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Abstract
Two goals of multi-objective evolutionary algorithms are effectively improving their convergence and diversity and making
the Pareto set evenly distributed and close to the real Pareto front. At present, the challenges to be solved by the multi-
objective evolutionary algorithm are to improve the convergence and diversity of the algorithm, and how to better solve
functions with complex PF and/or PS shapes. Therefore, this paper proposes a gray wolf optimization-based self-organizing
fuzzy multi-objective evolutionary algorithm. Gray wolf optimization algorithm is used to optimize the initial weights of the
self-organizing map network. New neighborhood relationships for individuals are built by self-organizing map, which can
maintain the invariance of feature distribution and map the structural information of the current population into Pareto sets.
Based on this neighborhood relationship, this paper uses the fuzzy differential evolution operator, which constructs a fuzzy
inference system to dynamically adjust the weighting parameter in the differential operator, to generate a new initial solution,
and the polynomial mutation operator to refine them. Boundary processing is then conducted. Experiments on 15 problems
of GLT1-6 and WFG1-9 and the algorithm proposed in this paper achieve the best on 18 values. And the result shows that
the convergence and diversity of the proposed algorithm are better than several state-of-the-art multi-objective evolutionary
algorithms.

Keywords Gray wolf optimization · Fuzzy inference system · Self-organizing map · Evolutionary algorithm

1 Introduction

Many optimization problems in scientific research and indus-
trial applications are intrinsic multi-objective, in which
multiple conflicting objectives need to be optimized simul-
taneously. Thus, it is impossible to achieve the optimality of
all problems at the same time. The solution is a Pareto opti-
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mal solution set (PS), consisting of multiple compromised
solutions among different objectives. Vectors in the objec-
tive space that correspond to the PS are Pareto front (PF)
(Zhou et al. 2009).

Common approaches to solve multi-objective optimiza-
tion problems are traditional mathematical analytical algo-
rithms and evolutionary algorithms. Multi-objective evolu-
tionary algorithms (MOEAs) provide a general framework
for solving complex problems and have been widely used
in dynamic optimization, machine learning, signal process-
ing, adaptive control, and so on. Popular MOEAs are usually
based on Pareto dominance, performance indicator, and
decomposition (Zhang et al. 2016).

An effective MOEA should make full use of the reg-
ularity property of multi-objective optimization problems
(Zhang et al. 2016), that is, under certain conditions, the PF
and PS of a continuous m-objective optimization problem
form an (m-1)-dimensional piecewise continuous manifold
in the objective space and the decision space, respectively.
Regularity model-based multi-objective estimation of dis-
tribution algorithms (Zhang et al. 2008) explicitly uses this
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property, for modeling the PS (Zhou et al. 2009) and for
performing local search (Lara et al. 2010). Cellular multi-
objective genetic algorithms (Durillo et al. 2008; Nebro et al.
2009; Zhang et al. 2015), MOEA based on decomposition
(MOEAs/D) (Zhang et al. 2008; Li and Zhang 2009; Wang
et al. 2016; Zhou and Zhang 2016), and hybridNSGA-II with
self-organizing map (Norouzi and Rakhshandehroo 2011)
implicitly use this property.

However, in the evolutionary algorithm, there are uncer-
tainties in the process of population search and the generation
of offspring. Fuzzy set theory has inherent advantages
in describing uncertain events and inaccurate information.
Fuzzy inference system and hybrid methods with other
intelligent computations are widely used in the field of evo-
lutionary optimization, and have shown better results than
traditional methods. For example, (Melin et al. 2013) used
fuzzy logic to dynamically adjust the weight parameters C1
and C2 of the velocity formula in PSO. Olivas et al. (2017)
proposed Ant Colony Optimization (ACO) with interval
type-2 fuzzy system, which outperformed a rank-based ACO
and ACO using type-1 fuzzy system. Santiago et al. (2019)
proposed a novel MOEA with fuzzy logic-based adaptive
selection of operators. It identifieswhichmutation operator is
more (or less) promising among simulated binary crossover,
uniformmutation, polynomial mutation, andDE, for the evo-
lution of the population at each search stage. Also, it uses a
fuzzy system to assign the correct application rate to these
four operators. (Shen andGe2019proposed amulti-objective
particle swarm optimization algorithm based on fuzzy opti-
mization, and the experiment has better performance in terms
of solution quality, robustness, and computational complex-
ity. HSMP (Zou et al. 2020) used the current and past
continuous PS centers to automatically establish a T–S fuzzy
nonlinear regression prediction model that can predict future
PS centers to improve the prediction accuracy when environ-
mental changes occur at the inflection point. Korashy et al.
(2020)) proposed a method based on multi-objective gray
wolf optimization and fuzzy logic decision-making for solv-
ing multi-robot coordination problems and a new objective
function to minimize the recognition time between the main
and backup relays. The feasibility and effectiveness of this
method to solve the coordination problem of DOCRs were
discussed on two different systems.

In addition, scholars merge fuzzy systems with machine
learning and apply them to the field of multi-objective evo-
lution to improve performance. For example, (Chen et al.
2018) proposed a hybrid population prediction strategy based
on fuzzy inference and one-step prediction. A fuzzy infer-
ence model based on the maximum entropy principle is first
extracted automatically from the previously found Pareto
optimal solution set, and then the trajectory (position and/or
direction) of the new Pareto optimal solution set is inferred.
This strategy ensures that the algorithm can respond quickly

and effectively when the environment changes. Changing
PF, thereby, can be traced. Song et al. (2007) proposed a
new fuzzy cognitive map (FCM) learning algorithm based
on multi-objective particle swarm optimizations, and exper-
imental results show that the method improves the efficiency
and robustness of FCMs. In Yogesh and Ashish (2019),
fuzzy logic was used to improve the adaptivity of particle
swarm optimization (PSO) by controlling various parame-
ters. Then, the improved PSOwas used inK-harmonicmeans
(KHM) for better clustering. Sankhwar et al. (2020) com-
bined improved gray wolf optimization with fuzzy neural
classifier for achieving more accurate financial crisis predic-
tion than other methods.

The algorithms mentioned above cannot guarantee the
diversity or convergence of the population well or can-
not effectively solve functions with complex PF and/or
PS shapes. In this paper, a gray wolf optimization-based
self-organizing fuzzymulti-objective evolutionary algorithm
(GWO-SFMEA) is proposed. Fuzzy system is used to
dynamically adjust the weighted parameter F in differential
evolution operator, and a new fuzzy differential evolution
(FDE) operator is proposed. FDE is used to generate a new
initial solution using neighborhood relationship among indi-
viduals, followed by polynomial mutation and boundary
processing. The new neighborhood relationships of individ-
uals are built by exploiting the peculiarity of the SOM (an
unsupervised machine learning method), that is, invariance
of the feature distribution, to map the structural information
of the current population into Pareto sets. In addition, in this
paper, gray wolf optimization is used to optimize the initial
neuron weights of SOM.

Based on the above analysis, the main contributions of
this paper are as follows:

1) UseGWO to optimize theweights of SOM, enabling indi-
viduals to search for their neighbors more efficiently in
the global scope.

2) In order to produce high-quality new solutions, and
improve the convergence and diversity of the algorithm.
Weuse the fuzzy system to dynamically adjust theweight-
ing parameter F in the process of offspring generation.

3) A gray wolf optimization-based self-organizing fuzzy
multi-objective evolution algorithm is proposed to effec-
tively solve multi-objective optimization problems.

Experiments on fifteen test problems with complex PF
and/or PS shapes were conducted to verify the effectiveness
of our proposed algorithm. Results show that its convergence
and diversity are better than several state-of-the-art MOEAs.

The remainder of this paper is organized as follows:
Sect. 2 reviews some preliminaries. Section 3 introduces
the proposed GWO-SFMEA algorithm in detail. Section 4
presents the test instances andperformancemetrics. Section5
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describes the parameter settings and experimental results.
Section 6 gives additional discussions about GWO-SFMEA.
Finally, Sect. 7 draws conclusions.

2 Preliminaries

This paper considers the following form of multi-objective
optimization problems (Marler and Arora 2004):

min F(x) = ( f1(x), f2(x), . . . , fm(x)) (1)

s.t . x = (x1, x2, . . . , xn) ∈ Ω

where Ω is the feasible region of the decision space, x =
(x1, x2, . . . , xn) ∈ Ω is the decision variable vector. n is
the dimensionality of x, and m is the number of objective
functions. F : Ω → R

m consists of m objective functions
{ fi (x)}mi=1 from the decision space to the objective space.

In this section, we give some knowledge about stochastic
operator and gray wolf optimization algorithm.

2.1 Stochastic operator

MostMOEAs are optimized by a set of candidate solutions to
the target problems. These candidate solutions are generated
by random operators. The main difference between MOEAs
lies in the properties and search capabilities of the random
operators. DE (Price et al. 2005) is one of the most effective
operators to solve both single- and multi-objective continu-
ous optimization problems (Li and Zhang 2009; Zhang et al.
2016; Ming et al. 2017; Bošković and Brest 2018).

Storn (1996), Mendes and Mohais (2005) proposed a
variety of differential strategies to implement the mutation
operation. Table 1 lists five of them. In DE/x/ y/z, x is a
variation vector, which can be a random (rand) vector in the
population, or the best (best) vector in the current population;
y is the number of differential vectors; z represents the mode
of crossover, and λ the combination factor.

DE/rand/1/bin and DE/best/2/bin are the most pop-
ular and successful differential strategies. This paper adopts
the former to ensure the diversity of the population, and then
integrates a fuzzy inference system into it.

Table 1 Differential strategies

Differential strategy Differential expression

DE/rand/1/bin x1 + F(x2 − x3)

DE/rand/1/bin x1 + F(x2 + x3 − x4 − x5)

DE/best/1/bin xb + F(x2 − x3)

DE/best/2/bin xb + F(x2 + x3 − x4 − x5)

DE/rand-to-best/bin x1 + λ(xb − xi ) + F(x2 − x3)

Fig. 1 Hierarchy of gray wolves

2.2 Gray wolf optimization (GWO)

GWO (Mirjalili et al. 2014; Saremi et al. 2015) is a new
population intelligence optimization algorithm with fewer
parameters, which is simple, flexible, and scalable. It has
been widely used in many fields such as machine learn-
ing, image processing, and so on. For example, (Elhariri
et al. 2015, 2016) successfully applied a GWO-based sup-
port vector machine to image classification and EMG signal
classification. Mustaffa et al. (2015) used GWO to optimize
the least square support vector machine, and applied it to
commodity time series data.

In GWO, gray wolves strictly obey a social dominance
hierarchy as shown in Fig. 1, where the α wolf is the leader
of the population. The β wolf is a candidate for the α wolf,
helping the α wolf make decisions or carry out other wolf
group activities. The δ wolf complies with α wolf and β

wolf, but dominates ω wolf.
In addition to the social hierarchy of wolves, GWO also

includes tracking, encircling, attacking prey, etc.
A. Encircling prey
Its mathematical model is:

−→
D = |−→C · −−−→

X p(t) − −→
X (t)| (2)

−→
X (t + 1) = −→

X p(t) − −→
A · −→

D (3)
−→
A = 2−→a · −→r 1 − −→a (4)
−→
C = 2 · −→r 2 (5)

where t indicates the current iteration,
−→
A and

−→
C are coeffi-

cient vectors,
−→
X p is the position vector of the prey, and

−→
X

is the position of a gray wolf. In (4), components of −→a are
linearly decreased from 2 to 0 over the course of iterations,
and r1 and r2 are random vectors in [0, 1].

B. Hunting
Its mathematical model is:

−→
D α = |−→C 1 · −→

X α − −→
X |,−→D β

= |−→C 2 · −→
X β − −→

X |,−→D δ = |−→C 3 · −→
X δ − −→

X | (6)
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−→
X 1 = −→

X α − −→
A 1 · −→

D α,
−→
X 2

= −→
X β − −→

A 2 · −→
D β,

−→
X 3 = −→

X δ − −→
A 3 · −→

D δ (7)

−→
X (t + 1) =

−→
X 1 + −→

X 2 + −→
X 3

3
(8)

where
−→
X α ,

−→
X β and

−→
X δ represent the position vectors of α,

β and δ wolves in the current population, respectively.
−→
D α ,−→

D β and
−→
D δ indicate the distance between candidate wolves

in the current population andα,β, and δ wolves, respectively.
C. Attacking prey (exploitation)
When the values of

−→
A are in [−1, 1], the next position

of the ω wolf which prepares for attacking the prey can be
between its current position and the position of the prey.
Otherwise, the wolves will spread out in search of prey for
the sake of a global search and avoiding the local optimum.

3 GWO-based self-organizing fuzzy MOEA
(GWO-SFMEA)

This section proposes a new gray wolf optimization-based
self-organizing fuzzy multi-objective evolution algorithm. It
first uses GWO to optimize the initial network weight vec-
tor of the SOM, and then SOM to extract the neighborhood
relationship information of the best population individuals.
In addition, it uses the fuzzy differential evolution (FDE)
operator to generate a new solution.

3.1 GWO initialized SOM

SOM network (Kohonen 1990; Teuvo 1998), proposed by
Kohonen et al, is an unsupervised machine learning method.
The SOM generally consists of two parts: an input layer
and an output layer. The neurons between the two layers
are fully connected by a network weight vector. It adap-
tively adjusts this weight vector by detecting the relationship
between the input data and the characteristic of the input data.
The common topological structure of SOM is one- or two-
dimensional. The topological structure of a two-dimensional
SOM is shown in Fig. 2 (Zhang et al. 2016).

To improve the performance of MOEAs, we utilize GWO
to optimize the initial weight vector. Its fitness function is:

g(pi ) = 100

F(pi )
, (9)

where F(pi ) = ∑N
n=1 ‖xq − c‖2 is used to measure the

sum of the Euclidean distance between the input vector and
the closest weight vector, and c = argmin

j
{‖xTq − ω j‖2}.

Algorithm 1 shows this optimization process.

Fig. 2 An illustration of a two-dimensional SOM

Algorithm 1 GWO-SOM

1.Input: Population size of the gray wolves, boundary, number
of neurons.

2. Set the maximum number of iterations about GWO, initialize
gray wolf population (network weight).

3. Calculate the fitness by (9);
4. for g = 1, 2, ...,max I ter do
5. Boundary processing of the initial population.
6. Choose α, β, δ wolves and record the positions.
7. Update the positions of other gray wolves according to (2)-(8).
8. end
9. Output: Positions of the population, i.e., the initial weight
vector of SOM.

3.2 Fuzzy inference system

This paper uses Mamdani-type fuzzy system (Sivanandam
et al. 2007) with triangular membership functions and cen-
troid defuzzification to dynamically adjust the value of the
mutation parameter F in the process of generating offspring
using the DE operator. This mechanism allows different F
values to be applied during each iteration so that the operator
can generate higher-quality offspring. The exploration and
development capabilities of the algorithm, therefore, can be
improved.

During the generation of offsprings, the value of the
weighted parameter F is generated by a fuzzy system. The
fuzzy system first monitors the search process through the
number of iterations and utilization, and then updates the
value of the weighted parameter F according to the values of
these two variables. The initial utilization value is 1. The cor-
responding utilization is decreased by 1

controlsize every time
the F value is generated. The value of the controlsi ze must
be carefully tuned. It was set to 500 by trial and error.

In Figs. 3 and 4, we show the linguistic variables with the
triangular membership functions for the number of iterations
and utilization, respectively.
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Fig. 3 Generation membership function and the representation of lin-
guistic terms

Fig. 4 Utilization membership function and the representation of lin-
guistic terms

After the defuzzification process, we obtain a crisp value
F. The specific surface function of fuzzy inference system is
shown in Fig. 5, and its membership function as shown in
Fig. 6.

To model the process with the fuzzy system, we consider
9 rules that help describe the existing relationship between
the input and output, as shown in Table 2.

3.3 GWO-SFMEA framework

Figure 7 shows the specific process of the GWO-SFMEA
algorithm.

Fig. 5 Surface function graph of fuzzy inference system

Fig. 6 The membership function and linguistic terms of output F

Table 2 Fuzzy inference rules

Fuzzy inference rules

R1 : if Generation is low and utili zation is low, then F is high

R2 : if Generation is low and utili zation is mid, then F is mid

R3 : if Generation is low and utili zation is high, then F is high

R4 : if Generation is mid and utili zation is low, then F is high

R5 : if Generation is mid and utili zation is mid, then F is mid

R6 : if Generation is mid and utili zation is high, then F is mid

R7 : if Generation is high and utili zation is low, then F is high

R8 : if Generation is high and utili zation is mid, then F is mid

R9 : if Generation is high and utili zation is high, then F is high
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Fig. 7 The GWO-SFMEA framework

(1) Randomly initialize the population and set parameters
of the proposed algorithm;

(2) Use Algorithm 1 to initialize the weight vectors of the
SOM;

(3) Start an iterative loop, use the training data set to
update SOM network, i.e., the learning rate, weights,

and neighborhood radius. And then extract neighbor-
hood information between the population individuals;

(4) Use the tournament selection mechanism to select the
parent population from neighbor or current population;

(5) Use the fuzzy system to dynamically adjust the weight-
ing parameter F in each iteration.

(6) Use the FDE operator and the polynomialmutation oper-
ator to generate a new solution;

(7) Use the environmental selection mechanism in (Zhang
et al. 2016) to update the population and training set.
If the termination condition is met, output the optimal
solution of the population; otherwise, repeat step (3).

4 Test instances and performancemetrics

In this section, six MOPs with complex PF and PS shapes
from (Gu et al. 2012; Zhang et al. 2016) are used as test
functions. Table 3 introduces the feasible region of the set
of test problems, the number of objective functions, and the
dimensions of the decision variables.

In order to evaluate the convergence and diversity of
the approximate PF obtained by the proposed algorithm,
this paper adopts two commonly used performance indica-
tors, i.e., inverted generational distance(IGD) (Zhou
et al. 2005; Zhang et al. 2008; Cai et al. 2020) and
hypervolume(HV ) (Zitzler and Thiele 1999; Zhang et al.
2016).

Let PF∗ and PF be the evenly distributed Pareto opti-
mal solution set in PF and the obtained non-dominated front,
respectively. IGD is computed by:

IGD(PF∗, PF) =
∑

x∗∈PF∗ d(x∗, PF)

|PF∗| ,

where d(x∗, PF) is the minimal distance between x∗ and
any point in PF , and |PF∗| is the cardinality of PF∗. When
using IGD metrics, the true PF value must be known. In
the experiments of this section, 1000 uniformly distributed
points are selected from PF to form |PF∗|.

Table 3 The GLT Test Instance Used in the Experiments

Instance Variable space Number of objective functions Character

GLT1 [0, 1] × [−1, 1]n−1 2 Linear and disconnected PF; Nonlinear variable linkage

GLT2 [0, 1] × [−1, 1]n−1 2 Convex PF; Nonlinear variable linkage

GLT3 [0, 1] × [−1, 1]n−1 2 Convex PF; Nonlinear variable linkage

GLT4 [0, 1] × [−1, 1]n−1 2 Convex and disconnected PF; Nonlinear variable linkage

GLT5 [0, 1]2 × [−1, 1]n−2 3 Convex PF; Nonlinear variable linkage

GLT6 [0, 1]2 × [−1, 1]n−2 3 Convex and disconnected PF; Nonlinear variable linkage
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The calculation of HV is:

HV (PF, r∗)

= V OL

(
⋃

x∈PF

[ f1(x), r∗
1 ] × · · · × [ fm(x), r∗

m ]
)

,

where r∗ = (r∗
1 , . . . , r∗

m) is a reference point dominated by
any Pareto optimal point in the objective space. V OL(·) is
theLebesguemeasure. In our experiments,we set r∗ = (2, 2)
for GLT1 and GLT3, r∗ = (2, 11) for GLT2, r∗ = (2, 3) for
GLT4, r∗ = (2, 2, 2) for GLT5 and GLT6. Both the IGD
and HV metrics measure the population convergence and
diversity. The smaller (larger) the value of IGD(HV ) is, the
better the performance of an algorithm.

5 Experimental results

In this section, the proposed algorithm GWO-SFMEA com-
pares with SMEA (Zhang et al. 2016), MOEA/D-DE (Li and
Zhang 2009), SOM-NSGA-II (Norouzi andRakhshandehroo
2011), SMPSO (Liang et al. 2019) and FAME (Santiago et al.
2019) in the GLT test instances with regard to IGD value
and HV value.

5.1 Parameter setting

The proposed algorithm is implemented on Windows 10,
64-bit, MATLAB2018a. The detailed parameters are set as
follows:

– SOM structures: one-dimensional structure 1 × 100 for
bi-objective MOPs, two-dimensional 7 × 15 for tri-
objective MOPs; initial learning rate τ0 = 0.7;

– Size of neighborhood mating pools: H = 5;
– Probability of mating restriction: β = 0.9;
– Control parameters for FDE operator: CR = 1;
– Control parameters for PM: pm = 1

n , ηm = 20.

The implementation and parameter setting of other algo-
rithms were configured according to the suggestions of the
original papers. Table 4 summarizes these parameters.

5.2 Analysis of results

A. Time comparison
Table 5 shows the average time of SMEA and the pro-

posed algorithm on 30 executions of 6 multi-objective test
problems. Their time complexity on the bi-objective problem
is similar, our proposed algorithm is faster on the tri-objective
problem.

B. Comparison of IGD and HV value
The mean and standard deviation of the IGD and HV val-

ues of the 30final populations generated by the six algorithms
on the GLT test function are given in Table 6. The bold text
indicates the best results (minimum IGD ormaximum HV );
“§,” “\” and “∼” in the table indicate that the performance
of the algorithm GWO-SFMEA is better than, worse than,
and similar to that of the comparison algorithm, respectively.
Generally, the performance of GWO-SFMEA was signifi-
cantly better than other algorithms on all GLT issues.

Table 4 Parameters settings

Algorithm SOM-NSGA-II SMEA

Population size 100/105 for bi/tri-objective MOPs 100/105 for bi/tri-objective MOPs

SOM structures 1×5/3×5 for bi/tri-objective MOPs 1×100/7×15 for bi/tri-objective MOPs

Differential evolution F = 0.3, CR = 1.0 F = 0.9, CR = 1.0

Polynomial evolution pm = 1/n, ηm = 20 pm = 1/n, ηm = 20

Neighborhood size 5, probability of mating restriction: 0.9

Algorithm FAME SMPSO

Population size 25/100 for bi/tri-objective MOPs 100/150 for bi/tri-objective MOPs

Archive size 100/200 for bi/tri-objective MOPs 100/150 for bi/tri-objective MOPs

SOM structures 1×100/15×10 for bi/tri-objective MOPs

Recombination DE: F=0.5, CR=1.0, SBX: ηc = 20

Polynomial evolution pm = 0.3, ηm = 20

Uniform mutation pm = 0.3

Algorithm MOEA/D-DE

Population size 100/105 for bi/tri-objective MOPs

Differential evolution F=0.9, CR=0.8

Polynomial evolution pm = 1/n, ηm = 20

Neighborhood size 5, probability of mating restriction: 0.9
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Table 5 Average time of SMEA and GWO-SFMEA on the GLT test
suite/s

Instance SMEA GWO-SFMEA

GLT1 108.83 108.76

GLT2 104.47 98.67

GLT3 97.41 99.52

GLT4 97.72 99.19

GLT5 217.31 192.90

GLT6 214.44 204.19

In terms of IGD, the value achieved by the proposed
algorithm was lower than the other five algorithms in both
bi-objective and tri-objective problems. The performance of
SMPSO on GLT1 and GLT3 was inferior to all algorithms.
MOEA/D-DE performed the worst on GLT2, GLT5, and
GLT6. The value obtained by FAME on GLT4 was inferior
to other algorithms.

With regard to HV , the proposed algorithm obtained bet-
ter values than other algorithms on all GLT test instances

Table 7 Average ranking of the algorithms

Algorithm HV Rank IGD Rank

SOM-NSGA-II 4.33 4.00

FAME 3.83 4.33

MOEA/D-DE 4.50 5.17

SMEA 2.67 2.00

SMPSO 4.17 4.50

GWO-SFMEA 1.50 1.00

except GLT1 and GLT3, where FAME and SMPSO ranked
first, respectively. However, FAME and MOEA/D-DE per-
formed the worst on bi-objective problems(GLT4 for FAME,
GLT2 and GLT3 for MOEA/D-DE). SMPSO had the worst
performance on tri-objective problem(GLT5 and GLT6).

Table 7 shows the Friedman ranks of the six algorithms
for the two considered indicators, with 95% significance.
Regardless of IGD or HV , the average ranking of the pro-
posed algorithmwas the first, followed by SMEA.MOEA/D-

Table 6 Statistical result (Mean Std [Rank]) of the six algorithms on the GLT test suite of the IGD and HV metrics

Instance SOM-NSGA-II FAME MOEA/D-DE SMEA SMPSO GWO-SFMEA

IGD

GLT1 Mean 4.437E–03§[4] 4.14E–03§[3] 5.522E–03§[5] 2.762E–03§[2] 2.38E–02§[6] 2.107E–03[1]

Std (2.239E–03) (3.230E–03) (2.681E–04) (5.173E–04) (2.25E–03) (5.212E–05)

GLT2 Mean 4.345E–02§[4] 6.209E–02§[5] 3.579E–01§[6] 3.765E–02§[2] 3.82E–02§[3] 3.699E–02[1]

Std (3.080E–03) (2.481E–02) (5.802E–02) (2.004E–03) (1.88E–03) (1.793E–03)

GLT3 Mean 8.704E–03§[3] 4.790E–02§[5] 2.348E–02§[4] 5.756E–03§[2] 9.32E–02§[6] 5.165E–03[1]

Std (4.219E–03) (1.624E–02) (3.311E–03) (1.296E–03) (5.32E–03) (5.900E–04)

GLT4 Mean 1.769E–02§[3] 1.475E–01§[6] 2.162E–02§[4] 6.752E–03§[2] 4.17E–02§[5] 5.876E–03[1]

Std (2.702E–02) (1.267E–01) (3.928E–03) (1.835E–02) (4.90E–03) (1.258E–04)

GLT5 Mean 5.530E–02§[5] 3.233E–02§[3] 8.278E–02§[6] 2.947E–02§[2] 4.77E–02§[4] 2.933E–02[1]

Std (3.843E–04) (5.200E–04) (2.006E–03) (3.724E–04) (2.57E–03) (3.656E–04)

GLT6 Mean 5.123E–02§ [5] 4.810E–02§[4] 5.149E–02§[6] 2.163E–02§[2] 4.12E–02§[3] 2.159E–02[1]

Std (8.447E–03) (5.266E–03) (1.295E–03) (3.489v04) (3.34E–03) (2.193E–04)

HV

GLT1 Mean 3.357E+00§[5] 3.377E+00\[1] 3.369E+00∼[2] 3.366E+00§[4] 3.31E+00§[6] 3.369E+00[3]

Std (3.361E–03) (9.401E–02) (6.176-04) (3.361E–03) (5.30E–03) (1.100E–03)

GLT2 Mean 1.975E+01§[5] 1.976E+01§[4] 1.942E+01§[6] 1.978E+01§[3] 1.98E+01∼[2] 1.980E+01[1]

Std (4.990E–03) (1.504E–02) (5.492E–02) (5.825E–03) (1.01E–02) (2.032E–03)

GLT3 Mean 3.947E+00§[4] 3.939E+00§[6] 3.943E+00§[5] 3.948E+00§[3] 3.95E+00∼[1] 3.949E+00[2]

Std (1.024E–03) (3.520E–03) (6.799E–04) (4.186E–04) (1.06E–03) (2.934E–04)

GLT4 Mean 4.979E+00§[3] 4.613E+00§[6] 4.969E+00§[5] 4.988E+00§[2] 4.97E+00§[4] 4.992E+00[1]

Std (2.934E–02) (3.970E–01) (8.920E–03) (3.482E–02) (2.59E–02) (5.912E–04)

GLT5 Mean 7.947E+00§[4] 7.964E+00§[3] 7.940E+00§[5] 7.969E+00∼[2] 3.90E+00§[6] 7.969E+00[1]

Std (2.239E–03) (5.000E–04) (1.297E–03) (1.617E–04) (1.56E–02) (9.977E–05)

GLT6 Mean 7.935E+00§[5] 7.945E+00§[3] 7.940E+00§[4] 7.962E+00∼[2] 3.86E+00§[6] 7.962E+00[1]

Std (6.048E–03) (2.852E–02) (3.323E–03) (3.044E–04) (1.37E–02) (2.382E–04)

Bold indicates the value obtained by the first-ranked algorithm
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DE ranked last on all metric values, which means it has the
worst performance.

C. Population distribution graph
In order to further compare SMEA, FAME, and GWO-

SFMEA, Fig. 8 shows the distribution of the final population
implemented independently by three algorithms for 30 times.

For GLT1, the distribution of the final population achieved
by FAME is better than SMEA and GWO-SFMEA, which
is consistent with the optimal performance of HV of FAME
in Table 6. Besides, the population distribution generated
by GWO-SFMEA is better than SMEA. Both FAME and
the proposed GWO-SFMEA apply fuzzy systems and out-
perform SMEA, indicating that the use of fuzzy systems in
EAs canmake the population distributionmore uniform. The
population distributions generated by SMEA, FAME, and
GWO-SFMEA on GLT2 can cover the whole PFs well and
do not show a big difference. SMEA is not much differ-
ent from GWO-SFMEA on GLT3, but these two algorithms
are better than FAME. The distribution of the population
achieved by FAME, the right half part is not evenly dis-
tributed. Although the FAME guarantees the diversity of
the population on GLT4, its distribution is uneven. By con-
trast, GWO-SFMEA guarantees uniformity. GWO-SFMEA
performs better than the SEMA and FAME on tri-objective
problems (GLT5 and GLT6).

By analyzing the above experimental results,we can found
the SMPSO and MOEA/D-DE performed worst on both
complicated PF or PS shapes, which might be because the
particles have poor search ability or the set of the weight
vectors. FAME works well on MOPs with three objectives,
but it performs poorly on the GLT3 might be due to the ran-
dom selection of the operator. SOM-NSGA-II and SMEA
employ SOM to extract neighborhood information from the
population, therefore, they can construct better quality parent
population. Similarly, the algorithm proposed in this paper
uses SOM to construct parent population, and uses the fuzzy
system to dynamically adjust the parameters in the genera-
tion of its offspring to ensure that each iteration can produce
high-quality solutions. Thus,GWO-SFMEAhas a significant
advantage in dealing with these instances.

6 Discussion

6.1 Test function with complex PF shapes

TheWFG (Huband et al. 2005) test instances have a complex
PF shape and a simple PS shape. Its characteristics are shown
in Table 8.

Through preliminary experiments, the output surface of
the fuzzy systemwith the mutation parameter F in the GWO-
SFMEA algorithm is shown in Fig. 9, τ0 = 0.9, CR = 0.8

and the values of other parameters are the same as in
Sect. 5.1.

The five algorithms were run on these instances 30 times.
Themean and standard deviation of the IGD and HV values
of the final population are shown in Table 9. The reference
point for the bi-objective WFG that is used to calculate the
HV metric is r∗ = (3, 5).

As shown in Table 9, the proposed algorithm achieved 8
best values on 18 average metric values. In terms of IGD,
the proposed algorithm obtained lower values than other
algorithms on WFG2, WFG5, WFG7, and WFG8. FAME
performed best on the rest of the problems. MOEA/D-DE
andSOM-NSGA-II obtainedworst values onWFG1,WFG2,
WFG6 and WFG3, WFG5, WFG9, respectively.

With regard to HV , the proposed algorithm was bet-
ter than the other algorithms on WFG2, WFG5, WFG7-8.
It was inferior to FAME and SMEA on WFG1, WFG4,
WFG6, WFG9 and WFG3, respectively. However, FAME
and SMEA obtain worst value onWFG8 andWFG1, respec-
tively. MOEA /D-DE and SOM-NSGA-II obtained the worst
values onWFG5-6 andWFG3, WFG7, WFG9, respectively.

In conclusion,GWO-SFMEAachieved goodperformance
onWFG2, WFG5, WFG7, andWFG8 and ranked second on
other problems. It can be seen that the algorithm proposed in
this paper is able to tackle MOPs with complex PF shape.

Table 10 shows the Friedman ranks of the five algorithms
for the two considered indicators, with 95% significance. The
proposed algorithm achieved higher rank than other algo-
rithms.

6.2 Application of fuzzy system

In order to study whether the fuzzy system improves the con-
vergence of the algorithm and the diversity of the population,
the GWO-SFMEA was compared with the version without
fuzzy inference system by running two algorithms indepen-
dently on the GLT problems 30 times. The average IGD and
HV values after the implementation of two algorithms are
shown in Fig. 10. The larger the HV value is or the smaller
the IGD value is, the better performance of the algorithm is.

Observe Fig. 10a and compare the values in the figure.We
can find that after using the fuzzy system, the IGD values of
GLT1–GLT5 have all decreased, only the IGD of GLT6 has
increased, but the increased accuracy is not large. Observing
Fig. 10b, after using the fuzzy system, the HV values of all
problems have increased.

In summary, the performanceof the proposed algorithmon
all instances was improved after adopting the fuzzy inference
system, which shows that a well-organized fuzzy inference
system in the MOEAs can improve the performance of the
algorithm and can ensure the diversity of the population and
the convergence speed of the population.
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Fig. 8 The final populations in the objective space obtained by SMEA, FAME, and GWO-SFMEA on GLT1–GLT6 over 30 runs
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Table 8 The WFG test instance used in the experiments

Instance Character

WFG1 Separable; Uni-modal

WFG2 Non-separable; Uni-modal

WFG3 Non-separable; Uni-modal

WFG4 Separable; multi-modal

WFG5 Separable; deceptive

WFG6 Non-separable; Uni-modal

WFG7 Separate; Uni-modal

WFG8 Non-separable; Uni-modal

WFG9 Non-separable; multi-modal; deceptive

Fig. 9 Output surface of fuzzy system with weighted parameter F

6.3 Network structure of SOM

In GWO-SFMEA, the structure of SOM for the bi-objective
and tri-objective problems is set to be one-dimensional
(1 × 100) and two-dimensional (7 × 15), respectively. In
order to study the influence of the SOM structure on the per-
formance metrics IGD and HV of the algorithm, the SOM
structure was changed to be two-dimensional (10×10) SOM
in bi-objective problem and one-dimensional (1×105) in tri-
objective problem. The two kinds of SOM structures were
both run on GLT1–GLT6 for 30 times. The IGD and HV
values obtained from each instance are compared with the
unmodified ones. The results are shown in Fig. 11.

It can be observed from Fig. 11a that for the bi-objective
instances, the IGD value on GLT1-2 is smaller under the
one-dimensional SOM structure. However, the IGD value
of GLT3-4 is smaller under the two-dimensional structure.
For the tri-objective problem, the IGD value is smaller under
the two-dimensional structure.

It can be seen from (b) that the change of the SOM struc-
ture has little effect on the HV value on all GLT problems.
Strictly speaking, the HV value on the bi-objective problem
is slightly larger under the one-dimensional structure, and
that on the tri-objective problem is a little larger under the
two-dimensional structure.

In conclusion, the bi-objective problem has no obvious
preference for one-dimensional or two-dimensional SOM,
but the tri-objective instance prefers two-dimensional SOM
structure.

Table 9 Statistical Result (Mean Std [Rank]) of The Five Algorithms on the GLT Test Suite of the IGD and HV Metrics

Instance SOM-NSGA-II FAME MOEA/D-DE SMEA GWO-SFMEA

IGD

WFG1 Mean 1.433E+00§[3] 1.491E–02\[1] 1.695E+00§[5] 1.565E+00§[4] 1.085E+00[2]

Std (7.333E–02) (1.308E–03) (1.122E–02) (9.525E–02) (2.019E–02)

WFG2 Mean 1.433E–02§[2] 1.846E–02§[4] 3.790E–02§[5] 1.474E–02§[3] 1.121E–02[1]

Std (6.093E–03) (3.859E–02) (6.109E–04) (7.078E–04) (4.670E–04)

WFG3 Mean 1.450E–01§[5] 1.127E–02\[1] 1.420E–01§[4] 1.388E–01§[3] 1.137E–02[2]

Std (6.990E–04) (6.682E–05) (3.025E–04) (1.380E–04) (7.061E–05)

WFG4 Mean 6.037E–02§[4] 1.084E–02\[1] 5.025E–02§[3] 7.784E–02§[5] 3.059E–02[2]

Std (5.681E–03) (1.364E–04) (6.321E–03) (6.902E–03) (3.959E–02)

WFG5 Mean 6.902E–02§[5] 6.638E–02§[2] 6.747E–02§[4] 6.663E–02§[3] 6.467E–02[1]

Std (5.246E–04) (4.037E–05) (4.476E–04) (1.138E–04) (5.701E–03)

WFG6 Mean 3.334E–01§[4] 1.288E–02\[1] 3.352E–01§[5] 3.265E–01§[3] 3.022E–01[2]

Std (4.137E–03) (2.792E–04) (2.240E–02) (2.090E–02) (3.069E–04)

WFG7 Mean 2.994E–02§[5] 1.261E–02§[3] 1.815E–02§[4] 1.144E–02§[2] 1.071E–02[1]

Std (1.527E–03) (2.062E–04) (2.968E–04) (2.526E–04) (3.107E–04)

WFG8 Mean 5.755E–02§[4] 1.033E–01§[5] 3.989E–02§[3] 2.666E–02§[2] 1.186E–02[1]

Std (6.643E–03) (2.750E–02) (7.611E–03) (6.924E–03) (2.819E–04)
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Table 9 continued

Instance SOM-NSGA-II FAME MOEA/D-DE SMEA GWO-SFMEA

IGD

WFG9 Mean 2.707E–01§[5] 1.448E–02\[1] 2.435E–01§[3] 2.561E–01§[4] 1.984E–01[2]

Std (1.217E–02) (4.970E–03) (3.200E–02) (2.980E–02) (7.404E–04)

HV

WFG1 Mean 4.428E+00§[4] 1.207E+01\[1] 5.809E+00§[3] 3.873E+00§[5] 5.878E+00[2]

Std (2.667E–01) (4.180E–03) (5.017-02) (3.781E–01) (1.217E–01)

WFG2 Mean 1.141E+01§[3] 1.136E+01§[5] 1.143E+01§[2] 1.141E+01§[4] 1.145E+01[1]

Std (3.455E–03) (4.195E–01) (1.397E–03) (6.347E–03) (5.476E–02)

WFG3 Mean 1.089E+01§[5] 1.096E+01∼[2] 1.091E+01§[4] 1.594E+01\[1] 1.096E+01[3]

Std (5.643E–03) (2.100E–04) (3.319E–03) (1.946E–03) (1.141E–03)

WFG4 Mean 8.328E+00§[4] 8.684E+00\[1] 8.443E+00§[3] 8.204E+00§[5] 8.559E+00[2]

std (3.591E–02) (1.710E–03) (3.884E–02) (3.966E–02) (1.993E–02)

WFG5 Mean 8.158E+00§[4] 8.181E+00§[3] 8.138E+00§[5] 8.233E+00§[2] 8.251E+00[1]

Std (5.498E–02) (3.902E–02) (3.069E–02) (4.557E–02) (3.188E–02)

WFG6 Mean 6.344E+00§[4] 8.677E+00\[1] 6.337E+00§[5] 6.383E+00§[3] 6.527E+00[2]

Std (2.199E–03) (3.651E–02) (1.139E–01) (1.064E–01) (3.112E–04)

WFG7 Mean 8.575E+00§[5] 8.686E+00§[2] 8.644E+00§[4] 8.671E+00§[3] 8.687E+00[1]

Std (7.901E–03) (2.620E–03) (3.616E–03) (2.129E–03) (2.600E–04)

WFG8 Mean 8.352E+00§[4] 7.049E+00§[5] 8.482E+00§[3] 8.528E+002§[2] 8.675E+00[1]

Std (3.872E–02) (4.843E–01) (4.711E–02) (4.456E–02) (2.495E–03)

WFG9 Mean 6.102E+00§[5] 8.448E+00\[1] 6.179E+00§[3] 6.174E+00§[4] 6.451E+00[2]

Std (6.438E–02) (4.316E–02) (1.563E–01) (1.518E–01) (2.543E–02)

Bold indicates the value obtained by the first-ranked algorithm

Table 10 Average rankings of the algorithms

Algorithm HV rank IGD rank

SOM-NSGA-II 4.22 4.11

FAME 2.33 2.11

MOEA/D-DE 3.56 4.00

SMEA 3.22 3.22

GWO-SFMEA 1.67 1.56

6.4 Comparison of GWO and other optimization
algorithms

In this paper, GWO is used to optimize the initial weight
of SOM. In order to further illustrate the advantages of
using GWO, we compare GWO with the latest optimization
algorithms—bald eagle algorithm(BES)(Alsattar et al. 2020)
and slime mold algorithm(SMA)(Li et al. 2020). BES is a
new meta-heuristic algorithm proposed by Alsattar in 2020.
(Angayarkanni et al. 2021) combinedBESalgorithmwith the
gray wolf optimization algorithm to optimize the parameters
of support vector regression in the prediction of traffic flow.
The experiment shows its effective application in intelligent
transportation. Xie et al. (2021) proposed a network public
opinion prediction model based on the bald eagle algorithm

optimized radial basis function neural network (BES-RBF).
This model can better describe the development trend of dif-
ferent network public opinion information. SMA (Li et al.
2020) is another new meta-heuristic algorithm proposed by
Li in 2020. Mostafa et al. (2020) used SMA to extract the
global optimal values of solar photovoltaic cell parameters,
and SMA can handle the nonlinearity and multi-modal prop-
erties of photovoltaic cell characteristics.

In this subsection, the above three algorithms are all used
to optimize the initial weights of SOM and test on GLT1-6.
In order to show the advantages and disadvantages of the
three algorithms more directly, no fuzzy system is added in
this experimental part. The mean and standard deviation of
the IGD and HV values of the 30 final populations generated
by the three algorithms on the GLT test function are given
in Table 11. The gray background indicates the best results
(minimum IGD or maximum HV ); “§,” “\” and “∼” in the
table indicate that the performance of the algorithm GWO-
SOM is better than, worse than, and similar to that of the
comparison algorithm, respectively.

Observing the above table, among the above 12 values,
GWO, BES and SMA dominate by 7, 0, and 5, respectively.
In terms of IGD, GWO is used to optimize the initial weight
of SOM, and the IGD value obtained is the best on GLT1, 5,
and 6. Using SMA to optimize the initial weight of SOM is
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Fig. 10 The impact of fuzzy system on IGD and HV

the best on other problems. With regard to HV , the method
used in this paper achieves the best value on GLT2, GLT4-6,
and SMA-SOM achieves the best value on GLT1 and GLT3.
On tri-objective problems, the average values obtained by
the three algorithms are the same, but the standard deviation
obtained by GWO-SOM is the smallest, indicating that the
HV value obtained by GWO-SOM in running 30 times is
stable. Therefore, this paper uses GWO to optimize the ini-
tial weight of SOM, and compared with BES and SMA, the
algorithm has no redundant parameters, does not increase the
time complexity of the algorithm, and is easy to operate.

7 Conclusions

In this paper, a new MOEA called gray wolf optimization-
based self-organizing fuzzy multi-objective evolution algo-
rithm was proposed. In algorithms which combine SOM
with MOEAs, the initial weight of self-organizing map is
generated randomly. However, the result depends heavily on
the initial weight. Therefore, this paper optimized the initial

Fig. 11 The Influence of SOM Structure on IGD and HV

weights of SOM through gray wolf optimization algorithm.
At the same time, SOMcan be used tomap high-dimensional
information to low-dimensional space while maintaining
feature distribution invariance and building neighborhood
relationships between individuals. In addition, the subop-
timal solutions produced in the early optimization process
in most MOEAs induce the algorithm to converge prema-
turelywith great probability. To avoid this problem, this paper
first utilized FDE operator to generate a new initial solution.
Then the PM operator was used to mutate the new solution
and boundary processing was performed. FDE dynamically
adjusts the weighting parameter F in the difference operator
by constructing a fuzzy inference system, which can ensure
high-quality new solutions during the generation of offspring
and effectively improve the convergence and diversity of the
algorithm.

In order to verify the performance of the proposed algo-
rithm, GWO-SFMEA and other state-of-the-art algorithms
were tested on the GLT and WFG test functions with com-
plex PF shapes and/or complex PS shapes, respectively.
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Table 11 Statistical result
(Mean Std [Rank]) of the three
algorithms on the GLT test suite
of the IGD and HV metrics

Instance GWO-SOM BES-SOM SMA-SOM

IGD

GLT1 Mean 3.013E–03[1] 3.610E-03§[3] 3.039E-03§[2]

Std (5.475E–03) (3.267E–03) (4.250E–04)

GLT2 Mean 3.798E–02[3] 3.762E–02\[2] 3.746E–02\[1]
Std (1.741E–03) (1.591E–03) (2.240E–03)

GLT3 Mean 6.503E–03[2] 6.575E–03§[3] 5.311E–03\[1]
Std (4.354E–03) (6.061E–03) (2.209E–04)

GLT4 Mean 5.990E–03[2] 6.109E–03§[3] 5.738E–03\[1]
Std (2.342E–03) (2.184E–03) (2.479E–03)

GLT5 Mean 2.960E–02[1] 2.964E–02§[2] 2.969E–02§[3]

Std (3.657E–04) (3.429E–04) (3.734E–04)

GLT6 Mean 2.172E–02[1] 2.183E–02§[3] 2.180E–02§[2]

Std (3.143E–04) (3.121E–04) (3.476E–04)

HV

GLT1 Mean 3.364E+00[2] 3.362E+00§[3] 3.369E+00\[1]
Std (4.576E–03) (1.222E–01) (3.502-03)

GLT2 Mean 1.978E+01[1] 1.977E+01§[3] 1.978E+01§[2]

Std (6.293E–03) (6.217E–03) (8.306E–04)

GLT3 Mean 3.948E+00[2] 3.948E+00§[3] 3.948E+00\[1]
Std (9.141E–04) (1.238E–03) (1.692E–04)

GLT4 Mean 4.986E+00[1] 4.974E+00§[3] 4.984E+00§[2]

Std (5.130E–03) (3.249E–02) (1.369E–02)

GLT5 Mean 7.968E+00[1] 7.968E+00§[2] 7.968E+00§[3]

Std (1.435E–04) (1.485E–04) (1.573E–04)

GLT6 Mean 7.961E+00[1] 7.961E+00§[2] 7.961E+00§[3]

Std (3.197E–04) (3.757E–04) (3.469E–04)

Bold indicates the value obtained by the first-ranked algorithm

Through experiments, it can be found that the proposed
algorithm is significantly better than other algorithms at the
95% confidence level. Through analysis of the sensitivity
of GWO-SFMEA to the SOM structure, it can be seen that
the SOM structure has no obvious preference for the bi-
objective problem, but the tri-objective problem prefers the
two-dimensional SOM structure. In addition, the combina-
tion of fuzzy systems with EAs can greatly improve the
convergence and diversity of evolutionary algorithms.

The fuzzy rules designed in this paper are obtained through
repeated trial and error and expert knowledge, which will
affect the performance of the algorithm to a certain extent.
Therefore, in future research, a fuzzy rule generator will be
explored, which can generate fuzzy rules suitable for solving
the problem according to the characteristics of the problem
to be optimized. Moreover, we will look for different ways
to improve the performance of the algorithm so that it can
effectively deal with mixed and separable problems.
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