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Abstract
Permeability is one of the important issues that must be considered in the investigation of dam sites. Determination of this

parameter in the boreholes is time-consuming, costly, and in some cases impossible. In this study, the values of Q

classification system, Lugeon and joint spacing in five-meter intervals of boreholes in limestone rocks of Bazoft and

Khersan II dam sites, in south Iran were determined. Then, the Lugeon number was estimated based on Q classification

system and joint spacing in control and trial grouting boreholes by statistical analysis (SA), multilayer perceptron neural

network (MPNN) by feed-forward method, support vector regression (SVR), adaptive neuro-fuzzy inference system

(ANFIS), and random forest (RF) methods. Results showed that rock mass is categorized in moderate permeability class

based on mean Lugeon value and in the good category based on Q classification system. The Q classification system and

joint spacing indicated the highest effect on the Lugeon and the depth showed the least effect on the Lugeon. The SA

displayed that it is possible to predict Lugeon values by Q and Js with a precision higher than 78% based on the data of

both dam sites. According to the criteria, the accuracy of the MPNN (R = 0.91), RF (R = 0.97), ANFIS (R = 0.93) and SA

(R = 0.80–0.83) to estimate the Lugeon number was lower than SVR (R = 0.98) method.
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1 Introduction

One of the important features in the rock mass study of

civil and mining project sites is the permeability which is

determined using the Lugeon test and is used to assess the

groutability of the dam sites. In the construction of dams,

water escape occurs more than through the joints and

cracks of rocks due to hydraulic pressures of water behind

the dam. Lack of attention to the permeability of the sites in

recent decades has caused the failure of a number of dams

or the main purpose of the dam in terms of water storage

and safety of the dam structure has been questioned. In this

regard, the assessment of permeability and leakage in the

dam site is one of the necessary items in the initial studies

of dams (Nonveiller 1989; Houlsby 1990; Fatahi Nafchi

et al. 2021; Yin et al. 2022; Yang et al. 2014).

Barton (2004) investigated the relationship between

Lugeon, hydraulic joint aperture, and joint spacing. Barton

also introduced the Q logging system (i.e., determination of

parameters of this classification system in boreholes) to

determine the rock mass quality of the dam sites (Barton

2002). Many studies have been conducted to estimate

Lugeon based on rock mass characteristics and have been

stated that the characteristics of discontinuities have a great

effect on rock mass permeability (Table 1). Qureshi et al.

(2022) assessed the relationship between rock quality

designation (RQD) and Lugeon number. Piscopo et al.

(2018) and Chen et al. (2018) developed some experi-

mental equations for estimating Lugeon number based on

depth. Shahbazi et al. (2020) summarized the different

methods for determining permeability and stated that rock

mass quality and joint characteristics are the best param-

eters to estimate permeability. Morshedy et al. (2019)

indicated that with increasing depth, the amount of Lugeon

decreases and the quality of the rock mass increases.

& Amin Iraji

a.iraji@uut.ac.ir

1 Petroleum Engineering Department, Australian University,

West Mishref, Kuwait

2 Engineering Faculty of Khoy, Urmia University of

Technology, Urmia, Iran

123

Soft Computing (2023) 27:5831–5853
https://doi.org/10.1007/s00500-022-07586-8(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-022-07586-8&amp;domain=pdf
https://doi.org/10.1007/s00500-022-07586-8


Kayabasi et al. (2015) used ANFIS and non-linear multiple

regression to estimate Lugeon number. Ma et al. (2021)

stated that cracks and joints angle is the most important

factor affecting permeability and SVR method can accu-

rately predict the rock mass permeability. Results of

Matinkia et al. (2022) study, revealed that soft computing

approaches such as multilayer perceptron (MLP) and MLP-

PSO (particle swarm optimization) are capable to estimate

rock permeability with determination coefficient more than

99%. Jamshidi Gohari et al. (2021) used ANN (artificial

neural network) to estimate permeability of the carbonate

rocks. Shi and Jian (2018) sated that Elman neural network

could predict permeability with average relative error lees

than 6.25%. Adegbite et al. (2021) used ANN, ANFIS,

multiple linear regression (MLR) to predict permeability of

the carbonate rocks. Li et al. (2019) estimated curtain

grouting efficiency by ANFIS method. Akbarimehr and

Aflaki (2019) used ANN and statistical methods to predict

rock mass permeability. Zadhesh et al. (2015) estimated

permeability at Cheraghvays dam site using ANN and

multivariate linear regression (MVLR) approaches. Chen

et al. (2021a, b) assessed Lugeon correlation with depth

and rock mass classification system. Hariri-Ardebili and

Salazar (2020) used RF, SVR, and ANN to assess engi-

neering problems of the dam sites. Huang et al. (2020)

estimated concrete permeability using RF method. Rosid

et al. (2019) stated that RF is more accurate than Naive

Bayes in estimating the permeability of intact rock. Zhang

and Cai (2021) predicted carbonate rock permeability using

RF algorithm.

As mentioned above, many studies have been conducted

to estimate permeability using some intelligent methods. In

previous researches, comprehensive studies with the aim of

comparing intelligent methods in estimating rock perme-

ability (especially rock mass) and at the site of dams

(especially large dams) have not been used. In this

research, six statistical and intelligent methods have been

compared to estimate the permeability of rock mass at the

site of large dams in Khersan II and Bazoft dam sites. The

Q classification system, the joint spacing and the Lugeon

number were calculated in 5 m intervals of the boreholes.

For this purpose, 175 data related to the results of Lugeon

test, depth, Q classification system and joint spacing in 5-m

sections of trial and control boreholes dam sites were used.

Statistical analysis was performed for assessing the effect

of independent variables on the dependent variable.

Finally, the performance of SR, MVLR, ANN, SVR, RF

and ANFIS methods were evaluated using statistical indi-

cators in estimating Lugeon number.

2 Study areas

The studied dam sites are located in the southwest of Iran

in the Karun and Dez catchments and are of arched con-

crete type. Khersan II dam, with a proposed height of

240 m and a reservoir volume of 2142 million cubic

meters, is located in Chahar-Mahal and Bakhtiari province,

Iran. This dam is in the design stage. The dam site is sit-

uated on the Khersan River with coordinates of 31/25

degrees of north latitude and 50/36 degrees of east longi-

tude in the southwestern region of Iran, in the Zagros

Mountains. Asmari and Gachsaran formations form the

abutments of the site (Figs. 1, 2). Data from four boreholes

used in the analyses were taken from the Khersan II dam

site. Bazoft dam with a proposed height of 211 m is also in

the investigation stage. The geological formations of the

Bazoft dam site include Jahrom and Asmari formations

(Figs. 1, 2). Data from eight boreholes used in the analyses

were taken from the Bazoft dam site.

Table 1 Proposed empirical relationships to predict permeability

Relationships Rock types References

Lu = 0.452 - 0.135Ln(RQD) - 0.482SCR Sedimentary and igneous rocks Kayabasi et al. (2015)

Lu = 0.823 - 0.223Ln(RQD)

Lu = - 6.42 ? 0.051H ? 0.218RQD ? 1.83Dc Various rocks Öge and Çırak (2019)

Lu = 10.20 ? 0.057H Various rocks Öge and Çırak (2019)

Lu = 5012.68H^(-1.92) Various rocks Chen et al. (2021a, b)

Lu = 1950EXP(- 0.05RQD) Limestone Farid and Rizwan (2017)

Lu = 177.45EXP(- 0.0361RQD) Sandstone rocks El-Naqa (2001)

K = 0.4892EXP(- 0.0543RQD) Sedimentary rocks Jiang et al. (2009)

K = 0.01382 - 0.003Ln (RQD) Sedimentary rocks Qureshi et al. (2014)
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Fig. 1 Geological map of dam sites of Khersan II (lower) and Bazoft (upper), (Mahab Ghods 2009; Niru 2011)
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3 Methodology

3.1 Water pressure test (WPT)

The WPT was conducted at different sections of trial and

grouting boreholes. The test pressures are increased in

steps to the maximum pressure and then reduced to the

initial pressure. The amount of effective pressure (Pe) and

flow value (q) recorded in each pressure step. Then, Pe-q

curves were plotted and the flow behavior was analyzed.

The Lugeon number (Lu) is calculated using Eq. 1 (Non-

veiller 1989).

Lu ¼ 10q

PeL
ð1Þ

In Eq. 1, q is in Li/min; L is section length in m; and Pe is

in atmosphere.

According to the flow behavior during the experimental

pressures in the WPT, five behavior types are determined

for the water flow in the rock mass (Fig. 3), (Kutzner 1985;

Shroff and Shah 1999; Xu et al. 2022; Ewert 1997).

• Laminar flow: The permeability values at five steps are

approximately the same regardless of the test pressure.

The equivalent permeability for this case is an average

of five Lugeon values.

Fig. 2 Geological section of

Bazoft dam site (A) and
Khersan II dam site (B) (Mahab

Ghods 2009; Niru 2011)
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• Turbulent flow: In this case, the amount of Lugeon

decreases with increasing pressure, and the amount of

Lugeon at the same pressures is almost the same. The

permeability for this condition is the amount of

recorded Lugeon by the maximum pressure.

• Dilation flow: In this group, the amount of Lugeon

resulting from the maximum pressure is greater than the

amount of Lugeon obtained at medium and low

pressures, and the Lugeon at similar pressures are

approximately equal. In this case, temporary expansion

of the rock joints occurred. High pressures can

temporarily open the fractures or compress the joint

fillers during the test (Kutzner 1985).

• Washout flow: Consecutive increases in the amount of

Lugeon during the test are a sign of permanent leaching

of the joint fillers. Most of the time, this indicates very

high test pressures. The representative permeability for

this group is the amount of Lugeon obtained in the final

step.

• Void filling: Successive reduction of Lugeon amounts

during the test process indicates that the water flow

gradually fills the empty cavities and joints and forms

them as closed networks. The permeability for this case

is the amount of Lugeon obtained from the final step

(Fig. 3).

3.2 Q classification system

In this study, the Q classification system was determined in

five-meter intervals of control and trial grouting boreholes

using the relevant tables and graphs (Barton 2002; Barton

et al. 1974). The Q classification system values are com-

puted using Eq. 2.

Q ¼ RQD

Jn
� Jr
Ja

� Jw
SRF

ð2Þ

where RQD is the percentage of cores with a length more

than 100 mm in each drilling run (Deere 1989), Jn is the

joint number score, Jr is joint roughness score, Ja is joint

alteration score, Jw is water flow or pressure score, and

stress reduction factor (SRF) is score of strength to stress

ratio of the solid rock, swelling or crushing.

The permeability description and Q values based on the

classification provided by Evert (1985) and Barton et al.

(1974) are given in Table 2.

Fig. 3 Determination of hydromechanical behavior and Lugeon number (Kutzner 1985; Shroff and Shah 1999)
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3.3 Multilayer perceptron neural network
(MPANN)

In terms of learning algorithm and topology, ANN is

divided into two classes based on learning algorithm and

topology: feed-back neural network (FBNN) and feed–

forward neural network (FFNN), (Idrisovich Ismagilov

et al. 2020; Sun et al. 2020; Sharifi et al. 2016). In FFNN,

the signal is transmitted only in the forward direction.

These types of ANNs are simple and common networks

and are commonly used for data mining. Perceptron neural

networks are a type of FFNN (Rustamovich Sultanbekov

et al. 2020; Zhao and Wang 2022).

In multilayer networks, there is an input layer that

receives information. Input layer has a number of neurons.

In principle, the existence of a hidden layer is useful when

it is a nonlinear activation function, and finally, there is an

output layer that results from calculations entering it and

network output is reached (Abraham 2005; Ostad-Ali-

Askari et al. 2017; Suthar 2020). In these networks, after

comparing the outputs with real values, the error values are

determined. The computed error is then circulated to adjust

the weights and values of the network bias, a method called

error propagation (Dianati Tilaki et al. 2020; Ghadimi and

Ebrahimian 2015; Abraham 2005).

In current study, using MATLAB software, multilayer

feed-forward Perceptron neural network was used to esti-

mate Lugeon number.

3.4 The ANFIS

The ANFIS method is very suitable for modeling complex

problems that have unknown variables. In classical logic,

the membership function value of each member is 1 if it is

in the set and 0 if it is not (Jalili et al. 2015; Mahdavi et al.

2015). In contrast, each member of the fuzzy set can have a

membership function value between 0 and 1. According to

mathematical laws, this is generally referred to as Eq. 3:

A ¼ x; lAðxÞf g x 2 xj j ð3Þ

Membership function degree indicates the value of the

level of dependence of the member on the fuzzy set.

Gaussian membership function (GMFs) was used in this

study. In various researches, two types of fuzzy systems are

commonly used, which include Mamdani and Sugeno

algorithms (Sobhani and Safarianzengir, 2020). Fuzzy

inference systems (FIS) introduced as basic rule systems,

which are made up of a set of linguistic rules and are able

to denote any system with high precision which operates

like an all-purpose predictor. Rule systems based on fuzzy

logic (FL) theory use linguistic variables such as results

and rules, where rules are expressed as inference or

inequality (Sobhani and Safarianzengir 2020). The rule

system based on FL is the if–then base rule system that is

denoted by the if rule and the then result. ANFIS is a

neuro-fuzzy system that permits fuzzy systems to learn

variables by a back-propagation algorithm (Jang 1993;

Rashidi Tazhan et al. 2019; Dorfan et al. 2020). In this

study, Sugeno-type FIS was used in which each rule is

specified as a linear grouping of inputs. The final output of

the FIS is a simplification of the given mean weight of each

output rule. A Sugeno FIS is a combination of inputs x, y.

Hence, an output variable f is driven by two fuzzy rules

(Gholami et al. 2020):

Rule 1 : If x isA1; y isB1 then f1 ¼ p1xþ q1yþ r1

Rule 2 : If x isA2; y isB2 then f2 ¼ p2xþ q2yþ r2

ð4Þ

The summary of working with ANFIS system in

MATLAB software environment is that first the inputs and

outputs are introduced to the system and the system per-

forms the learning stage. Then, to validate the model, a

system test is performed.

3.5 The SVR approach

Support vector machine (SVM) theory was developed

based on Vapnik’s theory of statistical learning (Vapnik

1995). The support vector regression (SVR) fits the curve

with e thickness into the data to minimize error of test data.

In this model, a set of functions (for example: f(x) =

w.x ? b) is used to estimate. Where w is the weight vector

and x and b are the bias values. The weight vector must be

Table 2 Description of Q and

Lugeon values (Ewert 1985;

Barton et al. 1974)

Q classification system Description Lugeon value Description

100–400 Excellent 3–0 Impermeable

40–100 Very good 10–3 Low permeable

10–40 Good 30–10 Medium permeability

4–10 Medium 60–30 High permeable

1–4 Weak 60–100 Very high permeable

0.1–1 Very weak [ 100 Extremely permeable

0.01–0.1 Strongly weak
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minimized for minimizing test error. SVR uses a new error

function to overlook errors that are at a certain distance

from the actual data (Jiang et al. 2022; Fallah et al. 2021;

Qasem et al. 2019; Tekin 2014; Maleki and Emami 2019).

Hence, some deviation from e must be overlooked. The

deviation is described as Eq. 5 and is involved in Eq. 6

with considering nþi and n�i deficiency variables. Finally,

using the structural error minimization(SEM), the error

value is optimized by using Eq. 6.

nj je¼
0 if nj j � e
nj j � e otherwise

� �
ð5Þ

Minimize:
1

2
wk k2þC

XN
i¼1

ðnþi þ n�i Þ

eConstrains:

w � xi þ b� yi � eþ nþi i ¼ 1; 2; :. . .;N

yi � w � xi þ bð Þ� eþ n�i i ¼ 1; 2; :. . .;N

nþi � 0; n�i � 0 i ¼ 1; 2; :. . .;N

2
64

3
75

ð6Þ

In Eq. 6, 1
2

wk k2 is the regulatory elements, nþi and n�i
are variables to make boundaries flexible, N is number of

sample, e is allowable error, C is the complexity balance

coefficient to equilibrium the empirical risk with the reg-

ulatory elements, and the e is acceptable error limit. Dif-

ferent kernel functions such as linear, quadratic, radial and

polynomial are used in the SVR (Xie et al. 2021a; b; Yang

et al. 2020). Usually, the radial kernel function has better

performance for predicting. The main reason for choosing

this function in the present study was its high generaliz-

ability in studies related to rock mechanics and geotechnics

(Jiang et al. 2022; Kookalani and Cheng 2021; Mah-

moodzadeh et al. 2021; Zhou et al. 2016). The equation of

this kernel function is as follows.

k xi; xj
� �

¼ exp �
xi � xj
�� ��2

2r2

 !
; r[ 0 ð7Þ

where r is radial kernel function width and k(xi, xj) is

internal multiplication of variables. The prediction preci-

sion using SVR by the radial basis function (RBF) kernel

depends on the choice of e, c and C. In current research, the
SVR based on the RBF was used to estimate Lugeon

number of the rock mass using MATLAB software.

3.6 Data normalization

One of the advantages of data normalization is the

improvement of gradient descent performance on normal-

ized data compared to abnormal data. Also, the input val-

ues are normalized to avoid a very large or very small

effect on the network weight (Seyfi 2017; Zhao et al. 2022;

Kalteh 2008). In this study, the data were normalized

between - 1 and 1 based on Eq. 8.

Xi ¼ 2
X � Xmin

Xmax � Xmin

� �
� 1 ð8Þ

where x is the experimental value, xmin is the minimum

data between whole data, and xmax is the maximum data.

3.7 Performance evaluation of models

Correlation coefficient, the mean absolute percentage error

(MAPE) (Eq. 9), root mean square error (RMSE) (Eq. 10),

and variance account for (VAF) (Eq. 11) were used for

evaluating the methods. These criteria have been widely

used to evaluate the models and relationships obtained

from soft computing approaches (Du et al. 2022; Dong

et al. 2021; Zhu et al. 2022; Zhou et al. 2021a, 2021b).

MAPE% ¼ 1

n

Xn
i¼1

y� y0

y

				
				� 100 ð9Þ

RMSE ¼ 1

s2n

Xn
i¼1

ðy� y0Þ2 ð10Þ

VAF% ¼ 100 1� varðy� y0Þ
varðyÞ

� �
ð11Þ

In relationships 9–11, y is the measured value, y0 is the

variable estimated by the relationship, n is total data and s2

is the variance of the samples.

4 Results and discussions

Due to the importance of recognizing the discontinuities in

the dam sites, in addition to studying the discontinuities at

the ground level, the joints were studied on the cores

obtained from the boreholes. The study of exploratory

galleries indicates the existence of three major categories

of discontinuities (two sets of joints and a bedding system)

at the Bazoft dam site and three categories of joints at the

Khersan II dam site (Table 3).

4.1 Trial and control boreholes in the dam sites

In the Bazoft dam site, trial grouting operations have been

conducted on the abutments (Fig. 4).

The trial grouting boreholes at the Bazoft dam site are

located above the water table and have been drilled verti-

cally to a depth of 75 m. Simultaneously with the drilling

operation in all boreholes, WPTs were conducted at

intervals of 5 m to determine the Lugeon and to control the

impact of the grouting. At the end of the cement grouting

operation, for evaluating the trial grouting effect, in the
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center of each triangular a check borehole was drilled and

Lugeon test was performed in 5-m sections. The depth of

control boreholes in the right abutment is 90 m and in the

left abutment is 75.20 m. A total of 8 boreholes (6 grouting

boreholes and 2 control boreholes) were drilled at the

Bazoft dam site.

In Khersan II dam site, according to the topographic

conditions of the right abutment, trial grouting has been

done on the left abutment. The proposed arrangement of

the grouting boreholes is in the form of an equilateral tri-

angle with sides of 3 m (similar to the arrangement of the

trial grouting boreholes at Bazoft site). The boreholes of

the trial grouting panel were located beyond the water

table and were drilled vertically to a depth of 80 m.

Simultaneously with the drilling operations by a thin-wall

core samples in all boreholes, water pressure WPTs tests

were performed at intervals of 5 m. At the end of the

grouting operations, a check borehole was drilled at tri-

angle center with a depth of 80 m to evaluate the effect of

the grouting, and permeability was tested in 5-m sections.

A total of 4 control and grouting boreholes were drilled in

Khersan II dam site.

4.2 Rock quality designation (RQD)

Based on the average RQD, all sections of the left, right

and riverbeds in the Bazoft dam site are classified in the

excellent category. Also in Khersan II dam site, the rock

mass is categorized in excellent condition in terms of RQD.

In the Bazoft dam site, the average RQD of the left side is

more than the right side.

4.3 Permeability and hydromechanical behavior
of the sites

Figure 5 shows two examples of rock mass behavior at the

depth of 10–15 m of the borehole GSR3 (Bazoft dam site)

and CH1 borehole (Khersan II dam site). In these stages,

the type of behavior is turbulent and dilation.

In the Bazoft dam site, the permeability value more than

60% in the left abutment was 1.5%, while this permeability

Table 3 Identified discontinuities at studied dam sites

Site Joint type River bed Right abutment Left abutment

Dip Dip direction Dip Dip direction Dip Dip direction

Bazoft dam Perpendicular joint to layering 67 145 55 136 67 144

Bedding 47 045 45 051 45 045

Parallel joint to layering 46 212 49 261 45 213

Khersan II dam Joint Right abutment Left abutment

Dip Dip direction Dip Dip direction

J1 80 130 50 023

J2 46 152 84 132

J3 57 230 76 304

Fig. 4 Overview of the position

of trial grouting panels at and

left abutment (A) right abutment

(B) of the Bazoft dam site
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value was 29% in the right abutment. Lugeon higher than

100 on the left abutment are due to karst development. In

this construction, the percentage of impermeable class

(0–3) is the highest. In the site of Khersan II dam, fre-

quency percentage of the Lugeon in the range of 0–3 is the

maximum value (Fig. 6). This indicates low permeability

of the site.

Normally, permeability is expected to be low in sections

with high RQD and high permeability in sections with low

RQD. In nature, given the complexities involved, other

relationships can prevail. Sometimes with increasing RQD,

no decrease in permeability is observed. In some sections

of the borehole, even with decreasing RQD, the perme-

ability decreases. In general, the following conditions exist

between RQD and Lugeon value (Ewert 1997):

(A) High RQD and low Lugeon: In such sections, the

rock mass has less joints and cracks, or the joints

may be filled with fine materials.

(B) High RQD and high Lugeon: This condition occurs

mostly due to the phenomena of hydraulic failure,

elastic opening of joints, crushing and roughness of

their surfaces. In this case, high borehole permeabil-

ity is not due to crushing of the rock mass and it can

be related to the presence of a karst channel.

(C) Low RQD and high Lugeon: In such cases, the rock

mass is full of joints and cracks and the openings of

the joints are relatively high and their filling is low.

(D) Low RQD and low Lugeon: This condition indicates

the filling of joints or lack of hydraulic connection of

rock masses.

Fig. 5 Examples of Lugeon test results: Bazoft dam site (top), Khersan II site (bottom)

Fig. 6 Lugeon distribution in the studied sites
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Lugeon has a direct corelation with RQD in karst sec-

tions (Assari et al. 2016; Hiller et al. 2011; Rastegarnia

et al. 2017, 2019; White 2002).

Figure 7 shows the types of hydromechanical behavior

in the sites of Khersan II and Bazoft dams. In the Bazoft

dam site, the predominant flow type is laminar flow with

34% and the lowest percentage is related to turbulent flow

with 4%. Also, the dilation flow is about 27%, the washout

flow is about 5.5%, the void filling flow is about 17% and

13% is impermeable.

As shown in Fig. 7, the percentage of turbulent and

washout behaviors in Khersan II dam site is zero. In this

site, laminar flow is 20%, dilation is about 15%, void filling

is about 12% and 54% is impermeable. The absence of

turbulent behavior indicates the low groutability of the

Khersan II dam site. Turbulence and washout flow types

indicate that the condition of the rock mass is not suit-

able in terms of permeability and arrangements should be

made for its sealing.

4.4 Statistical properties of variables

The used data for modeling were obtained from 12 trial and

control grouting boreholes at the Bazoft and Khersan II

dam sites. Table 4 shows the statistical characteristics of

the variables used in the analysis. The histogram of the

variables is also presented in Fig. 8. The average of Q and

Lugeon in these two sites are 31.72 and 15.73, respectively.

Based on the average of Lugeon (15.73), it can be said that

the rock mass has moderate permeability.

In general, if the amount of skewness and kurtosis of the

data is outside the distance of 3 to - 3, the data is not

normally distributed and the data should be normalized.

According to the results, it can be said that the data are

normal (Table 4; Fig. 8). On the other hand, since the

number of data is more than 25 (175 data), the data can be

considered normal according to the Pearson suggestion

(Bai et al. 2019; Bai et al. 2022; Wu et al. 2021; Zhou et al.

2021c). Some outlier data were deleted using box plot

diagrams and engineering judgments. For example, in

sections that Lugeon and RQD are both ascending (for

example, both are equal to 100) are considered as karst

areas. Most of these sections were corroborated by evi-

dence in engineering geological reports such as drilling rod

drop and no core recovery.

4.5 Lugeon relationship with Q classification
system, depth and joint spacing

Characteristics of joints such as opening, roughness, con-

tinuity, orientation and slope of joints are effective

parameters in the degree of permeability of the rock masses

(Bell 2000; Liu et al. 2020; Yang et al. 2018; Zhang et al.

2021a, 2021b, 2021c, 2022b; Li et al. 2022a). Therefore,

by assessing the relationship between Lugeon and the joint

characteristics (i.e., joint aperture, number of joint sets,

roughness, and persistence), the permeability of a site can

be determined. Relationships of the Q classification sys-

tem, depth and joint spacing (Js) with Lugeon number in 12

trial grouting and control boreholes in Bazoft and Khersan

II dam sites (on 175 data) are presented in Fig. 9. The most

accurate relationship is logarithmic function (Fig. 9). Most

previous studies have reported logarithmic and exponential

relationships between Lugeon and joint properties (Qureshi

et al. 2014; Kayabasi et al. 2015; Jiang et al. 2009; Farid

and Rizwan 2017; El-Naqa 2001).

Table 5 shows the evaluation results of bivariate rela-

tionships between Lugeon and rock mass characteristics

based on different criteria. According to this table, joint

spacing has the greatest effect on the Lugeon number.

4.6 Multivariate linear regression (MVLR)
analysis

Table 4 shows developed equations for predicting Lugeon

using the MVLR method. Durbin-Watson (DW), variance

inflation factor (VIF), MAPE, and determination coeffi-

cient were used to appraise the relationships (Table 6). The

results of analysis of variance (P value = 0.00) show that

the models were appropriately developed. The suitability of

the constant values and coefficients was evaluated in more

detail by the T-test. The results of this test are presented in

Table 7. The DW test is used to examine the independence

of errors from each other. The DW value must be between

1.5 and 2. Based on results, the errors are independent from

each other and it is possible to use the developed models.

Because the DW values are placed between 1.5 and 2.5

(Table 6). The VIF criterion is also used to evaluate the

correlation of independent variables. Results of the MVLR

shows that with removing the depth (D) variable does not
Fig. 7 Percentage of the rock mass hydromechanical behavior of the

sites
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significantly change the accuracy of the model 2. There-

fore, model 2 is recommended for estimating Lugeon. As

well as Fig. 10 shows that depth has a small effect on the

Lugeon value.

4.7 Evaluation and comparison with previous
studies

Several empirical relationships have been developed to

predict Lugeon number (Table 1). In this study, using the

relationships of previous researchers, Lugeon was esti-

mated. Then, the relationship of estimated Lugeon with the

measured Lugeon was investigated (Fig. 10). Results show

that there is a good to moderate correlation between

measured Lugeon with predicted ones based on previous

studies (Fig. 10). This figure also shows the performance of

the proposed MVLR model of the present study. The

MVLR model with 79% is able to predict Lugeon number

of Asmari limestone rocks at Bazoft and Khersan II dam

sites. The determination coefficients for each of the eval-

uated relationships of previous researchers to estimate

Lugeon values are presented in Fig. 10. Coefficient of

determination from 0.32 for Oge and Çırak (2019)

Table 4 Statistical

characteristics of the variables

used in the analysis

Depth (m) Q Joint spacing (mm) Lugeon

Mean 40.71 31.72 496.47 15.73

Standard error 1.61 1.89 11.72 1.98

Median 40.00 27.31 567.84 2.00

Mode 10.00 33.32 620.00 1.00

Standard deviation 21.35 24.97 155.00 26.20

Sample variance 455.67 623.58 24,026.12 686.39

Kurtosis - 1.15 1.02 0.33 2.67

Skewness 0.03 1.25 - 1.31 1.92

Minimum 5.00 1.00 89.00 1.00

Maximum 80.00 100.00 620.00 100.00

Fig. 8 Histogram of variables
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relationship to 0.71 for Jiang et al. (2009) relationship are

variable.

Due to the various joint properties of the rocks, there

isn’t a simple relationship with very high accuracy

(R2[ 0.90) to estimate Lugeon number based on rock

properties. Similar results have been presented by other

researchers (Kutzner 1996; Ewert 1997; Nia et al. 2017).

For this reason, in this study, intelligent methods for

Fig. 9 Lugeon relationship with Q classification system, joint spacing (Js) and depth

Table 5 Evaluation of bivariate

relationships between Lugeon

and rock mass characteristics

Eq R2 RMSE MAPE VAF Eq. no

Lu = - 47.23ln(Js) ? 305.13 0.69 2.29 0.89 68.85 12

Lu = - 21.07ln(Q) ? 80.78 0.65 2.01 1.09 64.78 13

Table 6 Developed equations and model summary

Eq R-squared (%) MAPE (%) RMSE VAF (%) DW Eq. no

Lu = 85.25 - 0.15D - 0.1704Q - 0.12Js 67.49 0.72 2.12 66.38 1.58 14

Lu = 81.87 - 0.17Q - 0.12Js 66.09 1.13 1.67 66.001 1.66 15
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estimating Lugeon number were used. Many problems in

geology are so complex that their separation and study are

possible only by soft computational methods. Because

these methods use technology and knowledge to build an

intelligent system to solve complex problems (Davis 2002;

Kayabasi et al. 2015; Li et al. 2022b). Previous studies

showed that soft computing methods have higher accuracy

than statistical methods for predicting rock mass properties

(Kayabasi et al. 2015; Rahimi et al. 2019; Zadhesh et al.

2015; Shahbazi et al. 2020).

4.8 Multilayer Perceptron Neural Network
(MPNN)

Today in the field of engineering, the neural networks have

a good performance for predicting and modeling (Golmo-

hammadi et al. 2014; Gholami et al. 2015; Mohan et al.

2021; Tabatabaei and Salehpour Jam 2017). The MPANN

contains of three layers such as input layer, hidden layer

and output layer. The number of neurons in the input layer

depends on the number of independent variables (Alizadeh

et al. 2022; Sun et al. 2021; Liu et al. 2021a). The output of

the layer performances as a dependent variable and its

number. The hidden layer as the interface leads to the

process of computing the output (Rath et al. 2021; Li et al.

2017; Liu et al. 2021b; Çevik and Tabaru-Örnek 2020). In

current study, different neurons were tested to achieve

optimal results. The optimal MPNN contains of ten neu-

rons in a hidden layer. The Q classification system and

joint spacing (Js) were considered as inputs and Lugeon

number was output. The whole data was categorized as

three sets including training (70%), testing (15%) and

validation (15%). For teaching the algorithm and obtaining

the weights for the preferred outcomes the training group

was used (Kavyanifar et al. 2020; Ghalandari et al. 2019;

Zhang et al. 2022a; Meng et al. 2022). The validation set is

used to ensure that the network does not depend on the

training data set (Al-Masaeed et al. 2021; Ansari and

Hashemi 2017; Shamsashtiany and Ameri 2018). The test

set is used to test the network in predicting new data

(Sanaei et al. 2015; Liu et al. 2021c; Zheng et al. 2021).

The trained model should be verified by an independent set

of experimental data (Moshahedi and Mehranfar 2021;

Rastegarnia et al. 2021; Wang et al. 2022; Yang et al. 2022;

Zhang et al. 2020). The performance of the Levenberg–

Marquardt (LM) training algorithm for predicting output

using inputs was examined by MATLAB software. Sig-

moid and Purelin transfer functions were chosen for hidden

and output layers, respectively. Figure 11 shows the opti-

mum MPNN structure used in this study.

Figure 12 shows the mean square error (MSE) variations

by the LM algorithm in the optimum results. The lowest

MSE was obtained at the first epoch for predicting Lugeon

(Fig. 12). Also, Fig. 12 shows the correlation coefficient

between Lugeon and inputs using the optimal MPNN

model (Fig. 13).

Table 7 Coefficients and criteria

Term Coef t-value P value VIF

Equation 14

Constant 85.25 21.08 0.000

Depth - 0.15 - 2.72 0.007 1.08

Q - 0.17 - 3.27 0.001 1.30

Js (mm) - 0.12 - 13.46 0.000 1.38

Equation 15

Constant 81.87 20.90 0.00

Q - 0.17 - 3.11 0.00 1.30

Js (mm) - 0.12 - 14.35 0.00 1.30

Fig. 10 The relationship of measured Lugeon with forecasted values
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4.9 ANFIS results for predicting Lugeon number

In this study, using ANFIS method as a combination of

fuzzy logic with neural networks, an attempt was made to

estimate Lugeon number. Prior to modeling using ANFIS,

the data were categorized in training and testing sets with

75% and 25% of the whole data, respectively. To train the

model in ANFIS method, the combined method of recur-

sive error propagation with the least squares was used. In

this research, obtained ANFIS models are based on the

Sugeno method. The GENFIS2 command was used to form

the ANFIS model using a differential clustering method.

The input data for modelling include Q-system and joint

spacing (Js) and the output parameter is Lugeon (Fig. 14).

In this model, the membership functions (MFs) of input

data for each of the variables are 4 and the MFs of the

output data whose output is Lugeon, are shown in Fig. 14.

In the input membership function (inputmf) layer, inputs

pass through membership functions. The membership

function degree indicates the membership level of the

member to the fuzzy set (Suthar 2020).

Rule viewer inference diagram is a MATLAB technical

computing environment used to display fuzzy inference

diagrams. This tool is used to identify and display the rules

and how the functions affect the final results (Moshahedi

and Mehranfar 2021) (Fig. 15). Each row corresponds to a

rule, the number of each rule is shown on the left side of

the charts, and each column corresponds to a variable.

The best performance of the ANFIS model was obtained

after 3500 training sessions with clustering radius of 0.30

(Table 8). Figure 16 shows GMFs for Lugeon using ANFIS

model.

The ANFIS model led to the formation of 4 rules for

Lugeon, which has the best answer among the ANFIS

models with a differential clustering method. Figure 17

shows the correlation of the ANFIS model in the training

stages. This figure shows that the ANFIS model can

explain 87% of the Lugeon’s changes by the Q classifica-

tion system and joint spacing. A coefficient of determina-

tion greater than 60% indicates that the independent

variables have largely been able to explain the changes in

the dependent variable (Taylor 1990).

The error histogram using ANFIS method is shown in

Fig. 18. This shows the difference between the forecasted

Lugeon using ANFIS method and actual value of Lugeon.

4.10 The SVR Results

In this study, to train and test the models using radial basis

function (RBF), 75% and 25% of the total data were used,

respectively. The obtained optimal parameters of e, c and

C to estimate Lugeon were 0.01, 92 and 80, respectively.

Error histogram and relationships between measured and

predicted Lugeon using SVR method for all data are

demonstrated in Fig. 19. By comparing the results of the

SVR method with other methods used in the present study,

it is observed that SVR shows higher accuracy than other

methods. Numerous studies have shown that on a small

amount of data the SVR model has a high accuracy in

predicting the dependent variable due to the use of struc-

tural risk optimization principle (SROP), (Al-Anazi and

Gates 2012; Moghaddam et al. 2020). The SROP seeks to

minimize the high limit of generalization error. The SVR

solution can also be turned into a global optimum, while

MPNN approaches tend to be a local optimal solution.

Therefore, over fitting rarely occurs in the SVR method

(Kim 2003; Luo et al. 2022a, b; Zhan et al. 2022; Chen

et al. 2021a, b).

Fig. 11 The optimum MPNN

structure used in this research

(with ten neurons)

Fig. 12 The error trend using MPNN in the optimum model (in the

tenth neurons)
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Fig. 13 The correlation

coefficients using MPNN in the

optimum model

Fig. 14 ANFIS model structure,

number of inputs, outputs and

rules used
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4.11 The RF Results

The RF algorithm, which is a learning method based on a

group of decision trees, was used to estimate the

permeability of the dam sites. In this algorithm to form

each tree, a different set of existing patterns are selected

considering the replacement of each selected pattern. The

size of the selected category will be equal to the total

number of available patterns (Breiman 2001). RF was

Fig. 15 Rule displayer (there

are 4 rules for predicting data

relationships)

Table 8 Modeling features using ANFIS and SVR

Train data 75% 131

Test data 25% 44

SVR Epsilon 0.01

C 80

Gamma 92

ANFIS FIS generation approach Genfis2

Influence radius 0.30

Number of epochs 3500

Error goal 0

Type Sugeno

Rules 4

Number of MFs 4

Input MF type Gaussian

Output MF type Linear

Fig. 16 Generated GMFs by

Sugeno-FIS method for ANFIS

model input variables

Fig. 17 Correlation between real and predicted Lugeon by ANFIS

model
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presented by Breiman (2001) as a method of a new

development of decision trees, which combines the pre-

diction of several individual algorithms together using

rules-based. The general principles of group training

techniques are based on the assumption that their accuracy

is higher than other training algorithms (Kotsiantis and

Pintelas 2004; Luo et al. 2022a, b).

In the RF method, bagging is used to create training

data. This is done through random resampling of the

original data set with replacement. In this step, none of the

data selected from the input samples is removed to produce

the next subset, and thus the variance is also reduced.

Therefore, some data may be used more than once in

training branches, while some other data that are not

effective in modeling were never used. Therefore, more
Fig. 18 The error histogram using ANFIS method

Fig. 19 SVR results for predicting Lugeon number

Fig. 20 RF results for predicting Lugeon number
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stability is obtained for the model and it makes the model

more reliable against slight changes in the input data and

increases its prediction accuracy (Breiman 2001). The set

of samples that are not selected in the bagging process in

the training of trees is included in a subset called Out-of-

Bag (OOB) patterns. This part of the RF can be used to

evaluate the performance of the model (Peters et al. 2007).

In this way, RF can calculate an internal uncorrelated

estimate of the generalization error without using external

data subsets. The general trend of the RF algorithm is

mentioned in various sources (Koohestani et al. 2022;

Soleimannejad et al. 2018; Parsakhoo et al. 2016) In this

research, the modeling process was done using the R

software package (R 4.2.1), (Liaw and Wiener 2002). 75%

of the samples (131 cases) were used for training the model

and 25% of the samples (44 cases) were used to evaluate

the constructed models. In order to determine the number

of selected variables in each tree node as well as the

number of trees, the tenfold cross-validation method was

used. According to this method, 400 trees and two vari-

ables in each node have provided the most favorable con-

ditions for the model. After modeling, the model was

evaluated by experimental data. The importance of the

input parameters is obtained based on the Gini importance

index and permutation importance (Mantas et al. 2019).

Accordingly, joint spacing is more important than the Q

classification system. The RF model makes predictions

using the OOB error value, and in this method, data is not

used for testing (Chehata et al. 2009). Figure 20A shows

the prediction results of the RF model against the obser-

vational data for permeability, which shows a high corre-

lation between the estimated and observed permeability.

Also, the distribution of the error values resulting from the

RF model is shown in Fig. 20B. It can be seen that the

accuracy of this model is the highest after the SVR method.

4.12 Comparison of results

Comparison of results based on various criteria shows that

correlation coefficients of the used methods and previous

works are higher than 50% (Table 9). Various criterial have

been used by researchers to check the validity of the

relationships and models (Fayaz et al. 2022; Srinivasareddy

et al. 2021; Hassanzadeh et al. 2021; Wu et al. 2018; Saghi

et al. 2019; Sui et al. 2020). Correlation coefficient higher

than 70% and between 70 and 50% are considered as

strong and moderate correlation, respectively (Taylor

1990). Precision of the used methods in current study is as

following: MVLR\MPNN\ANFIS\RF\ SVR.

Also, results of most of the previous works show strong

correlation.
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5 Conclusions

In this study, the relationships of the Q classification sys-

tem, joint spacing and depth with Lugeon number were

investigated in five-meter sections of the boreholes in

Bazoft and Khersan II dam sites, west of Iran. Based on the

average Lugeon and Q classification system of both sites,

the rock mass was classified as moderate permeability

category in terms of Lugeon and good category in terms of

strength (Q value). The SVR, MPNN, ANFIS, RF, MVLR,

and simple regression methods were used to predict

Lugeon based on Q-system and joint spacing (Js). The

performance of the empirical relationships and models was

evaluated using various criteria. Due to the use of structural

risk minimization principles, the SVR (with R = 0.97)

using radial basis function showed higher accuracy than

other methods to estimate the Lugeon value. Precision of

the used methods is as MVLR\MPNN\ANFIS\
RF\ SVR. Comparison of results with previous resear-

ches showed that there is a good to moderate correlation

between measured Lugeon with predicted Lugeon based on

previous studies. Analysis of all model criteria (R2, RMSE,

MAPE, DW, analysis of variance, t-test, normality, VIF

and VAF) using simple and multiple regression disclosed

that it is possible to forecast the Lugeon number using the

Q classification system and joint spacing.
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Çevik M, Tabaru-Örnek G (2020) Comparison of MATLAB and

SPSS software in the prediction of academic achievement with

artificial neural networks: modeling for elementary school

students. Int Online J Educ Sci 7(4):1689–1707

Chehata N, Guo L, Mallet C (2009) Airborne lidar feature selection

for urban classification using random forests. Int Arch Pho-

togram Remote Sens Spat Inf Sci 39:207–212

Chen YF, Ling XM, Liu MM, Hu R, Yang Z (2018) Statistical

distribution of hydraulic conductivity of rocks in deep-incised

valleys, Southwest China. J Hydrol 566:216–226

Chen J, Du L, Guo Y (2021a) Label constrained convolutional factor

analysis for classification with limited training samples. Infor-

mation 544:372–394. https://doi.org/10.1016/j.ins.2020.08.048

Chen K, Song Y, Zhang Y, Xue H, Rong J (2021b) Modification of

the BQ system based on the Lugeon value and RQD: a case

study from the Maerdang hydropower station, China. Bull Eng

Geol Environ 80(4):2979–2990

Davis JC (2002) Statistics and data analysis in geology, 3rd edn.

Wiley, USA, p 638

Dong J, Deng R, Quanying Z, Cai J, Ding Y, Li M (2021) Research

on recognition of gas saturation in sandstone reservoir based on

capture mode. Appl Radiat Isot 1(178):109939

Dorfan L, Mousavi Haghighi MH, Mousavi SN (2020) Optimized

decision-making for shrimp fishery in Dayyer Port using the goal

programing model. CJES 18(4):367–381

Application of soft computing and statistical methods to predict rock mass permeability 5849

123

https://doi.org/10.15412/J.JCEMA.12010301
https://doi.org/10.1144/qjegh2015-047
https://doi.org/10.1016/j.jhydrol.2019.124080
https://doi.org/10.3389/feart.2022.943853
https://doi.org/10.3389/feart.2022.943853
https://doi.org/10.1016/j.ins.2020.08.048


Du K, Li X, Su R, Tao M, Lv S, Luo J, Zhou J (2022) Shape ratio

effects on the mechanical characteristics of rectangular prism

rocks and isolated pillars under uniaxial compression. Int J Min

Sci Technol. https://doi.org/10.1016/j.ijmst.2022.01.004

El-Naqa A (2001) The hydraulic conductivity of the fractures

intersecting Cambrian sandstone rock masses, central Jordan.

Environ 40(8):973–982

Ewert FK (1985) Rock grouting with emphasis on dam sites.

Springer, Berlin, p 428

Ewert FK (1997) Permeability, groutability and grouting of rocks

related to dam sites; part 4. Groutability and grouting of rock.

Dam Eng 8(4):271–325

Fallah M, Pirali Zefrehei AR, Hedayati SA, Bagheri T (2021)

Comparison of temporal and spatial patterns of water quality

parameters in Anzali Wetland (southwest of the Caspian Sea)

using Support vector machine model. Casp J Environ Sci

19(1):95–104

Farid AT, Rizwan M (2017) Prediction of in situ permeability for

limestone rock using rock quality designation index. Int J

Geotech Geol Eng 11(10):948–951

Fatahi Nafchi R, Yaghoobi P, Reaisi Vanani H et al (2021) Eco-

hydrologic stability zonation of dams and power plants using the

combined models of SMCE and CEQUALW2. Appl Water Sci

11(109):11–17. https://doi.org/10.1007/s13201-021-01427-z

Fayaz SA, Zaman M, Butt MA (2022) Numerical and experimental

investigation of meteorological data using adaptive linear M5

model tree for the prediction of rainfall. RCER 9(1):1–12.

https://doi.org/10.18488/76.v9i1.2961

Ghadimi H, Ebrahimian H (2015) MLP based islanding detection

using histogram analysis for wind turbine distributed generation.

UJRSET 3(3):16–26

Ghalandari M, Ziamolki A, Mosavi A, Shamshirband S, Chau KW,

Bornassi S (2019) Aeromechanical optimization of first row

compressor test stand blades using a hybrid machine learning

model of genetic algorithm, artificial neural networks and design

of experiments. Eng Appl Comput Fluid Mech 13(1):892–904

Gholami V, Darvari Z, Mohseni Saravi M (2015) Artificial neural

network technique for rainfall temporal distribu-tion simulation

(Case study: Kechik region). Casp J Environ Sci 13(1):53–60

Gholami S, Vafakhah M, Ghaderi K, Javadi MR (2020) Simulation of

rainfall-runoff process using geomorphology-based adaptive

neuro-fuzzy inference system (ANFIS). Casp J Environ Sci

18(2):109–122

Golmohammadi AM, Tavakkoli-Moghaddam R, Jolai F, Golmoham-

madi AH (2014) Concurrent cell formation and layout design

using a genetic algorithm under dynamic conditions. UCT J Res

Sci Eng Technol 2(1):8–15

Hariri-Ardebili MA, Salazar F (2020) Engaging soft computing in

material and modeling uncertainty quantification of dam engi-

neering problems. Soft Comput 24(15):11583–11604

Hassanzadeh R, Beiranvand B, Komasi M, Hassanzadeh A (2021)

Investigation of data mining method in optimal operation of

Eyvashan earth dam reservoir based on PSO algorithm. J Civ

Eng Mater Appl 6:66. https://doi.org/10.22034/jcema.2021.

302238.1063

Hiller T, Kaufmann G, Romanov D (2011) Karstification beneath

dam-sites: from conceptual models to realistic scenarios.

J Hydrol 398:202–211. https://doi.org/10.1016/j.jhydrol.2010.

12.014

Houlsby AC (1990) Construction and design of cement grouting: a

guide to grouting in rock foundations, vol 67. Wiley, Hoboken

Huang J, Duan T, Zhang Y, Liu J, Zhang J, Lei Y (2020) Predicting

the permeability of pervious concrete based on the beetle

antennae search algorithm and random forest model. Adv Civ

Eng 2020:Article ID: 8863181,. https://doi.org/10.1155/2020/

8863181

Idrisovich Ismagilov I, Ayratovich Murtazin A, Vladimirovna

Kataseva D, Sergeevich Katasev A, Olegovna Barinova A

(2020) Formation of a knowledge base to analyze the issue of

transport and the environment. CJES 18(5):615–621

Jalili A, Firouz MH, Ghadimi N (2015) Firefly algorithm based on

fuzzy mechanism for optimal congestion management. UJRSET

3(3):1–7

Jamshidi Gohari MS, Emami Niri M, Ghiasi-Freez J (2021) Improv-

ing permeability estimation of carbonate rocks using extracted

pore network parameters: a gas field case study. Acta Geophys

69(2):509–527

Jang JSR (1993) ANFIS: adaptive network based fuzzy inference

system. IEEE Trans Syst Man Cybern 23(3):665–685

Jiang X, Wan L, Wang X, Kang A, Huang J, Huang G (2009)

Permeability heterogeneity in a fractured sandstone-mudstone

rock mass in Xiaolangdi Dam Site, Central China. Acta Geol Sin

Engl Ed 83(5):962–970

Jiang F, He P, Wang G, Zheng C, Xiao Z, Wu Y, Lv Z (2022)

Q-method optimization of tunnel surrounding rock classification

by fuzzy reasoning model and support vector machine. Soft

Comput 66:1–14. https://doi.org/10.1007/s00500-021-06581-9

Kalteh AM (2008) Rainfall-runoff modelling using artificial neural

networks (ANNs): modelling and understanding. Casp J Env Sci

6(1):53–58

Kavyanifar B, Tavakoli B, Torkaman J, Mohammad Taheri A,

Ahmadi Orkomi A (2020) Coastal solid waste prediction by

applying machine learning approaches (Case study: Noor,

Mazandaran Province, Iran). Casp J Environ Sci 18(3):227–236

Kayabasi A, Yesiloglu-Gultekin N, Gokceoglu C (2015) Use of non-

linear prediction tools to assess rock mass permeability using

various discontinuity parameters. Eng Geol 185:1–9. https://doi.

org/10.1016/j.enggeo.2014.12.007

Kim K (2003) Financial time series forecasting using support vector

machines. Neuro-Computing 55:307–319

Koohestani M, Naderi S, Shadloo S (2022) Evaluation of habitat

quality and determining the distribution of Wild goat (Capra
aegagrus) in Roodbarak prohibited hunting region, Kelardasht,

Iran. CJES 6:1–9

Kookalani S, Cheng B (2021) Structural analysis of GFRP elastic

gridshell structures by particle swarm optimization and least

square support vector machine algorithms. J Civ Eng Mater Appl

10(22034):304981 (2021.1064)
Kotsiantis S, Pintelas P (2004) Combining bagging and boosting.

Comput Intell 1(4):324–333

Kutzner C (1996) Grouting of rock and soil. Balkema, Rotterdam,

p 271

Li J, Xu K, Chaudhuri S, Yumer E, Zhang H, Guibas L (2017) Grass:

generative recursive autoencoders for shape structures. ACM

Trans Graph 36(4):1–4

Li X, Zhong D, Ren B, Fan G, Cui B (2019) Prediction of curtain

grouting efficiency based on ANFIS. Bull Eng Geol Environ

78(1):281–309

Li M, Chen S, Shen Y, Liu G, Tsang IW, Zhang Y (2022) Online

multi-agent forecasting with interpretable collaborative graph

neural networks. IEEE Trans Neural Netw Learn Syst. https://

doi.org/10.1109/TNNLS.2022.3152251

Li X, Li X, Wang Y, Hu Y, Zhou C et al (2022) Numerical

investigation on stratum and surface deformation in underground

phosphorite mining under different mining methods. Front Earth

Sci. https://doi.org/10.3389/feart.2022.831856

Liaw A, Wiener M (2002) Classification and regression by random

forest. R News 2(3):18–22

Liu B, Yang H, Karekal S (2020) Effect of water content on

argillization of mudstone during the tunnelling process. Rock

Mech Rock Eng 53(2):799–813

5850 S. M. Alizadeh, A. Iraji

123

https://doi.org/10.1016/j.ijmst.2022.01.004
https://doi.org/10.1007/s13201-021-01427-z
https://doi.org/10.18488/76.v9i1.2961
https://doi.org/10.22034/jcema.2021.302238.1063
https://doi.org/10.22034/jcema.2021.302238.1063
https://doi.org/10.1016/j.jhydrol.2010.12.014
https://doi.org/10.1016/j.jhydrol.2010.12.014
https://doi.org/10.1155/2020/8863181
https://doi.org/10.1155/2020/8863181
https://doi.org/10.1007/s00500-021-06581-9
https://doi.org/10.1016/j.enggeo.2014.12.007
https://doi.org/10.1016/j.enggeo.2014.12.007
https://doi.org/10.1109/TNNLS.2022.3152251
https://doi.org/10.1109/TNNLS.2022.3152251
https://doi.org/10.3389/feart.2022.831856


Liu K, Ke F, Huang X, Yu R, Lin F, Wu Y, Ng DW (2021a)

DeepBAN: a temporal convolution-based communication frame-

work for dynamic WBANs. IEEE Trans Comput

69(10):6675–6690

Liu Y, Zhang Z, Liu X, Wang L, Xia X (2021b) Efficient image

segmentation based on deep learning for mineral image classi-

fication. Adv Powder Technol 32(10):3885–3903

Liu Y, Zhang Z, Liu X, Wang L, Xia X (2021c) Ore image

classification based on small deep learning model: evaluation

and optimization of model depth, model structure and data size.

Miner Eng 172:107020

Luo G, Yuan Q, Li J, Wang S, Yang F (2022a) Artificial intelligence

powered mobile networks: from cognition to decision. IEEE

Netw 36(3):136–144

Luo G, Zhang H, Yuan Q, Li J, Wang FY (2022b) ESTNet: embedded

spatial–temporal network for modeling traffic flow dynamics.

IEEE Trans Intell Transp Syst 173:1–12. https://doi.org/10.1109/

TITS.2022.3167019

Ma G, Chao Z, He K (2021) Predictive models for permeability of

cracked rock masses based on support vector machine tech-

niques. Geotech Geol Eng 39(2):1023–1031

Mahab Ghods Consulting Engineers Co (2009) Rock mechanics

report of Khersan II project. Mahab Ghods Consulting Engineers

Co., Tehran

Mahdavi A, Niknejad M, Karami O (2015) A fuzzy multi-criteria

decision method for ecotourism development locating. CJES

13(3):221–236

Mahmoodzadeh A, Mohammadi M, Ali HFH, Abdulhamid SN,

Ibrahim HH, Noori KMG (2021) Dynamic prediction models of

rock quality designation in tunneling projects. Transp Geotech

27:100497

Maleki MA, Emami M (2019) Application of SVM for investigation

of factors affecting compressive strength and consistency of

geopolymer concretes. JCEMA 3(2):101–107

Mantas CJ, Castellano JG, Moral-Garcı́a S, Abellán J (2019) A

comparison of random forest based algorithms: random credal

random forest versus oblique random forest. Soft Comput

23(21):10739–10754

Matinkia M, Hashami R, Mehrad M, Hajsaeedi MR, Velayati A

(2022) Prediction of permeability from well logs using a new

hybrid machine learning algorithm. Petrol. https://doi.org/10.

1016/j.petlm.2022.03.003

Meng F, Zheng Y, Bao S, Wang J, Yang S (2022) Formulaic language

identification model based on GCN fusing associated informa-

tion. PeerJ Comput Sci 8:e984

Moghaddam DD, Rahmati O, Panahi M, Tiefenbacher J, Darabi H,

Haghizadeh A, Haghighi AT, Nalivan OA, Bui DT (2020) The

effect of sample size on different machine learning models for

groundwater potential mapping in mountain bedrock aquifers.

CATENA 187:104421

Mohan R, Ganapathy K, Rama A (2021) Brain tumour classification

of magnetic resonance images using a novel CNN based medical

image analysis and detection network in comparison with

VGG16. J Popul Ther Clin 28(2):66. https://doi.org/10.47750/

jptcp.2022.873

Morshedy AH, Torabi SA, Memarian H (2019) A hybrid fuzzy zoning

approach for 3-dimensional exploration geotechnical modeling:

a case study at Semilan dam, southern Iran. Bull Eng Geol

Environ 78(2):691–708

Moshahedi A, Mehranfar N (2021) A comprehensive design for a

manufacturing system using predictive fuzzy models. UJRSET

9(03):1–23

Niru G (2011) Hydro powerhouse feasibility studies of Bazoft dam

site. Iran water and power resources development company

(IWPC), Tehran, Iran, p 213

Nonveiller E (1989) Grouting theory and practice, development of

geotechnical engineering. Elsevier

Oge İF, Çırak M (2019) Relating rock mass properties with Lugeon

value using multiple regression and nonlinear tools in an

underground mine site. Bull Eng Geol Environ 78(2):1113–1126

Ostad-Ali-Askari K, Shayannejad M, Ghorbanizadeh-Kharazi H

(2017) Artificial neural network for modeling nitrate pollution

of groundwater in marginal area of Zayandeh-rood River,

Isfahan, Iran. KSCE J Civ Eng 21(1):134–140

Parsakhoo A, Eshaghi MA, Shataee Joybari S (2016) Design and

evaluation of helicopter landing variants for firefighting in

Golestan National Park, Northeast of Iran. CJES 14(4):321–329

Piscopo V, Baiocchi A, Lotti AEA, Biler AR, Ceyhan AH, Cüylan M,
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