣s
ln

(
ϑ

−
Θ
t

), s
ln

(
ϑ

+
Θ
t

)

⎤

⎦

⎫
⎬

⎭

subject to
⎡

⎢
⎣s(∑n

j=1
∑m

i=1 xi y j ln

(

1−
ξ
+
δi j
t

)), s(
∑n

j=1
∑m

i=1 xi y j ln

(

1−
ξ
−
δi j
t

))

⎤

⎥
⎦ ≤

⎡

⎣s
ln

(
1− ξ

+
Θ
t

), s
ln

(
1− ξ

−
Θ
t

)

⎤

⎦ , for any y ∈ Sn

⎡

⎢
⎣s(∑n

j=1
∑m

i=1 xi y j ln

(
ϑ

−
δi j
t

)), s(
∑n

j=1
∑m

i=1 xi y j ln

(
ϑ

+
δi j
t

))

⎤

⎥
⎦ ≤

⎡

⎣s
ln

(
ϑ

−
Θ
t

), s
ln

(
ϑ

+
Θ
t

)

⎤

⎦ , for any y ∈ Sn

sξ−
Θ
, sξ+

Θ
, sϑ−

Θ
, sϑ+

Θ
, sξ−

δi j
, sξ+

δi j
, sϑ−

δi j
, sϑ+

δi j
∈ S[0,t], i ∈ I, j ∈ J

0 ≤ ξ+
Θ + ϑ+

Θ ≤ t, 0 ≤ ξ+
δi j

+ ϑ+
δi j

≤ t, i ∈ I, j ∈ J
m∑

i=1

xi = 1, xi ≥ 0, i ∈ I.

Using the weighted average operator, the objective func-
tion in (PI-2) becomes

min

⎧
⎨

⎩

⎡

⎣s
κ

(
ln

(
1− ξ

+
Θ
t

))
+(1−κ)

(
ln

(
ϑ

−
Θ
t

)),

s
κ

(
ln

(
1− ξ

−
Θ
t

))
+(1−κ)

(
ln

(
ϑ

+
Θ
t

))

⎤

⎦

⎫
⎬

⎭

where κ ∈ [0, 1] is the weight, which is suggested by the
players of the game.

Similarly, the constraints in (PI-2) can also be rewritten
as

s(
∑n

j=1
∑m

i=1 xi y j

(

κ ln

(

1−
ξ
+
δi j
t

)

+(1−κ) ln

(
ϑ

−
δi j
t

)))

≤ s(
κ ln

(
1− ξ

+
Θ
t

)
+(1−κ) ln

(
ϑ

−
Θ
t

))

s(
∑n

j=1
∑m

i=1 xi y j

(

κ ln

(

1−
ξ
−
δi j
t

)

+(1−κ) ln

(
ϑ

+
δi j
t

)))

≤ s(
κ ln

(
1− ξ

−
Θ
t

)
+(1−κ) ln

(
ϑ

+
Θ
t

))

Thus, (PI-2) is transformed to

(PI-3)

min

⎧
⎨

⎩

⎡

⎣s
κ

(
ln

(
1− ξ

+
Θ
t

))
+(1−κ)

(
ln

(
ϑ

−
Θ
t

)),

s
κ

(
ln

(
1− ξ

−
Θ
t

))
+(1−κ)

(
ln

(
ϑ

+
Θ
t

))

⎤

⎦

⎫
⎬

⎭

subject to
s(
∑n

j=1
∑m

i=1 xi y j

(

κ ln

(

1−
ξ
+
δi j
t

)

+(1−κ) ln

(
ϑ

−
δi j
t

)))

≤ s(
κ ln

(
1− ξ

+
Θ
t

)
+(1−κ) ln

(
ϑ

−
Θ
t

)) , for any y ∈ Sn

s(
∑n

j=1
∑m

i=1 xi y j

(

κ ln

(

1−
ξ
−
δi j
t

)

+(1−κ) ln

(
ϑ

+
δi j
t

)))

≤ s(
κ ln

(
1− ξ

−
Θ
t

)
+(1−κ) ln

(
ϑ

+
Θ
t

)), for any y ∈ Sn

sξ−
Θ

, sξ+
Θ

, sϑ−
Θ
, sϑ+

Θ
, sξ−

δi j
, sξ+

δi j
, sϑ−

δi j
,

sϑ+
δi j

∈ S[0,t], i ∈ I, j ∈ J
0 ≤ ξ+

Θ + ϑ+
Θ ≤ t, 0 ≤ ξ+

δi j
+ ϑ+

δi j
≤ t, i ∈ I, j ∈ J

m∑

i=1

xi = 1, xi ≥ 0, i ∈ I.
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Now, the objective function in (PI-3) is an interval-valued
function.

For simplificationpurpose, letΓ − = κ

(

ln

(

1 − ξ+
Θ

t

))

+

(1 − κ)

(

ln

(
ϑ−

Θ

t

))

and Γ + = κ

(

ln

(

1 − ξ−
Θ

t

))

+ (1 −

κ)

(

ln

(
ϑ+

Θ

t

))

.

Here, Γ − ≤ 0 and Γ + ≤ 0 because, κ ∈ [0, 1] and 0 ≤
ξ−
Θ , ξ+

Θ , ϑ−
Θ, ϑ+

Θ ≤ t , i.e., 0 ≤ 1 − ξ+
Θ

t
≤ 1, 0 ≤ ϑ−

Θ

t
≤ 1,

0 ≤ 1 − ξ−
Θ

t
≤ 1 and 0 ≤ ϑ+

Θ

t
≤ 1.

Thus, the objective function in (PI-3) becomes
min {[sΓ − , sΓ + ]}which can be further expressed as interval-
objective function as min

{[
Γ −, Γ +]}, using the properties

of linguistic terms. The constraints in equation (PI-3) can
also be written as

n∑

j=1

m∑

i=1

xi y j

(

κ ln

(

1 −
ξ+
δi j

t

)

+ (1 − κ) ln

(
ϑ−

δi j

t

))

≤ Γ − ,

n∑

j=1

m∑

i=1

xi y j

(

κ ln

(

1 −
ξ−
δi j

t

)

+ (1 − κ) ln

(
ϑ+

δi j

t

))

≤ Γ +,

Consequently, the (PI-3) can be modeled as follows :

(PI-4)

min
{[

Γ −, Γ +]}

subject to
n∑

j=1

m∑

i=1

xi y j

[

κ ln

(

1 −
ξ+
δi j

t

)

+ (1 − κ) ln

(
ϑ−

δi j

t

)]

≤ Γ −, for any y ∈ Sn

n∑

j=1

m∑

i=1

xi y j

[

κ ln

(

1 −
ξ−
δi j

t

)

+ (1 − κ) ln

(
ϑ+

δi j

t

)]

≤ Γ +, for any y ∈ Sn

ξ−
δi j

, ξ+
δi j

, ϑ−
δi j

, ϑ+
δi j

∈ [0, t], i ∈ I, j ∈ J
0 ≤ ξ+

δi j
+ ϑ+

δi j
≤ t, i ∈ I, j ∈ J

Γ − ≤ 0, Γ + ≤ 0,
m∑

i=1

xi = 1, xi ≥ 0, i ∈ I.

Since, Sn is a finite compact convex set, it is sufficient to
take into account only the extreme points of the set Sn in
the constraints (PI-4). Therefore, (PI-4) is transformed into
a linear programming problem involving the interval in the
objective function as follows :

(PI-5) min
{[

Γ −, Γ +]}

subject to
m∑

i=1

xi

[

κ ln

(

1 −
ξ+
δi j

t

)

+ (1 − κ) ln

(
ϑ−

δi j

t

)]

≤ Γ −, j ∈ J
m∑

i=1

xi

[

κ ln

(

1 −
ξ−
δi j

t

)

+ (1 − κ) ln

(
ϑ+

δi j

t

)]

≤ Γ +, j ∈ J
ξ−
δi j

, ξ+
δi j

, ϑ−
δi j

, ϑ+
δi j

∈ [0, t], i ∈ I, j ∈ J
0 ≤ ξ+

δi j
+ ϑ+

δi j
≤ t, i ∈ I, j ∈ J

Γ − ≤ 0, Γ + ≤ 0,
m∑

i=1

xi = 1, xi ≥ 0, i ∈ I.

The center of the interval [Γ −, Γ +], is ΓC = Γ − + Γ +

2
.

Thus using the existing approaches of Ishibuchi and Tanaka
(1990); Sakawa and Nishizaki (1994); Sengupta and Pal
(2000), (PI-5) is reduced to a bi-objective linear program-
ming problem in the following way :

(PI-6) min
{
Γ −} , min

{
Γ − + Γ +

2

}

subject to
m∑

i=1

xi

[

κ ln

(

1 −
ξ+
δi j

t

)

+ (1 − κ) ln

(
ϑ−

δi j

t

)]

≤ Γ −, j ∈ J
m∑

i=1

xi

[

κ ln

(

1 −
ξ−
δi j

t

)

+ (1 − κ) ln

(
ϑ+

δi j

t

)]

≤ Γ +, j ∈ J
ξ−
δi j

, ξ+
δi j

, ϑ−
δi j

, ϑ+
δi j

∈ [0, t], i ∈ I, j ∈ J
0 ≤ ξ+

δi j
+ ϑ+

δi j
≤ t, i ∈ I, j ∈ J

Γ − ≤ 0, Γ + ≤ 0,
m∑

i=1

xi = 1, xi ≥ 0, i ∈ I.

which is equivalent to

(PI-7) min
{
Γ −} , min

{
Γ −

2

}
+ min

{
Γ +

2

}

subject to
m∑

i=1

xi

[

κ ln

(

1 −
ξ+
δi j

t

)

+ (1 − κ) ln

(
ϑ−

δi j

t

)]

≤ Γ −, j ∈ J
m∑

i=1

xi

[

κ ln

(

1 −
ξ−
δi j

t

)

+ (1 − κ) ln

(
ϑ+

δi j

t

)]

≤ Γ +, j ∈ J
ξ−
δi j

, ξ+
δi j

, ϑ−
δi j

, ϑ+
δi j

∈ [0, t], i ∈ I, j ∈ J
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0 ≤ ξ+
δi j

+ ϑ+
δi j

≤ t, i ∈ I, j ∈ J
Γ − ≤ 0, Γ + ≤ 0,
m∑

i=1

xi = 1, xi ≥ 0, i ∈ I.

The problem (PI-7) is transformed into

(PI-8) min
{
Γ −} , min

{
Γ +}

subject to
m∑

i=1

xi

[

κ ln

(

1 −
ξ+
δi j

t

)

+ (1 − κ) ln

(
ϑ−

δi j

t

)]

≤ Γ −, j ∈ J
m∑

i=1

xi

[

κ ln

(

1 −
ξ−
δi j

t

)

+ (1 − κ) ln

(
ϑ+

δi j

t

)]

≤ Γ +, j ∈ J
ξ−
δi j

, ξ+
δi j

, ϑ−
δi j

, ϑ+
δi j

∈ [0, t], i ∈ I, j ∈ J
0 ≤ ξ+

δi j
+ ϑ+

δi j
≤ t, i ∈ I, j ∈ J

Γ − ≤ 0, Γ + ≤ 0,
m∑

i=1

xi = 1, xi ≥ 0, i ∈ I.

which is further be written as :

(PI-9) min
{
Γ − + Γ +}

subject to
m∑

i=1

xi

[

κ ln

(

1 −
ξ+
δi j

t

)

+ (1 − κ) ln

(
ϑ−

δi j

t

)

+κ ln

(

1 −
ξ−
δi j

t

)

+ (1 − κ) ln

(
ϑ+

δi j

t

)]

≤ Γ − + Γ +, j ∈ J
ξ−
δi j

, ξ+
δi j

, ϑ−
δi j

, ϑ+
δi j

∈ [0, t], i ∈ I, j ∈ J
0 ≤ ξ+

δi j
+ ϑ+

δi j
≤ t, i ∈ I, j ∈ J

Γ − ≤ 0, Γ + ≤ 0,
m∑

i=1

xi = 1, xi ≥ 0, i ∈ I.

Let U = Γ − + Γ +. Since, Γ − ≤ 0 and Γ + ≤ 0. There-
fore, U ≤ 0.

Thus, (PI-9) is transformed into a linear programming
problem

(PI-10) min {U}
subject to
m∑

i=1

xi

[

κ ln

(

1 −
ξ+
δi j

t

)

+ (1 − κ) ln

(
ϑ−

δi j

t

)

+κ ln

(

1 −
ξ−
δi j

t

)

+ (1 − κ) ln

(
ϑ+

δi j

t

)]

≤ U, j ∈ J
ξ−
δi j

, ξ+
δi j

, ϑ−
δi j

, ϑ+
δi j

∈ [0, t], i ∈ I, j ∈ J
0 ≤ ξ+

δi j
+ ϑ+

δi j
≤ t, i ∈ I, j ∈ J

U ≤ 0,
m∑

i=1

xi = 1, xi ≥ 0, i ∈ I.

For s0 ≤ sξ+
δi j

< st , s0 ≤ sξ−
δi j

< st and s0 < sϑ−
δi j

≤
st , and s0 < sϑ+

δi j
≤ st for all i ∈ I, j ∈ J , the optimal

solution obtained for the linear programming problem (PI-
10) is (x�,U�).

Case II : When sξ+
δi j

= st , sξ−
δi j

= st , sϑ−
δi j

=
s0, and sϑ+

δi j
= s0, i ∈ I, j ∈ J .

It is significant to take into account that whenever ξ+
δi j

=

t, ϑ+
δi j

= 0 and ξ−
δi j

= t and ϑ−
δi j

= 0, then ln

(

1 −
ξ−
δi j

t

)

→

−∞, ln

(

1 −
ξ+
δi j

t

)

→ −∞, ln

(
ϑ−

δi j

t

)

→ −∞ and

ln

(
ϑ+

δi j

t

)

→ −∞. Hence, at such occurrences, problem

(PI-10) becomes invalid. Thus, it is reformulated as the fol-
lowing nonlinear programming problem

(PI-11)

min

⎧
⎨

⎩

(

1 − ξ+
Θ

t

)κ (
ϑ−

Θ

t

)(1−κ) (

1 − ξ−
Θ

t

)κ (
ϑ+

Θ

t

)(1−κ)
⎫
⎬

⎭

subject to

m∏

i=1

⎡

⎣
(

1 −
ξ+
δi j

t

)κ (
ϑ−

δi j

t

)(1−κ) (

1 −
ξ−
δi j

t

)κ (
ϑ+

δi j

t

)(1−κ)
⎤

⎦

xi

≤
(

1 − ξ+
Θ

t

)κ (
ϑ−

Θ

t

)(1−κ) (

1 − ξ−
Θ

t

)κ (
ϑ+

Θ

t

)(1−κ)

,

for any y ∈ Sn

ξ−
Θ , ξ+

Θ , ϑ−
Θ , ϑ+

Θ , ξ−
δi j

, ξ+
δi j

, ϑ−
δi j

, ϑ+
δi j

∈ S[0,t], i ∈ I, j ∈ J
0 ≤ ξ+

Θ + ϑ+
Θ ≤ t, 0 ≤ ξ+

δi j
+ ϑ+

δi j
≤ t, i ∈ I, j ∈ J

m∑

i=1

xi = 1, xi ≥ 0, i ∈ I.

LetV =
(
1 − ξ+

Θ

t

)κ (
ϑ−

Θ

t

)(1−κ) (
1 − ξ−

Θ

t

)κ (
ϑ+

Θ

t

)(1−κ)

.
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Since κ ∈ [0, 1], 0 ≤ 1 − ξ−
Θ

t
≤ 1, 0 ≤ ξ+

Θ

t
≤ 1, 0 ≤

1 − ϑ−
Θ

t
≤ 1 and 0 ≤ 1 − ϑ+

Θ

t
≤ 1. Therefore, 0 ≤ V ≤ 1.

Thus, (PI-11) is rewritten as :

(PI-12)

min {V}
subject to

m∏

i=1

⎛

⎝
(

1 −
ξ+
δi j

t

)κ (
ϑ−

δi j

t

)(1−κ)

(

1 −
ξ−
δi j

t

)κ (
ϑ+

δi j

t

)(1−κ)
⎞

⎠

xi

≤ V, for any y ∈ Sn

ξ−
δi j

, ξ+
δi j

, ϑ−
δi j

, ϑ+
δi j

∈ [0, t], i ∈ I, j ∈ J
0 ≤ ξ+

δi j
+ ϑ+

δi j
≤ t, i ∈ I, j ∈ J

0 ≤ V ≤ 1,
m∑

i=1

xi = 1, xi ≥ 0, i ∈ I.

The optimal solution of (PI-12) is (x�,V�). It is evident
from (PI-10) and (PI-12), that V� = eU

�
, when (x�,U�)

exists as the optimal solutions of (PI-10).

3.3 Mathematical model for player II

Case I : If s0 ≤ sξ−
Ψ
, sξ+

Ψ
, sξ−

δi j
, sξ+

δi j
< st and s0 <

sϑ−
Ψ
, sϑ+

Ψ
, sϑ−

δi j
, sϑ+

δi j
≤ st , i ∈ I, j ∈ J .

For player II, the minimax strategy y� and the minimum
lossΨ � in (3.5) can be obtained byusing (3.1) andDefinitions
10 and 11. The nonlinear bi-objective interval-programming
problem for player II is as follows :

(PII-1)

Ψ � =
〈
min
{[

sξ−
Ψ
, sξ+

Ψ

]}
, max

{[
sϑ−

Ψ
, sϑ+

Ψ

]}〉

subject to
⎡

⎢⎢
⎣s
⎛

⎝t

⎛

⎝1−∏n
j=1
∏m

i=1

(

1−
ξ
−
δi j
t

)xi y j
⎞

⎠

⎞

⎠
,

s⎛
⎝t

⎛

⎝1−∏n
j=1
∏m

i=1

(

1−
ξ
+
δi j
t

)xi y j
⎞

⎠

⎞

⎠

⎤

⎥⎥
⎦

≤
[
sξ−

Ψ
, sξ+

Ψ

]
, for any x ∈ Sm

⎡

⎢⎢
⎣s
⎛

⎝t
∏n

j=1
∏m

i=1

(
ϑ

−
δi j
t

)xi y j
⎞

⎠
, s⎛
⎝t
∏n

j=1
∏m

i=1

(
ϑ

+
δi j
t

)xi y j
⎞

⎠

⎤

⎥⎥
⎦

≥
[
sϑ−

Ψ
, sϑ+

Ψ

]
, for any x ∈ Sm

sξ−
Ψ
, sξ+

Ψ
, sϑ−

Ψ
, sϑ+

Ψ
, sξ−

δi j
, sξ+

δi j
, sϑ−

δi j
,

sϑ+
δi j

∈ S[0,t], i ∈ I, j ∈ J
0 ≤ ξ+

Ψ + ϑ+
Ψ ≤ t, 0 ≤ ξ+

δi j
+ ϑ+

δi j
≤ t, i ∈ I, j ∈ J

n∑

j=1

y j = 1, y j ≥ 0, j ∈ J .

It may be noted that

min
{[

sξ−
Ψ
, sξ+

Ψ

]}
⇔ max

{[
st−ξ+

Ψ
, st−ξ−

Ψ

]}

⇔ max

⎧
⎨

⎩

⎡

⎣s
ln

(
1− ξ

+
Ψ
t

), s
ln

(
1− ξ

−
Ψ
t

)

⎤

⎦

⎫
⎬

⎭
,

max
{[

sϑ−
Ψ
, sϑ+

Ψ

]}

⇔ max

{[
s ϑ

−
Ψ
t

, s ϑ
+
Ψ
t

]}
⇔ max

⎧
⎨

⎩

⎡

⎣s
ln

(
ϑ

−
Ψ
t

), s
ln

(
ϑ

+
Ψ
t

)

⎤

⎦

⎫
⎬

⎭

and
⎡

⎢⎢
⎣s
⎛

⎝t

⎛

⎝1−∏n
j=1
∏m

i=1

(

1−
ξ
−
δi j
t

)xi y j
⎞

⎠

⎞

⎠
, s⎛
⎝t

⎛

⎝1−∏n
j=1
∏m

i=1

(

1−
ξ
+
δi j
t

)xi y j
⎞

⎠

⎞

⎠

⎤

⎥⎥
⎦

≤
[
sξ−

Ψ
, sξ+

Ψ

]

⇔

⎡

⎢⎢
⎣s
⎛

⎝∏n
j=1
∏m

i=1

(

1−
ξ
+
δi j
t

)xi y j
⎞

⎠
, s⎛
⎝∏n

j=1
∏m

i=1

(

1−
ξ
−
δi j
t

)xi y j
⎞

⎠

⎤

⎥⎥
⎦

≥
⎡

⎣s(
1− ξ

+
Ψ
t

), s(
1− ξ

−
Ψ
t

)

⎤

⎦

⇔
⎡

⎢
⎣s(∑n

j=1
∑m

i=1 xi y j ln

(

1−
ξ
+
δi j
t

)), s(
∑n

j=1
∑m

i=1 xi y j ln

(

1−
ξ
−
δi j
t

))

⎤

⎥
⎦

≥
⎡

⎣s
ln

(
1− ξ

+
Ψ
t

), s
ln

(
1− ξ

−
Ψ
t

)

⎤

⎦ ,

⎡

⎢⎢
⎣s
⎛

⎝t
∏n

j=1
∏m

i=1

(
ϑ

−
δi j
t

)xi y j
⎞

⎠
, s⎛
⎝t
∏n

j=1
∏m

i=1

(
ϑ

+
δi j
t

)xi y j
⎞

⎠

⎤

⎥⎥
⎦

≥
[
sϑ−

Ψ
, sϑ+

Ψ

]

⇔
⎡

⎢
⎣s(∑n

j=1
∑m

i=1 xi y j ln

(
ϑ

−
δi j
t

)), s(
∑n

j=1
∑m

i=1 xi y j ln

(
ϑ

+
δi j
t

))

⎤

⎥
⎦
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≥
⎡

⎣s
ln

(
ϑ

−
Ψ
t

), s
ln

(
ϑ

+
Ψ
t

)

⎤

⎦

Therefore, problem (PII-1) on operating logarithmic
function gets reduced to :

(PII-2) max

⎧
⎨

⎩

⎡

⎣s
ln

(
1− ξ

+
Ψ
t

) , s
ln

(
1− ξ

−
Ψ
t

)

⎤

⎦

⎫
⎬

⎭
,

max

⎧
⎨

⎩

⎡

⎣s
ln

(
ϑ

−
Ψ
t

), s
ln

(
ϑ

+
Ψ
t

)

⎤

⎦

⎫
⎬

⎭

subject to
⎡

⎢
⎣s(∑n

j=1
∑m

i=1 xi y j ln

(

1−
ξ
+
δi j
t

)),

s(
∑n

j=1
∑m

i=1 xi y j ln

(

1−
ξ
−
δi j
t

))

⎤

⎥
⎦

≥
⎡

⎣s
ln

(
1− ξ

−
Ψ
t

), s
ln

(
1− ξ

+
Ψ
t

)

⎤

⎦ ,

for any x ∈ Sm
⎡

⎢
⎣s(∑n

j=1
∑m

i=1 xi y j ln

(
ϑ

−
δi j
t

)),

s(
∑n

j=1
∑m

i=1 xi y j ln

(
ϑ

+
δi j
t

))

⎤

⎥
⎦

≥
⎡

⎣s
ln

(
ϑ

−
Ψ
t

), s
ln

(
ϑ

+
Ψ
t

)

⎤

⎦ ,

for any x ∈ Sm

sξ−
Ψ
, sξ+

Ψ
, sϑ−

Ψ
, sϑ+

Ψ
, sξ−

δi j
, sξ+

δi j
, sϑ−

δi j
, sϑ+

δi j

∈ S[0,t], i ∈ I, j ∈ J
0 ≤ ξ+

Ψ + ϑ+
Ψ ≤ t, 0 ≤ ξ+

δi j
+ ϑ+

δi j
≤ t,

i ∈ I, j ∈ J
n∑

j=1

y j = 1, y j ≥ 0, j ∈ J .

Employing aggregation technique, the objective function
of (PII-2) is transformed as:

max

⎧
⎨

⎩

⎡

⎣s
κ ln

(
1− ξ

+
Ψ
t

)
+(1−κ) ln

(
ϑ

−
Ψ
t

), s
κ ln

(
1− ξ

−
Ψ
t

)
+(1−κ) ln

(
ϑ

+
Ψ
t

)

⎤

⎦

⎫
⎬

⎭

(3.6)

where κ ∈ [0, 1] is the weight, which is suggested by the
players of the game.

Similarly, aggregating the constraints in (PII-2) which
gets reduced to:

s(
∑n

j=1
∑m

i=1 xi y j

(

κ ln

(

1−
ξ
+
δi j
t

)

+(1−κ) ln

(

1−
ϑ

−
δi j
t

)))

≥ s(
κ ln

(
1− ξ

+
Ψ
t

)
+(1−κ) ln

(
1− ϑ

−
Ψ
t

))

s(
∑n

j=1
∑m

i=1 xi y j

(

κ ln

(

1−
ξ
−
δi j
t

)

+(1−κ) ln

(

1−
ϑ

+
δi j
t

)))

≥ s(
κ ln

(
1− ξ

−
Ψ
t

)
+(1−κ) ln

(
1− ϑ

+
Ψ
t

))

(3.7)

Consequently, usingEqs. (3.6) and (3.7), (PII-2) is remod-
eled as:

(PII-3)

max

⎧
⎨

⎩

⎡

⎣s
κ ln

(
1− ξ

+
Ψ
t

)
+(1−κ) ln

(
ξ
−
Ψ
t

), s
κ ln

(
1− ξ

−
Ψ
t

)
+(1−κ) ln

(
ξ
+
Ψ
t

)

⎤

⎦

⎫
⎬

⎭

subject to

s(
∑n

j=1
∑m

i=1 xi y j

(

κ ln

(

1−
ξ
+
δi j
t

)

+(1−κ) ln

(

1−
ϑ

−
δi j
t

)))

≥ s(
κ ln

(
1− ξ

+
Ψ
t

)
+(1−κ) ln

(
1− ϑ

−
Ψ
t

)) , for any x ∈ Sm

s(
∑n

j=1
∑m

i=1 xi y j

(

κ ln

(

1−
ξ
−
δi j
t

)

+(1−κ) ln

(

1−
ϑ

+
δi j
t

)))

≥ s(
κ ln

(
1− ξ

−
Ψ
t

)
+(1−κ) ln

(
1− ϑ

+
Ψ
t

)) , for any x ∈ Sm

sξ−
Ψ

, sξ+
Ψ

, sϑ−
Ψ
, sϑ+

Ψ
, sξ−

δi j
, sξ+

δi j
, sϑ−

δi j
, sϑ+

δi j

∈ S[0,t], i ∈ I, j ∈ J
0 ≤ ξ+

Ψ + ϑ+
Ψ ≤ t, 0 ≤ ξ+

δi j
+ ϑ+

δi j
≤ t, i ∈ I, j ∈ J

n∑

j=1

y j = 1, y j ≥ 0, j ∈ J .

Thus, the objective function in (PII-3) is an interval-
valued function.

For sake of convenience, letΩ− = κ ln

(

1 − ξ+
Ψ

t

)

+(1−

κ) ln

(
ϑ−

Ψ

t

)

andΩ+ = κ ln

(

1 − ξ−
Ψ

t

)

+(1−κ) ln

(
ϑ+

Ψ

t

)

.

Then, Ω− ≤ 0 and Ω+ ≤ 0. This is because, κ ∈ [0, 1] and
0 ≤ ξ−

Ψ , ξ+
Ψ , ϑ−

Ψ , ϑ+
Ψ ≤ t , which imply 0 ≤ 1 − ξ−

Ψ

t
≤

1, 0 ≤ 1− ξ+
Ψ

t
≤ 1, 0 ≤ 1− ϑ−

Ψ

t
≤ 1 and 0 ≤ 1− ϑ+

Ψ

t
≤ 1.

Therefore, the objective function in (PII-3), becomes
max {[sΩ− , sΩ+ ]}, which can be equivalently expressed as
max

{[
Ω−, Ω+]}.

123



796 D. R. Naqvi et al.

Then the constraints in (PII-3) are transformed as :

n∑

j=1

m∑

i=1

xi y j

(

κ ln

(

1 −
ξ+
δi j

t

)

+ (1 − κ) ln

(
ϑ−

δi j

t

))

≥ Ω−,

n∑

j=1

m∑

i=1

xi y j

(

κ ln

(

1 −
ξ−
δi j

t

)

+ (1 − κ) ln

(
ϑ+

δi j

t

))

≥ Ω+,

Consequently, (PII-3) can be re-framed as :

(PII-4) max
{[

Ω−, Ω+]}

subject to
n∑

j=1

m∑

i=1

xi y j

(

κ ln

(

1 −
ξ+
δi j

t

)

+ (1 − κ) ln

(
ϑ−

δi j

t

))

≥ Ω−, for any x ∈ Sm
n∑

j=1

m∑

i=1

xi y j

(

κ ln

(

1 −
ξ−
δi j

t

)

+ (1 − κ) ln

(
ϑ+

δi j

t

))

≥ Ω+, for any x ∈ Sm

sξ−
δi j

, sξ+
δi j

, sϑ−
δi j

, sϑ+
δi j

∈ S[0,t], i ∈ I, j ∈ J
0 ≤ ξ+

δi j
+ ϑ+

δi j
≤ t, i ∈ I, j ∈ J

Ω− ≤ 0, Ω+ ≤ 0,
n∑

j=1

y j = 1, y j ≥ 0, j ∈ J .

It is sufficient to analyze only the extreme points of the set
Sm in the constraints of (PII-4), as Sm is a finite compact
convex set.

Therefore, (PII-4) is transformed into the following linear
programming problem :

(PII-5) max
{[

Ω−, Ω+]}

subject to
n∑

j=1

y j

(

κ ln

(

1 −
ξ+
δi j

t

)

+ (1 − κ) ln

(
ϑ−

δi j

t

))

≥ Ω− , i ∈ I
n∑

j=1

y j

(

κ ln

(

1 −
ξ−
δi j

t

)

+ (1 − κ) ln

(
ϑ+

δi j

t

))

≤ Ω+ , i ∈ I
sξ−

δi j
, sξ+

δi j
, sϑ−

δi j
, sϑ+

δi j
∈ S[0,t], i ∈ I, j ∈ J

0 ≤ ξ+
δi j

+ ϑ+
δi j

≤ t, i ∈ I, j ∈ J
Ω− ≤ 0, Ω+ ≤ 0,
n∑

j=1

y j = 1, y j ≥ 0, j ∈ J .

The center of the interval [Ω−,Ω+] isΩC = Ω− + Ω+

2
.

Using existing approaches of Ishibuchi and Tanaka (1990);
Sakawa and Nishizaki (1994); Sengupta and Pal (2000),

(PII-5) is modified into a bi-objective linear programming
problem as follows :

(PII-6) max
{
Ω−} , max

{
Ω− + Ω+

2

}

subject to
n∑

j=1

y j

(

κ ln

(

1 −
ξ+
δi j

t

)

+ (1 − κ) ln

(
ϑ−

δi j

t

))

≥ Ω− , i ∈ I
n∑

j=1

y j

(

κ ln

(

1 −
ξ−
δi j

t

)

+ (1 − κ) ln

(
ϑ+

δi j

t

))

≥ Ω+ , i ∈ I
sξ−

δi j
, sξ+

δi j
, sϑ−

δi j
, sϑ+

δi j
∈ S[0,t], i ∈ I, j ∈ J

0 ≤ ξ+
δi j

+ ϑ+
δi j

≤ t, i ∈ I, j ∈ J
Ω− ≤ 0, Ω+ ≤ 0,
n∑

j=1

y j = 1, y j ≥ 0, j ∈ J .

Further, the problem (PII-6) is analogous to the bi-
objective linear programming problem:

(PII-7) max
{
Ω−} , max

{
Ω−

2

}
+ max

{
Ω+

2

}

subject to
n∑

j=1

y j

(

κ ln

(

1 −
ξ+
δi j

t

)

+ (1 − κ) ln

(
ϑ−

δi j

t

)]

≥ Ω− , i ∈ I
n∑

j=1

yi

(

κ ln

(

1 −
ξ−
δi j

t

)

+ (1 − κ) ln

(
ϑ+

δi j

t

))

≥ Ω+ , i ∈ I
sξ−

δi j
, sξ+

δi j
, sϑ−

δi j
, sϑ+

δi j
∈ S[0,t], i ∈ I, j ∈ J

0 ≤ ξ+
δi j

+ ϑ+
δi j

≤ t, i ∈ I, j ∈ J
Ω− ≤ 0, Ω+ ≤ 0,
n∑

j=1

y j = 1, y j ≥ 0, j ∈ J .

The above problem is equivalent to :

(PII-8) max
{
Ω−} , max

{
Ω+}

subject to
n∑

j=1

y j

(

κ ln

(

1 −
ξ+
δi j

t

)

+(1 − κ) ln

(
ϑ−

δi j

t

))

≥ Ω− , i ∈ I
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n∑

j=1

y j

(

κ ln

(

1 −
ξ−
δi j

t

)

+ (1 − κ) ln

(
ϑ+

δi j

t

))

≥ Ω+ , i ∈ I
sξ−

δi j
, sξ+

δi j
, sϑ−

δi j
, sϑ+

δi j
∈ S[0,t], i ∈ I, j ∈ J

0 ≤ ξ+
δi j

+ ϑ+
δi j

≤ t, i ∈ I, j ∈ J
Ω− ≤ 0, Ω+ ≤ 0,
n∑

j=1

y j = 1, y j ≥ 0, j ∈ J .

On aggregating the constraints in (PII-8), we get the fol-
lowing linear programming problem :

(PII-9) max
{
Ω− + Ω+}

subject to
n∑

j=1

y j

(

κ ln

(

1 −
ξ+
δi j

t

)

+ (1 − κ) ln

(
ϑ−

δi j

t

)

+κ ln

(

1 −
ξ−
δi j

t

)

+(1 − κ) ln

(
ϑ+

δi j

t

))

≥ Ω− + Ω+, i ∈ I

sξ−
δi j

, sξ+
δi j

, sϑ−
δi j

, sϑ+
δi j

∈ S[0,t], i ∈ I, j ∈ J
0 ≤ ξ+

δi j
+ ϑ+

δi j
≤ t, i ∈ I, j ∈ J

Ω− ≤ 0, Ω+ ≤ 0,
n∑

j=1

y j = 1, y j ≥ 0, j ∈ J .

LetF = Ω−+Ω+. Since,Ω− ≤ 0 andΩ+ ≤ 0, therefore
F ≤ 0.

Thus, (PII-9) is remodeled into a linear programming
problem given below :

(PII-10) max {F}
subject to
n∑

j=1

y j

(

κ ln

(

1 −
ξ+
δi j

t

)

+ (1 − κ) ln

(
ϑ−

δi j

t

)

+κ ln

(

1 −
ξ−
δi j

t

)

+ (1 − κ) ln

(
ϑ+

δi j

t

))

≥ F, i ∈ I

sξ−
δi j

, sξ+
δi j

, sϑ−
δi j

, sϑ+
δi j

∈ S[0,t], i ∈ I, j ∈ J

0 ≤ ξ+
δi j

+ ϑ+
δi j

≤ t, i ∈ I, j ∈ J
F ≤ 0,
n∑

j=1

y j = 1, y j ≥ 0, j ∈ J .

For any specifiedweight κ ∈ [0, 1], as stated in Theorem4
(proved later), Definitions 10 and 11, a minimax strategy y�

for player II, could be obtained using (PII-10). Therefore,
(y�,F�) is the optimal solution of the linear programming
problem (PII-10).

Case II : If sξ+
δi j

= st , sξ−
δi j

= st , sϑ−
δi j

= s0, and sϑ+
δi j

=
s0, i ∈ I, j ∈ J .

In this particular case, it is significant to take into account
that whenever ξ−

δi j
= t , ξ+

δi j
= t, ϑ−

δi j
= 0, and ϑ+

δi j
= 0,

then ln

(

1 −
ξ−
δi j

t

)

→ −∞, ln

(

1 −
ξ+
δi j

t

)

→ −∞ and

ln

(
ϑ−

δi j

t

)

→ −∞, ln

(
ϑ+

δi j

t

)

→ −∞. Therefore, at such

occurrences, the (PII-10) becomes invalid. Thus, it is remod-
eled as the following nonlinear programming problems :

(PII-11)

max

⎧
⎨

⎩

(

1 − ξ+
Ψ

t

)κ (
ϑ−

Ψ

t

)(1−κ) (

1 − ξ−
Ψ

t

)κ (
ϑ+

Ψ

t

)(1−κ)
⎫
⎬

⎭

subject to

n∏

j=1

⎡

⎣
(

1 −
ξ+
δi j

t

)κ (
ϑ−

δi j

t

)(1−κ) (

1 −
ξ−
δi j

t

)κ (
ϑ+

δi j

t

)(1−κ)
⎤

⎦

y j

≥
(

1 − ξ+
Ψ

t

)κ (
ϑ−

Ψ

t

)(1−κ) (

1 − ξ−
Ψ

t

)κ (
ϑ+

Ψ

t

)(1−κ)

,

for any x ∈ Sm

sξ−
Ψ

, sξ+
Ψ

, sϑ−
Ψ
, sϑ+

Ψ
, sξ−

δi j
, sξ+

δi j
, sϑ−

δi j
, sϑ+

δi j
∈ S[0,t],

i ∈ I, j ∈ J
0 ≤ ξ+

Ψ + ϑ+
Ψ ≤ t, 0 ≤ ξ+

δi j
+ ϑ+

δi j
≤ t,

i ∈ I, j ∈ J
n∑

j=1

y j = 1, y j ≥ 0, j ∈ J .

Let W =
(

1 − ξ+
Ψ

t

)κ (
ϑ−

Ψ

t

)(1−κ) (

1 − ξ−
Ψ

t

)κ

(
ϑ+

Ψ

t

)(1−κ)

. Since κ ∈ [0, 1], 0 ≤ 1 − ξ−
Ψ

t
≤ 1, 0 ≤

ϑ+
Ψ

t
≤ 1, 0 ≤ 1 − ξ−

Ψ

t
≤ 1 and 0 ≤ ϑ+

Ψ

t
≤ 1. Therefore,

0 ≤ W ≤ 1.
Consequently, (PII-11) is transformed as :

(PII-12)

max {W}
subject to

n∏

j=1

⎡

⎣
(

1 −
ξ+
δi j

t

)κ (
ϑ−

δi j

t

)(1−κ) (

1 −
ξ−
δi j

t

)κ (
ϑ+

δi j

t

)(1−κ)
⎤

⎦

y j

≥ W, for any x ∈ Sm
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sξ−
δi j

, sξ+
δi j

, sϑ−
δi j

, sϑ+
δi j

∈ S[0,t], i ∈ I, j ∈ J

0 ≤ ξ+
δi j

+ ϑ+
δi j

≤ t, i ∈ I, j ∈ J
0 ≤ W ≤ 1,
n∑

j=1

y j = 1, y j ≥ 0, j ∈ J .

The optimal solution for ((PII-12) is (y�,W�). Since,
W� = eF

�
. Therefore, (y�,F�) is the optimal solution of

the linear programming problem (PII-10).
Since, (PI-10) and (PII-10) are dual of each other, there-

fore U� = F�. Hence, V� = W� because V� = eU
�
and

W� = eF
�
. Figure 1 shows the solution algorithm for matrix

games involving LIVIFNs in the payoffs (considering both
the cases) for two players.

Theorem 1 Let Θ� be the maximin for player I and Ψ � be
the minimax for player II, respectively. Then Θ� and Ψ � are
LIVIFNs, such that Θ� ≤ Ψ �.

Proof From(3.1), E Ã(x, y) =
〈[
sξ−

δxy
, sξ+

δxy

]
,

[
sϑ−

δxy
, sϑ+

δxy

]〉

is an LIVIFN.
where, sξ−

δxy
, sξ+

δxy
, sϑ−

δxy
, sϑ+

δxy
∈ S[0,t], such that sξ+

δxy
+

sϑ+
δxy

≤ st .

Therefore,

0 ≤ ξ+
δxy

+ ϑ+
δxy

≤ t . (3.8)

and max
x∈Sm min

y∈Sn

{
sξ+

δxy

}
, min

x∈Sm max
y∈Sn

{
sϑ+

δxy

}
∈ S[0,t]. (3.9)

From (3.8), we obtain

0 ≤ ξ+
δxy

+ min
y∈Sn
{
ϑ+

δxy

}
≤ ξ+

δxy
+ max

y∈Sn
{
ϑ+

δxy

}
≤ t

and

0 ≤ min
y∈Sn ξ+

δxy
+ min

y∈Sn
{
ϑ+

δxy

}
≤ ξ+

δxy
+ max

y∈Sn
{
ϑ+

δxy

}
≤ t

It gives,

0 ≤ min
y∈Sn
{
ξ+
δxy

}
+ min

x∈Sm min
y∈Sn
{
ϑ+

δxy

}
≤ min

y∈Sn
{
ξ+
δxy

}

+ min
x∈Sm max

y∈Sn
{
ϑ+

δxy

}
≤ ξ+

δxy
+ min

y∈Sn max
y∈Sn
{
ϑ+

δxy

}
≤ t

Therefore,

0 ≤ max
x∈Sm min

y∈Sn
{
ξ+
δxy

}
+ min

x∈Sm min
y∈Sn
{
ϑ+

δxy

}
≤ max

x∈Sm min
y∈Sn
{
ξ+
δxy

}

+ min
x∈Sm max

y∈Sn
{
ϑ+

δxy

}
≤ max

x∈Sm
{
ξ+
δxy

}
+ min

y∈Sn max
y∈Sn
{
ϑ+

δxy

}
≤ t

(3.10)

i.e.,

0 ≤ max
x∈Sm min

y∈Sn
{
ξ+
δxy

}
+ min

x∈Sm max
y∈Sn
{
ϑ+

δxy

}
≤ t (3.11)

Thus, from (3.4), (3.8) and (3.11), we get 0 ≤ ξ+
Θ� +ϑ+

Θ� ≤ t ,
where sξ+

Θ�
, sϑ+

Θ�
∈ S[0,t]. Thus, Θ� is an LIVIFN.

Likewise, ϑ� can be established as LIVIFN.
For any x ∈ Sm and y ∈ Sn :

min
y∈Sn

{
sξ−

δxy

}
≤ sξ−

δxy
≤ max

x∈Sm

{
sξ−

δxy

}

Hence,

min
y∈Sn

{
sξ−

δxy

}
≤ sξ−

δxy
≤ min

y∈Sn max
x∈Sm

{
sξ−

δxy

}

Subsequently,

max
x∈Sm min

y∈Sn

{
sξ−

δxy

}
≤ min

y∈Sn max
x∈Sm

{
sξ−

δxy

}
(3.12)

Similarly, the following can also be obtained:

max
x∈Sm min

y∈Sn

{
sξ+

δxy

}
≤ min

y∈Sn max
x∈Sm

{
sξ+

δxy

}
(3.13)

Combining (3.12) and (3.13), we obtain that

max
x∈Sm min

y∈Sn

{[
sξ−

δxy
, sξ+

δxy

]}
≤ min

y∈Sn max
x∈Sm

{[
sξ−

δxy
, sξ+

δxy

]}
.

(3.14)

Similarly, for any x ∈ Sm and y ∈ Sn

min
x∈Sm

{
sϑ−

δxy

}
≤ sϑ−

δxy
≤ max

y∈Sn

{
sϑ−

δxy

}

Hence,

max
y∈Sn min

x∈Sm

{
sϑ−

δxy

}
≤ max

y∈Sn

{
sϑ−

δxy

}

and therefore,

max
y∈Sn min

x∈Sm

{
sϑ−

δxy

}
≤ min

x∈Sm max
y∈Sn

{
sϑ−

δxy

}
(3.15)

Also, we can establish that

max
y∈Sn min

x∈Sm

{
sϑ+

δxy

}
≤ min

x∈Sm max
y∈Sn

{
sϑ+

δxy

}
(3.16)
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Fig. 1 Algorithm for resolving
LIVIFMG

Therefore, combining (3.15) and (3.16), we get

max
y∈Sn min

x∈Sm

{[
sϑ−

δxy
, sϑ+

δxy

]}
≤ min

x∈Sm max
y∈Sn

{[
sϑ−

δxy
, sϑ+

δxy

]}

(3.17)

Now, using (3.14), (3.17) and Definition 7, we get

max
x∈Sm min

y∈Sn

{ 〈[
sξ−

δxy
, sξ+

δxy

]
,

[
sϑ−

δxy
, sϑ+

δxy

]〉 }

≤ min
y∈Sn max

x∈Sm

{ 〈[
sξ−

δxy
, sξ+

δxy

]
,

[
sϑ−

δxy
, sϑ+

δxy

]〉 }
.

Therefore, Θ� ≤ Ψ �. ��

Theorem 2 For specific κ ∈ [0, 1], the matrix game LIV-
IFMG involving payoffs characterized by LIVIFNs always

possess a solution
(
x�, y�, x�T Ãy�

)
.

Proof For any κ ∈ [0, 1] be a givenweight. Then, it is evident
that (PI-10) and (PII-10) forms a pair of primal-dual linear
programming problems equivalent to thematrix game having
payoffs matrix as:

(

κ ln

(

1 −
ξ+
δi j

t

)

+ (1 − κ) ln

(
ϑ−

δi j

t

)

+κ ln

(

1 −
ξ−
δi j

t

)

+ (1 − κ) ln

(
ϑ+

δi j

t

))

m×n

,

Following the minimax theorem for matrix games Owen
(1982), (PI-10) and (PII-10) will always have optimal solu-
tions. Here, (x�,U�) and (y�,F�) are the optimal solution
of (PI-10) and (PII-10), respectively, where U� = F�.
Hence, the matrix game LIVIFMG having payoff matrix
Ã characterized by LIVIFNs always possess a solution(
x�, y�, x�T Ãy�

)
, for specified weight κ ∈ [0, 1]. ��

For each κ ∈ [0, 1], U and F are defined in terms of the
weight κ and retain the following property:

Theorem 3 U andF are monotonically non-decreasing func-
tions of κ ∈ [0, 1].

Proof From problem (PI-10)
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U = Γ − + Γ + = κ ln

(

1 − ξ+
Θ

t

)

+ (1− κ) ln

(
ϑ−

Θ

t

)

+

κ ln

(

1 − ξ−
Θ

t

)

+ (1 − κ) ln

(
ϑ+

Θ

t

)

where 0 ≤ 1 − ξ+
Θ

t
≤ 1, 0 ≤ ϑ−

Θ

t
≤ 1, 0 ≤ 1 − ξ−

Θ

t
≤ 1,

0 ≤ ϑ+
Θ

t
≤ 1 and t > 0.

Since 0 ≤ ξ−
Θ

t
≤ ξ+

Θ

t
≤ 1, therefore 0 ≤ 1 − ξ+

Θ

t
≤

1 − ξ−
Θ

t
≤ 1, which further implies that ln

(

1 − ξ+
Θ

t

)

≤

ln

(

1 − ξ−
Θ

t

)

≤ 0.

Also, 0 ≤ ϑ−
Θ

t
≤ ϑ+

Θ

t
≤ 1, implies ln

(
ϑ−

Θ

t

)

≤

ln

(
ϑ+

Θ

t

)

≤ 0.

Now,

∂U

∂κ
= ln

(

1 − ξ+
Θ

t

)

− ln

(
ϑ−

Θ

t

)

+ ln

(

1 − ξ−
Θ

t

)

− ln

(
ϑ+

Θ

t

)

≥ 2 ln

(

1 − ξ+
Θ

t

)

− 2 ln

(
ϑ+

Θ

t

)

Here, 0 ≤ ξ+
Θ + ϑ+

Θ ≤ t , which implies that 0 ≤ ξ+
Θ

t
+

ϑ+
Θ

t
≤ 1 and hence 1 − ξ+

Θ

t
≥ ϑ+

Θ

t
. Thus, ln

(

1 − ξ+
Θ

t

)

≥

ln

(
ϑ+

Θ

t

)

. Thus,
∂U

∂κ
≥ 0, except for

ϑ+
Θ

t
= 0.

Hence, U is monotonically non-decreasing function for
each κ ∈ [0, 1].

Analogously, F can also be proved a monotonically non-
decreasing function for κ ∈ [0, 1]. ��

Finally, a well-defined relationship between optimal solu-
tions of (PI-10) and (PII-10) and the solution of the matrix
game LIVIFMG having payoffs characterized by LIVIFNs
Ã, are explained as:

Theorem 4 Suppose (x�,U�) and (y�,F�) being optimal
solutions of (PI-10) and (PII-10) with 0 < κ < 1, respec-
tively. Then (x�,Θ�) and (y�, Ψ �) are the Pareto optimal
solutions of (PI-1) and (PII-1), where

Θ� =
〈
max
x∈Sm min

y∈Sn

{[
sξ−

δxy
, sξ+

δxy

]}
, min
x∈Sm max

y∈Sn

{[
sϑ−

δxy
, sϑ+

δxy

]}〉

and

Ψ � =
〈
min
y∈Sn max

x∈Sm

{[
sξ−

δxy
, sξ+

δxy

]}
, max

y∈Sn min
x∈Sm

{[
sϑ−

δxy
, sϑ+

δxy

]}〉

Proof Assuming that (x�,Θ�) is not a Pareto optimal solu-
tion for (PI-1). Then there exists a feasible solution (x̂, Θ̂),

for x̂ ∈ Sm and Θ̂ =
〈[
sξ−

Θ̂

, sξ+
Θ̂

]
,
[
sϑ−

Θ̂

, sϑ+
Θ̂

]〉
such that

s⎛
⎝t

⎛

⎝1−∏n
j=1
∏m

i=1

(

1−
ξ
−
δi j
t

)x̂i y j
⎞

⎠

⎞

⎠

≥ sξ−
Θ̂

, for any y ∈ Sn

s⎛
⎝t

⎛

⎝1−∏n
j=1
∏m

i=1

(

1−
ξ
+
δi j
t

)x̂i y j
⎞

⎠

⎞

⎠

≥ sξ+
Θ̂

, for any y ∈ Sn

s⎛
⎝t
∏n

j=1
∏m

i=1

(
ϑ

−
δi j
t

)x̂i y j
⎞

⎠

≤ sϑ−
Θ̂

, for any y ∈ Sn

s⎛
⎝t
∏n

j=1
∏m

i=1

(
ϑ

+
δi j
t

)x̂i y j
⎞

⎠

≤ sϑ+
Θ̂

, for any y ∈ Sn

sξ−
Θ̂

, sξ+
Θ̂

, sϑ−
Θ̂

, sϑ+
Θ̂

∈ S[0,t],

0 ≤ ξ+
Θ̂

+ ϑ+
Θ̂

≤ t

m∑

i=1

x̂i = 1, x̂i ≥ 0, i ∈ I.

where

Θ̂ =
〈
min
y∈Sn

{[
sξ−

δxy
, sξ+

δxy

]}
,max
y∈Sn

{[
sϑ−

δxy
, sϑ+

δxy

]}〉

=
〈[
sξ−

Θ̂

, sξ+
Θ̂

]
,
[
sϑ−

Θ̂

, sϑ+
Θ̂

]〉

Also, [sξ−
Θ̂

, sξ+
Θ̂

] ≥ [sξ−
Θ�

, sξ+
Θ�

] and [sϑ−
Θ̂

, sϑ+
Θ̂

] ≤
[sϑ−

Θ�
, sϑ+

Θ�
], where either of the two relations can be a strict

inequality.
Using ordering property of LTS and further aggregation

of the above set of inequalities for 0 < κ < 1 yields :

n∑

j=1

m∑

i=1

x̂i y j

(

κ ln

(

1 −
ξ+
δi j

t

)

+ (1 − κ) ln

(
ϑ−

δi j

t

))

≤ κ ln

(

1 −
ξ+
Θ̂

t

)

+ (1 − κ) ln

(
ϑ−

Θ̂

t

)

,

for any y ∈ Sn

n∑

j=1

m∑

i=1

x̂i y j

(

κ ln

(

1 −
ξ−
δi j

t

)

+ (1 − κ) ln

(
ϑ+

δi j

t

))

≤ κ ln

(

1 −
ξ−
Θ̂

t

)

+ (1 − κ) ln

(
ϑ+

Θ̂

t

)

,
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for any y ∈ Sn

sξ−
Θ̂

, sξ+
Θ̂

, sϑ−
Θ̂

, sϑ+
Θ̂

∈ S[0,t],

0 ≤ ξ+
Θ̂

+ ϑ+
Θ̂

≤ t

m∑

i=1

x̂i = 1, x̂i ≥ 0, ∈ I. (3.18)

Furthermore, R.H.S. of (3.18) implies the following relations

κ ln

(

1 −
ξ+
Θ̂

t

)

+ (1 − κ) ln

(
ϑ−

Θ̂

t

)

≤ κ ln

(

1 − ξ+
Θ�

t

)

+ (1 − κ) ln

(
ϑ−

Θ�

t

)

κ ln

(

1 −
ξ−
Θ̂

t

)

+ (1 − κ) ln

(
ϑ+

Θ̂

t

)

≤ κ ln

(

1 − ξ−
Θ�

t

)

+ (1 − κ) ln

(
ϑ+

Θ�

t

)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.19)

Let Γ̂ − = κ ln

(

1 −
ξ+
Θ̂

t

)

+ (1 − κ) ln

(
ϑ−

Θ̂

t

)

and Γ̂ + =

κ ln

(

1 −
ξ−
Θ̂

t

)

+ (1 − κ) ln

(
ϑ+

Θ̂

t

)

.

From (3.19), we get

Γ̂ − ≤ Γ −�
and Γ̂ + ≤ Γ +�

. (3.20)

where one of these relations can be a strict inequality.
Therefore,

Γ̂ − + Γ̂ + ≤ Γ −� + Γ +� or Û ≤ U�. (3.21)

Also, Sn being a finite compact convex set, it is sufficient to
take into account only the extreme points of the set Sn . Thus,
the constraints (3.18) can be remodeled as:

m∑

i=1

x̂i

(

κ ln

(

1 −
ξ+
δi j

t

)

+ (1 − κ) ln

(
ϑ−

δi j

t

))

≤ Γ̂ − , for any j ∈ J
m∑

i=1

x̂i

(

κ ln

(

1 −
ξ−
δi j

t

)

+ (1 − κ) ln

(
ϑ+

δi j

t

))

≤ Γ̂ +, for any j ∈ J
Γ̂ − ≤ 0, Γ̂ + ≤ 0,
m∑

i=1

x̂i = 1, x̂i ≥ 0, , i ∈ I.

Further the above constraints are reformulated as :

m∑

i=1

x̂i

(

κ ln

(

1 −
ξ+
δi j

t

)

+ (1 − κ) ln

(
ϑ−

δi j

t

)

+ κ ln

(

1 −
ξ−
δi j

t

)

+(1 − κ) ln

(
ϑ+

δi j

t

))

≤ Γ̂ − + Γ̂ +, for any j ∈ J

Γ̂ − ≤ 0, Γ̂ + ≤ 0,
m∑

i=1

x̂i = 1, x̂i ≥ 0, , i ∈ I.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.22)

Defining Û = Γ̂ − + Γ̂ +. Then, (3.22) is transformed
as follows:

m∑

i=1

x̂i

(

κ ln

(

1 −
ξ+
δi j

t

)

+ (1 − κ) ln

(
ϑ−

δi j

t

)

+κ ln

(

1 −
ξ−
δi j

t

)

+ (1 − κ) ln

(
ϑ+

δi j

t

))

≤ Û, for any j ∈ J
Û ≤ 0,
m∑

i=1

x̂i = 1, x̂i ≥ 0, , i ∈ I.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Therefore, (x̂, Û) is a feasible solution of (PI-10).
Also, Û ≤ U� from (3.21), which is contrary to the state-

ment (x�,U�) exists as the optimal solution for (PI-10). Thus,
(x�,Θ�) is the Pareto optimal solution of (PI-1).

On the similar lines, it can be proved that (y�, Ψ �) is the
Pareto optimal solution of (PII-1). ��

4 Numerical illustration

Example 1 Assume that two different companies,K1 andK2,
both manufacture air conditioners (ACs) and are engaged in
an intense competition to sell window ACs to a newly estab-
lished educational institution. It is believed that the demand
for air conditioners remains relatively stable throughout time.
When one company’s profits go up, it usually means that
another company’s profits are going down simultaneously.
In order to gain a competitive advantage, the two companies
need to consider their marketing strategies carefully. Despite
the fact that there are many limitations, the company K1 has
decided to prioritize the following three alternatives:

(i) giving special discount offer (σ1),
(ii) giving additional warranty (σ2),
(iii) producing energy-efficient ACs (σ3).
On the other hand, companyK2 too have three alternatives

on priority basis:
(i) to provide special price offer (ζ1),
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(ii) generating energy-efficient air conditioners (ζ2),
(iii) to provide one time free servicing to users (ζ3).
The two companies have limited funds, thus leaving them

withonlyonepossibility to select.Hence, the aforementioned
challenging choice issue is referred to as a matrix game. The
companies K1 and K2 are believed to be two players, player
I and player II, respectively. The payoffs of game are the
market gains that a company expects to receive based on the
strategy that the individual company chooses. Moreover, the
market facts are scarcely known/unknown and are frequently
uncertain. Thus, a unique numeric value for the payoff can-
not model it realistically. A committee of experts assesses
the state of the financial markets and expresses their conclu-
sions in linguistic terms, i.e., LIVIFNs. The evaluation of the
above-mentioned alternatives for each player (companies)
according to LTSs is defined as follows:

S = {s0 = no gain, s1 = very low gain, s2 =
low gain, s3 = slightly low gain, s4 = moderate gain,
s5 = slightly good gain, s6 = good gain, s7 = very good gain,
s8 = excellent gain}.

Under this paradigm, based on expert’s evaluation, the
payoff matrix Ã for player I (i.e., companyK1), with payoffs
as LIVIFNs is as follows :

Ã =
⎡

⎣
〈[s5, s6] ; [s1, s2]〉 〈[s4, s5]; [s1, s2]〉 〈[s1, s3]; [s4, s5]〉
〈[s0, s2]; [s3, s6]〉 〈[s7, s7]; [s1, s1]〉 〈[s3, s6]; [s1, s2]〉
〈[s0, s1]; [s2, s2]〉 〈[s1, s2]; [s4, s6]〉 〈[s2, s7]; [s1, s1]〉

⎤

⎦

Corresponding to the optimization Models (PI-10) and (PII-
10), we get the problem for player I and player II as follows:

(PI-1.1)

min {U}
subject to

x1

[
κ ln

(
1 − 6

8

)
+ (1 − κ) ln

(
1

8

)
+ κ ln

(
1 − 5

8

)

+(1 − κ) ln

(
2

8

)]
+

x2

[
κ ln

(
1 − 2

8

)
+ (1 − κ) ln

(
3

8

)
+ κ ln

(
1 − 0

8

)

+(1 − κ) ln

(
6

8

)]
+

x3

[
κ ln

(
1 − 1

8

)
+ (1 − κ) ln

(
2

8

)
+ κ ln

(
1 − 0

8

)

+(1 − κ) ln

(
2

8

)]
≤ U,

x1

[
κ ln

(
1 − 5

8

)
+ (1 − κ) ln

(
1

8

)
+ κ ln

(
1 − 4

8

)

+(1 − κ) ln

(
2

8

)]
+

x2

[
κ ln

(
1 − 7

8

)
+ (1 − κ) ln

(
1

8

)
+ κ ln

(
1 − 7

8

)

+(1 − κ) ln

(
1

8

)]
+

x3

[
κ ln

(
1 − 2

8

)
+ (1 − κ) ln

(
4

8

)
+ κ ln

(
1 − 1

8

)

+(1 − κ) ln

(
6

8

)]
≤ U,

x1

[
κ ln

(
1 − 3

8

)
+ (1 − κ) ln

(
4

8

)
+ κ ln

(
1 − 1

8

)

+(1 − κ) ln

(
5

8

)]
+

x2

[
κ ln

(
1 − 6

8

)
+ (1 − κ) ln

(
1

8

)
+ κ ln

(
1 − 3

8

)

+(1 − κ) ln

(
2

8

)]
+

x3

[
κ ln

(
1 − 7

8

)
+ (1 − κ) ln

(
1

8

)
+ κ ln

(
1 − 2

8

)

+(1 − κ) ln

(
1

8

)]
≤ U,

x1 + x2 + x3 = 1,

U ≤ 0, x1, x2, x3 ≥ 0,

(PII-1.2)

max {F}
such that

y1

[
κ ln

(
1 − 6

8

)
+ (1 − κ) ln

(
1

8

)
+ κ ln

(
1 − 5

8

)

+(1 − κ) ln

(
2

8

)]
+

y2

[
κ ln

(
1 − 5

8

)
+ (1 − κ) ln

(
1

8

)
+ κ ln

(
1 − 4

8

)

+(1 − κ) ln

(
2

8

)]
+

y3

[
κ ln

(
1 − 3

8

)
+ (1 − κ) ln

(
4

8

)
+ κ ln

(
1 − 1

8

)

+(1 − κ) ln

(
5

8

)]
≥ F,

y1

[
κ ln

(
1 − 2

8

)
+ (1 − κ) ln

(
3

8

)
+ κ ln

(
1 − 0

8

)

+(1 − κ) ln

(
6

8

)]
+

y2

[
κ ln

(
1 − 7

8

)
+ (1 − κ) ln

(
1

8

)
+ κ ln

(
1 − 7

8

)

+(1 − κ) ln

(
1

8

)]
+

y3

[
κ ln

(
1 − 6

8

)
+ (1 − κ) ln

(
1

8

)
+ κ ln

(
1 − 3

8

)

+(1 − κ) ln

(
2

8

)]
≥ F,

y1

[
κ ln

(
1 − 1

8

)
+ (1 − κ) ln

(
2

8

)
+ κ ln

(
1 − 0

8

)
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+(1 − κ) ln

(
2

8

)]
+

y2

[
κ ln

(
1 − 2

8

)
+ (1 − κ) ln

(
4

8

)
+ κ ln

(
1 − 1

8

)

+(1 − κ) ln

(
6

8

)]
+

y3

[
κ ln

(
1 − 7

8

)
+ (1 − κ) ln

(
1

8

)
+ κ ln

(
1 − 2

8

)

+(1 − κ) ln

(
1

8

)]
≥ F,

y1 + y2 + y3 = 1,

F ≤ 0, y1, y2, y3 ≥ 0.

The optimization problems (PI-1.1) and (PII-1.2) can
be solved for distinct values of κ ∈ [0, 1], with the help
of mathematical software easily. Here, we use MATLAB
R2018b software to compute the solutions of linear program-
ming problems given in (PI-1.1) and (PII-1.2). The obtained
optimal solutions and the corresponding expected values are
illustrated in Table 1.

Analogous to the optimization Model (PI-12) and Model
(PII-12), we construct the problems (PI-1.3) and (PII-1.4)
for player I and player II , respectively, which are described
as follows:

(PI-1.3)

min {V}
subject to
[(

1 − 6

8

)κ (1
8

)(1−κ) (
1 − 5

8

)κ (2
8

)(1−κ)
]x1

∗
[(

1 − 2

8

)κ (3
8

)(1−κ) (
1 − 0

8

)κ (6
8

)(1−κ)
]x2

∗
[(

1 − 1

8

)κ (2
8

)(1−κ) (
1 − 0

8

)κ (2
8

)(1−κ)
]x3

≤ V,

[(
1 − 5

8

)κ (1
8

)(1−κ) (
1 − 4

8

)κ (2
8

)(1−κ)
]x1

∗
[(

1 − 7

8

)κ (1
8

)(1−κ) (
1 − 7

8

)κ (1
8

)(1−κ)
]x2

∗
[(

1 − 2

8

)κ (4
8

)(1−κ) (
1 − 1

8

)κ (6
8

)(1−κ)
]x3

≤ V,

[(
1 − 3

8

)κ (4
8

)(1−κ) (
1 − 1

8

)κ (5
8

)(1−κ)
]x1

∗
[(

1 − 6

8

)κ (1
8

)(1−κ) (
1 − 3

8

)κ (2
8

)(1−κ)
]x2

∗

[(
1 − 7

8

)κ (1
8

)(1−κ) (
1 − 2

8

)κ (1
8

)(1−κ)
]x3

≤ V,

x1 + x2 + x3 = 1,

0 ≤ V ≤ 1, x1, x2, x3 ≥ 0.

and

(PII-1.4)

max {W}
subject to
[(

1 − 6

8

)κ (1
8

)(1−κ) (
1 − 5

8

)κ (2
8

)(1−κ)
]y1

∗
[(

1 − 5

8

)κ (1
8

)(1−κ) (
1 − 4

8

)κ (2
8

)(1−κ)
]y2

∗
[(

1 − 3

8

)κ (4
8

)(1−κ) (
1 − 1

8

)κ (5
8

)(1−κ)
]y3

≥ W,

[(
1 − 2

8

)κ (3
8

)(1−κ) (
1 − 0

8

)κ (6
8

)(1−κ)
]y1

∗
[(

1 − 7

8

)κ (1
8

)(1−κ) (
1 − 7

8

)κ (1
8

)(1−κ)
]y2

∗
[(

1 − 6

8

)κ (1
8

)(1−κ) (
1 − 3

8

)κ (2
8

)(1−κ)
]y3

≥ W,

[(
1 − 1

8

)κ (2
8

)(1−κ) (
1 − 0

8

)κ (2
8

)(1−κ)
]y1

∗
[(

1 − 2

8

)κ (4
8

)(1−κ) (
1 − 1

8

)κ (6
8

)(1−κ)
]y2

∗
[(

1 − 7

8

)κ (1
8

)(1−κ) (
1 − 2

8

)κ (1
8

)(1−κ)
]y3

≥ W,

y1 + y2 + y3 = 1,

0 ≤ W ≤ 1, y1, y2, y3 ≥ 0.

Problems (PII-1.3) and (PII-1.4) are solved by using
MATLAB R2018b software, and their results have been tab-
ulated for the optimal values and their respective expected
values in Table 2.

The results summarized in Tables 1 and 2 clearly indicate
that as the value of κ changes, different mixed strategies are
obtained corresponding to the Players I and II, respectively.
It is worth mentioning that the values U�, F�, V� and W�

are monotonically non-decreasing with respect to κ . Also,
maximin strategies x� andminimax strategies y� obtained by
the problems (PI-1.1) and (PII-1.2), are respectively, similar
to those obtained by the problems given in (PI-1.3) and (PII-
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Table 1 Optimal solutions for (PI-1.1) and (PII-1.2)

Player I Player II E Ã(x�, y�)

κ x� U� y� F�

0.1 (0.4318,0.2034,0.3649) −2.6021 (0.4273,0.2452,0.3276) −2.6021 〈[s2.9249, s4.8839], [s1.6867, s2.4555]〉
0.2 (0.4404,0.1862,0.3734) −2.4673 (0.4360,0.2234,0.3406) −2.4673 〈[s2.8526, s4.8795], [s1.6907, s2.4448]〉
0.3 (0.4503,0.1690,0.3807) −2.3308 (0.4423,0.2011,0.3566) −2.3308 〈[s2.7872, s4.8852], [s1.6939, s2.4315]〉
0.4 (0.4614,0.1520,0.3866) −2.1931 (0.4459,0.1787,0.3755) −2.1931 〈[s2.7266, s4.8995], [s1.6978, s2.4161]〉
0.5 (0.4736,0.1355,0.3909) −2.0545 (0.4464,0.1563,0.3973) −2.0545 〈[s2.6711, s4.9195], [s1.70331, s2.4022]〉
0.6 (0.4868,0.1197,0.3955) −1.9154 (0.4436,0.1344,0.4220) −1.9154 〈[s2.6247, s4.9641], [s1.7311, s2.3823]〉
0.7 (0.5010,0.1050,0.3941) −1.7765 (0.4374,0.1133,0.4494) −1.7765 〈[s2.5736, s4.9773], [s1.7215, s2.3802]〉
0.8 (0.5159,0.0915,0.3926) −1.6384 (0.4276,0.0933,0.4792) −1.6384 〈[s2.5309, s5.0078], [s1.7372, s2.3777]〉
0.9 (0.5314,0.0796,0.3890) −1.5015 (0.4142,0.0748,0.5110) −1.5015 〈[s2.4874, s5.0381], [s1.7580, s2.3813]〉

Table 2 Optimal solutions of the nonlinear programming problems (PII-1.3) and (PII-1.4)

Player I Player II E Ã(x�, y�)

κ x� V� y� W�

0.1 (0.4317,0.2034,0.3649) 0.0741 (0.4273, 0.2452, 0.3276) 0.0741 〈[s2.9249, s4.8839], [s1.6867, s2.4555]〉
0.2 (0.4404,0.1862,0.3734) 0.0848 (0.4360,0.2234,0.3406) 0.0848 〈[s2.8526, s4.8795], [s1.6907, s2.4448]〉
0.3 (0.4503,0.1690,0.3807) 0.0972 (0.4423,0.2011,0.3566) 0.0972 〈[s2.7872, s4.8852], [s1.6939, s2.4315]〉
0.4 (0.4613,0.1520,0.3866) 0.1116 (0.4459,0.1787,0.3755) 0.1116 〈[s2.7266, s4.8995], [s1.6978, s2.4161]〉
0.5 (0.4735,0.1355,0.3910) 0.1281 (0.4464,0.1563,0.3973) 0.1281 〈[s2.6711, s4.9195], [s1.70331, s2.4022]〉
0.6 (0.4868,0.1197,0.3955) 0.1473 (0.4437,0.1344,0.4220) 0.1473 〈[s2.6247, s4.4.9641], [s1.7311, s2.3823]〉
0.7 (0.5010,0.1050,0.3941) 0.1692 (0.4374,0.1133,0.4494) 0.1692 〈[s2.5736, s4.9773], [s1.7215, s2.3802]〉
0.8 (0.5159,0.0915,0.3926) 0.1943 (0.4276,0.0933,0.4792) 0.1943 〈[s2.5309, s5.0078], [s1.7372, s2.3777]〉
0.9 (0.5314,0.0796,0.3890) 0.2228 (0.4142,0.0747,0.5110) 0.2228 〈[s2.4874, s5.0381], [s1.7580, s2.3813]〉

1.4). Furthermore, V� = eU
�
and W� = eF

�
, with sξ+

δi j
�=

st , sξ−
δi j

�= st , sϑ+
δi j

�= s0 and sϑδ−
δi j

�= s0 (i, j = 1, 2, 3).

5 Comparative study

It is important to highlight that the LIVIFN provides an ade-
quate description of subjective information. According to
the research that has been reviewed, matrix games have not
been looked in the context of the linguistic interval-valued
intuitionistic fuzzy environment, which describes quantita-
tive information more flexibly. As a result, it is difficult for
us to make a direct comparison between our methodology

and any other methods currently available for solving matrix
games.

Wang et al. (2014) developed the idea of linguistic scale
function (LSF) for transforming the linguistic terms into
numerical values. It can be defined as follows :

Let S = {s f | f = 0, 1, . . . , t
}
be a LTS and Ψ f ∈ [0, 1]

be a real number, then LSF can be expressed by the mathe-
matical expression given by

G : s f → Ψ f =
(

f

t

)
( f = 0, 1, . . . , t) . (5.1)

Now utilizing Eq. (5.1), we get the following payoff matrix
corresponding to the LIVIFNs payoff matrix Ã:
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Table 3 Optimal solutions of linear programming problems based on Li’s approach for payoff matrix B̃

Player I Player II EB̃(x�, y�)

κ x� U� y� F�

0.1 (0.4317,0.2034,0.3649) −2.6023 (0.4273, 0.2452, 0.3276) −2.6023 〈[0.3653, 0.6102], [0.2110, 0.3071]〉
0.2 (0.4404,0.1862,0.3734) −2.4674 (0.4360,0.2234,0.3406) −2.4674 〈[0.3563, 0.6098], [0.2114, 0.3057]〉
0.3 (0.4503,0.1690,0.3807) −2.3309 (0.4423,0.2011,0.3566) −2.3309 〈[0.3481, 0.6105], [0.2119, 0.3040]〉
0.4 (0.4613,0.1520,0.3866) −2.1932 (0.4459,0.1787,0.3755) −2.1932 〈[0.3405, 0.6122], [0.2123, 0.3022]〉
0.5 (0.4735,0.1355,0.3910) −2.0546 (0.4464,0.1563,0.3973) −2.0546 〈[0.3336, 0.6148], [0.2130, 0.3004]〉
0.6 (0.4868,0.1197,0.3955) −1.9155 (0.4437,0.1344,0.4220) −1.9155 〈[0.3276, 0.6189], [0.2132, 0.2979]〉
0.7 (0.5010,0.1050,0.3941) −1.7766 (0.4374,0.1133,0.4494) −1.7766 〈[0.3217, 0.6220], [0.2153, 0.2977]〉
0.8 (0.5159,0.0915,0.3926) −1.6384 (0.4276,0.0933,0.4792) −1.6384 〈[0.3162, 0.6259], [0.2172, 0.2973]〉
0.9 (0.5314,0.0796,0.3890) −1.5015 (0.4142,0.0747,0.5110) −1.5015 〈[0.3108, 0.6296], [0.2199, 0.2979]〉

Table 4 Optimal solutions of nonlinear programming problems based on Li’s approach for payoff matrix B̃

Player I Player II EB̃(x�, y�)

κ x� V� y� W�

0.1 (0.4317,0.2034,0.3649) 0.0741 (0.4273, 0.2452, 0.3276) 0.0741 〈[0.3653, 0.6102], [0.2110, 0.3071]〉
0.2 (0.4404,0.1862,0.3734) 0.0848 (0.4360,0.2234,0.3406) 0.0848 〈[0.3563, 0.6098], [0.2114, 0.3057]〉
0.3 (0.4503,0.1690,0.3807) 0.0972 (0.4423,0.2011,0.3566) 0.0972 〈[0.3481, 0.6105], [0.2119, 0.3040]〉
0.4 (0.4613,0.1520,0.3866) 0.1116 (0.4459,0.1787,0.3755) 0.1116 〈[0.3405, 0.6122], [0.2123, 0.3022]〉
0.5 (0.4735,0.1355,0.3910) 0.1281 (0.4464,0.1563,0.3973) 0.1281 〈[0.3336, 0.6148], [0.2130, 0.3004]〉
0.6 (0.4868,0.1197,0.3955) 0.1473 (0.4437,0.1344,0.4220) 0.1473 〈[0.3276, 0.6189], [0.2132, 0.2979]〉
0.7 (0.5010,0.1050,0.3941) 0.1692 (0.4374,0.1133,0.4494) 0.1692 〈[0.3217, 0.6220], [0.2153, 0.2977]〉
0.8 (0.5159,0.0915,0.3926) 0.1943 (0.4276,0.0933,0.4792) 0.1943 〈[0.3162, 0.6259], [0.2172, 0.2973]〉
0.9 (0.5314,0.0796,0.3890) 0.2228 (0.4142,0.0747,0.5110) 0.2228 〈[0.3108, 0.6296], [0.2199, 0.2979]〉

Table 5 The characteristic comparisons of different methods for solving matrix game problems

Characteristics Whether
consider MD

Whether
consider NMD

Whether flexibly
represent MD or
NMD

Whether
describes
qualitative
information

Whether flexibly
represent
qualitative
information

Methods

Bector et al. (2004) ✔ ✘ ✘ ✘ ✘

Li and Nan (2009) ✔ ✔ ✘ ✘ ✘

Li (2010) ✔ ✔ ✔ ✘ ✘

Arfi (2006) ✔ ✘ ✘ ✘ ✘

Singh et al. (2018) ✔ ✘ ✘ ✔ ✘

Singh and Gupta (2018) ✔ ✔ ✘ ✔ ✘

Verma and Aggarwal (2021a) ✔ ✔ ✘ ✔ ✘

Verma and Aggarwal (2021b) ✔ ✔ ✘ ✔ ✘

Our proposed method ✔ ✔ ✔ ✔ ✔
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B̃ =
⎡

⎣
〈[0.6250, 0.7500] ; [0.1250, 0.2500]〉 〈[0.5000, 0.6250]; [0.1250, 0.2500]〉 〈[0.1250, 0.3750]; [0.5000, 0.6250]〉
〈[0.0000, 0.2500]; [0.3750, 0.7500]〉 〈[0.8750, 0.8750]; [0.1250, 0.1250]〉 〈[0.3750, 0.7500]; [0.1250, 0.2500]〉
〈[0.0000, 0.1250]; [0.2500, 0.2500]〉 〈[0.1250, 0.2500]; [0.5000, 0.7500]〉 〈[0.2500, 0.8750]; [0.1250, 0.1250]〉

⎤

⎦ .

It is worth noting that all the entries in the payoff matrix B̃
are IVIFNs. After applying solution approach developed by
Li (2010), we obtain the optimal solutions as listed in Tables
3 and 4, respectively.

From Table 3, we see that the optimal strategies x� and y�

corresponding to players I and II are quite close to the optimal
strategies achieved by our suggested technique, which are
tabulated in Table 2. It demonstrates that the optimization
models presented in this work are valid and logical when
applied to solving matrix game problems whose payoffs are
indicated by LIVIFNs.

In addition, we undertake a detailed analysis for com-
paring many aspects that are taken into consideration by
researchers during the process of attempting to solve matrix
game problems. Table 5 shows the important observations.

The results summarized in Table 5 depict that the pre-
sented matrix game models are more general and flexible in
dealing with real-world complex decision-making problems.

6 Conclusion

In this study, we have examined the matrix games under a
qualitative information environment. First, the paper has dis-
cussed some basic notions to accomplish the objectives of
this work. The matrix games involving payoffs described
by LIVIFNs have been formulated. The benefit of adopting
LIVIFN payoff values is that it allows decision-makers to
describe ambiguous and imprecise facts in a more detailed
manner. As a result, the decision-maker is not compelled to
express his imprecise information in single numeral terms of
membership and non-membership functions. We have used
the LIVIFWA operator to calculate the expected value of the
game. Next, based on the order relation of LIVIFNs, the non-
linear bi-objective programming problems for each player
are reduced to a corresponding pair of linear/nonlinear pro-
gramming problems to determine the maximin and minimax
strategies corresponding to the players. Finally, the solu-
tion technique has been validated by illustrating a real-life
decision-making problem. A comparative study with some
existing methods has also been carried out to demonstrate
the advantages of the suggested method.

In the future, the proposed approach can even be employed
to investigate multi-objective matrix games involving LIV-
IFSs. The described methodology can also be extended to
more generalized information representationmodels, includ-

ing linguistic interval-valued Pythagorean fuzzy sets, lin-
guistic interval-valued q-rung orthopair fuzzy sets, and cubic
linguistic intuitionistic fuzzy sets. We shall also explore the
applications of the developed optimization models in dif-
ferent areas, such as water resources management, waste
management, and irrigation systems.
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